Development of Eye

Optic Cup and Lens Vesicle

- 22nd day embryo → eye begins as shallow grooves on the sides of the forebrain.
- With neural tube closure → grooves → form optic vesicles (outpocketings of forebrain).
- Induction of lens formation:
 - \circ Optic vesicles contact surface ectoderm ightarrowinduce ectoderm to form lens placode.
 - \circ Lens placode invaginates \rightarrow lens vesicle.
 - \circ By 5th week \rightarrow lens vesicle separates from surface ectoderm and lies within mouth of optic cup.
- Optic cup formation:
 - Optic vesicle invaginates → double-walled optic cup.
 - Initially, the intraretinal space separates inner & outer layers \rightarrow disappears later \rightarrow layers appose.

- \circ Invagination also occurs inferiorly \rightarrow forms choroid fissure.
 - Function \rightarrow allows hyaloid artery to enter eye.
 - By 7th week \rightarrow lips of fissure fuse.
 - Optic cup opening → becomes future pupil.

Retina

- Outer layer of optic cup → Pigmented layer of retina.
- Inner layer of optic cup → develops into neural retina:
 - \circ Posterior 4/5 (pars optica retinae) \rightarrow differentiates into:
 - Rods & cones (photoreceptors).
 - Mantle layer \rightarrow gives neurons & supporting cells \rightarrow forms:
 - □ Outer nuclear layer
 - □ Inner nuclear layer
 - ☐ Ganglion cell layer
 - Fibrous layer (nerve fiber layer) \rightarrow axons converge \rightarrow optic stalk \rightarrow becomes optic nerve.

Exam Tip: Light passes through these layers before

reaching rods & cones (often asked!).

- \circ Anterior I/S (pars ceca retinae) \rightarrow thin, I-layered. Later forms:
 - lacktriangledown Pars iridica retinae ightarrow inner layer of iris.
 - lacktriangledown Pars ciliaris retinae o contributes to ciliary body.

Iris

- · Composed of:
 - Outer pigmented layer (from optic cup).
 - O Inner non-pigmented layer (from optic cup).
 - O Vascular connective tissue (mesenchyme).
 - O Muscles (sphincter pupillae & dilator pupillae):
 - Develop from neuroectoderm of optic cup (exception: muscles usually mesodermal, but these are ectodermal → very exam-favorite point).

Ciliary Body

- ullet Pars ciliaris retinae o shows marked folding.
- ullet Covered externally by mesenchyme o forms ciliary muscle.
- Connected to lens by zonular fibers (suspensory)

ligament).

• Function: Contraction/relaxation changes lens curvature \rightarrow accommodation reflex.

Clinical Correlations

- Coloboma iridis \rightarrow failure of choroid fissure to close \rightarrow notch in iris.
- ullet Congenital cataract o lens opacity if lens development disturbed.
- Retinal detachment → persistence of intraretinal space between neural & pigmented layers.

Development of Lens, Choroid, Sclera, Cornea & Vitreous Body

Lens Development

- · After lens vesicle formation:
 - \circ Posterior wall cells \to elongate anteriorly \to form primary lens fibers.
 - \circ By end of 7th week \rightarrow fibers reach anterior wall \rightarrow fill vesicle lumen.
- ullet Growth continues o by addition of secondary lens

fibers throughout life \rightarrow around central core.

Exam Tip: Lens keeps growing — new fibers are added; explains why old age \rightarrow lens becomes denser \rightarrow presbyopia/cataract.

Choroid & Sclera

- ullet At end of 5th week ullet eye surrounded by loose mesenchyme.
- Differentiates into:
 - \circ Inner layer (like pia mater) \rightarrow vascular, pigmented \rightarrow choroid.
 - Outer layer (like dura mater) → tough fibrous
 → sclera.
 - Sclera is continuous with dura mater of optic nerve.

Cornea & Anterior Chamber

- Anterior chamber forms \rightarrow by vacuolization \rightarrow mesenchyme splits into:
 - \circ Inner layer \rightarrow in front of lens & iris \rightarrow iridopupillary membrane.
 - \circ Outer layer \rightarrow continuous with sclera \rightarrow substantia propria (stroma) of cornea.

- Cornea composition:
 - 1. Outer epithelium \rightarrow surface ectoderm.
 - 2. Substantia propria (stroma) → mesenchyme, continuous with sclera.
 - 3. Inner epithelium (endothelium) \rightarrow lines anterior chamber.
- Iridopupillary membrane \rightarrow disappears later \rightarrow clears anterior chamber.
- Posterior chamber: space between iris (anteriorly)
 and lens + ciliary body (posteriorly).
- Aqueous humor circulation:
 - · Produced by ciliary processes.
 - \circ Pathway \to Posterior chamber \to Pupil \to Anterior chamber \to Resorbed at Canal of Schlemm (scleral venous sinus).
 - \circ Function \rightarrow nourishes avascular lens & cornea.

Clinical \rightarrow Glaucoma = blockage of aqueous humor outflow at canal of Schlemm $\rightarrow \uparrow$ intraocular pressure \rightarrow optic nerve damage.

Vitreous Body

ullet Mesenchyme o enters optic cup via choroid fissure.

o Forms:

- Hyaloid vessels → supply lens & inner retina during fetal life.
- Delicate network of fibers between lens & retina.
- \circ Interstitial spaces \rightarrow fill with gelatinous substance \rightarrow forms vitreous body.

• Later changes:

 \circ Hyaloid vessels regress \rightarrow leave Hyaloid canal (Canal of Cloquet).

Exam Tip. Persistence of hyaloid artery \rightarrow congenital anomaly \rightarrow can cause visual defects.

Clinical Correlations

- Congenital cataract → due to lens fiber development abnormalities.
- ullet Glaucoma o blockage at canal of Schlemm o raised intraocular pressure.

- Persistent hyaloid artery → may lead to congenital blindness.
- Coloboma (already mentioned previously) → failure of choroid fissure closure.

Optic Nerve Development & Eye Abnormalities

Optic Nerve Formation

- · Connection:
 - Optic cup connected to brain via optic stalk.
 - \circ Choroid fissure (ventral groove of stalk) \to carries hyaloid vessels.
- Retinal nerve fibers:
 - \circ Retina develops ganglion cells \to axons run into optic stalk.
 - \circ By 7th week \rightarrow choroid fissure closes \rightarrow stalk forms narrow tunnel.
- Maturation of optic nerve:
 - Inner wall of stalk thickens due to growing nerve fibers.
 - o Inside and outside walls fuse.
 - \circ Inner cells \rightarrow form neuroglia to support fibers.

- \circ Optic stalk \rightarrow transformed into optic nerve.
- Vascular supply:
 - \circ Hyaloid artery persists proximally \to becomes central artery of retina.

• Coverings:

- · Continuous with meninges:
 - Pia → from choroid
 - Dura → from sclera

Clinical Correlations (Eye Abnormalities)

1. Coloboma

- Cause → failure of choroid fissure closure (7th week).
- \circ Most common form \rightarrow coloboma iridis (keyhole defect in iris).
- May extend to ciliary body, retina, choroid, optic nerve.
- Can also affect eyelids.

2. Iridopupillary membrane persistence

Should disappear during anterior chamber

formation.

 \circ Persistence \rightarrow thin strands visible in front of lens.

3. Congenital Cataract

- Lens opacity.
- Causes:
 - Genetic defects.
 - Maternal rubella infection (critical between weeks 4-7).
 - Post-7th week rubella \rightarrow no lens damage, but may cause deafness (cochlear anomalies).
- O Prevented by MMR vaccination.

4. Hyaloid artery persistence

- Normally regresses (leaving hyaloid canal).
- \circ Persistence \rightarrow cord/cyst in vitreous.

S. Microphthalmia

- Eye abnormally small (2/3rd size).
- o Often with other ocular anomalies.
- Associated with intrauterine infections: CMV, toxoplasmosis.

6. Anophthalmia

- Complete absence of eye (sometimes minimal tissue remains).
- Usually with severe cranial defects.

7. Congenital Aphakia

- · Absence of lens.
- Very rare.

8. Aniridia

- O Absence of iris.
- Due to PAX6 mutations.
- May also contribute to microphthalmia & anophthalmia.

9. Cyclopia / Synophthalmia

- Spectrum: single fused eye / partially fused eyes.
- \circ Cause \rightarrow failure of midline tissue development (days 19-21 or later).
- \circ Associated brain anomaly \to Holoprosencephaly (cerebral hemispheres fused).
- · Risk factors:
 - Alcohol
 - Maternal diabetes
 - SHH mutations

 Defects in cholesterol metabolism (affects SHH signaling).