

"Pathogenesis of Bacterial Infection"

- II

Bacterial Toxins, Immunopathogenesis & Cancer Association

Exotoxins

Definition

Exotoxins are polypeptide toxins actively secreted by certain bacteria (both Gram-positive and Gram-negative) that interfere with specific host cell functions, leading to disease manifestations.

Key Characteristics

- Highly potent
- Heat-labile
- Antigenic → stimulate formation of antitoxins (IgG)
- Can be converted to toxoids (non-toxic but antigenic)

👉 Clinical Application:

Used in vaccines such as:

- Tetanus toxoid
- Diphtheria toxoid

⚙️ Mechanisms of Action of Exotoxins

□ Exotoxins Acting on Extracellular Matrix

These enzymes facilitate local tissue destruction and spread of bacteria.

- Proteases
- Collagenases
- Hyaluronidases
 - "Loosen" connective tissue fibers → bacterial dissemination

Example

- *Staphylococcus aureus* Exfoliatin (epidermolytic toxin)
 - Causes Staphylococcal Scalded Skin Syndrome (SSSS)

② A-B Type Exotoxins

Structure

- B (Binding) subunit → attaches toxin to host cell receptor
- A (Active) subunit → enzymatic activity

Mechanism

B subunit binds

- A subunit enters cell
- ADP-ribosylation of host proteins
- altered cellular function
- disease symptoms

Important A-B Toxins

Toxin	Target / Mechanism	Result
Diphtheria toxin	ADP-ribosylates EF-2	➡ Protein synthesis inhibited
Pseudomonas exotoxin A	ADP-ribosylates EF-2	Cell death
Cholera toxin	ADP-ribosylates Gs protein	↑ cAMP → watery diarrhea
E. coli enterotoxin (LT)	ADP-ribosylates Gs protein	Secretory diarrhea
Pertussis toxin	ADP-ribosylates Gi protein	↑ cAMP → lymphocytosis, cough

Mnemonic:

“EF-2 dies, cAMP flies”

③ Toxins Inhibiting Protein Biosynthesis

- Shiga toxin - *Shigella dysenteriae*
- Shiga-like toxin - *E. coli* O157:H7

Mechanism

Bind to 28S rRNA → inhibit protein synthesis → cell death

Clinical Effects

- Bloody diarrhea
- May cause Hemolytic-Uremic Syndrome (HUS)
(hemolytic anemia + thrombocytopenia + renal failure)

4 Superantigens

Superantigens bypass normal antigen processing.

Mechanism

Bind directly to:

- MHC-II on macrophages
- T-cell receptors

→ Massive, non-specific T-cell activation

→ Excessive cytokine release (IL-1, IL-2, TNF- α)

🔥 Effects

- High fever
- Rash
- Hypotension
- Shock

Examples

- TSST-1 - *Staphylococcus aureus*
- Streptococcal pyrogenic exotoxin - *S. pyogenes*

Staphylococcal enterotoxin

- Acts as superantigen in gut
- Vomiting + diarrhea within 1-6 hours 🍲

🧠 Neurotoxins

Toxin	Organism	Mechanism	Effect
Tetanus toxin	<i>Clostridium tetani</i>	Blocks GABA & glycine release	Spastic paralysis

Botulinum toxin	<i>Clostridium botulinum</i>	Blocks acetylcholine release at NMJ	Flaccid paralysis
-----------------	------------------------------	-------------------------------------	---

Exam Pearl:

Botulinum toxin = most potent natural toxin known.

6 Membrane-Damaging Toxins

- Act like detergents
- Disrupt host cell membranes
- Cause cell lysis

Example

- *Clostridium perfringens* α -toxin (lecithinase)
 - Cell membrane destruction
 - Gas gangrene

Endotoxins

Definition

Endotoxins are lipopolysaccharides (LPS) present in the outer membrane of Gram-negative bacteria.

- Not secreted
- Released only upon bacterial lysis

⚡ Clinical Effects

- Fever
- Hypotension
- Septic (endotoxic) shock
- DIC (Disseminated Intravascular Coagulation)
- Multi-organ failure

✳ Mechanism of Action

Lipid A (toxic component)

- Activates macrophages
- Cytokine storm

Mediator Release

- $\text{TNF-}\alpha$, IL-1 , $\text{NO} \rightarrow$ fever, vasodilation, hypotension
- Complement (C3a , C5a) \rightarrow vascular leakage
- Coagulation cascade \rightarrow DIC

🧠 Key Point:

Endotoxins are poorly antigenic, cannot form toxoids \rightarrow no vaccine available.

Comparison: Exotoxins vs Endotoxins

Property	Exotoxin	Endotoxin
Source	Gram-positive & Gram-negative	Gram-negative only
Location	Secreted extracellularly	Outer membrane (LPS)
Chemical nature	Polypeptide	Lipopolysaccharide (Lipid A)
Toxicity	Very high (μg)	Low (mg)
Mode of action	Specific enzymatic targets	Cytokine-mediated
Antigenicity	Highly antigenic	Poorly antigenic

Toxoid formation	Possible	Not possible
Heat stability	Heat-labile	Heat-stable
Diseases	Tetanus, Diphtheria	Gram-negative sepsis

🗡️ Immunopathogenesis

Sometimes host immune response, not bacteria, causes tissue injury.

🌡️ Rheumatic Fever

- Follows *Streptococcus pyogenes*
- Antibodies against M protein cross-react with:
 - Heart
 - Joints
 - Brain

→ Autoimmune inflammation
 → Carditis, arthritis, chorea ❤️🧠

Acute Glomerulonephritis

- Immune complex deposition in glomeruli
- Complement activation
- Renal inflammation and damage

Bacterial Infections Associated With Cancer

Bacterium	Associated Malignancy
<i>Helicobacter pylori</i>	Gastric carcinoma, MALT lymphoma
<i>Campylobacter jejuni</i>	Small intestinal MALT lymphoma

 Mechanism: Chronic inflammation + prolonged antigenic stimulation.

Summary Flowchart: Tissue Injury in Bacterial Infections

Bacterial infection

Toxin production or release

Exotoxins → enzyme inhibition / neural blockade / superantigen effects

Endotoxins → cytokine storm → shock

Host immune response

→ Non-specific (inflammation, phagocytosis)

→ Specific (antibodies, T-cells)

Tissue damage

Clinical disease

Recovery / Complications / Death