Development of Eye ### Optic Cup and Lens Vesicle - 22nd day embryo → eye begins as shallow grooves on the sides of the forebrain. - With neural tube closure → grooves → form optic vesicles (outpocketings of forebrain). - Induction of lens formation: - \circ Optic vesicles contact surface ectoderm ightarrowinduce ectoderm to form lens placode. - \circ Lens placode invaginates \rightarrow lens vesicle. - \circ By 5th week \rightarrow lens vesicle separates from surface ectoderm and lies within mouth of optic cup. - Optic cup formation: - Optic vesicle invaginates → double-walled optic cup. - Initially, the intraretinal space separates inner & outer layers \rightarrow disappears later \rightarrow layers appose. - \circ Invagination also occurs inferiorly \rightarrow forms choroid fissure. - Function \rightarrow allows hyaloid artery to enter eye. - By 7th week \rightarrow lips of fissure fuse. - Optic cup opening → becomes future pupil. #### Retina - Outer layer of optic cup → Pigmented layer of retina. - Inner layer of optic cup → develops into neural retina: - \circ Posterior 4/5 (pars optica retinae) \rightarrow differentiates into: - Rods & cones (photoreceptors). - Mantle layer \rightarrow gives neurons & supporting cells \rightarrow forms: - □ Outer nuclear layer - □ Inner nuclear layer - ☐ Ganglion cell layer - Fibrous layer (nerve fiber layer) \rightarrow axons converge \rightarrow optic stalk \rightarrow becomes optic nerve. Exam Tip: Light passes through these layers before # reaching rods & cones (often asked!). - \circ Anterior I/S (pars ceca retinae) \rightarrow thin, I-layered. Later forms: - lacktriangledown Pars iridica retinae ightarrow inner layer of iris. - lacktriangledown Pars ciliaris retinae o contributes to ciliary body. #### Iris - · Composed of: - Outer pigmented layer (from optic cup). - O Inner non-pigmented layer (from optic cup). - O Vascular connective tissue (mesenchyme). - O Muscles (sphincter pupillae & dilator pupillae): - Develop from neuroectoderm of optic cup (exception: muscles usually mesodermal, but these are ectodermal → very exam-favorite point). ### Ciliary Body - ullet Pars ciliaris retinae o shows marked folding. - ullet Covered externally by mesenchyme o forms ciliary muscle. - Connected to lens by zonular fibers (suspensory) ligament). • Function: Contraction/relaxation changes lens curvature \rightarrow accommodation reflex. #### Clinical Correlations - Coloboma iridis \rightarrow failure of choroid fissure to close \rightarrow notch in iris. - ullet Congenital cataract o lens opacity if lens development disturbed. - Retinal detachment → persistence of intraretinal space between neural & pigmented layers. Development of Lens, Choroid, Sclera, Cornea & Vitreous Body ### Lens Development - · After lens vesicle formation: - \circ Posterior wall cells \to elongate anteriorly \to form primary lens fibers. - \circ By end of 7th week \rightarrow fibers reach anterior wall \rightarrow fill vesicle lumen. - ullet Growth continues o by addition of secondary lens fibers throughout life \rightarrow around central core. Exam Tip: Lens keeps growing — new fibers are added; explains why old age \rightarrow lens becomes denser \rightarrow presbyopia/cataract. #### Choroid & Sclera - ullet At end of 5th week ullet eye surrounded by loose mesenchyme. - Differentiates into: - \circ Inner layer (like pia mater) \rightarrow vascular, pigmented \rightarrow choroid. - Outer layer (like dura mater) → tough fibrous → sclera. - Sclera is continuous with dura mater of optic nerve. #### Cornea & Anterior Chamber - Anterior chamber forms \rightarrow by vacuolization \rightarrow mesenchyme splits into: - \circ Inner layer \rightarrow in front of lens & iris \rightarrow iridopupillary membrane. - \circ Outer layer \rightarrow continuous with sclera \rightarrow substantia propria (stroma) of cornea. - Cornea composition: - 1. Outer epithelium \rightarrow surface ectoderm. - 2. Substantia propria (stroma) → mesenchyme, continuous with sclera. - 3. Inner epithelium (endothelium) \rightarrow lines anterior chamber. - Iridopupillary membrane \rightarrow disappears later \rightarrow clears anterior chamber. - Posterior chamber: space between iris (anteriorly) and lens + ciliary body (posteriorly). - Aqueous humor circulation: - · Produced by ciliary processes. - \circ Pathway \to Posterior chamber \to Pupil \to Anterior chamber \to Resorbed at Canal of Schlemm (scleral venous sinus). - \circ Function \rightarrow nourishes avascular lens & cornea. Clinical \rightarrow Glaucoma = blockage of aqueous humor outflow at canal of Schlemm $\rightarrow \uparrow$ intraocular pressure \rightarrow optic nerve damage. ### Vitreous Body ullet Mesenchyme o enters optic cup via choroid fissure. #### o Forms: - Hyaloid vessels → supply lens & inner retina during fetal life. - Delicate network of fibers between lens & retina. - \circ Interstitial spaces \rightarrow fill with gelatinous substance \rightarrow forms vitreous body. # • Later changes: \circ Hyaloid vessels regress \rightarrow leave Hyaloid canal (Canal of Cloquet). Exam Tip. Persistence of hyaloid artery \rightarrow congenital anomaly \rightarrow can cause visual defects. #### Clinical Correlations - Congenital cataract → due to lens fiber development abnormalities. - ullet Glaucoma o blockage at canal of Schlemm o raised intraocular pressure. - Persistent hyaloid artery → may lead to congenital blindness. - Coloboma (already mentioned previously) → failure of choroid fissure closure. Optic Nerve Development & Eye Abnormalities Optic Nerve Formation - · Connection: - Optic cup connected to brain via optic stalk. - \circ Choroid fissure (ventral groove of stalk) \to carries hyaloid vessels. - Retinal nerve fibers: - \circ Retina develops ganglion cells \to axons run into optic stalk. - \circ By 7th week \rightarrow choroid fissure closes \rightarrow stalk forms narrow tunnel. - Maturation of optic nerve: - Inner wall of stalk thickens due to growing nerve fibers. - o Inside and outside walls fuse. - \circ Inner cells \rightarrow form neuroglia to support fibers. - \circ Optic stalk \rightarrow transformed into optic nerve. - Vascular supply: - \circ Hyaloid artery persists proximally \to becomes central artery of retina. ## • Coverings: - · Continuous with meninges: - Pia → from choroid - Dura → from sclera ### Clinical Correlations (Eye Abnormalities) #### 1. Coloboma - Cause → failure of choroid fissure closure (7th week). - \circ Most common form \rightarrow coloboma iridis (keyhole defect in iris). - May extend to ciliary body, retina, choroid, optic nerve. - Can also affect eyelids. # 2. Iridopupillary membrane persistence Should disappear during anterior chamber formation. \circ Persistence \rightarrow thin strands visible in front of lens. # 3. Congenital Cataract - Lens opacity. - Causes: - Genetic defects. - Maternal rubella infection (critical between weeks 4-7). - Post-7th week rubella \rightarrow no lens damage, but may cause deafness (cochlear anomalies). - O Prevented by MMR vaccination. # 4. Hyaloid artery persistence - Normally regresses (leaving hyaloid canal). - \circ Persistence \rightarrow cord/cyst in vitreous. # S. Microphthalmia - Eye abnormally small (2/3rd size). - o Often with other ocular anomalies. - Associated with intrauterine infections: CMV, toxoplasmosis. # 6. Anophthalmia - Complete absence of eye (sometimes minimal tissue remains). - Usually with severe cranial defects. # 7. Congenital Aphakia - · Absence of lens. - Very rare. #### 8. Aniridia - O Absence of iris. - Due to PAX6 mutations. - May also contribute to microphthalmia & anophthalmia. # 9. Cyclopia / Synophthalmia - Spectrum: single fused eye / partially fused eyes. - \circ Cause \rightarrow failure of midline tissue development (days 19-21 or later). - \circ Associated brain anomaly \to Holoprosencephaly (cerebral hemispheres fused). - · Risk factors: - Alcohol - Maternal diabetes - SHH mutations Defects in cholesterol metabolism (affects SHH signaling).