

Plasma Half-Life of Drugs

Monday, October 27, 2025 1:30 PM

⌚ Overview

◊ Definition

- Plasma half-life ($t_{1/2}$) = Time required for the plasma concentration (or amount of drug in the body) to decrease by 50% after reaching its peak level.
- Reflects how quickly the body eliminates a drug.

⌚ Types

- α (Alpha) $t_{1/2}$ → Distribution Half-Life: Time for drug to distribute between plasma and tissues.
- β (Beta) $t_{1/2}$ → Elimination Half-Life: Time for the drug to be removed from the body during the elimination phase.

💻 Formula for Determination

$$t_{1/2} = 0.693 \times V_d / Cl$$

Where:

- V_d = Volume of distribution
- Cl = Total body clearance

Flow of Events

Drug Administration → Absorption into Blood → Distribution into Tissues → Metabolism (mainly Liver) → Excretion (mainly Kidneys) → Plasma Concentration Falls → Half-life Reached ($\downarrow 50\%$)

Factors Affecting Plasma Half-Life

Factor	Effect / Explanation	Examples
Pharmacokinetic Pattern of Elimination	Determines how drug concentration declines over time	First vs. Zero Order Kinetics
Hepatic or Renal Disease	\downarrow Clearance \rightarrow \uparrow Half-life	Almost all renally/hepatically excreted drugs
Active Metabolites	Metabolite may prolong effect	Aspirin, Fluoxetine, Diazepam

Enterohepatic Circulation	Reabsorption prolongs duration	Rifampicin, Doxycycline
Plasma & Tissue Protein Binding	High binding = slow elimination	Highly protein-bound drugs
Volume of Distribution (Vd)	$\uparrow Vd = \uparrow t_{1/2}$	Chloroquine (stored in tissues)

Pharmacokinetic Patterns of Drug Elimination

◆ First-Order Kinetics

- Fixed fraction of drug eliminated per unit time.
- Elimination \propto Concentration (rate decreases as concentration falls).
- Half-life remains constant.
- Example: *Most drugs.*

Flow:

Drug concentration $\uparrow \rightarrow$ Faster elimination

Drug concentration $\downarrow \rightarrow$ Slower elimination

❖ Zero-Order Kinetics (Saturation Kinetics)

- Fixed amount of drug eliminated per unit time.
- Elimination independent of concentration.
- Half-life increases with higher doses.
- Examples: Phenytoin, Alcohol, Salicylates

Flow:

Low dose \rightarrow Enzymes unsaturated \rightarrow First-order

High dose \rightarrow Enzymes saturated \rightarrow Zero-order

❑ Comparison Table

Parameter	First-Order	Zero-Order
Elimination pattern	Constant fraction per time	Constant amount per time
$t_{1/2}$	Constant	Increases with dose

Example drugs

Most drugs

Phenytoin, Alcohol,
Salicylates

Clinical Significance of Plasma Half-Life

Concept

Explanation / Importance

Rate of Elimination

Indicates how quickly drug leaves body

Duration of Action

Drugs with long $t_{1/2}$ act longer

Dosing Interval

Determines how frequently doses are given

Time to Reach Steady State

\approx 4-5 half-lives

Therapeutic Drug Monitoring (TDM)

Adjust dosing in patients with altered clearance

Active Metabolites

May extend clinical effects

Time to Steady-State & Elimination

No. of Half-Lives	Drug Remaining (%)	Drug Eliminated (%)
0	100	0
1	50	50
2	25	75
3	12.5	87.5
4	6.25	93.75
5	3.125	96.875

Flow:

$1 t_{1/2} \rightarrow 50\% \text{ eliminated}$

$2 t_{1/2} \rightarrow 75\% \text{ eliminated}$

$3 t_{1/2} \rightarrow 87.5\% \text{ eliminated}$

$4-5 t_{1/2} \rightarrow \approx 95-97\% \text{ eliminated} (\approx \text{steady state})$

Examples of Plasma Half-Life ($t_{1/2}$)

Drug

Approximate Half-Life

Esmolol 10 minutes

Aspirin 25 minutes

Acetaminophen 2 hours

Atenolol 6 hours

Clonidine 12 hours

Lithium Carbonate 22 hours

Digoxin 39 hours

Chloroquine 1-2 months

💬 Quick Recap Flow

Dose given → Drug absorbed → Distributed to tissues
→ Metabolized & excreted → Plasma levels fall → $t_{1/2}$ = time for 50% reduction → Guides dose interval, duration, and steady-state time