

Hepatitis

Tuesday, August 26, 2025 6:02 PM

"Hepatitis Viruses" - Introduction

Definition

- Hepatitis = inflammation of the liver caused by multiple agents.
- Five "true" hepatitis viruses (main site of infection = liver):
 - HAV - Hepatitis A virus
 - HBV - Hepatitis B virus
 - HCV - Hepatitis C virus
 - HDV - Hepatitis D (Delta) virus
 - HEV - Hepatitis E virus

☞ Other viruses (e.g., EBV, CMV, Yellow fever virus) can infect liver but are not exclusively hepatotropic, so not in this main group.

Key Shared Features

- Belong to different families → DNA vs RNA, enveloped vs non-enveloped.

- Tropism (the ability of a virus to infect specific cell types for hepatocytes = due to surface proteins that bind specific hepatocyte receptors.
- Non-cytotoxic directly:
 - Hepatocyte death = mediated by cytotoxic T cells.
 - Mechanism: viral antigens on hepatocyte surface + MHC I → CD8⁺ T cell attack.

Exam Points

- Only DNA virus in the group = HBV.
- Only defective virus = HDV (requires HBV → uses HBsAg for its envelope).
- DNA polymerase inside virion = unique to HBV.
- Non-enveloped viruses = HAV & HEV (important for transmission: fecal-oral, stable in environment).
- Immune-mediated hepatocyte injury = common to all.

❖ Glossary of Hepatitis Viruses and Their Serologic Markers

HAV

- Hepatitis A virus
- A picornavirus (nonenveloped RNA virus)

IgM HAV Ab

- IgM antibody to HAV
- Best test to detect acute hepatitis A

HBV

- Hepatitis B virus
- A hepadnavirus (enveloped, partially double-stranded DNA virus)
- Also known as the Dane particle

HBsAg

- Surface antigen of HBV
- Found on both infectious virions and noninfectious

particles in blood

- Positive during acute disease
- Persistence indicates carrier state

HBsAb

- Antibody to HBsAg
- Provides immunity to HBV

HBcAg

- Core antigen of HBV

HBcAb

- Antibody to HBcAg
- Positive during window phase
- IgM HBcAb → indicates recent disease

HBeAg

- "e antigen" in HBV core
- Important indicator of high transmissibility

HBeAb

- Antibody to e antigen
- Indicates low transmissibility

Non-A, non-B

- Term used for hepatitis viruses that are neither HAV nor HBV

HCV

- Hepatitis C virus
- A flavivirus (enveloped RNA virus)
- One of the non-A, non-B viruses

HDV

- Hepatitis D virus

- Small RNA virus with HBsAg envelope
- Defective virus: replicates only in HBV-infected cells

HEV

- Hepatitis E virus
- A hepevirus (nonenveloped RNA virus)
- One of the non-A, non-B viruses

❖ Important Properties of Hepatitis Viruses

HAV (Hepatitis A virus)

- Genome: ssRNA
- Replication: No defective replication
- DNA polymerase in virion: No
- HBsAg in envelope: No
- Virus family: Picornavirus

HBV (Hepatitis B virus)

- Genome: dsDNA (interrupted, circular)
- Replication: Not defective
- DNA polymerase in virion: Yes
- HBsAg in envelope: Yes
- Virus family: Hepadnavirus

HCV (Hepatitis C virus)

- Genome: ssRNA
- Replication: No defective replication
- DNA polymerase in virion: No
- HBsAg in envelope: No
- Virus family: Flavivirus

HDV (Hepatitis D virus)

- Genome: ssRNA (circular, negative-stranded)
- Replication: Defective virus - requires HBV for replication
- DNA polymerase in virion: No
- HBsAg in envelope: Yes
- Virus family: Deltavirus

HEV (Hepatitis E virus)

- Genome: ssRNA
- Replication: No defective replication
- DNA polymerase in virion: No
- HBsAg in envelope: No
- Virus family: Calicivirus

❖ Summary of Clinical Features of Hepatitis Viruses

Hepatitis A virus (HAV)

- Mode of transmission: Fecal-oral
- Chronic carriers: No
- Diagnosis: IgM HAV antibody
- Vaccine available: Yes
- Immune globulins useful: Yes

Hepatitis B virus (HBV)

- Mode of transmission: Blood, sexual contact, perinatal (at birth)
- Chronic carriers: Yes
- Diagnosis: HBsAg, HBsAb, IgM HBcAb
- Vaccine available: Yes
- Immune globulins useful: Yes

Hepatitis C virus (HCV)

- Mode of transmission: Blood, sexual contact (sexual spread possible but less well documented)
- Chronic carriers: Yes
- Diagnosis: HCV antibody
- Vaccine available: No
- Immune globulins useful: No

Hepatitis D virus (HDV)

- Mode of transmission: Blood, sexual contact (likely but not well documented)
- Chronic carriers: Yes
- Diagnosis: Antibody to delta antigen
- Vaccine available: No (but HBV vaccine indirectly protects by preventing HBV coinfection)
- Immune globulins useful: No

Hepatitis E virus (HEV)

- Mode of transmission: Fecal-oral
- Chronic carriers: No
- Diagnosis: None
- Vaccine available: No
- Immune globulins useful: No

↳ High-yield exam pearl:

- HAV & HEV → fecal-oral, no chronic carriers.
- HBV, HCV, HDV → blood/sexual/perinatal, chronic carriers common.
- Only HAV & HBV have vaccines, and both also have useful immune globulins.

➤ Hepatitis A Virus (HAV)

Disease

- HAV → Acute viral hepatitis A
- No chronic carrier state (very important exam point).

Important Properties

- Family: Picornavirus (Enterovirus group; aka *Enterovirus 72*).
- Genome: ssRNA (+ sense), linear.
- Capsid: Non-enveloped, icosahedral.
- Replication site: Cytoplasm.
- Serotypes: Only one (→ lifelong immunity after infection).
- No antigenic relation to HBV or other hepatitis viruses.

Replication Cycle

- Similar to other enteroviruses (e.g., poliovirus).

- Key steps: Attachment → Entry → RNA translation → Polyprotein cleavage → Genome replication → Assembly → Release (no envelope).

Transmission & Epidemiology

- Route: Fecal-oral (contaminated food/water).
- Reservoir: Humans only.
- Fecal shedding: Virus appears 2 weeks before symptoms → quarantine ineffective.
- High-risk groups:
 - Children (commonest group).
 - Institutions: summer camps, boarding schools.
- Common-source outbreaks: Contaminated water & raw seafood (e.g., oysters).
- Blood transmission: Rare (low viremia + no chronic infection).
- Epidemiology fact: 50-75% adults in USA show

evidence of past HAV infection (IgG).

Pathogenesis & Immunity

- Replication site: Likely in GI tract → spreads via blood → liver.
- Hepatocyte injury: Not direct; likely CD8⁺ cytotoxic T-cell attack on infected hepatocytes.
- Cytopathic effect in vitro: None.
- Resolution: Virus cleared completely, damage repaired, no chronic infection.
- Histopathology: HAV hepatitis cannot be distinguished from other hepatitis viruses.

Immune Response

- IgM anti-HAV: Appears at jaundice onset → diagnostic marker of acute infection.
- IgG anti-HAV: Appears 1-3 weeks later → provides lifelong immunity.

Exam Points

- Non-enveloped → resistant to acid, detergents, drying (important for fecal-oral spread).
- No chronic infection, no carrier state, no cirrhosis, no hepatocellular carcinoma → contrasts sharply with HBV & HCV.
- IgM = diagnosis, IgG = past infection/protection.
- One serotype only → basis for effective vaccines.

Hepatitis A Virus (HAV) – Clinical, Diagnosis, Treatment & Prevention

Clinical Findings

- Symptoms (same as other hepatitis viruses):
 - Fever, anorexia, nausea, vomiting.
 - Jaundice.
 - Dark urine, pale stools, ↑ serum transaminases.
- Course:

- Usually resolves spontaneously in 2-4 weeks.
- Incubation period: short (3-4 weeks) → contrast with HBV: 10-12 weeks.
- Asymptomatic infections: Very common → detected only by IgG anti-HAV.
- No chronic infection → no cirrhosis, no hepatocellular carcinoma (major difference from HBV/HCV).

Laboratory Diagnosis

- IgM anti-HAV:
 - Appears at onset of symptoms (jaundice).
 - Key marker of acute HAV infection.
- IgG anti-HAV:
 - Appears later, persists for life.
 - Indicates past infection or immunity.
- Fourfold rise in IgG titers → can be used for diagnosis (but rarely needed).
- Virus isolation in cell culture: possible but not routine

in clinical labs.

Treatment

- No specific antiviral therapy needed.
- Supportive care only → disease is self-limiting.

Prevention

Active Immunization (Vaccine)

- Inactivated HAV vaccine:
 - Virus grown in human cell culture → inactivated with formalin.
 - Doses: 2 doses (initial + booster after 6-12 months).
 - Provides long-lasting protection → no further boosters required.
- Indications:
 - Travelers to endemic areas (developing countries).
 - Children (2-18 years).
 - Men who have sex with men (MSM).

- Twinrix: Combination vaccine (HAV + HBV).

Passive Immunization

- Immune serum globulin (ISG):
 - Given before infection or within 14 days post-exposure.
 - Provides immediate short-term protection.
- Often combined with vaccine = passive-active immunization (ISG for immediate protection + vaccine for long-term).

Other Preventive Measures

- Good hygiene: proper sewage disposal, handwashing after bowel movements, avoiding raw/contaminated food.
- Vaccine effective post-exposure prophylaxis if given within 2 weeks.

Exam Points

- HAV = Acute, Self-limiting, No Chronicity.

- IgM = Acute marker, IgG = Immunity.
- Incubation shorter (3-4 weeks) than HBV (10-12 weeks).
- Twinrix vaccine = dual protection against HAV + HBV.
- Passive-active immunization concept is important for rapid + long-term protection.

➤ Hepatitis B Virus (HBV)

Disease

- Causes Hepatitis B → can be acute or chronic.
- Can lead to cirrhosis and hepatocellular carcinoma (HCC) (oncogenic virus).

Important Properties

- Family: Hepadnaviridae.
- Virion:
 - 42 nm, enveloped → *Dane particle* (complete

infectious virion).

- Core = icosahedral nucleocapsid.
- Genome = partially double-stranded, circular DNA.
- Enzyme inside virion: DNA polymerase (with reverse transcriptase + DNA-dependent DNA polymerase activity).
- Genes & Products:

- S gene → HBsAg (surface antigen).
- C gene → HBcAg (core antigen) & HBeAg (secreted antigen, marker of infectivity).
- P gene → polymerase.
- X gene → HBx protein (transcription activator, possible oncogene; inactivates p53 tumor suppressor).

Viral Particles in Serum (Electron Microscopy)

- Three forms in blood:

1. Complete infectious Dane particles (42 nm).

2. Non-infectious 22 nm spheres of HBsAg.

3. Non-infectious long filaments (22 nm wide) of HBsAg.

- Ratio = 1000:1 (non-infectious: infectious).
- Clinical importance: High excess of HBsAg particles = diagnostic marker.

Antigens

- HBsAg (surface antigen):
 - Present in blood.
 - Important for diagnosis and immunization (basis of vaccine).
- HBcAg (core antigen):
 - Found in core, not detectable in serum.
 - Antibody (anti-HBc) is important marker.
- HBeAg (secreted antigen):
 - Found in blood.
 - Indicates high transmissibility & viral replication.

Serotypes

- 1 serotype for vaccine purposes → vaccine effective worldwide.
- 4 subtypes for epidemiology: adw, adr, ayw, ayr → based on "a" determinant + (d/y, w/r).

Host Range

- Humans only (no animal reservoir).

Tropism (Liver Specificity)

- Entry via specific hepatocyte receptors.
- Transcription promoted by hepatocyte-specific transcription factors.

Replication Cycle

1. Entry → nucleocapsid transported to nucleus.
2. DNA repair → partially dsDNA → completed dsDNA.
3. mRNA synthesis by host RNA polymerase in nucleus.

4. Full-length +RNA made (pregenomic RNA).

5. In cytoplasm:

- Viral polymerase uses RNA template → reverse transcription → -DNA strand.
- DNA-dependent DNA synthesis fills in incomplete +DNA strand.

6. Progeny nucleocapsid acquires envelope with HBsAg → released by budding.

⚡ Key uniqueness: HBV = DNA virus that replicates via reverse transcriptase (like retroviruses, but with DNA genome instead of RNA).

Carrier State & Chronic Infection

- Chronic HBV → virus persists, patient becomes carrier.
- HBV DNA mostly exists as episomes (circular DNA) in hepatocyte nucleus.
- Small portion integrates into host genome → may contribute to oncogenesis.

Exam Points

- Dane particle = infectious virion.
- HBsAg in serum = infection or carrier state.
- HBeAg = marker of infectivity.
- HBx gene → oncogenic potential (inhibits p53).
- HBV replicates via reverse transcriptase (unique among DNA viruses).
- Chronic infection + integration → predisposes to HCC.

Hepatitis B Virus (HBV) – Transmission, Pathogenesis & Immunity

Transmission & Epidemiology

Modes of transmission (3 major routes):

1. Blood

- Needle-stick injuries (even tiny amounts of blood).

- IV drug users at high risk.
- Blood transfusions (rare today due to screening).

2. Sexual intercourse

- Found in semen & vaginal secretions.
- Important natural transmission route.

3. Perinatal (mother → child during birth)

- NOT usually transplacental.
- NOT transmitted via breast milk.

⚡ Key comparison:

- HAV (non-enveloped) → fecal-oral, stable in environment.
- HBV (enveloped) → fragile, transmitted via intimate contact (blood/sex/perinatal).

Global prevalence:

- Worldwide distribution.
- High in Asia (75% of 300M carriers).

- Explains high incidence of HCC in Asia.
- Vaccination programs → reduced incidence of hepatoma in children.
- HBV vaccine = first vaccine proven to prevent a human cancer.

Pathogenesis

- HBV itself is non-cytopathic → damage caused by immune response.
- Steps:
 1. Virus enters blood → infects hepatocytes.
 2. Viral antigens displayed on hepatocyte surface with MHC-I.
 3. Cytotoxic T cells attack → inflammation + hepatocyte necrosis.
 4. Antigen-antibody complexes → cause extrahepatic manifestations.

Immune complex-mediated complications:

- Arthralgia, arthritis, urticaria (early).
- Glomerulonephritis, cryoglobulinemia, vasculitis (chronic infection).

Chronic Carrier State

- Definition: HBsAg persisting \geq 6 months in blood.
- Prevalence:
 - Adults: ~5% become chronic carriers.
 - Newborns: ~90% become chronic carriers (immature immune system).
- Risk factor for hepatocellular carcinoma (HCC).
- HBV DNA persists as:
 - Mostly episomal (free circular DNA in nucleus).
 - Partially integrated into host genome.

HCC Mechanisms:

1. HBx protein → inactivates p53 tumor suppressor.
2. Chronic cell injury & regeneration → increased mutation risk.
3. Insertional mutagenesis → HBV DNA integration may activate oncogenes.
 - Almost all HCC cells have integrated HBV DNA.

e Antigen & Infectivity

- HBeAg positive carriers → high replication, highly infectious.
- HBeAg negative carriers → low replication, less infectious.
- Key marker: HBeAg presence in blood = transmissibility.

Immunity

- Natural infection → lifelong immunity.

- Protective antibody = Anti-HBs (HBsAb)
 - Neutralizes virus → blocks entry into hepatocytes.
 - Basis of vaccine protection.
- Non-protective antibody = Anti-HBc (HBcAb)
 - Core antigen is hidden inside virion → antibodies cannot neutralize.

④ Summary Points

- 3 major transmission routes: blood, sex, perinatal.
- Immune-mediated damage → NOT direct cytopathic effect.
- Immune complex manifestations = arthritis, rash, GN, vasculitis.
- Chronic carriers: 5% adults vs. 90% neonates.
- HBsAg \geq 6 months = carrier.
- HBeAg = infectivity marker.

- HBx gene → oncogenic (inactivates p53).
- HBV vaccine prevents cancer (unique fact).
- Anti-HBs = protective, Anti-HBc = not protective.

Hepatitis B Virus (HBV) – Clinical Findings & Diagnosis

Clinical Findings

- Incubation period:
 - HBV: 10–12 weeks (longer than HAV: 3–4 weeks).
- Acute infection:
 - Symptoms more severe than HAV.
 - Some cases progress to fulminant, life-threatening hepatitis.
 - Many infections are asymptomatic → detected only by HBsAg antibody.
- Chronic carriers:
 - Usually asymptomatic.
 - Some → chronic active hepatitis → cirrhosis →

death.

- Extrahepatic manifestations:

- Acute HBV: serum sickness-like illness → fever, rash, arthralgias.
- Chronic HBV: neuropathies, glomerulonephritis, polyarteritis nodosa (PAN).
- Autoantibodies: cryoglobulins, rheumatoid factor.

- HBV + HIV co-infection:

- Treat HBV first → otherwise, immune reconstitution after HIV therapy worsens hepatocyte destruction by reactivated cytotoxic T cells.

Laboratory Diagnosis

Key Serologic Markers

- HBsAg (surface antigen):

- Appears early (incubation period).
- Persists during acute disease.
- If >6 months → carrier state.

- HBsAb (surface antibody):
 - Protective, appears after recovery or after vaccine.
 - Not detectable during active disease or in carriers (masked by circulating HBsAg).
- HBcAb (core antibody):
 - Present in acute, chronic, and recovered infections (NOT after vaccination).
 - IgM-HBcAb → acute infection (disappears ~6 months).
 - IgG-HBcAb → past infection or chronic infection.
- HBeAg (envelope antigen):
 - Appears in incubation and acute disease.
 - Indicates active replication + high infectivity.
 - Persistent in some carriers = highly infectious.
 - HBeAb → indicates lower infectivity (but transmission still possible).
- Window phase:
 - Period when HBsAg has disappeared but HBsAb not

yet detectable.

- Only marker = HBcAb (IgM).

- Viral DNA (PCR):

- Confirms active viral replication.
- Used to monitor therapy (falling viral load = effective treatment).

Serology Table

Stage	HBs Ag	HBs Ab	HBc Ab	HBc Ab	Hbe Ag	Hbe Ab	Notes
Acute infection	+	-	+	-	+	-	Early diseas e, infecti ous
Window period	-	-	+	-	±	±	Only IgM- HBcAb positiv e

Chronic infection	+	-	-	+	±	±	Carrier state ($>6m$), HBsAb absent
-------------------	---	---	---	---	---	---	---------------------------------------

Recovered	-	+	-	+	-	±	Lifelong immunity, not infectious
-----------	---	---	---	---	---	---	-----------------------------------

Vaccinated	-	+	-	-	-	-	Only HBsAb present
------------	---	---	---	---	---	---	--------------------

Exam Points

- Carrier state = HBsAg ≥ 6 months.

- Window period → only IgM-HBcAb positive.
- HBsAb = protective antibody (seen after recovery or vaccination).
- Chronic carriers never show HBsAb (masked by excess HBsAg).
- HBeAg positivity = high infectivity; HBeAb = lower infectivity.
- HBcAb distinguishes natural infection (past or present) from vaccination.

Hepatitis B - Treatment & Prevention

Treatment

Acute HBV

- No specific antiviral therapy.
- Supportive only.

Chronic HBV

- First-line drugs (preferred):

- Entecavir (Baraclude)
- Tenofovir (Viread)
- ↗ Nucleoside analogues → inhibit reverse transcriptase of HBV.
- Other agents (less common now):
 - Pegylated interferon- α (Peginterferon alfa-2a, Pegasys)
 - Lamivudine (Epivir-HBV)
 - Adefovir (Hepsera)
 - Telbivudine (Tyzeka)
 - Tenofovir + emtricitabine (Emtriva) combination.

Key points

- These drugs:
 - ↓ Hepatic inflammation.
 - ↓ Viral load.
 - Improve long-term outcomes.
- NOT curative – virus replication resumes once therapy is stopped.

- Coinfection with HIV:

- Start HBV treatment before HAART.
- Reason: treating HIV first may trigger immune reconstitution syndrome (IRIS) → cytotoxic T-cell damage worsens HBV.

Prevention

I. Vaccine

- Recombinant HBsAg produced in yeast (e.g., Recombivax).
- Highly effective (~95% seroconversion in healthy adults).
- Indicated for:
 - Healthcare workers, medical/dental students.
 - Patients needing frequent transfusions or on dialysis.
 - IV drug abusers.
 - Individuals with multiple STDs.
 - Long-term travelers to endemic areas.
 - All newborns and adolescents (per U.S. guidelines).

- Regimen: 3 doses.
 - No boosters routinely recommended.
 - Exception: high-risk patients (e.g., dialysis) with falling antibody titers → booster may be considered.
- Impact:
 - Dramatically reduced hepatocellular carcinoma in children → first vaccine to prevent a human cancer.
 - Twinrix = combined HBV + HAV vaccine.

2. Hepatitis B Immune Globulin (HBIG)

- High titer of HBsAb → provides immediate passive immunity.
- Indications:
 - Accidental needle-stick with HBsAg-positive blood.
 - Newborns of HBsAg-positive mothers.
 - Used together with vaccine = passive-active immunization (short + long-term protection).

3. Practical Scenarios

- Needle-stick from HBsAg-positive patient:
 - Give HBV vaccine + HBIG (at separate sites).
- Neonate of HBsAg-positive mother:
 - Give HBV vaccine + HBIG immediately after birth.
 - Very effective in preventing transmission.
- Cesarean section:
 - No proven benefit in preventing HBV → not recommended.
- Breastfeeding:
 - Safe if neonate is immunized.

4. Other Preventive Measures

- Screen all blood donations for HBsAg.
- Exclude donors with any history of hepatitis.
- Screen high-risk groups to detect carriers → treat &

reduce spread.

- Pre-exposure prophylaxis for HIV (Truvada: tenofovir + emtricitabine) → also protects against HBV.

Serologic Test Results in HBV Infection Stages:

1. Acute Disease

- HBsAg: Positive (surface antigen present → active viral replication)
- HBsAb (anti-HBs): Negative (antibody not yet formed)
- HBcAb (anti-HBc): Positive (IgM anti-HBc is the first antibody to appear)

2. Window Phase

- HBsAg: Negative (surface antigen has disappeared)
- HBsAb: Negative (not yet detectable)
- HBcAb: Positive (IgM anti-HBc remains the *only* marker during window phase → diagnostic clue)

3. Complete Recovery

- HBsAg: Negative (virus cleared)
- HBsAb: Positive (protective immunity against reinfection)
- HBcAb: Positive (IgG anti-HBc persists for life, marker of past infection)

4. Chronic Carrier State

- HBsAg: Positive (persistent infection)
- HBsAb: Negative (never developed immunity)
- HBcAb: Positive (IgG anti-HBc present, but virus not cleared)

☞ The key diagnostic point:

- Window period marker = IgM anti-HBc
- Recovery = HBsAb + HBcAb (IgG)
- Chronic carrier = HBsAg persists >6 months, with

HBcAb but no HBsAb

⌚ Exam Pearls

- Chronic HBV drugs suppress but do not cure infection.
- First-line: entecavir, tenofovir.
- IRIS risk if HIV treated first → treat HBV first.
- HBV vaccine prevents hepatocellular carcinoma → first anti-cancer vaccine.
- Needle-stick & neonates: HBV vaccine + HBIG (passive-active immunization).
- Vaccine = recombinant HBsAg, not whole virus.
- Immunized person: HBsAb (+), HBcAb (-).

➤ Hepatitis C Virus (HCV)

Disease

- Causes hepatitis C.

- Major cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC).

Important Properties

- Family: *Flavivirus*
- Genome: ssRNA, + polarity, enveloped.
- No virion polymerase.
- Genotypes: ≥ 6 (with many subtypes).
 - Genotype I \rightarrow ~75% of U.S. infections.
- Hypervariable region in envelope glycoprotein \rightarrow
 - Caused by high mutation rate.
 - Viral RNA polymerase lacks proofreading.
 - \rightarrow Results in quasispecies (multiple subspecies in one patient).

💡 Clinical correlation:

- High genetic variability = immune evasion + resistance to vaccines.

- Explains difficulty in making an effective vaccine.

Chronicity & Carcinogenesis

- 50% infections → chronic infection (much higher than HBV).
- Chronic HCV infection predisposes strongly to HCC.
- Mechanism: HCV protease inactivates signaling proteins needed for interferon induction → weak antiviral response.

Reproductive Cycle (Summary)

- Cannot be grown in routine cell culture, but parallels other flaviviruses.
- Genome RNA → translated into polyprotein → cleaved by virion protease into functional proteins.
 - Protease = drug target.
- NSSA protein works with viral RNA polymerase → genome replication.

- NSSA = drug target.
- Replication enhanced by miR-122 (liver-specific micro-RNA) → boosts HCV mRNA synthesis.
- Antisense drug miravirsen blocks miR-122 → ↓ viral RNA levels.

💡 Exam point: Direct-acting antivirals (DAAs) often target protease and NSSA.

Transmission & Epidemiology

- Reservoir: Humans.
- Main transmission: Blood.
 - Injection drug use → almost all new infections.
 - Mother → child at birth.
 - Needle-stick (lower risk vs HBV).
 - Blood transfusion (rare now due to screening).
 - Sexual transmission: uncommon.
 - Not transmitted via placenta or breastfeeding.
- Most prevalent blood-borne pathogen in U.S.

- ~4 million chronically infected (1-2% of U.S. population).
- Worldwide: ~180 million infected.

- Screening:
 - High-risk groups (IV drug use, transfusion before 1992, etc.).
 - Born 1945-1965 → high prevalence; CDC recommends screening.

- Other notes:
 - No insect vector (unlike yellow fever virus, another flavivirus).
 - Unique: rare transmission via commercial immune globulin (only infectious disease documented this way).

Exam Points

- HCV → *RNA virus, Flavivirus family, enveloped, +ssRNA.*
- Genetic diversity → quasispecies → immune escape + vaccine difficulty.

- >50% → chronicity (vs HBV lower).
- Chronic HCV → cirrhosis + HCC (major risk factor).
- Protease & NSSA = key drug targets.
- miR-122 enhances replication → target for experimental drug miravirsen.
- Transmission: IVDU > vertical at birth > transfusion (rare now).
- Sexual, transplacental, breastfeeding → rare/uncommon.
- Most common blood-borne infection in U.S.

Hepatitis C Virus (HCV) – Pathogenesis, Immunity & Clinical Findings

Pathogenesis

- Target cells: Hepatocytes.
- Direct cytopathic effect? **✗** No evidence.

- Mechanism of liver injury:
 - Mainly immune-mediated → destruction of hepatocytes by cytotoxic T cells (CD8+).
- Hepatocellular carcinoma (HCC):
 - HCV predisposes strongly to HCC.
 - BUT:
 - No viral oncogene identified.
 - No viral genome integration into host DNA.
 - Mechanism → Indirect:
 - Chronic liver damage + regeneration cycles → ↑ mutations → HCC.
 - Alcoholism greatly accelerates risk of HCC.
 - Cirrhosis of any origin also ↑ HCC risk (so mechanism = indirect injury, not direct viral oncogenesis).

Immunity

- Antibodies produced, but → 75% remain chronically infected.
 - (Compare: HBV → chronic carriage ~10%).

- Chronic consequences:

- ~10% → Chronic active hepatitis & cirrhosis.

- Immunity after clearance:

- Uncertain if reinfection can occur.
 - Lifelong immunity is not established.

Clinical Findings

- Incubation period: ~8 weeks (longer than HAV, shorter than HBV).

- Acute HCV:

- Often asymptomatic.
 - If symptomatic → usually mild.
 - Malaise, nausea, RUQ pain.
 - Classic hepatitis features: fever, anorexia, vomiting, jaundice, dark urine, pale feces, ↑ transaminases.

- Chronic HCV:

- Much more common than in HBV.
- Leads to chronic hepatitis, cirrhosis, and HCC.
- Cirrhosis due to HCV = #1 indication for liver transplantation.

- Extrahepatic manifestations (immune-mediated):
 - Autoimmune phenomena:
 - Vasculitis
 - Arthralgias
 - Purpura
 - Membranoproliferative glomerulonephritis
 - Essential mixed cryoglobulinemia (EMC):
 - HCV is the main cause.
 - Cryoglobulins = immune complexes (HCV Ag + Ab).
 - Precipitate in cold → dissolve on warming.

④ Exam Points

- HCV liver damage = immune attack (CD8+), not viral cytotoxicity.
- Strong link with HCC → via chronic injury, not oncogene integration.

- Alcohol accelerates HCC risk.
- Chronicity rate = ~75% (higher than HBV).
- Cirrhosis from HCV = leading cause of liver transplantation.
- Extrahepatic disease: vasculitis, glomerulonephritis, cryoglobulinemia (classic exam favorite!).

Hepatitis C Virus (HCV) – Laboratory Diagnosis, Treatment, and Prevention

Laboratory Diagnosis

- Screening test: ELISA for anti-HCV antibodies
 - Uses recombinant proteins from stable HCV antigens (not variable envelope proteins).
 - Does not distinguish IgM vs IgG, or acute vs chronic vs resolved infection.
- Confirmatory test: PCR for HCV RNA (viral load)
 - Detects active infection.
 - Used to monitor drug therapy success.

- Chronic HCV infection criteria:

- Elevated transaminases (e.g., ALT)
- Positive ELISA antibody
- Detectable HCV RNA \geq 6 months

- Note: Virus isolation from patients is not done.

Laboratory Test Results in Different Stages of HCV Infection

1. Acute HCV Infection

- Antibody to HCV: Becomes positive after 6-24 weeks; negative early in infection
- Viral load (HCV RNA in serum): Detectable within 1-2 weeks (earliest marker of infection)
- ALT (alanine aminotransferase): Elevated

2. Chronic HCV Infection

- Antibody to HCV: Positive
- Viral load (HCV RNA): Detectable (persistence of RNA confirms chronicity)

- ALT: Typically elevated but fluctuates, sometimes near normal

3. Recovered from HCV Infection

- Antibody to HCV: Positive (remains as marker of past infection)
- Viral load (HCV RNA): Undetectable (virus cleared)
- ALT: May be normal, but can fluctuate (some residual liver injury possible)

⚡ High-yield points for exams:

- Earliest marker of acute HCV = HCV RNA (1-2 weeks)
- Antibody to HCV appears late (6-24 weeks)
- Chronic infection confirmed when HCV RNA persists >6 months
- Recovered patients → HCV Ab positive, RNA negative

Treatment

- Acute HCV: Peginterferon alfa → reduces progression

to chronic infection.

- Chronic HCV:
 - Oral drug combinations (Table 41-6):
 - RNA polymerase inhibitors (e.g., Sofosbuvir, Dasabuvir)
 - NSSA inhibitors (e.g., Ledipasvir, Velpatasvir, Ombitasvir, etc.)
 - Protease inhibitors (e.g., Simeprevir, Grazoprevir, Glecaprevir, etc.)
 - Superior to old regimens (pegylated interferon alfa \pm ribavirin).
 - Effective against different genotypes of HCV.
 - Offer potential for a "cure."
- Important adverse effect: Reactivation of HBV during HCV treatment (mechanism unknown).

Oral Drugs for Chronic HCV Infection

I. RNA Polymerase Inhibitors

- Sofosbuvir
 - Nucleoside (uridine) analogue

- Mechanism: Inhibits genome RNA synthesis (chain-terminating drug)
- Dasabuvir
 - Non-nucleoside inhibitor
 - Mechanism: Inhibits genome RNA synthesis

2. NSSA Inhibitors

- Ledipasvir, Ombitasvir, Daclatasvir, Elbasvir, Velpatasvir, Pibrentasvir
- Mechanism: Block NSSA protein, a cofactor required for RNA polymerase activity → inhibits genome RNA synthesis

3. Protease Inhibitors

- Boceprevir, Simeprevir, Telaprevir, Paritaprevir, Grazoprevir, Glecaprevir
- Mechanism: Inhibit cleavage of HCV precursor polypeptide → block production of functional structural and nonstructural viral proteins

⚡ Exam High-Yield:

- Sofosbuvir = chain terminator
- NS5A inhibitors = block viral replication complex
- Protease inhibitors = prevent processing of viral polyprotein

Prevention

- No vaccine; no hyperimmune globulin.
- Pooled immune serum globulin not useful for post-exposure prophylaxis.
- Needle-stick injury: no effective prophylaxis; only monitoring.
- Blood donor screening (since 1994): virtually eliminated transfusion-related HCV.
- Screening recommended: All individuals born between 1945–1965 (high prevalence).
- Patient advice:

- Avoid alcohol → reduces risk of cirrhosis and hepatocellular carcinoma.
- Monitor cirrhotic patients with AFP + liver ultrasound for carcinoma detection.
- Liver transplant: possible, but reinfection of graft is typical.
- HCV + HIV coinfection:
 - HAART can worsen hepatitis (IRIS).
 - Prefer treat HCV before starting HAART.

⚡ Exam Tip:

- ELISA (screen), PCR (confirm + monitor)
- 6 months RNA + ALT elevation = chronic infection
- No vaccine / immune globulin for HCV (vs HAV, HBV).

Drug Combinations Effective for Treatment of Chronic HCV Infection (Not Important for Micro Exam)

Genotype 1

- Sovaldi + Olysio

- Sofosbuvir → RNA polymerase inhibitor
- Simeprevir → Protease inhibitor

- Viekira Pak

- Dasabuvir → RNA polymerase inhibitor
- Ombitasvir → NSSA inhibitor
- Paritaprevir → Protease inhibitor
- Ritonavir → Booster of protease inhibitor

Genotype 1 or 3

- Sovaldi + Daklinza

- Sofosbuvir → RNA polymerase inhibitor
- Daclatasvir → NSSA inhibitor

Genotype 1 or 4

- Zepatier

- Elbasvir → NSSA inhibitor
- Grazoprevir → Protease inhibitor

Genotype 1, 4, 5, or 6

- Harvoni

- Sofosbuvir → RNA polymerase inhibitor
- Ledipasvir → NSSA inhibitor

Genotype 4

- Technivie

- Ombitasvir → NSSA inhibitor
- Paritaprevir → Protease inhibitor
- Ritonavir → Booster of protease inhibitor

All 6 Genotypes

- Epclusa

- Sofosbuvir → RNA polymerase inhibitor
- Velpatasvir → NSSA inhibitor

- Mavyret

- Pibrentasvir → NSSA inhibitor
- Glecaprevir → Protease inhibitor

➤ Hepatitis D Virus (HDV / Delta Virus)

Disease

- Causes Hepatitis D (Delta hepatitis).
- Occurs only in HBV-infected individuals (requires HBsAg).

Important Properties

- Defective virus → cannot replicate independently.
- Helper virus = HBV (provides HBsAg as envelope protein).
- Genome:
 - ssRNA, negative polarity, circular, covalently closed.
 - Very small genome → encodes only delta antigen (core protein).

- Replication:
 - No viral polymerase → uses host RNA polymerase.
 - RNA genome is a ribozyme (self-cleaves & ligates).
 - Replicates in the nucleus.
- Serotype: Only one (because HBsAg has only one serotype).
- Reservoir: None known outside humans.

Transmission & Epidemiology

- Same as HBV: blood, sexual, perinatal.
- In U.S. → mostly IV drug users (needle sharing).
- Worldwide distribution overlaps with HBV.

Pathogenesis & Immunity

- Mechanism similar to HBV: cytotoxic T-cell damage to infected hepatocytes.
- Some evidence that delta antigen itself is cytopathic.

- Immunity:

- IgG anti-delta antigen not long-lasting.
- Unclear if durable long-term immunity exists.

Clinical Findings

- Requires HBV infection → occurs as:

1. Coinfection = HBV + HDV simultaneously.

- More severe acute hepatitis than HBV alone.
- BUT chronic hepatitis incidence ≈ HBV alone.

2. Superinfection = HDV infects a chronic HBV carrier.

- Much more severe disease.
- High risk of: fulminant hepatitis, chronic hepatitis, liver failure.

Laboratory Diagnosis

- Detection of delta antigen in serum - OR -
- IgM antibody to delta antigen.

Treatment

- Peginterferon alfa: may mitigate chronic hepatitis effects.
- No specific anti-HDV therapy.
- No cure for chronic HDV.

Prevention

- No HDV vaccine.
- BUT: HBV vaccination indirectly prevents HDV (since HDV cannot replicate without HBV).

Exam Pearls

- HDV = defective virus → requires HBV (HBsAg) as helper.
- Coinfection = acute, severe, but not more chronic.
- Superinfection = severe, fulminant, ↑ risk of chronicity & failure.

- HDV genome = ribozyme (unique self-cleaving RNA property).
- Prevention = HBV vaccine (indirect).

➤ Hepatitis E Virus (HEV)

Properties

- Nonenveloped, ssRNA virus.
- Family: Hepevirus.
- Transmission: Fecal-oral (contaminated water, poor sanitation).

Epidemiology

- Major cause of waterborne epidemics in Asia, Africa, India, Mexico.
- Rare in the U.S.
- More common than HAV in many developing countries.

Clinical Features

- Similar to HAV (self-limiting acute hepatitis).
- Key difference: High mortality in pregnant women (up to 20-25%).
- In immunocompromised patients → can cause chronic infection, chronic hepatitis, cirrhosis.
- No link to hepatocellular carcinoma.

Diagnosis

- IgM antibody to HEV.
- PCR for HEV RNA also available.

Treatment

- No specific antiviral for acute infection in immunocompetent.
- In immunocompromised → ribavirin may clear infection.

Prevention

- No vaccine available (unlike HAV).
- Improved sanitation & clean water.

⌚ Exam Pearls

- Fecal-oral → waterborne epidemics.
- Pregnancy = high mortality risk (esp. 3rd trimester).
- Can be chronic in immunocompromised, but not oncogenic.

➤ Hepatitis G Virus (HGV / GB virus C / Pegivirus H)

Properties

- Flavivirus family (like HCV).
- Transmission: blood & sexual intercourse.

Epidemiology

- Found in:
 - 2% of U.S. blood donors.

- 15% of those with HCV.
- 35% of those with HIV.
- Carried in millions worldwide.

Clinical Features

- Unlike HCV:
 - No clear role in acute hepatitis, chronic active hepatitis, or hepatocellular carcinoma.
- Can cause chronic infection lasting decades.
- 60-70% clear infection → develop antibodies.

Special Note: Interaction with HIV

- HIV + HGV coinfection = better prognosis.
- Lower mortality, lower HIV viral loads.
- Hypothesis: HGV interferes with HIV replication.

Diagnosis

- Detection of viral RNA or antibodies.

Treatment & Prevention

- No specific antiviral therapy.
- No vaccine.

⌚ Exam Pearls

- HGV not clearly pathogenic for liver (unlike HCV).
- Chronic infection possible.
- May protect against HIV progression.