

"Mycobacteria"

💡 General Features

- Aerobic, acid-fast bacilli (AFB) → Slender, straight or slightly curved rods
- Not Gram-positive or Gram-negative → Poorly stained by Gram stain due to lipid-rich cell wall

◆ Acid-Fast Property (Very High-Yield)

- Due to very high lipid content (~60%) in cell wall
- Major lipid component: Mycolic acids
 - Long-chain fatty acids (C₇₈-C₉₀)
- Retain carbol fuchsin dye even after washing with acid-alcohol (ethanol + HCl)

💡 Exam Pearl:

👉 Acid-fastness = mycolic acids in cell wall

◆ Unique Characteristics

- Almost all acid-fast bacteria = Mycobacteria
- Important exception → *Nocardia asteroides* (weakly acid-fast)

Medically Important Mycobacteria

Table: Important Mycobacteria

Species	Growth Rate	Preferred Temp (°C)	Source / Transmission
<i>M. tuberculosis</i>	Slow (weeks)	37	Respiratory droplets
<i>M. bovis</i>	Slow (weeks)	37	Unpasteurized milk 🐄
<i>M. leprae</i>	✗ No growth in culture	32	Prolonged close contact
<i>M. kansasii</i>	Slow (weeks)	37	Soil & water

<i>M. marinum</i>	Slow (weeks)	32	Water (aquatic infections)
<i>M. avium-intracellulare</i> (MAC)	Slow (weeks)	37	Soil & water
<i>M. fortuitum-cheloneae</i>	Rapid (days)	37	Soil & water

📌 Exam Pearl:

👉 *M. leprae* cannot be cultured in vitro

Clinical Correlation – Key Mycobacteria

Organism	Main Site	Skin Test	Multidrug Therapy	Vaccine
<i>M. tuberculosis</i>	Lungs	Yes (PPD/TST)	Yes	Yes (BCG)
MAC	Lungs	No	Yes	No
<i>M. leprae</i>	Skin, nerves	No	Yes	No

"Mycobacterium tuberculosis"

Global Burden (Very Important)

- Most lethal single microbial agent worldwide
- ~1/3 of world population infected
- Annual burden:
 - ~9 million new cases
 - ~1.7 million deaths
 - ~500,000 MDR-TB cases

Exam Pearl: TB > HIV > Malaria in mortality (single organism)

Important Properties

- ◆ Growth Characteristics
- Very slow growth
 - Doubling time: ~18 hours
 - (Most bacteria ≈ 1 hour)

- Cultures declared negative only after 6-8 weeks
- Culture medium:
 - Löwenstein-Jensen medium
 - Egg-based
 - Contains malachite green → inhibits contaminants

- ◆ Oxygen Preference
 - Obligate aerobe
 - Prefers high oxygen tension tissues:
 - Upper lobes of lungs
 - Kidney

📌 Exam Pearl: Reactivation TB → lung apices

- ◆ Cell Wall Composition (Highly Tested)
 - Mycolic acids → Acid-fastness, resistance to drying
 - Cord factor (trehalose dimycolate)

- Major virulence factor
- Causes serpentine cord formation
- Phthiocerol dimycocerosate
 - Essential for lung pathogenesis
- Proteins + waxes
 - Induce delayed-type hypersensitivity
 - Basis of PPD test

- ◆ Resistance Features
 - Resistant to acids & alkalis → NaOH used to digest sputum (kills other flora, spares TB)
 - Survives in dried sputum → Facilitates airborne transmission

- ◆ Drug Resistance (Exam Favorite)
 - INH resistance due to mutation in:
 - Mycolic acid synthesis gene OR

- Catalase-peroxidase enzyme (activates INH)
- MDR-TB
 - Resistance to isoniazid + rifampin
- Resistance is due to:
 - Chromosomal mutations
 - ~~No~~ plasmids

Flowchart: Key Features of *M. tuberculosis*

Respiratory droplet inhalation → Entry into alveoli (upper lobes favored - high O_2) → Extremely slow growth (18-hour doubling time) → Weeks required for culture positivity → Virulence factors act:

- Cord factor → serpentine growth, macrophage inhibition
- Mycolic acids → acid-fastness, survival
- Phthiocerol dimycocerosate → lung damage

→ Induces delayed hypersensitivity → Positive PPD test

◆ Transmission & Epidemiology

Transmission

- Person-to-person via respiratory aerosols
- Source:
 - Lung cavity eroding into bronchus
- Portal of entry: Respiratory tract
- Initial site: Lungs

Fate in Tissue

- Phagocytosed by macrophages
- Outcomes:
 - Most bacilli destroyed
 - Some survive → replicate or disseminate

Reservoir

- Humans = primary reservoir
- Animals may be infected but are not main source

Smear Status

- Smear-positive cases → most contagious
- Smear-negative cases → ~20% transmission

M. bovis

- Source: Unpasteurized milk
- Causes GI tuberculosis

Risk Factors for TB

Risk Factors for Infection	Risk Factors for Reactivation
Foreign born (high-TB area)	HIV/AIDS
Close contact with TB patient	TNF- α inhibitors
Homelessness / poor housing	Transplant drugs
Incarceration	Corticosteroids
IV drug use	Diabetes

Health-care workers

Smoking

◆ Pathogenesis

◆ Primary Tuberculosis

Inhaled bacilli → Reach alveoli → Phagocytosed by macrophages → Survive inside phagosomes → Exudative lesion in lower lung → Ghon focus

Outcomes:

- 90% → Latent TB
- 10% → Active disease
- Latent TB → 10% lifetime reactivation risk

◆ Secondary (Reactivation) TB

- Occurs in upper lobes
- Causes:
 - Cavitary lung lesions
 - Dissemination to:

- CNS → meningitis
- Spine → Pott's disease
- Kidney, bone

- ◆ Bacterial Virulence Factors

- No exotoxin or endotoxin
- Important proteins:
 - Tuberculosis necrotizing toxin (TNT) → NAD cleavage → macrophage death
 - ESAT-6 → Inhibits IFN- γ response
 - Exported repetitive protein → Prevents phagosome-lysosome fusion

- ◆ Lesions

- I. Exudative Lesions

- Acute inflammatory response
- Seen early at infection site

2. Granulomatous Lesions

- Central Langhans' giant cells
- Surrounding epithelioid cells + fibrosis
- Caseous necrosis
- Heal by fibrosis & calcification

◆ Ghon Complex

- Ghon focus (lung lesion)
- Draining hilar lymph nodes

↙ Primary TB → lower lobes

↙ Reactivation TB → apices

◆ Spread of Tuberculosis

1. Bronchogenic Spread

- Tubercl erodes into bronchus
- Bacilli spread within lungs

- Swallowed → GI TB
- Increases transmission

2. Hematogenous Spread

- Early → Miliary TB
- Late → Reactivation in organs

Flowchart: Overall Pathogenesis of TB

Primary infection (non-immune host, child) → Primary TB (Ghon focus - lower lobes) → Heals by fibrosis → Dormant bacilli → Latent TB → PPD positive

- OR -

→ progressive lung disease (HIV, malnutrition) → Death

- OR -

→ lymphatic/hematogenous spread → Miliary TB → Death

- OR -

→ latent TB reactivates later → Secondary TB (upper lobe cavities) → May disseminate:

- CNS → Tuberculoma / meningitis
- Spine → Pott's disease
- Lymph nodes → Scrofula
- Kidney, GI tract, adrenals

◆ Immunity & Hypersensitivity

Protective Immunity

- Cell-mediated immunity (Th1 CD4+ cells)
- Activated macrophages kill bacilli
- Antibodies → no protective role

Key Cytokine

- IFN- γ → Activates macrophages

- Deficiency (AIDS, IFN- γ receptor defect) \rightarrow Severe disseminated TB

Tuberculin Skin Test (Mantoux / PPD)

- Type IV delayed hypersensitivity
- Read at 48-72 hours
- Measure induration, not erythema

Cut-off Values:

- ≥ 15 mm \rightarrow No risk factors
- ≥ 10 mm \rightarrow Moderate risk
- ≥ 5 mm \rightarrow High risk (HIV, immunosuppressed)

False Results

- False positive \rightarrow Prior BCG
- False negative \rightarrow AIDS, measles, early infection
- Booster effect \rightarrow Repeat test amplifies response

◆ Genetic Resistance

- Nramp gene
 - Encodes phagosomal protein
 - Enhances intracellular killing
- Mutation → ↑ TB susceptibility

◆ Clinical Findings

🌡 General (Constitutional) Symptoms

Seen in both pulmonary and extrapulmonary TB due to chronic inflammation:

- Fever
- Fatigue 😓
- Night sweats 🌙
- Weight loss ⚖️⬇️

📌 Exam Pearl: These are nonspecific but should raise suspicion in endemic areas.

Pulmonary Tuberculosis

- Symptoms:

- Chronic cough
 - Hemoptysis (blood in sputum)

- Chest X-ray findings:

- Upper lobe infiltrates
 - \pm Cavitary lesions

→ Suggests reactivation (secondary) TB

Upper lobes affected due to high oxygen tension.

Extrapulmonary Tuberculosis

- ◆ Lymphadenitis (Scrofula)

- Cervical lymph nodes
- Swollen, non-tender

- Most common extrapulmonary TB
- More extensive in HIV patients

- ◆ Skin
- Erythema nodosum
 - Tender nodules on tibia/ulna
 - Indicates good cell-mediated immunity

- ◆ Miliary TB
- Hematogenous dissemination
- Numerous millet seed-like lesions throughout body
- Seen in:
 - Infants
 - Immunocompromised
- High mortality

- ◆ Central Nervous System

- Tuberculous meningitis
- Tuberculoma (space-occupying lesion)

- ◆ Skeletal System
 - Vertebral osteomyelitis → Pott's disease
 - Back pain, deformity, neurological deficits

- ◆ Gastrointestinal TB
 - Symptoms:
 - Abdominal pain
 - Diarrhea
 - Fever
 - Weight loss
 - Most common site: Ileocecal region
 - Complications:
 - Intestinal obstruction
 - Hemorrhage

Etiology:

- *M. tuberculosis* → swallowed infected sputum
- *M. bovis* → unpasteurized milk
- Oropharyngeal TB:
 - Painless ulcer
 - Cervical adenopathy

♦ Renal TB

- Dysuria
- Hematuria
- Flank pain
- Sterile pyuria:
 - WBCs in urine
 - Routine cultures negative
 - Mycobacterial cultures positive

 Very high-yield sign

👉 Latent vs Active Tuberculosis

- ~90% infections → Latent TB
- ~10% → Active TB
- Reactivation risk ↑ in:
 - AIDS
 - Diabetes
 - TNF- α blockers (e.g., infliximab)

📌 Untreated AIDS + TB → ~50% mortality

⚠ Special Situation: IRIS

Immune Reconstitution Inflammatory Syndrome

- Seen in AIDS patients after starting HAART
- Rising CD4 $^{+}$ T cells → exaggerated immune response
- Worsening TB symptoms despite therapy

📌 Management:

👉 Treat TB before initiating HAART

Laboratory Diagnosis

Microscopy

Acid-Fast Staining

- Ziehl-Neelsen or Kinyoun stain
- Detects acid-fast bacilli in sputum

Limitation:

- Sensitivity ~50%
- Many smear-negative cases are culture-positive

Fluorescent Staining

- Auramine-rhodamine stain
- Faster screening
- Higher sensitivity than ZN stain

② Culture (Gold Standard

- Specimen treated with:
 - NaOH (digestion)
 - Centrifugation

Media:

- Löwenstein-Jensen (egg-based)
- Middlebrook agar (synthetic)
- Growth time:
 - Up to 8 weeks

Liquid Culture (BACTEC)

- Detects radioactive CO_2 release
- Growth detected in ~2 weeks
- Faster & more sensitive

Biochemical Identification

- Niacin production → Positive ✓
- Catalase production → Positive ✓

3 Molecular Tests

NAATs

- Detect TB DNA / rRNA
- High specificity
- Best in smear-positive cases
- Allows early diagnosis & early treatment

Drug-Resistance Detection

- Gene mutations:
 - Catalase gene → INH resistance
 - RNA polymerase gene → Rifampin resistance

Luciferase Assay ✨

- Measures ATP production in presence of drug

Sensitive strain → Drug kills bacteria → ↓ ATP → ↓ Light

Resistant strain → Normal ATP → Normal light

4 Latent TB Diagnosis

PPD (Mantoux test)

- Type IV hypersensitivity
- Affected by BCG vaccination

IGRA (Preferred in BCG-vaccinated)

- Tests:
 - QuantiFERON-TB Gold
 - T-SPOT.TB
- Measures IFN- γ release
- Not affected by BCG

- Cannot differentiate latent vs active TB

📌 Active TB must be ruled out with:

- Chest X-ray
- Sputum examination

Treatment of Tuberculosis

◆ General Principles

- Always multidrug therapy
- Duration: 6-9 months
- Non-infectious after 2-3 weeks of therapy

◆ Standard Regimens (Pulmonary TB)

Classic Regimen

- INH + Rifampin → 6 months
- Pyrazinamide → first 2 months

Memory-Friendly Regimen

First 2 months → INH + Rifampin + Pyrazinamide + Ethambutol

Next 4 months → INH + Rifampin

Special Cases

- AIDS
- Disseminated TB
- Suspected INH resistance

→ All 4 drugs for 9-12 months

- ◆ Latent TB Treatment
 - INH → 6-9 months (preferred)
 - INH + Rifapentine → 3 months
 - Rifampin alone → INH-resistant exposure

⚠️ Never use Rifampin + Pyrazinamide
→ Severe hepatotoxicity

- ◆ Monitoring
 - INH-induced hepatitis risk ↑ after age 35
 - Monitor LFTs

⚠️ Challenges in TB Therapy

Reasons for prolonged treatment:

1. Intracellular location
2. Caseous necrosis → poor drug penetration
3. Slow growth rate
4. Persister bacilli (metabolically inactive)

Summary Table – Laboratory Tests

Test	Key Feature	Limitation
Acid-fast stain	Rapid	Low sensitivity
Auramine stain	Fluorescent, fast	Less specific
Culture (LJ/Middlebrook)	Gold standard	Very slow
NAAT	Rapid, specific	↓ sensitivity if smear-negative
IGRA	Not affected by BCG	Cannot differentiate
PPD	Cheap, common	BCG false positives

Drug Resistance in TB

MDR-TB

- Resistance to INH + Rifampin
- Common in AIDS patients
- Requires 4-5 drugs:
 - Ciprofloxacin
 - Amikacin
 - Ethionamide
 - Cycloserine

XDR-TB

- MDR-TB PLUS:
 - Fluoroquinolone resistance
 - Injectable drug resistance
- First identified in South Africa (HIV patients)

Bedaquiline

- Approved 2013
- Used for MDR-TB

- Inhibits ATP synthase
- Never used alone

Preventing Resistance

- Major causes:
 - Prior treatment
 - Noncompliance

📌 Best solution:

👉 DOT (Directly Observed Therapy)

➡ Flowchart - Drug Resistance in TB

Initial TB infection → Inadequate therapy / Noncompliance
→ Survival of resistant mutants → MDR-TB (INH +
Rifampin resistant) → Further mutations → XDR-TB
(MDR + Fluoroquinolone + Injectable)

 Prevention

Core Strategies

- Early diagnosis & treatment
- Respiratory isolation
- Contact tracing
- Screening high-risk populations

Screening Indications

- HIV patients
- Close contacts
- Prisoners
- Drug users
- Alcoholics
- Immigrants from high-incidence countries

BCG Vaccine

- Live attenuated *M. bovis*
- Prevents disease, not infection
- Most effective in children

⚠️ Not given to immunocompromised

📌 Special use:

- Bladder cancer immunotherapy

Other Preventive Measures

- Pasteurization of milk
- Eradication of infected cattle

Ultimate Exam Pearls

- MDR-TB = INH + Rifampin resistance
- XDR-TB = MDR + Fluoroquinolone + Injectable
- DOT = best method to prevent resistance
- BCG = prevents disease, not infection

- Sterile pyuria = think renal TB

-> The End <-