

Human Immunodeficiency Virus (HIV)

Monday, October 6, 2025 11:17 AM

对人体的 Overview

- Causative agent of AIDS (Acquired Immunodeficiency Syndrome)
- Two types:
 - HIV-1 → Found worldwide (main cause of AIDS globally)
 - HIV-2 → Found mainly in West Africa
- This section mainly refers to HIV-1 unless specified otherwise.

对人体的 Important Properties

◆ Family and Subgroup

- Member of Retroviridae family, genus Lentivirus ("slow viruses")

- Characterized by long incubation periods and chronic progressive disease

② Tropism & Target Cells

- Primary target: $CD4^+$ Helper T-lymphocytes
- Also infects: Macrophages and Monocytes (express CD4 receptors)
- Mechanism:
 - Virus binds to CD4 receptor on host cell
 - Entry facilitated by co-receptors (CCR5 or CXCR4)
 - Leads to loss of cell-mediated immunity
 - Host becomes highly susceptible to opportunistic infections and certain cancers (e.g., Kaposi sarcoma, lymphomas)

③ Viral Structure

- Shape: Enveloped virus with a cylindrical (type D) core
- Envelope glycoproteins:
 - gp120 → Mediates attachment to CD4 receptors
 - gp41 → Mediates fusion of viral and host cell

membranes

- Genome:

- Diploid — contains two identical single-stranded (+) RNA molecules
- NOT double-stranded RNA (important distinction!)

❖ Main Enzymes within the Nucleocapsid

Enzyme	Function
--------	----------

Reverse Transcriptase	RNA-dependent DNA polymerase → synthesizes DNA from RNA template; also has ribonuclease H activity to degrade RNA from RNA-DNA hybrid
-----------------------	---

Integrase	Integrates proviral DNA into host genome
-----------	--

Protease	Cleaves precursor polyproteins into functional viral proteins
----------	---

⌚ Mnemonic: *RIP* → Reverse transcriptase, Integrase, Protease

✍ Genomic Organization

HIV genome is complex, consisting of:

- 3 structural genes: *gag*, *pol*, *env*
- 2 essential regulatory genes: *tat*, *rev*
- 4 accessory (non-essential) genes: *nef*, *vif*, *vpr*, *vpu*

⚙️ Functions of Major Genes

Category	Gene	Protein(s) Produced	Function
Structural genes	<i>gag</i>	p24, p7 (nucleocapsid); p17 (matrix)	Structural core proteins; p24 used in diagnostic tests
	<i>pol</i>	Reverse transcriptase, Protease, Integrase	Enzymes for replication and integration
	<i>env</i>	gp120, gp41	gp120 = attachment; gp41 = fusion
Essential regulatory genes	<i>tat</i>	Tat	Activates transcription of viral genes; enhances replication
	<i>rev</i>	Rev	Transports late mRNA from nucleus → cytoplasm
Accessory genes	<i>nef</i>	Nef	Decreases CD4 & class I MHC expression → evades cytotoxic T-cells; induces death of uninfected cytotoxic T-cells
	<i>vif</i>	Vif	Inhibits APOBEC3G enzyme (which normally causes lethal hypermutation in viral DNA) → enhances infectivity

vpr Vpr Transports viral core into nucleus (even in non-dividing cells)

vpu Vpu Enhances virion release from infected cells

② Clinical & Diagnostic Relevance of Key Proteins

- p24 antigen → first viral protein detected in blood; used in ELISA screening tests
- gp120/gp41 antibodies → used in confirmatory tests (Western blot)
- Reverse transcriptase → target for antiretroviral drugs (e.g., AZT)

❖ Mechanism of Reverse Transcription & Integration (Flowchart)

Viral RNA

↓

Reverse Transcriptase → Synthesizes complementary cDNA

↓

Ribonuclease H → Degrades viral RNA strand

DNA Polymerase Activity → Converts cDNA → Double-stranded proviral DNA

Integrase → Inserts proviral DNA into host genome

⌚ Host transcription machinery → Produces viral mRNA & viral proteins

Protease → Cleaves viral polyproteins into functional units

Assembly of mature virions → Budding from host cell membrane

💥 Destruction of CD4⁺ T-cell

↓ Immunity weakened

⌚ Opportunistic infections develop

⚡ Genetic Variability (Clades)

- Based on gp120 gene sequence differences
- HIV-1 subdivided into clades (subtypes) of group M (Major)
 - Clade B: Common in North America — transmitted mainly via anal sex; infects mononuclear cells
 - Clade E: Common in Southeast Asia — transmitted mainly via vaginal sex; infects female genital tract cells

⌚ Exam Pearl 💡

- p24 = diagnostic antigen
- gp120 & gp41 = envelope glycoproteins (for attachment & fusion)

- Reverse transcriptase = hallmark enzyme of retroviruses
- tat & rev = essential regulatory genes
- nef, vif, vpr, vpu = accessory genes (enhance infectivity & pathogenesis)

① Major Antigens of HIV

1 Envelope Glycoproteins — gp120 & gp41

- gp120 → Projects from the viral surface and binds to:
 - CD4 receptor on host cell
 - Chemokine co-receptor (either CCR5 or CXCR4)
- gp41 → Embedded in the viral envelope; mediates fusion of viral and cell membranes
- Antigenic variation:
 - gp120 gene mutates rapidly due to lack of

proofreading by reverse transcriptase

- Results in numerous antigenic variants → complicates vaccine development

- Most immunogenic region: V3 loop of gp120 (major site of antigenic variation)
- Neutralizing antibodies form against gp120 but lose efficacy as new variants arise.

Summary:

gp120 → attachment

gp41 → fusion → Rapid mutation → immune evasion → vaccine difficulty

2 Core Antigen — p24

- Located in the nucleocapsid (core)
- Highly conserved (non-variable)
- Non-neutralizing, but:

- Serves as a key diagnostic marker (detected in early infection via ELISA)
- Indicates active viral replication

做人 Natural Host Range & Origin

- Natural host: Humans only
- No endogenous HIV sequences in human DNA → virus entered humans *recently* in evolution
- Origin evidence:
 - Chimpanzees (SIVcpz) in West Africa are believed to be the source of HIV-1
 - Cross-species transmission → "jumping the species barrier"

Related Retroviruses

1. HIV-2

- Discovered in West Africa (1986)

- Proteins share ~40% similarity with HIV-1
- Localized mainly to West Africa, less transmissible, and slower disease progression
- Closely related to SIVsmm (Simian Immunodeficiency Virus of *sooty mangabey*)
- Thought to arise from accidental human infection with SIVsmm.

⌚ 2. Simian Immunodeficiency Viruses (SIVs)

- Found in monkeys and chimpanzees (e.g., *SIVcpz*)
- Cause persistent, often asymptomatic infection in nonhuman primates
- Source of human HIV-1 and HIV-2 via cross-species exposure (e.g., hunting or blood contact)
- Occasionally cause AIDS-like illness in some chimpanzees 🙄

⌚ Replication Cycle of HIV (Step-by-Step Flowchart)

◆ I. Attachment

gp120 binds to CD4 receptor on T-helper cells and macrophages

gp120 also binds to co-receptor (chemokine receptor):

- CCR5 → macrophage-tropic strains
- CXCR4 → T-cell-tropic strains

⌚ Genetic protection:

- Mutation in CCR5 gene ($\Delta 32$ mutation) →
 - Homozygotes (1%) completely resistant to HIV infection
 - Heterozygotes (10-15%) → slower progression to AIDS

◆ 2. Fusion & Entry

gp41 mediates fusion of viral envelope with host membrane

Viral core (RNA + enzymes) released into cytoplasm

◆ 3. Reverse Transcription

Reverse transcriptase converts single-stranded viral RNA
→ double-stranded DNA

Ribonuclease H activity degrades RNA strand of RNA-DNA hybrid

Forms proviral DNA

◆ 4. Integration

Integrase enzyme inserts proviral DNA into host cell genome

Provirus remains latent or transcriptionally active

◆ 5. Transcription & Translation

Host RNA polymerase II (aided by Tat protein) transcribes proviral DNA → viral mRNA

mRNA translated into polyproteins:

- Gag polyprotein → structural proteins (p24, p17, etc.)
- Pol polyprotein → reverse transcriptase, integrase,

protease

- Env polyprotein \rightarrow gp160 (later cleaved into gp120 + gp41)

◆ 6. Assembly

Immature virions form in cytoplasm

Env glycoproteins transported to host membrane

Nucleocapsid assembled beneath membrane

◆ 7. Budding & Maturation

Virus buds through host membrane \rightarrow acquires lipid envelope

Viral protease cleaves precursor polyproteins →
functional proteins

Mature, infectious virion released

Host Cell Proteins Involved

- CD4, CCR5, CXCR4 → viral entry
- Actin & Tubulin → transport of viral DNA to nucleus
- Cyclin T1 + Tat protein → transcription of viral mRNA
- Cellular proteases → cleave Env precursor (gp160 → gp120 + gp41)
- Host budding machinery → virion release

Exam Pearls

- gp120 → CD4 attachment, gp41 → fusion

- p24 → diagnostic core antigen
- $\Delta 32$ CCR5 mutation → natural resistance
- Reverse transcriptase → hallmark enzyme of retroviruses
- Integrase → enables viral DNA integration
- Protease inhibitors → block virion maturation (used in ART therapy)

Transmission & Epidemiology of HIV

Modes of Transmission

HIV is transmitted primarily through:

- Sexual contact (most common route)
- Transfer of infected blood
- Perinatal transmission from mother to child:

- Across the placenta
- During birth
- Via breast milk

⌚ Note: More than 50% of neonatal infections occur at delivery, while the rest are roughly equally divided between transplacental and breastfeeding transmission.

There is no evidence for:

- Airborne
- Waterborne
- Insect-borne transmission of HIV

⌚ Mechanism of Infection

HIV transmission occurs through:

- HIV-infected cells or
- Free virus particles (not cell-associated)

Although small amounts of virus are found in saliva and tears, these do not play a significant role in transmission.

Comparison with HBV Transmission

- Follows a similar pattern to hepatitis B virus (HBV).
- Less efficient transmission — a much higher viral dose of HIV is required for infection.

Risk Factors Increasing Susceptibility

- Pre-existing sexually transmitted diseases, especially ulcerative lesions (e.g., syphilis, chancroid, herpes genitalis)
- Lack of circumcision in males increases risk

Blood Transfusion Transmission

- Greatly reduced by screening blood for anti-HIV antibodies.
- However, during the "window period", HIV may be present in blood before antibodies are detectable.
- To minimize this, blood banks also test for p24 antigen.

Epidemiological Overview

III In the United States (as of 2015-2016):

- ≈ 1.1 million people living with HIV
- $\approx 50,000$ new infections/year
- $\approx 15\%$ of infected individuals unaware of their status
- $\approx 630,000$ deaths due to AIDS since 1981
- Major decline in transmission due to:
 - Better preventive measures
 - Effective antiretroviral therapy (ART)

🌐 Worldwide Statistics (2016):

- ≈ 37 million infected
- Two-thirds in sub-Saharan Africa
- Highest infection rates: Africa, Asia, Latin America
- AIDS = 4th leading cause of death globally
 - 1 Ischemic heart disease

- 2 Cerebrovascular disease
- 3 Acute lower respiratory disease
- 4 AIDS

Transmission Patterns

1980s (US & Europe):

- Predominantly:
 - Men having sex with men (MSM)
 - Intravenous drug users
 - Hemophiliacs receiving contaminated blood ♂
- Heterosexual transmission was rare.

Present Day:

- Heterosexual transmission is now predominant in many regions, especially Africa.

Transmission in Healthcare Workers

- Very few cases despite regular exposure and needle-stick injuries.

- Infectious dose of HIV is high.
- Risk of infection after percutaneous exposure $\approx 0.3\%$.
- Transmission from healthcare worker \rightarrow patient is exceedingly rare.

Q3 Pathogenesis & Immunity

❖ Main Target Cells

HIV infects and destroys:

- Helper T cells ($CD4^+$ cells) \rightarrow causes loss of cell-mediated immunity
 - Leads to opportunistic infections and certain cancers (e.g., Kaposi's sarcoma, lymphomas)

Q Note: HIV does not directly cause cancer — HIV genes are not found in tumor cells.

♀ Early Infection Sites

- Infection starts in dendritic (Langerhans') cells of the genital mucosa.
- Virus then infects local $CD4^+$ T cells \rightarrow enters bloodstream (viremia) within 4-11 days.

Key Cellular Targets

- Th17 cells (subset of $CD4^+$ T cells) in mucosa are targeted early.
 - These produce IL-17, attracting neutrophils to infection sites.
 - Their loss \rightarrow bacterial translocation and bloodstream infections (e.g., *E. coli* from gut flora).

CNS Involvement

- Infects monocytes & macrophages in brain
- Forms multinucleated giant cells (syncytia) \rightarrow neuronal damage \rightarrow neurologic symptoms
- gp41 mediates fusion of infected cells
- Infected cells also die due to:

- CD8⁺ cytotoxic lymphocyte attack
- Apoptosis from syncytium formation

☒ Immune Evasion by HIV

- Tat and Nef proteins ↓ synthesis of MHC class I → evade CD8⁺ cytotoxic killing.

☒ Superantigen Hypothesis

- HIV may act as a superantigen, causing:
 - Nonspecific activation of helper T cells → massive cell death
- Supported by evidence from mouse mammary tumor virus (another retrovirus with superantigen-like properties).

▼ Flowchart: Pathogenesis of HIV Infection

HIV entry through mucosal surface

Infection of Langerhans' (dendritic) cells

Transmission to CD4⁺ helper T cells

Replication and viremia (4-11 days post-infection)

Destruction of CD4⁺ & Th17 cells

↓ Cell-mediated immunity

Opportunistic infections + Certain cancers

Late phase: CNS involvement, syncytia formation, and
immune evasion

Persistence, Immunity & Clinical Stages of HIV

Persistent and Latent HIV Infection

HIV establishes both productive and latent infections within the host:

1 Persistent Noncytopathic Infection

- Occurs in T lymphocytes that continue to produce HIV without cell death.
- These persistently infected cells maintain ongoing viral production in the body.
- Lymphoid tissues (e.g. lymph nodes) are the main sites of active HIV replication.

2 True Latent Infection

- Found in resting CD4⁺ memory T cells containing integrated but silent HIV DNA.

- No virus is produced until the cell is activated, after which replication resumes.
- This explains why HIV can remain dormant for months to years.

💡 Key Point:

HIV replication depends on host transcription factors that are present only in activated, not resting, $CD4^+$ T cells.

🔒 Lifelong Infection

- Once infected, a person remains HIV-positive for life.
- The integration of viral DNA into host DNA ensures lifelong persistence.
- Antiretroviral therapy (ART) can suppress viral replication but cannot eliminate latent reservoirs in $CD4^+$ memory cells.

🌟 Elite Controllers vs Long-Term Nonprogressors

Category	Description	Mechanism / Explanation
----------	-------------	-------------------------

❶ Elite Controllers	<1% of HIV-infected individuals who maintain undetectable viral loads and normal CD4 ⁺ counts without ART	<ul style="list-style-type: none"> - Strong CD8⁺ T-cell response eliminates infected cells - Presence of protective HLA alleles (e.g., HLA-B57, HLA-B27) - High p21 (CDK inhibitor) levels suppress HIV replication
❷ Long-Term Non progressors (LTNPs)	HIV-infected individuals who live for many years with stable CD4 ⁺ counts and no opportunistic infections, despite not receiving ART	<ul style="list-style-type: none"> - HIV strain has nef gene mutations → ↓ MHC I suppression (immune system recognizes infected cells) - High production of α-defensins → block CXCR4 receptors, preventing viral entry

❸ Immune System Effects

❶ On T Cells

- CD4⁺ cells are progressively destroyed.
- Cytotoxic CD8⁺ T cells control early infection by killing infected cells.

- Failure of $CD8^+$ cells occurs later due to loss of $CD4^+$ helper support (\downarrow IL-2).

On B Cells

- Polyclonal activation \rightarrow excessive immunoglobulin production
- Autoimmune diseases (e.g. thrombocytopenia) may develop

Host Immune Response

1 Cell-Mediated Immunity

- Main defense = $CD8^+$ cytotoxic lymphocytes (CTLs)
- CTLs control infection for years by targeting gp120 and other viral epitopes
- Escape mutants appear \rightarrow new CTL clones arise
- Late-stage failure: when $CD4^+$ depletion causes CTL activity to collapse

2 Humoral Immunity

- Antibodies form against p24, gp120, and gp41, but:
 - They are weakly neutralizing
 - Do not prevent progression

⚡ Immune Evasion Strategies of HIV

- 1 Integration of viral DNA into host genome → persistence
- 2 Rapid mutation of env gene (gp120) → immune escape
- 3 Tat and Nef proteins ↓ MHC I synthesis → CTLs can't recognize infected cells
- 4 Destruction of CD4⁺ T cells → overall immune collapse

▼ Flowchart: Immune Pathogenesis of HIV

HIV infection of CD4⁺ T cells

Integration of viral DNA into host genome

Persistent & latent infections established

Continuous replication in lymphoid tissues

Destruction of $CD4^+$ T cells

\downarrow IL-2 and cytokine production

\downarrow $CD8^+$ cytotoxic activity

Emergence of escape mutants

Progressive immune collapse → AIDS

❶ Clinical Stages of HIV Infection

The disease progresses through three main stages:

Stage	Description	Key Features
❶ Acute (Primary) Infection	2–4 weeks post-infection	<ul style="list-style-type: none">- Fever, sore throat, rash, lymphadenopathy 😊- Rash: maculopapular, trunk/limbs, spares palms & soles- Leukopenia, normal CD4 count- High viremia → highly infectious- Self-limited (~2 weeks)
❷ Latent Stage	Months to years	<ul style="list-style-type: none">- Clinically silent but active replication in lymphoid tissues- Gradual fall in CD4⁺ count- Constant viral set point (predicts progression speed)
❸ Immuno	Final stage	<ul style="list-style-type: none">- Severe CD4⁺ depletion (<200 cells/μL)

deficiency Stage (AIDS)

- Opportunistic infections
- Neoplasms (Kaposi's sarcoma, lymphoma)
- CNS involvement

◊ Serologic and Viral Markers

Time After
Infection

10-14 days Antibodies begin appearing

3-4 weeks Most patients seroconvert

Before
seroconversion "Window period" → antibodies undetectable → possible false-negative tests

Early detection PCR for viral RNA is best during window period

After initial
infection "Viral set point" established — higher set point = faster disease progression

Viral Load and Prognosis

- Up to 10 billion new virions/day produced
- Viral RNA assay (PCR) measures plasma viral load
 - Detects free virions (not cell-associated)

- $>10,000$ copies/mL \rightarrow higher risk of AIDS progression
- If ART fails to reduce viral load \rightarrow therapy modification is needed

▼ Flowchart: Timeline of HIV Infection

Exposure to HIV

Acute stage (2-4 weeks): fever, rash, lymphadenopathy

Seroconversion (10-30 days) \rightarrow antibodies appear

Latent stage: asymptomatic, low-level viral replication

Viral set point established

Gradual CD4⁺ decline

Immunodeficiency (AIDS) → opportunistic infections, malignancies, death

② CD4-Positive T Cell Count and HIV Management

- CD4⁺ T cell count is a key indicator guiding HIV patient management.
- Used to determine:
 - Need for chemoprophylaxis against opportunistic infections
 - Need for anti-HIV therapy
 - Response to ongoing therapy
- ☒ Normal and Abnormal Ranges

- Normal lower limit: 500 cells/ μL
 - Usually asymptomatic at this level
- <200 cells/ μL :
 - Indicates AIDS (AIDS-defining condition)
 - Sharp increase in frequency & severity of opportunistic infections

⌚ Middle and Late Stages of HIV Infection

I. Middle Stage (Latent Period)

- Duration: 7-11 years (in untreated patients)
- Asymptomatic, though virus continues replication in lymph nodes
- Virus remains active but sequestered, not truly latent

⌚ AIDS-Related Complex (ARC)

- Occurs during latent stage

- Symptoms:
 - Persistent fever
 - Fatigue
 - Weight loss
 - Lymphadenopathy
- Often progresses to AIDS

2. Late Stage (AIDS)

- CD4 count $<200/\mu\text{L}$
- Marked increase in opportunistic infections and malignancies

Characteristic Manifestations

- *Pneumocystis jiroveci* pneumonia
- Kaposi's sarcoma (HHV-8)

Common Opportunistic Infections in AIDS

Site	Disease/Symptom	Causative Organism
------	-----------------	--------------------

Lung	Pneumonia, Tuberculosis	<i>Pneumocystis jiroveci, CMV, Mycobacterium tuberculosis</i>
Mouth	Thrush, Hairy leukoplakia, Ulcers	<i>Candida albicans, EBV, HSV-1, Histoplasma capsulatum</i>
Esophagus	Thrush, Esophagitis	<i>C. albicans, CMV, HSV-1</i>
Intestine	Diarrhea	<i>Salmonella, Shigella, CMV, Cryptosporidium parvum, Giardia lamblia</i>
CNS	Meningitis, Brain abscess, PML	<i>Cryptococcus neoformans, Toxoplasma gondii, JC virus</i>
Eye	Retinitis	<i>Cytomegalovirus</i>
Skin	Kaposi's sarcoma, Zoster, Nodules	<i>HHV-8, VZV, C. neoformans</i>
Reticuloendothelial	Lymphadenopathy, Splenomegaly	<i>Mycobacterium avium complex, EBV</i>

Laboratory Diagnosis

1. HIV Combo Test

- Detects both HIV antibodies + p24 antigen (early infection marker)

2. Confirmatory Tests

- Western blot (immunoblot) for confirmation of positive screening
- PCR / NAT detects viral RNA and confirms infection

3. Rapid Test - OraQuick

- Uses oral swab; ELISA-type home test
- Positive → Confirm by Western blot

4. Viral Load Testing

- Quantifies HIV RNA via PCR
- Used for monitoring treatment response and disease progression

5. Other Important Tests

- CD4 count monitoring
- Drug resistance testing (genotypic & phenotypic)

Treatment of HIV Infection

⌚ Goals of Therapy

1. Restore immune function → ↑ CD4 count

2. Reduce viral load → ↓ transmission risk

💡 Starting treatment early after diagnosis yields the best outcomes.

榰 Highly Active Antiretroviral Therapy (HAART)

- Combination of 3-4 drugs for maximum efficacy
- Backbone: Emtricitabine + Tenofovir
- Add one of the following:
 - Efavirenz
 - Raltegravir
 - Rilpivirine
 - Ritonavir + (Atazanavir / Darunavir)
 - Elvitegravir + Cobicistat

Single-pill daily regimens improve compliance

- ☞ HAART prolongs life & suppresses virus but does not cure HIV.

⚠ Discontinuation of HAART

- Leads to:
 - Return of viremia
 - Drop in CD4 count

⚡ Resistance to Antiretroviral Drugs

- Cause: High mutation rate in HIV
- ~10% of new patients have resistant strains
- Testing:
 - Genotypic: Detects mutations in RT or PR genes
 - Phenotypic: Checks virus growth in presence of drug
- Tropism test: Determines if virus uses CCR5 → guides maraviroc use

④ Immune Reconstitution Inflammatory Syndrome (IRIS)

- Occurs after starting HAART in coinfected patients (e.g., HBV, HCV, TB, MAC, *Cryptococcus*, *Toxoplasma*)
- Mechanism:
 - Restoration of immune response → sudden inflammatory flare-up ☹
- **Prevention:** Treat coinfections before starting HAART

🛡️ Prevention

- No vaccine available yet
- Prevent exposure:
 - Use condoms, avoid needle sharing, screen donated blood

- Postexposure prophylaxis (PEP):
 - Tenofovir + Emtricitabine (Truvada) + Raltegravir
 - Start ASAP, continue 28 days
- Preexposure prophylaxis (PrEP):
 - Truvada for high-risk individuals
- Reduce neonatal infections:
 - Treat HIV+ mothers and neonates
 - Avoid breastfeeding
 - Prefer C-section delivery
 - Circumcision lowers infection risk

⌚ Prophylaxis Against Opportunistic Infections

Drug	Prevents
Trimethoprim-sulfamethoxazole	<i>Pneumocystis pneumonia, Toxoplasmosis</i>
Fluconazole	<i>Cryptococcal meningitis</i>
Clotrimazole (oral)	<i>Candidiasis (thrush)</i>

Ganciclovir

CMV retinitis

Azithromycin

Mycobacterium avium complex (MAC)