Limb Development

- - The limbs (along with shoulder & pelvic girdles) form the appendicular skeleton.
 - Appearance of limb buds:
 - o Forelimb appears end of 4th week.
 - Hindlimb appears 1-2 days later.
 - Limb buds = mesenchymal core (from parietal layer of lateral plate mesoderm) + ectoderm covering.
- ♦ Apical Ectodermal Ridge (AER) Key Inductive Structure

Feature Description

Position Distal border of limb bud

Structure Thickened ectoderm

Function Produces signals — keeps adjacent mesenchyme undifferentiated & rapidly proliferating — forms progress zone

Proximodistal outgrowth occurs because cells closer to AER remain undifferentiated, while cells farther start differentiating into cartilage + muscle.

- Formation of Limb Segments and Digits
 - 6 weeks \rightarrow hand- and footplates appear (flattened distal ends).
 - ullet First constriction ullet separates proximal and distal segment.
 - Second constriction \rightarrow defines further segments \rightarrow arm > forearm > hand; thigh > leg > foot.
 - Digits (fingers/toes) formed due to:
 - \circ Apoptosis in AER \rightarrow splits it into S segments.
 - \circ Condensation of mesenchyme \to cartilaginous digital rays.
 - Apoptosis of tissue between digital rays.

♦ Upper vs Lower Limb

Feature Upper Limb Lower Limb

Timing Earlier 1-2 days behind

Rotation (7th 90° laterally \rightarrow ~90° medially \rightarrow week) extensor muscles \rightarrow extensor muscles lateral/posterior \rightarrow anterior side; side; thumbs \rightarrow big toe \rightarrow medially laterally

- Cartilage Formation and Ossification
 - ullet Mesenchymal condensations ullet differentiate into chondrocytes.
 - ullet 6th week o hyaline cartilage models appear.
 - Joint Formation:
 - Appears in cartilaginous condensations (interzone region).
 - \circ Cell death \rightarrow joint cavity.
 - \circ Surrounding cells \rightarrow joint capsule.
 - \circ WNT/4 \rightarrow important inductive signal.
 - · Endochondral Ossification:
 - O Begins end of embryonic period.
 - \circ By week 12 \rightarrow all long bones have primary ossification centers (diaphysis).
 - \circ At birth \rightarrow diaphysis ossified; epiphyses still

cartilaginous.

- Secondary ossification centers appear in epiphyses shortly after birth.
- Epiphyseal plate remains between epiphysis & diaphysis → responsible for bone lengthening.
- Plate disappears once full length is achieved.
- Epiphyseal Plate Summary

Bone Type Number of Epiphyseal Plates

Long bones One at each end

Small bones (e.g., One only phalanges)

Irregular bones (e.g., One or more primary centers & vertebrae) several secondary centers

- Synovial & Fibrous Joint Formation
 - · Occurs alongside cartilage formation.
 - Interzone (between chondrifying bone primordia):
 - \circ Differentiates into dense fibrous tissue \to
 - Articular cartilage on bone ends
 - Synovial membranes

- Ligaments + menisci (e.g., cruciate ligaments in the knee)
- \circ Surrounding mesenchyme \rightarrow joint capsule.
- Fibrous joints (e.g., skull sutures) also arise from interzone but remain as dense fibrous tissue (no cavity forms).

✓ Limb Musculature

- Origin of Limb Muscles
 - Muscle precursor cells originate from dorsolateral region of somites.
 - These cells migrate into limb buds.
 - Initially, muscle masses are segmental, corresponding to their somitic origin.
- Patterning of Muscle Masses

Stage Description

Early limb bud Muscle masses migrate and remain segmentally arranged

With limb Muscle tissue splits into: \rightarrow Flexor

elongation compartment (ventral) \rightarrow Extensor

compartment (dorsal)

Later Additional splittings + fusions occur

→ individual muscles may be formed

from more than one segment

☑ Important:

The final pattern of muscles is defined by connective tissue derived from lateral plate mesoderm (acts as a template).

♦ Innervation - Entry of Spinal Nerves

Limb Spinal Levels

Upper limb Lower CS-TI

Lower limb L4-52

- Ventral primary rami from these segments grow into the mesenchyme of the limb bud.
- Each ramus divides into dorsal and ventral branches,
 which later unite to form large peripheral nerves.

Compartment Formed from Examples

Extensor Dorsal segmental Radial nerve (dorsal) branches

Flexor (ventral) Ventral branches Ulnar & Median nerves

Wey Point: Contact between nerves and developing muscle cells is essential for full muscle differentiation (motor influence).

- ♦ Sensory Innervation (Dermatomes)
 - Spinal nerves also supply sensory innervation.
 - Original dermatomal pattern is established early and modified by limb growth & rotation, but
 an orderly segmental pattern can still be identified in adults.

(e.g., thumb = C6, big toe = L4)

- Clinical Correlates Limb Development
- Bone Age
 - Radiological evaluation of ossification centers is used to assess maturational age.
 - Hands & wrists are most commonly studied

(postnatal).

ullet Prenatal ultrasonography of fetal long bones ullet estimates fetal growth & gestational age.

Limb Reduction Defects

Term Meaning

Amelia Complete absence of limb

Meromelia Partial absence of limb

Phocomelia Absence of long bones → hands/feet

attached close to trunk

Micromelia All limb segments present but

abnormally short

Cause: Mostly genetic, but classic teratogen = thalidomide (used 1957-1962).

 \rightarrow Most sensitive period: 4th-5th week.

Digit Abnormalities

Condition Description

Brachydactyly Short digits

Syndactyly Fusion of digits (failure of apoptosis

between digital rays)

Polydactyly Extra digits (often bilateral, with

incomplete muscle connections)

Ectrodactyly Absence of a digit (usually unilateral)

Cleft hand/foot Absence of 3rd digit (central) \rightarrow deep

cleft + fusion of remaining

medial/lateral digits

Gene Mutations Affecting Limb Development

Gene	Syndrome	Main Features
HOXA13	Hand-Foot- Genital Syndrome	 → Fusion of carpal bones + short digits → Urogenital defects (bicornuate uterus, hypospadias etc.)
HOXD13	Synpolydactyly	Combination of syndactyly + polydactyly

TBXS	Holf-Oram Syndrome	Upper limb defects (absent radius, polydactyly, hypoplastic hand) + cardiac defects (ASD, VSD,
		conduction defects)
COLIAI / COLIA2	Osteogenesis Imperfecta	Short, bowed, fragile bones + blue sclera
FBNI	Marfan Syndrome	Tall thin individuals, long limbs, pectus deformity, aortic dilation, lens dislocation
	al Deformities (Non-Go	enetic / Mechanical)

Condition	Cause / Features
Arthrogryposis	Congenital joint contractures → caused by ↓ fetal movement → neurological, muscular or structural defects
Clubfoot	Often due to fetal constraint (e.a.,

Genetic (e.g., craniosynostosis-Radial aplasia

oligohydramnios)

radial aplasia / Baller-Gerold syndrome)

Amniotic bands

Bands from damaged amnion \rightarrow wrap around limbs \rightarrow ring constrictions / amputations

Transverse limb deficiencies

Distal parts missing while proximal are intact → results from AER disruption or vascular deficiency

Congenital hip dislocation

Underdeveloped acetabulum + femoral head → more common in female newborns (breech presentation & joint laxity are risk factors)