"Somite Differentiation"

» Introduction

- Paraxial mesoderm begins to organize into segments by the beginning of 3rd week
- Segments called somitomeres (consisting of mesodermal cells arranged concentrically) first appear in cephalic region forming cephalocaudally
 - These somitomeres organize into somites from occipital region caudally
 - These somites initially exist as a ball of mesodermal cells (fibroblast-like cells)
 - They undergo epithelization
- Somites then arrange themselves in a donut shaped structure around a small lumen

» Sclerotomes

- Start formation at the beginning of 4th week
- Cells of the ventromedial walls of somites lose their epithelial characteristics -> become mesenchymal (fibroblast-like) again
 - Surround notochord and neural tube
 - Are now called sclerotomes
 - · Form tendon, cartilage and bone component

» Myotomes

- Cells from dorsomedial and ventrolateral edges of upper region of somites > form precursors for muscle cells called myotomes. Form segmental muscle component

» Dermatomes

 Cells between dorsomedial and ventrolateral groups -> Dermatomes -> form dermis of back

» Dermomyotome

- Cells from both dorsomedial and ventrolateral groups -> become mesenchymal again
 - They migrate beneath dermatome > form dermomyotome

· Form:

- Dermis for the skin of the back
 - Muscles for the back
- Muscles for the body wall (intercostal muscles)
 - Some limb muscles

- » Migration into Lateral Plate Mesoderm
- Some cells from the ventrolateral edge of somite migrate into somatic layer of lateral plate mesoderm

· Form:

- Most of the musculature for the body wall (external and internal oblique + transversus abdominus)
 - Most of the limb muscles

» Innervation

Each myotome and dermatome retains its inhervation from its segment of origin
Each has it's own segmental nerve component