

Klebsiella - Enterobacter - Serratia Group

Sunday, August 3, 2025 3:35 PM

KLEBSIELLA - ENTEROBACTER - SERRATIA GROUP - Overview

◆ Diseases

- Opportunistic pathogens.
- Cause nosocomial infections, especially:
 - Pneumonia
 - Urinary tract infections (UTIs)
- *Klebsiella pneumoniae* can also cause community-acquired pneumonia.

◆ Important Properties

- Most commonly involved species:
 - *Klebsiella pneumoniae*
 - *Enterobacter cloacae*
 - *Serratia marcescens*
- Natural habitats:
 - Normal flora of large intestine.
 - Also found in soil and water.

- Distinguishing features:
 - Similar biochemical profiles.
 - Differ in motility and specific test results.
- Capsule:
 - *K. pneumoniae* has a large polysaccharide capsule
→ colonies appear mucoid.
- Pigment:
 - *S. marcescens* forms red-pigmented colonies
(seen on agar plates).

❖ Pathogenesis & Epidemiology

- *Klebsiella pneumoniae*:
 - More likely to be a primary (non-opportunistic) pathogen.
 - Capsule provides antiphagocytic protection.
 - Carried in respiratory tract of ~10% healthy people.
 - Infection risk increases in:
 - Elderly
 - Chronic lung disease
 - Diabetics

- Alcoholics
- Enterobacter & Serratia:
 - Strongly associated with hospital-acquired infections.
 - Common after invasive procedures:
 - IV catheterization
 - Respiratory intubation
 - Urinary catheterization
 - Serratia outbreaks linked to:
 - Contaminated respiratory devices (e.g., humidifiers)
 - Before modern procedures, Serratia was largely environmental.
- Injection drug users:
 - Serratia may cause endocarditis.
- Septic shock:
 - Like other gram-negative rods, can result from endotoxins in the cell wall (LPS).

❖ Clinical Findings

- Most common presentations:

- UTIs
- Pneumonia
- Other complications:
 - Bacteremia
 - Spread to meninges, liver, etc.
- Klebsiella pneumonia hallmark:
 - Thick, mucoid, bloody sputum = "currant-jelly sputum"
 - Can cause lung necrosis and abscesses
- Less common Klebsiella species:
 - *K. ozaenae* → Atrophic rhinitis
 - *K. rhinoscleromatis* → Granulomatous disease of nose/pharynx
- ◆ Laboratory Diagnosis
 - Grow on MacConkey's or EMB agar:
 - Lactose fermenters → pink colonies
 - *Serratia* may give a false-negative (late fermenter)
 - Differentiation:

- Based on biochemical tests and motility.

◆ Treatment

- Drug resistance is common, especially in hospital-acquired strains.
- Many produce ESBLs (Extended-Spectrum β -Lactamases):
 - Resistant to most β -lactam antibiotics.
- Empiric therapy (before sensitivity known):
 - Aminoglycoside (e.g., gentamicin) +
 - 3rd-gen cephalosporin (e.g., cefotaxime)
- Severe Enterobacter infections:
 - May require imipenem + gentamicin

◆ Prevention

- No vaccine available.
- Hospital infection control:
 - Replace IV catheter sites regularly.

- Remove urinary catheters promptly.
- Proper maintenance of respiratory devices.