"Blood Supply of Brain and Spinal Cord (Part 1/2)"

» Arteries of the Brain

- Main Arteries: Brain is supplied by two internal carotid and two vertebral arteries.
- Subarachnoid Space: These four arteries lie within this space, with branches forming the circle of Willis on the brain's inferior surface.

"Internal Carotid Artery"

» Origin:

- Begins at bifurcation of common carotid artery, often showing a dilation known as the carotid sinus.

» Path:

- Ascends neck, enters skull via carotid canal in the temporal bone.
 - Passes horizontally through cavernous sinus, emerges medially at anterior clinoid process by perforating dura mater

thehandynotes.online

- Enters subarachnoid space by piercing arachnoid mater, then curves to lateral cerebral sulcus.

Division:

- Ends by splitting into anterior and middle cerebral arteries.
 - > Cerebral Portion Branches
 - 1) Ophthalmic Artery:
 - · Origin:
 - Originates as internal carotid exits cavernous sinus.

· Path:

- Enters orbit through optic canal below optic nerve.

· Supplies:

- Eye, orbital structures, and terminal branches supply frontal scalp, ethmoid and frontal sinuses, dorsum of the nose.

2) Posterior Communicating Artery:

· Origin:

- Small vessel originating near internal carotid's terminal bifurcation.

· Path:

- Runs posteriorly above oculomotor nerve, joining posterior cerebral artery.

· Function:

- Forms part of the circle of Willis.

3) Choroidal Artery:

· Origin:

- Small branch close to internal carotid's terminal bifurcation.

· Path:

- Runs posteriorly near optic tract, enters inferior horn of lateral ventricle, ending in choroid plexus.

thehandynotes.online

· Supplies:

- Small branches to crus cerebri, lateral geniculate body, optic tract, and internal capsule.
 - > Anterior Cerebral Artery
- Smaller Terminal Branch of internal carotid.

· Path:

- Runs forward and medially above optic nerve, enters longitudinal fissure.

· Connections:

- Joined to opposite anterior cerebral artery by anterior communicating artery.

· Course:

- Curves over corpus callosum, finally anastomoses with posterior cerebral artery.

· Cortical Supply:

- Medial surface of cerebral cortex up to parieto-occipital sulcus.
- -2.5 cm strip on adjoining lateral surface.
 - Supplies leg area of precentral gyrus.

· Central Branches:

- Pierce anterior perforated substance.
- Supply lentiform nucleus, caudate nuclei, and internal capsule.

> Middle Cerebral Artery

- Largest Branch of internal carotid.

· Path:

- Runs laterally in lateral cerebral sulcus.

· Cortical Supply:

- Entire lateral hemisphere surface except narrow strip supplied by anterior cerebral artery.

- Does not supply occipital pole and inferolateral surface (supplied by posterior cerebral artery).
- Supplies entire motor area except leg area.

· Central Branches:

- Enter anterior perforated substance.
- Supply lentiform nucleus, caudate nuclei, and internal capsule.

"Vertebral Artery"

· Origin:

- Branch of the first part of the subclavian artery.

· Path:

- Ascends neck via transverse foramina of the upper six cervical vertebrae.
- Enters skull through foramen magnum, pierces dura mater and arachnoid to reach the subarachnoid space.

- Runs upward, forward, and medially along the medulla oblongata.
 - Joins the opposite vertebral artery at the lower pons to form the basilar artery.
 - » Branches of the Cranial Portion
 - 1) Meningeal Branches:
- Small branches that supply bone and dura in the posterior cranial fossa.
 - 2) Posterior Spinal Artery:
- May arise from the vertebral or posterior inferior cerebellar artery.
- Descends on the posterior spinal cord surface, close to the posterior roots of spinal nerves.
 - Reinforced by radicular arteries entering through intervertebral foramina.
 - 3) Anterior Spinal Artery:
 - Formed by contributions from each vertebrah charactery near tenenination.

- Descends on the anterior medulla oblongata and spinal cord within the pia mater along the anterior median fissure.
 - Reinforced by radicular arteries.
- 4) Posterior Inferior Cerebellar Artery (PICA):
- Largest branch, passes between medulla and cerebellum.

· Supplies:

- Inferior surface of cerebellar vermis.
 - Central nuclei of the cerebellum.
- Inferior cerebellar hemisphere surface.
 - Medulla oblongata.
- Choroid plexus of the fourth ventricle.

5) Medullary Arteries:

- Small branches that supply the medulla oblongata.

» Basilar Artery

- · Formation:
- Union of the two vertebral arteries.

· Path:

- Ascends in a groove on the anterior pons.

· Division:

- At the upper border of the pons, divides into two posterior cerebral arteries.
 - > Branches of the Basilar Artery
 - 1) Pontine Arteries:
 - Numerous small vessels that penetrate and supply the pons.

2) Labyrinthine Artery:

- Long, narrow artery accompanying the facial and vestibulocochlear nerves through the internal acoustic meatus.
- Supplies the internal ear; often a branch of the anterior inferior cerebellar artery.
- 3) Anterior Inferior Cerebellar Artery (AICA):
 - Passes posteriorly and laterally.

· Supplies:

- Anterior and inferior parts of the cerebellum, with a few branches to the pons and upper medulla oblongata.
 - 4) Superior Cerebellar Artery:
- Originates near basilar artery termination.
 - Winds around the cerebral peduncle.

· Supplies:

- Superior cerebellar surface, pons, pineal gland, and superior medullary velum.
 - 5) Posterior Cerebral Artery:
- Curves laterally and backward around the midbrain.
 - Joined by the posterior communicating branch of the internal carotid artery.
 - · Cortical Supply:
 - Inferolateral and medial surfaces of the temporal lobe.
- Lateral and medial surfaces of the occipital lobe, including the visual cortex.
 - · Central Supply:
 - Parts of the thalamus, lentiform nucleus, midbrain, pineal gland, and medial geniculate bodies.

· Choroidal Branch:

- Enters the inferior horn of the lateral ventricle to supply the choroid plexus.
- Also supplies the choroid plexus of the third ventricle.

"Circle of Willis"

- Lies in the interpeduncular fossa at the base of the brain.
 - · Formed by anastomosis of:
 - Two internal carotid arteries
 - Two vertebral arteries
 - · Contributing arteries:
 - Anterior communicating
 - Anterior cerebral
 - Internal carotid
 - Posterior communicating
 - Posterior cerebral
 - Basilar arteries

· Function:

- Allows blood distribution to both cerebral hemispheres from internal carotid or vertebral arteries.
 - Cortical and central branches supply brain substance.
 - Variations in artery sizes are common; absence of one or both posterior communicating arteries reported.

"Arteries to Specific Brain Areas"

- Corpus Striatum and Internal Capsule: Supplied by:
- Medial and lateral striate central branches of the middle cerebral artery.
- Central branches of anterior cerebral artery supply remainder.

- » Thalamus: Supplied mainly by branches of:
 - Posterior communicating
 - Basilar
 - Posterior cerebral arteries
 - » Midbrain: Supplied by:
 - Posterior cerebral
 - Superior cerebellar
 - Basilar arteries
 - » Pons: Supplied by:
 - Basilar
 - Anterior inferior
 - Superior cerebellar arteries
 - » Medulla Oblongata: Supplied by:
 - Vertebral
 - Anterior and posterior spinal
 - Posterior inferior cerebellar
 - Basilar arteries

- >> Cerebellum: Supplied by:
 - Superior cerebellar
- Anterior inferior cerebellar
- Posterior inferior cerebellar arteries

"Nerve Supply of Cerebral Arteries"

- Rich supply of sympathetic postganglionic nerve fibers from superior cervical sympathetic ganglion.
 - Stimulation causes vasoconstriction of cerebral arteries.
 - Local blood flow mainly controlled by concentrations of:
 - Carbon dioxide
 - Hydrogen ions
 - Oxygen
- Increase in carbon dioxide and hydrogen ions, decrease in oxygen tension, leads to vasodilatation.

"Veins of the Brain"

- No muscular tissue; very thin walls; no valves.
- Emerge from brain, lie in subarachnoid space, pierce arachnoid mater and dura to drain into cranial venous sinuses.

"External Cerebral Veins"

- » Superior Cerebral Veins:
- Pass upward over lateral surface of cerebral hemisphere; empty into superior sagittal sinus.
 - » Superficial Middle Cerebral Vein:
 - Drains lateral surface of cerebral hemisphere; runs inferiorly in lateral sulcus; empties into cavernous sinus.

Deep Middle Cerebral Vein:

- Drains insula; joined by anterior cerebral and striate veins to form basal vein; joins great cerebral vein, draining into straight sinus.

"Internal Cerebral Veins"

- Formed by union of thalamostriate vein and choroid vein at interventricular foramen.
- Run posteriorly in tela choroidea of third ventricle; unite beneath splenium of corpus callosum to form great cerebral vein, emptying into straight sinus.

"Veins of Specific Brain Areas"

- Midbrain: Drained by veins opening into basal or great cerebral veins.
- Pons: Drained by veins opening into basal vein, cerebellar veins, or neighboring venous sinuses.

- Medulla Oblongata: Drained by veins opening into spinal veins and neighboring venous sinuses.
- » Cerebellum: Drained by veins emptying into great cerebral vein or adjacent venous sinuses.

"Brain Capillaries"

- Capillary blood supply greater in gray matter than white matter.
 - Greater metabolic activity in neuronal cell bodies of gray matter compared to nerve processes in white matter.
 - Blood-brain barrier isolates brain tissue from the body.
 - Formed by tight junctions between endothelial cells in capillary beds.

"Brain Capillaries"

- Capillary blood supply greater in gray matter than white matter.
 - Greater metabolic activity in neuronal cell bodies of gray matter compared to nerve processes in white matter.
 - Blood-brain barrier isolates brain tissue from the body.
 - Formed by tight junctions between endothelial cells in capillary beds.

"Cerebral Circulation"

- Blood flow delivers oxygen, glucose, and nutrients; removes carbon dioxide, lactic acid, and metabolic by-products.

» Supplied by:

- Two internal carotid arteries
 - Two vertebral arteries

- Blood supply to half of the brain comes from internal carotid and vertebral arteries on that side; streams meet in the posterior communicating artery without mixing.
- If occlusion occurs in internal carotid or vertebral artery, blood compensates by moving across the point to maintain flow.
 - Arterial circle allows blood flow across the midline during occlusion.
 - Streams from vertebral arteries remain separate on the same side of the basilar artery.
 - » Anastomoses and Pressure Factors
 - Cerebral arteries anastomose at the circle of Willis and via surface branches but do not further anastomose within brain substance.
- Arterial blood pressure is crucial for driving blood through the brain.

>> Opposed by:

- Raised intracranial pressure
 - Increased blood viscosity
- Narrowed vascular diameter
- Cerebral blood flow remains constant despite general blood pressure changes.
 - » Autoregulation occurs:
- Lowering cerebral vascular resistance when arterial pressure decreases.
 - Rising vascular resistance when arterial pressure increases.
 - Autoregulation ineffective at very low arterial blood pressure levels.

- » Cerebrovascular Resistance and Regulation
 - Diameter of cerebral blood vessels significantly contributes to cerebrovascular resistance.
- Innervated by sympathetic postganglionic nerve fibers but play little role in cerebrovascular resistance control in normal humans.
 - » Most powerful vasodilators:
 - Increased carbon dioxide or hydrogen ion concentration.
 - Reduced oxygen concentration causes vasodilatation.
 - » Local Blood Flow Increase
- Increase in neuronal activity results in local blood flow increase (e.g., viewing an object increases oxygen and glucose consumption in visual cortex).

- Local increases in carbon dioxide and hydrogen ions trigger further blood flow increase.
- » Measurement of Cerebral Blood Flow
- Cerebral blood flow can be measured via intracarotid injection or inhalation of radioactive krypton or xenon.
- Normal cerebral blood flow: approximately 50 to 60 mL/100g of brain tissue per minute.

"Spinal Cord Arteries"

- » Arterial Supply: Spinal cord supplied by:
 - Two posterior spinal arteries
 - One anterior spinal artery

· Structure:

- Longitudinal arteries reinforced by small segmental arteries entering the vertebral canal through intervertebral foramina.

· Anastomoses:

- Vessels form anastomoses on the cord's surface, supplying both white and gray matter.
 - » Posterior Spinal Arteries

> Origin:

- Arise directly from vertebral arteries inside the skull or indirectly from posterior inferior cerebellar arteries.
- Run along the posterior surface of the spinal cord near the posterior nerve roots.

> Function:

- Supply the posterior third of the spinal cord.

> Vulnerability:

- Smaller in upper thoracic region.
- First three thoracic spinal segments at risk for ischemia if segmental or radicular arteries are occluded.

» Anterior Spinal Artery

> Origin:

- Formed by the union of two arteries originating from vertebral arteries inside the skull.

> Course:

- Descends on the anterior surface of the spinal cord within the anterior median fissure.

> Function:

- Supplies the anterior two-thirds of the spinal cord.

> Vulnerability:

- May be very small in upper and lower thoracic segments.
- Fourth thoracic and first lumbar segments at high risk for ischemic necrosis if segmental or radicular arteries are occluded.

» Segmental Spinal Arteries

> Location:

- Enter the vertebral canal at each intervertebral foramen, reinforcing posterior and anterior spinal arteries.

> Origin:

- Branches from deep cervical, intercostal, and lumbar arteries.

> Function:

- Segmental arteries form anterior and posterior radicular arteries, accompanying respective nerve roots.
 - Additional feeder arteries enter and anastomose with spinal arteries.

> Great Anterior Medullary Artery of Adamkiewicz:

- Arises from the aorta at lower thoracic or upper lumbar levels, typically from the left.
- Major blood supply for the lower two-thirds of the spinal cord.

"Spinal Cord Veins"

- >> Structure:
- Six tortuous longitudinal veins.
 - » Drainage:
- Veins drain into internal vertebral venous plexus, communicating superiorly with brain veins and venous sinuses within the skull.

