

Dengue

Monday, October 6, 2025 9:49 AM

⦿ Dengue Virus

⦿ Overview

- Causative agent: Dengue virus (Flavivirus, genus *Flavivirus*; RNA virus)
- Vector: *Aedes aegypti* mosquito (daytime biter)
- Transmission: Human-mosquito-human cycle
- Global impact:
 - \approx 20 million infections annually worldwide
 - Most common insect-borne viral disease globally
- In the United States:
 - Not endemic
 - 100-200 imported cases/year (mostly from Caribbean & tropical regions)
 - No indigenous transmission reported

Pathogenesis

Infected mosquito bite → Virus enters bloodstream →
→ Infection of monocytes, macrophages, and endothelial cells → Cytokine release → Increased vascular permeability → Fever, rash, and in severe cases, hemorrhage & shock

Clinical Forms of Dengue Infection

I. Classic Dengue Fever ("Breakbone Fever")

Onset: Sudden, after incubation of 4-7 days

Symptoms:

- High fever
- Malaise and retro-orbital pain
- Severe myalgia (muscle pain) and arthralgia (joint pain) — feels like bones are breaking ("breakbone")

- Headache
- Facial flushing
- Maculopapular rash
- Enlarged lymph nodes (lymphadenopathy)
- Leukopenia (\downarrow WBC count)

Course:

- Symptoms usually last about a week
- Recovery followed by prolonged weakness (post-viral fatigue)
- Rarely fatal and has few long-term complications

2. Dengue Hemorrhagic Fever (DHF) / Dengue Shock Syndrome (DSS)

More severe form with ~10% fatality rate Δ

Initial phase: Same as classic dengue

Progression:

- Hemorrhages in skin and gastrointestinal tract
- Plasma leakage \rightarrow \downarrow blood volume \rightarrow shock
- Thrombocytopenia, petechiae, and bleeding tendencies
- Commonly seen in southern Asia

Flow of Events:

Classic dengue symptoms \rightarrow Vascular permeability increases \rightarrow Plasma leakage \rightarrow Hypovolemia \rightarrow Shock \rightarrow Bleeding (GIT, skin) \rightarrow Multi-organ involvement (in severe cases)

❖ Comparison Table: Classic vs Hemorrhagic Dengue

Feature	Classic Dengue	Dengue Hemorrhagic
Fever		Fever / DSS
Fatality	Rarely fatal	Up to 10%

Rash	Common maculopapular	Petechiae, purpura, ecchymoses
WBC Count	Leukopenia	Leukopenia + Thrombocytopenia
Shock	Absent	Present (due to plasma leakage)
Geographic Distribution	Worldwide tropics	Southern Asia predominantly

⌚ Exam Tip

◆ Remember: Dengue hemorrhagic fever is often due to secondary infection with a different serotype → antibody-dependent enhancement (ADE) leading to more severe immune response.

⌚ Pathogenesis of Dengue Hemorrhagic Fever / Shock Syndrome

⌚ Key Mechanism: Secondary Infection with a Different Serotype

Dengue virus has 4 serotypes (DEN-1 to DEN-4).

Severe Dengue Hemorrhagic Fever (DHF) or Dengue Shock Syndrome (DSS) occurs during a second infection with a different serotype of the virus.

❖ 3 Stepwise Pathogenesis Flowchart

1 First Infection (Primary Dengue):

- Infection by one serotype (e.g., DEN-1)
- Body produces antibodies specific to that serotype
- Patient recovers completely

2 Second Infection (Different Serotype, e.g., DEN-2):

- Anamnestic (memory) response occurs
- Body rapidly produces cross-reacting antibodies against the first serotype (heterotypic response)

3 Two Possible Mechanisms 🧬

A. Immune Complex Hypothesis:

- Virus + Antibody → Immune complex formation →
- Complement activation →
- ↑ Vascular permeability + Thrombocytopenia →
- Hemorrhage & Shock

B. Antibody-Dependent Enhancement (ADE) Hypothesis:

- Cross-reacting antibodies facilitate virus entry into monocytes/macrophages →
- Massive cytokine release →
- ↑ Vascular leakage + Shock →
- Severe hemorrhagic manifestations

◇ Result:

Both mechanisms lead to plasma leakage, hypotension, shock, and bleeding — hallmark features of DHF/DSS.

Transmission & Reservoirs

Aspect	Details
Vector	<i>Aedes aegypti</i> mosquito (same vector as Yellow Fever)
Reservoir (main)	Humans
Suspected jungle cycle	Monkeys (reservoir) + other <i>Aedes</i> species (vectors) in forests
Mode of spread	Mosquito bite → virus transmitted through mosquito saliva during feeding

Flowchart: Transmission Cycle

Infected human → *A. aegypti* mosquito bites → Virus multiplies in mosquito → Mosquito bites another human → Transmission continues

Laboratory Diagnosis

Diagnostic Method	Key Points

Virus Isolation	Dengue virus can be isolated in cell culture (confirmatory)
Serology (IgM, IgG ELISA)	Detects IgM antibody or a 4-fold rise in IgG titer between acute & convalescent samples
PCR (Polymerase Chain Reaction)	Detects viral RNA in blood — rapid and sensitive
CBC findings	Leukopenia + Thrombocytopenia common in DHF

 Tip for Exams: PCR and serology (IgM detection or rising IgG titers) are mainstay diagnostic tools.

Treatment & Prevention

Treatment

- No specific antiviral therapy available
- Supportive care only:
 - IV fluids for shock
 - Blood/platelet transfusion if severe thrombocytopenia

- Monitoring for signs of bleeding or hypovolemia

Prevention & Control

- Vector control is key

- Use insecticides to kill mosquitoes
- Drain stagnant water (eliminate breeding sites)
- Use mosquito nets, repellents, and full-coverage clothing

Vaccine

- No widely available vaccine in the U.S.
- Dengvaxia (CYD-TDV) — a recombinant live-attenuated vaccine (yellow fever virus genetically engineered to express dengue antigens)
 - Approved in Mexico (2015) and several other countries
 - Not approved in the United States

Exam Pearl

Severe dengue (hemorrhagic shock) = secondary infection + antibody cross-reaction → complement

activation or ADE → vascular leakage, shock, and hemorrhage