

# Respiratory Viruses

Friday, September 19, 2025 7:27 PM



## Introduction

### ❖ Definition

- "Professional" respiratory viruses → Cause primary clinical manifestations in the upper &/or lower respiratory tract
- Other viruses (measles, mumps, rubella, varicella-zoster) enter via respiratory tract but cause systemic disease → studied separately

### ¶ General Properties

- Genome: Almost all are RNA viruses (only Adenovirus = DNA)
- Envelope:
  - Most are enveloped
  - Exceptions → Rhinovirus & Adenovirus (nonenveloped)

- Families involved:

- Orthomyxoviruses → Influenza virus
- Paramyxoviruses → Parainfluenza virus, RSV, Human metapneumovirus
- Coronaviruses → Common cold, SARS, MERS, COVID-like diseases
- Picornaviruses → Rhinovirus
- Adenoviruses → DNA viruses causing respiratory + eye infections

- Key feature: All infect respiratory mucosal cells → Cause symptomatic respiratory illness

- Key feature: All infect respiratory mucosal cells → Cause symptomatic respiratory illness

## Laboratory Diagnosis

- Important in serious respiratory infections
- PCR-based assays on respiratory secretions → Rapid, sensitive
- Used for: Influenza, Parainfluenza, RSV, Rhinovirus, Metapneumovirus, Adenovirus

Table 1 – Clinical Features of Respiratory Viruses

| Virus                             | Important Disease                      | Sero types | Epidemics/ Pandemics? | Main Clinical Findings                                             | Vaccine           | Treatment                                       |
|-----------------------------------|----------------------------------------|------------|-----------------------|--------------------------------------------------------------------|-------------------|-------------------------------------------------|
| Influenza virus                   | Influenza                              | Many       | ✓ Yes                 | Sudden-onset headache, shaking chill, sore throat, cough, myalgias | ✓ Yes             | Oseltamivir, Zanamivir, Amantadine, Rimantadine |
| Para influenza virus              | Croup                                  | 4          | ✗ No                  | Barking cough                                                      | ✗ None            | ✗ None                                          |
| Respiratory syncytial virus (RSV) | Bronchiolitis in infants               | 2          | ✗ No                  | Cough, dyspnea, retractions, wheezing                              | ✗ None            | Ribavirin                                       |
| Human meta pneumo virus           | Cold, bronchiolitis, pneumonia         | 2          | ✗ No                  | Coryza, wheezing, cough                                            | ✗ None            | ✗ None                                          |
| Corona Virus                      | Cold, SARS, MERS                       | 3          | ✗ No                  | Coryza, cough, severe pneumonia                                    | ✗ None            | ✗ None                                          |
| Rhino virus                       | Common cold                            | Many       | ✗ No                  | Coryza, sneezing, usually no fever                                 | ✗ None            | ✗ None                                          |
| Adeno virus                       | Pharyngitis, pneumonia, conjunctivitis | Many       | ✗ No                  | Sore throat, cough, pneumonia, "pink eye"                          | ✓ (military only) | ✗ None                                          |

III Table 2 – Properties of Respiratory Viruses

| Property              | Influenza virus                         | Parainfluenza, RSV, Metapneumovirus     | Coronavirus                             | Rhinovirus                  | Adenoviruses                |
|-----------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------|-----------------------------|
| Family                | Ortho Myxo virus                        | Paramyxovirus                           | Coronavirus                             | Picornavirus                | Adenoviruses                |
| Genome                | Segmented ssRNA (-)                     | Nonsegmented ssRNA (-)                  | Non segmented ssRNA (+)                 | Non segmented ssRNA (+)     | dsDNA                       |
| Virion RNA polymerase | <input checked="" type="checkbox"/> Yes | <input checked="" type="checkbox"/> Yes | <input type="checkbox"/> No             | <input type="checkbox"/> No | <input type="checkbox"/> No |
| Capsid                | Helical                                 | Helical                                 | Helical                                 | Icosahedral                 | Icosahedral                 |
| Envelope              | <input checked="" type="checkbox"/> Yes | <input checked="" type="checkbox"/> Yes | <input checked="" type="checkbox"/> Yes | <input type="checkbox"/> No | <input type="checkbox"/> No |
| Fusion protein        | <input type="checkbox"/> No             | <input checked="" type="checkbox"/> Yes | <input type="checkbox"/> No             | <input type="checkbox"/> No | <input type="checkbox"/> No |
| Giant cell formation  | <input type="checkbox"/> No             | <input checked="" type="checkbox"/> Yes | <input type="checkbox"/> No             | <input type="checkbox"/> No | <input type="checkbox"/> No |



## Influenza Virus

### Disease Importance

- Causes annual outbreaks → thousands sick, many

deaths.

- Can cause pandemics (worldwide epidemics) when a new hemagglutinin variant emerges → no pre-existing immunity in humans.
- Influenza A → pandemics + major outbreaks.
- Influenza B → major outbreaks but no pandemics.
- Influenza C → only mild respiratory illness.

Q Example: The 1918 pandemic killed more Americans than World War I, World War II, Korean War, and Vietnam War combined.

---

## Important Properties

- Family: Orthomyxovirus
- Genome: Segmented (-) ssRNA (usually 8 pieces) → unique ability to reassort → pandemics.

- Nucleocapsid: Helical
- Envelope: Lipoprotein with spikes
- Enzyme: RNA-dependent RNA polymerase (makes mRNA from negative RNA).

### Surface Glycoproteins

- Hemagglutinin (HA) (16 subtypes):
  - Binds to sialic acid receptors → initiates infection.
  - Agglutinates RBCs → basis of hemagglutination inhibition test.
  - Target of neutralizing antibodies.
- Neuraminidase (NA) (9 subtypes):
  - Cleaves sialic acid → releases new virions.
  - Degrades mucus barrier → easier infection spread.
  - Target of neuraminidase inhibitor drugs (oseltamivir, zanamivir).

### Antigenic Variation

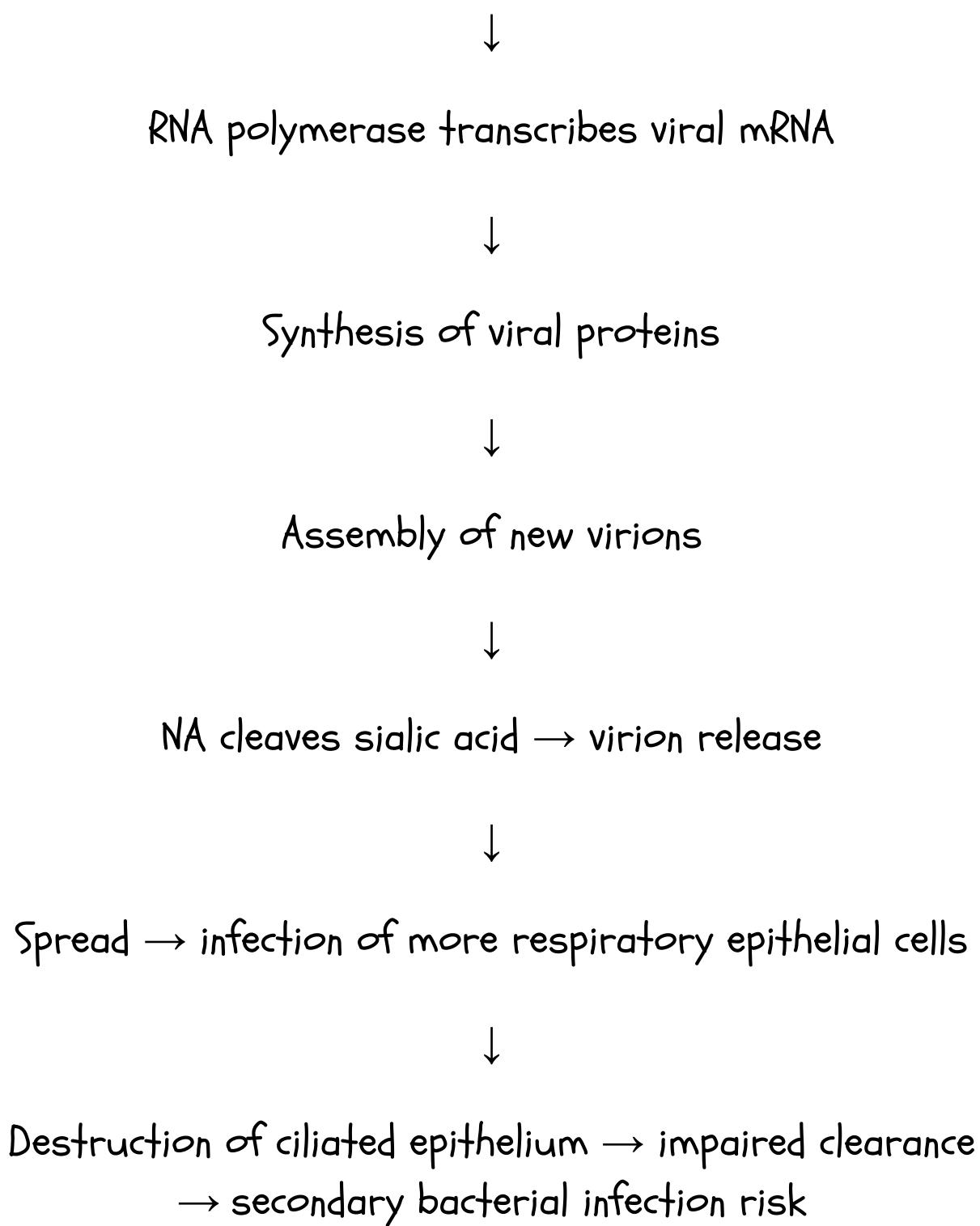
The ability of influenza viruses to change HA and NA

explains repeated epidemics and pandemics.

## Table: Antigenic Changes in Influenza

| Type of Change  | Mechanism                                       | Result                                   | Example                        |
|-----------------|-------------------------------------------------|------------------------------------------|--------------------------------|
| Antigenic Drift | Minor point mutations in RNA                    | New seasonal strains → annual epidemics  | H3N2 seasonal variants         |
| Antigenic Shift | Major change by reassortment of genome segments | Completely new virus subtype → pandemics | 2009 H1N1 swine flu, 1968 H3N2 |

## Flowchart: Pathogenesis of Influenza


Inhalation of virus droplets



Virus binds to sialic acid receptors via HA



Entry → viral RNA released into cell



## Matrix Proteins

- M1 protein → beneath envelope; provides structural

integrity.

- M2 protein → forms ion channel → transports protons into virion → disrupts envelope → releases nucleocapsid → allows uncoating.  
↳ Target of amantadine/rimantadine (M2 inhibitors).

## ⌚ Antigens

- Group-specific antigen:
  - Internal ribonucleoprotein in nucleocapsid.
  - Distinguishes Influenza A, B, C.
  - Antibody against it ✗ does not neutralize virus.
- Type-specific antigens (surface glycoproteins):
  1. Hemagglutinin (HA) → neutralizing antibody → prevents infection ✓.
  2. Neuraminidase (NA) → antibody reduces spread (by limiting release) but does not fully neutralize ✗.

## ⚡ Virulence Factor: NS-1 Protein

- NS-1 nonstructural protein → inhibits interferon mRNA

production  $\rightarrow$   $\downarrow$  innate immunity  $\rightarrow$   $\uparrow$  virulence.

## ☞ Animal Reservoirs & Antigenic Shift

- Many animals carry influenza A viruses  $\rightarrow$  aquatic birds, chickens, swine, horses.
- Reassortment (mixing) occurs when:
  - Human + Avian influenza infect same cell  $\rightarrow$  exchange genome segments.
  - Pigs act as mixing bowls   $\rightarrow$  new pandemic strains emerge.
- Subtype diversity:
  - In waterfowl  $\rightarrow$  16 H subtypes, 9 N subtypes.
  - In humans  $\rightarrow$  mainly H1, H2, H3 and N1, N2.

☞ Influenza B virus has no animal reservoir  $\rightarrow$  only antigenic drift, not shift.

## ⌚ Nomenclature of Influenza Strains

Format: Type / Location / Year / (Subtype)

Example: A/Philippines/82 (H3N2)

- A = Group antigen (Influenza A)
- Philippines = place of isolation
- 82 = year (1982)
- H3N2 = subtype (HA3, NA2)

Current common strains → H1N1 & H3N2.

⑤ Replicative Cycle (Step-by-Step)

↗ Flowchart: Influenza Virus Life Cycle

Attachment → HA binds sialic acid receptors



Entry → virus enters via endocytosis in vesicles



Uncoating → M2 ion channel pumps protons → envelope disrupted → nucleocapsid released



Transport → nucleocapsid migrates to nucleus

↓

Transcription → RNA polymerase makes 8 mRNAs  
(requires cap-snatching from host nuclear RNAs)

↓

mRNAs → move to cytoplasm → translated into proteins

↓

Some mRNAs stay in nucleus → serve as template for  
negative-strand genome synthesis

↓

New genome segments bind NP + M1 proteins →  
transported to cytoplasm

↓

Assembly → helical nucleocapsid + envelope glycoproteins  
(HA, NA)

↓

Release → budding at cell membrane; NA cleaves sialic  
acid → virions released

## III Exam Points

- M1 vs M2: structure vs ion channel/uncoating.
- HA antibody = neutralizing  | NA antibody = reduces spread only.
- NS-1 = interferon inhibition → virulence factor.
- Antigenic shift requires animal reservoir (Influenza A only).
- Replication partly nuclear (rare for RNA viruses).
- Cap-snatching = unique transcription feature.

---

## Transmission & Epidemiology

- Mode of Transmission → airborne respiratory droplets 
- Antigenic Variation:

- Influenza A → Antigenic shift (major, infrequent, pandemics) + Antigenic drift (minor, yearly, epidemics).
- Influenza B → Antigenic drift only, less frequent and less severe.
- Pandemics → occur when new HA subtype emerges (no preexisting immunity).
- 1968 Pandemic → H3N2 emerged.
- Global Burden → up to 500,000 deaths/year worldwide (90% in elderly).



### Seasonality:

- Northern Hemisphere → Dec-Feb (winter)
- Southern Hemisphere → Jun-Aug (winter)
- Tropics → year-round circulation

---

## Pathogenesis

1. Virus inhaled → neuraminidase cleaves mucus → entry into epithelial cells.
2. Replication restricted to respiratory tract (proteases to cleave HA only present here).
3. Cytopathic effect → necrosis of superficial respiratory epithelium.
4. Cytokines → systemic symptoms (fever, myalgia, malaise).
5. Pneumonia → interstitial (viral) or secondary bacterial (Staph aureus, Strep pneumoniae).  
☞ No significant viremia (systemic symptoms = cytokine mediated).

---

## Immunity

- Secretory IgA → main protection (mucosal).

- IgG → produced but less effective.
- Cytotoxic T cells (CD8+) → kill infected epithelial cells.
- Immunity is strain-specific (explains reinfections due to antigenic drift/shift).

## ⌚ Clinical Findings

- Incubation period → 24–48 hours.
- Abrupt onset ⚡
  - Fever 🌡
  - Severe myalgias (muscle pain) 💪
  - Headache 😱
  - Sore throat + cough 🤽
- Usually resolves in 4–7 days.
- Complications:
  - Viral pneumonia (interstitial).
  - Secondary bacterial pneumonia → *Staph aureus*, *Strep pneumoniae* 🧫.
  - Reye's syndrome (rare, children) → encephalopathy

+ liver degeneration; linked to aspirin use in viral illness.

❖ Key Clinical Clue → Severe myalgias + respiratory symptoms

---

## Laboratory Diagnosis

### 1. Clinical Diagnosis

- Most cases diagnosed based on classic symptoms during influenza season.

### 2. Rapid Diagnostic Tests (doctor's office)

- ELISA antigen detection (nasal/throat swabs, washings, sputum).
- Examples:
  - FLU OIA
  - QuickVue Influenza Test
  - ZstatFlu (detects neuraminidase activity → color change).

☞ Important: results within minutes, treatment decisions (NA inhibitors) within 48 hours.

### 3. Hospital Diagnosis

- PCR-based tests → detect viral RNA; high sensitivity; can differentiate A (H1, H3) and B.

### 4. Serology

- Retrospective diagnosis (epidemiology).
- $\geq 4$ -fold rise in antibody titer (Hemagglutination inhibition / CF test).
- Not useful for early clinical management.

### 5. Other Tests

- Direct fluorescent antibody staining (respiratory samples).
- Virus isolation in cell culture.

## ■ Summary Table: Diagnosis of Influenza

| Test | Sample | Turnaround | Clinical Use |
|------|--------|------------|--------------|
|------|--------|------------|--------------|

|                      |                        |           |                             |
|----------------------|------------------------|-----------|-----------------------------|
| PCR                  | Respiratory secretions | Few hours | Hospital/serious cases      |
| ELISA antigen        | Nasal/throat swabs     | Minutes   | Outpatient rapid diagnosis  |
| Serology (HI/CF)     | Serum                  | 10+ days  | Epidemiology, retrospective |
| Fluorescent antibody | Respiratory samples    | Few hours | Confirmation                |
| Viral culture        | Respiratory samples    | Days      | Research, reference labs    |

## ❖ Exam Points

- Antigenic shift → pandemics (Influenza A only).
- Elderly & <2 yrs old = highest morbidity/mortality.
- Reye's syndrome → influenza B + aspirin .
- PCR = gold standard in serious hospital cases.
- Rapid antigen tests (ELISA) = for quick treatment decisions.

# Treatment

- Neuraminidase inhibitors (block release of virus from infected cells → limit spread)
  - Oseltamivir (Tamiflu) → Oral
  - Zanamivir (Relenza) → Inhaled powder
  - Peramivir (Rapivab) → Intravenous (available since 2015)
  - Effective against Influenza A & B
  - Must be taken within 48 hours of symptom onset for maximum benefit
  - Reduce illness duration by 1-2 days & limit transmission
  - Resistance:
    - Some H1N1 strains resistant to Tamiflu
    - H3N2 & all Influenza B strains remain susceptible to Tamiflu & Relenza
- M2 Ion Channel Blockers (block uncoating)
  - Amantadine (Symmetrel)
  - Rimantadine (Flumadine) – fewer side effects
  - ~~✗~~ Effective only against Influenza A
  - ~~✗~~ High resistance (>90% of H3N2 strains in US)

resistant) → not recommended

- Vaccine is preferred for prevention

---

## Prevention

- Main strategy: Annual Influenza vaccine (A & B strains)
- Reformulated yearly to match circulating strains

### Types of Influenza Vaccines (US)

|  Vaccine Type | Details                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Killed<br>(Inactivated)<br>vaccine                                                               | Purified HA & NA proteins; inactivated with formaldehyde & lipid solvent. Given intramuscularly. High-dose version (4x HA) recommended for >65 yrs. Intradermal version also available. |
| Live,<br>attenuated<br>vaccine                                                                   | Contains temperature-sensitive mutants (replicate at 33°C nasal mucosa → induce IgA; cannot replicate at 37°C lungs). Given intranasally. No reversion to virulence reported.           |
| Non-egg<br>based                                                                                 | (1) Virus grown in calf kidney cell culture → inactivated. (2) Recombinant insect virus                                                                                                 |

vaccines

expressing influenza HA grown in insect cells;  
purified HA used as antigen.

## ⚡ Flowchart - Influenza Prevention

Circulating Influenza Strains → Annual Vaccine Update



Killed Vaccine (inactivated; IM / intradermal)

→ Induces neutralizing antibody (IgG) → Systemic protection



Live Attenuated Vaccine (nasal; temp-sensitive mutant)

→ Replicates in nasal mucosa → Induces IgA → Mucosal protection

## ⚡ Exam Points

- HA = main antigen → elicits neutralizing antibodies💡
- Oseltamivir & Zanamivir most effective if started within 48 hours
- Amantadine & Rimantadine obsolete due to resistance

- Vaccine preferred for prevention, antivirals used for treatment / outbreak control

### Influenza Vaccine – Key Points

- Live attenuated (nasal mist):
  - Recommended for children
  - **✗** Not for pregnant women or immunocompromised patients
  - 2016 FDA note: Live vaccine not recommended due to low efficacy (guidelines may change).
- Inactivated (killed) vaccine:
  - Recommended for adults
  - Safe in pregnancy → maternal IgG crosses placenta → protects newborn in first 6 months
  - Protection lasts ~6 months → yearly booster needed (preferably before flu season, e.g., October)
  - Induces IgG > IgA (systemic more than mucosal immunity)
- Special considerations:

- Made in chicken eggs → contraindicated in patients with severe egg allergy ☺
- Alternatives for egg-allergic patients:
  - Flucelvax → inactivated vaccine from calf kidney cell culture
  - Flublok → recombinant vaccine (baculovirus in insect cells → purified HA protein)

## ❖ Flowchart - Influenza Vaccination

Circulating Influenza Strains (updated yearly)



Killed vaccine (IM / intradermal)

→ Adults, elderly, pregnant women

→ IgG response → lasts ~6 months → yearly booster



Live attenuated vaccine (nasal mist)

→ Children

→ IgA response in nasal mucosa

✗ Not for pregnancy / immunocompromised

## ⚠ Side Effects

- Rare: Guillain-Barré Syndrome (GBS) associated with 1970s swine flu vaccine (ascending paralysis)
- Modern vaccines → No increased risk of GBS

## 🛡 Additional Prevention

- Oseltamivir (Tamiflu):
  - Useful in elderly unvaccinated individuals exposed to influenza
  - ✗ Not a substitute for vaccination (vaccine remains most reliable prevention)

---

## Avian Influenza Viruses in Humans

### 鳴 HSNI Influenza Virus (Avian Flu)

- First human outbreak: 1997, Hong Kong
- Reservoir: Chickens 🐔

- Transmission: Direct from birds (respiratory secretions, guano) → rare person-to-person spread
- Cases (2003–2009): 408 cases → 254 deaths (62% mortality)
- Pathogenesis:
  - Infects chicken upper respiratory tract (receptor abundant)
  - Humans → receptor only in alveoli → requires intense exposure → severe pneumonia
  - High virulence due to:
    - Resistance to interferon
    - Excess cytokine induction (especially TNF) → pneumonia & ARDS
- Treatment: Sensitive to neuraminidase inhibitors (Oseltamivir = drug of choice). Resistant to amantadine/rimantadine.
- Vaccine available against H5N1 strain.

↗ Flowchart – H5N1 Pathogenesis

HSNI infection in chickens → Upper respiratory tract  
(receptor abundant)



Humans exposed (intense contact) → Virus reaches  
alveoli



Severe pneumonia → ↑ TNF & cytokines → ARDS



High mortality (~62%)

---

## H7N9 Influenza Virus

- First human outbreak: 2013 (China, Taiwan)
- Origin: Entirely avian genes
  - H7 gene → ducks
  - N9 gene → wild birds
  - Other genes → bramblings (Asian/European bird)

- Cases (2013-2017): 1258 infections → 41% mortality
- Transmission: Mostly from birds, no sustained person-to-person spread
- Treatment: Susceptible to neuraminidase inhibitors (Oseltamivir, Zanamivir)
- No approved vaccine yet (candidates under development).

### ⚡ Comparison Table - Avian Influenza Strains

| Strain | Source                        | Human Cases       | Mortality | Spread              | Treatment              | Vaccine   |
|--------|-------------------------------|-------------------|-----------|---------------------|------------------------|-----------|
| H5N1   | Chickens                      | 408<br>(2003-09)  | 62%       | Rare human-to-human | Oseltamivir, Zanamivir | Available |
| H7N9   | Ducks, wild birds, bramblings | 1258<br>(2013-17) | 41%       | No sustained spread | Oseltamivir, Zanamivir | Not yet   |

### ⚡ Exam Points

- Live vaccine → IgA (mucosal immunity) | Killed vaccine → IgG (systemic immunity)
- Pregnant women: Only killed vaccine
- Egg allergy: Use Flucelvax or Flublok
- H5N1: High mortality, cytokine storm, Tamiflu effective
- H7N9: Bird origin, high mortality, no vaccine yet

---

## Swine Influenza Virus Infection in Humans (H1N1, 2009)

### Epidemiology

- First outbreak: April 2009 → Mexico → USA → spread to 208 countries by Dec 2009
- WHO: Pandemic alert level 6 (highest) on June 11, 2009
- By Aug 2010 → cases declined → pandemic warning rescinded

- As of 2016: cases significantly reduced

- Cases & deaths:

- Millions worldwide
- 9596 deaths globally (1445 in USA)

### 👤 Affected Population

- Young people most affected → ~60% cases were  $\leq 18$  years
- Symptoms: generally mild
- Fatalities: rare → mostly in medically compromised patients
- ✗ No swine outbreaks in pigs before human pandemic
- ✗ Eating pork does not transmit virus

### ⚡ Genetics (Quadruple Reassortant Virus)

- Hemagglutinin, nucleoprotein, NS protein → North

## American swine origin

- Neuraminidase, matrix protein → Eurasian swine origin
- 2 polymerase subunits → North American avian origin
- 1 polymerase subunit → Human H3N2 origin

↗ Triple reassortant strain (earlier in swine, rarely infected humans):

- All 5 non-polymerase genes → North American swine
- Polymerase genes → same as quadruple reassortant
- ✗ No Eurasian swine genes

## ⌚ Key Points

- Most humans lacked protective antibodies against the new swine hemagglutinin (H1)
- Even those previously infected/vaccinated with seasonal H1N1 had little protection

- Human-to-human spread: efficient
- Contrast → Avian H5N1: rarely spreads between humans

---

## Diagnosis

- PCR test available for detection of S-OIV RNA

---

## Treatment

- Sensitive: Oseltamivir (Tamiflu), Zanamivir (Relenza)
- Resistant: Amantadine, Rimantadine

### 💉 Prevention

- Both inactivated (killed) and live attenuated vaccines available by Nov 2009

### ❖ One-Liner Memory Aid



# Parainfluenza Virus



## Diseases

- Children:

- Croup (acute laryngotracheobronchitis)
- Laryngitis
- Bronchiolitis
- Pneumonia

- Adults:

- Common cold-like illness



## Important Properties

- Family: Paramyxoviridae

- Genome: Negative-sense, ssRNA

- Structure:

- Surface spikes:
  - Hemagglutinin (H) + Neuraminidase (N) → on the same spike
  - Fusion (F) protein → separate spike, causes multinucleated giant cells (syncytia)
- Antigenic types: 4 (based on antigenicity, cytopathic effect, pathogenicity)
- Neutralizing immunity: Antibodies against H or F proteins

### ⑤ Replicative Cycle (Summary)

Parainfluenza Virus Replication →  
Adsorption (via H protein)  
→ Penetration + Uncoating  
→ Viral RNA polymerase transcribes (-)RNA → mRNAs  
→ Translation into multiple proteins (NO polyprotein,  
unlike poliovirus)  
→ Assembly of helical nucleocapsid  
→ Interaction with matrix protein + envelope  
→ Budding → Release

### ⑥ Transmission & Epidemiology

- Mode: Respiratory droplets 
- Season: Winter (peak incidence)
- Distribution: Worldwide

---

## Pathogenesis & Immunity

- Causes upper & lower respiratory tract infections without viremia
- Large proportion are subclinical
- Types & Disease Association:

| Virus Type      | Main Disease(s)             | Notes                                    |
|-----------------|-----------------------------|------------------------------------------|
| Parainfluenza 1 | Croup                       | Major cause                              |
| Parainfluenza 2 | Croup                       | Major cause                              |
| Parainfluenza 3 | Bronchiolitis,<br>pneumonia | Most common isolated in<br>children (US) |
| Parainfluenza 4 | Common cold                 | Rarely serious disease                   |

## Clinical Findings

- Croup (most important) → Children < 5 yrs

- Harsh, barking cough 
- Hoarseness

- Other conditions:

- Common cold 
- Pharyngitis
- Laryngitis
- Otitis media
- Bronchitis
- Pneumonia

## Laboratory Diagnosis

- Usually clinical diagnosis

- Laboratory confirmation:

- PCR (detects viral RNA)
- Viral isolation in cell culture
- Fluorescent antibody test (viral antigens)
- Serology →  $\geq$  fourfold rise in antibody titer

## ⌚ Treatment & Prevention

- No specific antiviral therapy
- No vaccine available
- Supportive care only

### ✓ Exam Point:

- Parainfluenza virus = main cause of croup in young children
- Fusion protein → multinucleated giant cells
- Antibodies to H or F proteins neutralize infection

---



## Respiratory Syncytial Virus (RSV)

### Diseases

- Infants  → Most important cause of bronchiolitis & pneumonia

- Children → Otitis media
- Elderly & patients with cardiopulmonary disease → Severe pneumonia
- Healthy adults → Mild illness (common cold, bronchitis)

### ⌚ Important Properties

- Family: Paramyxoviridae
- Genome: Negative-sense ssRNA
- Surface proteins:
  - *Fusion protein only* (no hemagglutinin, no neuraminidase)
  - Fusion protein → causes cell fusion → multinucleated giant cells (syncytia) 
- Natural host: Humans only
- Serotypes: Subgroup A & B

- Neutralization: Antibody against fusion protein

### Replicative Cycle (Summary)

Same as Parainfluenza virus:

RSV Replication →  
Attachment to host cell  
→ Entry + uncoating  
→ Transcription of (-) RNA → mRNAs  
→ Translation into proteins  
→ Nucleocapsid assembly  
→ Budding → Release

### Transmission & Epidemiology

- Mode: Respiratory droplets  + direct contact (contaminated hands → nose/mouth)
- Seasonality: Winter epidemics  (annual, unlike other cold viruses)
- Age: Almost all children infected by age 3
- Hospitals: Nosocomial outbreaks common → controlled by handwashing & gloves 

---

# Pathogenesis & Immunity

- Infants → More severe disease (lower respiratory tract involvement)
- Infection localized to respiratory tract only (no viremia)
- Immunopathogenesis theory:
  - Maternal antibodies may form immune complexes → damage respiratory tract cells
  - Killed vaccine trials worsened disease → supports immune-mediated mechanism  $\Delta$
- Reinfections common (immunity incomplete, not due to antigenic variation)
- IgA → reduces reinfection risk with age

---

## Clinical Findings

- Infants: Bronchiolitis, pneumonia
- Children: Otitis media
- Adults (healthy): Common cold, bronchitis
- Elderly & cardiopulmonary disease patients: Severe pneumonia

---

## Laboratory Diagnosis

- PCR → Detects RSV RNA
- Rapid antigen test (EIA) → Detects RSV antigens in secretions
- Immunofluorescence → Viral antigens in respiratory epithelium
- Cell culture → CPE = syncytia (multinucleated giant cells)

- Serology → Fourfold rise in antibody titer

## ⌚ Treatment

- Severe cases (hospitalized infants):

- Aerosolized ribavirin (Virazole) 🥇 (effectiveness debated)
- Ribavirin + Hyperimmune globulins → more effective

## 🛡️ Prevention

- No vaccine available ✘

- Killed vaccine trial → worsened disease → contraindicated

- Passive immunization:

- Palivizumab (Synagis) → monoclonal antibody vs. fusion protein → for high-risk infants (premature, immunocompromised)
- Hyperimmune globulin (RespiGam) → prophylaxis in infants with chronic lung disease

- Hospital prevention: Handwashing + gloves

### III Quick Revision Table

| Feature       | RSV                                  | Parainfluenza Virus          |
|---------------|--------------------------------------|------------------------------|
| Major disease | Bronchiolitis, pneumonia in infants  | Croup in children            |
| Key protein   | Fusion protein (syncytia)            | H, N, and F proteins         |
| Seasonality   | Annual winter epidemics              | Winter (but less consistent) |
| Viremia       | ✗ Absent                             | ✗ Absent                     |
| Treatment     | Ribavirin (severe cases)             | Supportive                   |
| Vaccine       | ✗ None (Palivizumab for prophylaxis) | ✗ None                       |

### ✓ Exam Points

- RSV = most important cause of pneumonia & bronchiolitis in infants 😊
- Causes syncytia (multinucleated giant cells) due to

## fusion protein

- No vaccine (previous killed vaccine worsened disease)
- Palivizumab → prophylaxis for high-risk infants

---



## Human Metapneumovirus (HMPV)

### 💡 Important Properties

- Family: Paramyxoviridae
- Genome: (-) ssRNA, nonsegmented, enveloped
- Surface: Fusion protein (F) → mediates attachment + syncytia formation
- Antibody to F protein → neutralizes virus
- Genotypes: 2 major + subtypes

### 💡 Diseases

- Similar to RSV:

- Mild URI → Bronchiolitis → Severe pneumonia

- Symptoms: Fever, coryza, cough, wheezing

- Epidemiology:

- Most children infected by age 5
  - Immunity incomplete → reinfections common

### Lab Diagnosis

- PCR assay → detects viral RNA in respiratory tract samples

### Treatment & Prevention

- Supportive only
- ✗ No antiviral drug
- ✗ No vaccine



# Coronavirus

## ⌚ Diseases

- Common cold (second most common after rhinovirus)
- Severe emerging diseases:
  - SARS (2002) → Severe Acute Respiratory Syndrome (CoV-SARS)
  - MERS (2012) → Middle East Respiratory Syndrome (CoV-MERS)
  - (Later: COVID-19 (2019) → SARS-CoV-2)

## 💡 Important Properties

- Genome: (+)ssRNA, nonsegmented, enveloped
- Capsid: Helical nucleocapsid
- Virion: Club-shaped spikes → "corona/halo" appearance
- No virion polymerase
- Human serotypes: 229E, OC43

- SARS-CoV receptor: ACE-2

### ⌚ Replicative Cycle (Summary)

1. Attachment via surface spikes → entry + uncoating
2. Genome (+RNA) → translated into 2 large polyproteins
3. Self-cleaved by viral protease → polymerase subunits
4. RNA polymerase → replicates genome + makes mRNAs
5. Proteins translated
6. Assembly in endoplasmic reticulum (ER) (NOT plasma membrane)
7. Release

### ⌚ Quick Comparison (HMPV vs RSV vs Coronavirus)

| Feature | HMPV          | RSV           | Coronavirus   |
|---------|---------------|---------------|---------------|
| Family  | Paramyxovirus | Paramyxovirus | Coronaviridae |
| Genome  | (-) ssRNA     | (-) ssRNA     | (+) ssRNA     |

| Surface proteins | Fusion (F) protein                        | Fusion protein                                                    | Spike glycoprotein                                             |
|------------------|-------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|
| Syncytia         | <input checked="" type="checkbox"/> Yes   | <input checked="" type="checkbox"/> Yes                           | <input type="checkbox"/> No                                    |
| Main disease     | Bronchiolitis,<br>pneumonia<br>(children) | Bronchiolitis,<br>pneumonia<br>(infants)                          | Cold, SARS, MERS                                               |
| Seasonality      | Winter<br>epidemics                       | Winter<br>Epidemics                                               | Sporadic/epidemic                                              |
| Diagnosis        | PCR (RNA<br>detection)                    | PCR, antigen,<br>culture                                          | PCR,<br>serology                                               |
| Vaccine          | <input type="checkbox"/> None             | <input type="checkbox"/> None<br>(Palivizumab<br>for prophylaxis) | <input type="checkbox"/> None (except later<br>COVID vaccines) |
| Treatment        | Supportive                                | Ribavirin (severe<br>infants) +<br>supportive                     | Supportive/antivirals<br>(newer for<br>SARS/MERS/COVID)        |

## Exam Points

- HMPV = RSV-like illness, but milder, incomplete immunity, PCR diagnosis, supportive Rx.
- Coronavirus = 2nd most common cold cause + severe syndromes (SARS, MERS, later COVID).
- Coronavirus genome is (+ ssRNA, enveloped, halo spikes, replicates in ER).

---

# Transmission & Epidemiology

- Transmission: Respiratory aerosols
- Global prevalence: Infection occurs worldwide, often early in life; >50% of children have antibodies
- Seasonality: Outbreaks mainly in winter, every 2-3 years
- SARS (2002-2003):
  - Origin: China
  - Cases: 8,300; Deaths: 785 → fatality ~9%
  - Human-to-human transmission: Yes (super-spreaders noted)
  - Reservoir: Horseshoe bat → intermediate host: civet cat
- MERS (2012-2013):
  - Cases: 1,879; Mortality: 35%
  - Reservoir: Bats → camel transmission to humans

- Human-to-human: Rare, mostly in hospitals with poor infection control

---

## Pathogenesis & Immunity

- Infection mostly limited to respiratory mucosal cells
- ~50% asymptomatic infections
- Immunity short-lived, reinfections possible
- SARS: binds ACE-2 → alveolar edema → hypoxia
- MERS: binds CD26 → pneumonia

---

## Clinical Findings

- Common cold: Coryza, sore throat, low-grade fever, lasts a few days
- SARS:

- Fever  $\geq 38^{\circ}\text{C}$ , nonproductive cough, dyspnea, hypoxia
- Chills, malaise, rigors, headache common
- Sore throat and rhinorrhea uncommon
- Chest X-ray: Interstitial "ground-glass" infiltrates, no cavitation
- Labs: Leukopenia, thrombocytopenia
- Incubation: 2-10 days (mean 5)

- MERS: Similar to SARS

---

## Lab Diagnosis

- PCR → detect viral RNA in blood or respiratory specimens
- Serology → antibody titer rise (epidemiology)

---

## Treatment & Prevention

- No proven antiviral therapy or vaccine
- Ribavirin + steroids used in life-threatening SARS, efficacy uncertain

---



## Rhinovirus

### ⌚ Important Properties

- Genome: (+)ssRNA, nonsegmented
- Structure: Nonenveloped, icosahedral capsid
  - 100 serotypes → explains high prevalence of common cold
- Replicates better at 33°C → primarily nasal & conjunctival infection
- Acid-labile → cannot survive stomach → no GI infection
- Host: Humans and chimpanzees only

## Replicative Cycle

1. Attachment: ICAM-1 receptor
2. Entry & uncoating → RNA released into cytoplasm
3. Translation: Genome RNA acts as mRNA → large polypeptide
4. Cleavage: Virus protease → capsid + nonstructural proteins (including RNA polymerase)
5. Replication: Negative-strand synthesis → template for positive strands
6. Assembly: RNA + capsid proteins → progeny virions
7. Release: Cell death

## Exam Points

- SARS-CoV → ACE-2; MERS-CoV → CD26
- SARS: ~9% fatality; MERS: 35% fatality

- Rhinovirus: primary cause of common cold, multiple serotypes, prefers cooler temperatures (33°C)

---

## Transmission & Epidemiology

- Modes of transmission:
  1. Direct: Respiratory droplets from person to person
  2. Indirect: Droplets on hands/surfaces → contact with nose or eyes
- Global prevalence: Worldwide; most common human infection
- Seasonality: Fall and winter (likely due to crowding, not temperature)
- Population trends:
  - Frequent in childhood → decreases in adulthood (immunity acquired)

- Seasonal serotype shifts → immunity to old serotypes, susceptibility to new ones

---

## Pathogenesis & Immunity

- Portal of entry: Upper respiratory tract
- Lower respiratory tract involvement: Rare (virus grows poorly at 37°C)
- Immunity:
  - Serotype-specific
  - Mainly nasal secretory IgA, not systemic antibodies

---

## Clinical Findings

- Incubation period: 2-4 days
- Symptoms: Sneezing, nasal discharge, sore throat,

cough, headache, chills

- Duration: ~1 week
- Other viruses causing similar cold-like illness:  
Coronaviruses, adenoviruses, influenza C, Coxsackie viruses

---

## Laboratory Diagnosis

- PCR → detection of rhinovirus RNA in respiratory specimens
- Serology: Not useful (too many serotypes)

---

## Treatment & Prevention

- No specific antiviral therapy or vaccine (impractical due to >100 serotypes)

- Preventive measures:

- Paper tissues with citric acid + sodium lauryl sulfate → reduce virus transmission from fingers

- Symptomatic measures:

- High-dose vitamin C: minimal preventive effect
  - Zinc gluconate lozenges: uncertain efficacy

### Exam Points

- Rhinovirus mainly affects upper respiratory tract; rarely lower tract
- Immunity is serotype-specific and IgA-mediated
- No vaccine available due to large serotype diversity
- Indirect contact (hands/surfaces) is an important mode of spread

---

## Diseases

- Respiratory: Pharyngitis, pharyngoconjunctival fever, bronchitis, atypical pneumonia, common cold
- Ocular: Conjunctivitis, keratoconjunctivitis
- Urinary: Hemorrhagic cystitis
- Gastrointestinal: Gastroenteritis (mainly <2 years old)
- Other: Some serotypes cause sarcomas in rodents (no evidence in humans)

---

## Important Properties

- Genome: dsDNA, linear, nonsegmented
- Capsid: Icosahedral, nonenveloped, with fiber at each vertex (organ of attachment/hemagglutinin)
- Antigenicity:
  - 41 serotypes

- Fiber protein: main type-specific antigen
- Hexon protein: group-specific antigen

- Replication:
  1. Virus attaches via fiber → uncoats → DNA enters nucleus
  2. Early genes → nonstructural proteins
  3. DNA replication → late genes → structural proteins
  4. Virus released by cell lysis (not budding)

---

## Transmission & Epidemiology

- Modes:
  1. Respiratory droplets
  2. Fecal-oral (common in children)

### 3. Direct inoculation of conjunctiva (fingers, instruments)

- Occurrence: Worldwide, endemic; outbreaks in military recruits (close quarters)
- Serotype-specific syndromes:
  - 3, 4, 7, 21 → respiratory disease
  - 8, 19 → epidemic keratoconjunctivitis
  - 11, 21 → hemorrhagic cystitis
  - 40, 41 → infantile gastroenteritis

---

## Pathogenesis & Immunity

- Infects mucosal epithelium (respiratory, GI tract, conjunctiva)
- Immunity: type-specific, lifelong
- Latent infection possible in adenoids & tonsils

---

# Clinical Findings

- Upper respiratory: Fever, sore throat, runny nose, conjunctivitis
- Lower respiratory: Bronchitis, atypical pneumonia
- Urinary: Hematuria, dysuria (hemorrhagic cystitis)
- GI: Nonbloody diarrhea (children <2)
- ~50% infections are asymptomatic

---

# Laboratory Diagnosis

- PCR → adenovirus DNA in respiratory samples
- Virus isolation in cell culture
- Fluorescent antibody detection
- Fourfold rise in antibody titer

---

## Treatment

- No specific antiviral therapy

---

## Prevention

- Military vaccines: Live, nonattenuated, serotypes 4, 7, 21
  - Monovalent, enteric-coated capsule → induces asymptomatic GI infection → immunity
  - Civilian use not available
- Keratoconjunctivitis prevention: Strict asepsis & handwashing in healthcare settings

### Exam Points

- Nonenveloped dsDNA virus → stable in environment → multiple transmission routes

- Fibers = viral attachment; serotype-specific immunity
- Causes respiratory, ocular, urinary, and GI disease
- Vaccines only available for military (serotypes 4, 7, 21)