

Streptococcus pneumoniae (Pneumococcus)

◆ Diseases Caused

Most Common Cause of

- Community-acquired pneumonia (CAP) → Classically lobar pneumonia with consolidation
- Acute bacterial meningitis (esp. adults)
- Sepsis in splenectomized patients (OPSI)
- Otitis media & sinusitis (especially in children)

Other Infections

- Mastoiditis
- Conjunctivitis (pediatric predominance)
- Pericarditis
- Purulent bronchitis

Exam Pearl: *S. pneumoniae* = leading cause of pneumonia + meningitis + OPSI

◆ Important Properties

Morphology

- Gram-positive
- Lancet-shaped diplococci (oval with pointed ends)
- Occasionally short chains

 Exam tip: "Lancet-shaped diplococci" is a classic spotter phrase

Culture Characteristics

- Grows on blood agar
- Produces α -hemolysis \rightarrow greenish discoloration due to partial hemoglobin breakdown

Key Laboratory Differentiation

Feature	<i>S. pneumoniae</i>	Viridans streptococci
---------	----------------------	-----------------------

Optochin	Sensitive	Resistant
Bile solubility	Soluble	Insoluble
Capsule	Present	Absent

📌 High-yield line:

👉 Optochin sensitivity + bile solubility = *Pneumococcus*

Capsule (Major Virulence Factor)

- Composed of polysaccharide
- 91 antigenically distinct serotypes
- Protects against phagocytosis
- Basis of protective immunity

Identification

- Quellung reaction → capsule appears swollen when mixed with type-specific antiserum

📌 Exam Pearl: Anticapsular antibodies = opsonization + protection

C-Substance (C-Polysaccharide)

- Cell wall teichoic acid
- Reacts with C-reactive protein (CRP)

CRP Facts

- Acute-phase reactant
- Nonspecific marker of inflammation
- Can rise up to 1000x
- Clinically: Better predictor of myocardial infarction risk than cholesterol

◆ Transmission

- Humans = only natural host (no animal reservoir)
- Carrier state: → 5-50% of healthy individuals harbor organism in oropharynx
- Disease is usually not communicable

- Infection occurs when host defenses are compromised

Exam line: Pneumococcus = endogenous infection

◆ Pathogenesis

Major Virulence Factor

- Capsular polysaccharide → Resists phagocytosis → Requires anticapsular IgG for opsonization

Other Virulence Factors

Factor	Action
Lipoteichoic acid	Activates complement → ↑ cytokines → septic shock
Pneumolysin	Hemolysin → α -hemolysis, tissue damage
IgA protease	Cleaves IgA → enhances respiratory colonization

Mechanism of Pneumococcal Pneumonia

Inhalation or aspiration → Organisms reach alveoli →
Rapid multiplication → Exudation of fluid + RBCs + WBCs
→ Lobar consolidation → Macrophage-mediated
clearance → Resolution of consolidation

Flowchart: Pathogenesis of Pneumococcal Infection

Colonization of oropharynx → IgA protease prevents
mucosal clearance → Aspiration into lungs / spread to
meninges, ear, sinuses → Capsular polysaccharide resists
phagocytosis → Lipoteichoic acid activates complement
→ inflammation → Pneumolysin damages host tissues
(α -hemolysis) → Clinical disease (Pneumonia / Meningitis
/ Otitis media / Bacteremia / sepsis)

◆ Predisposing Factors

I. Impaired Defense Mechanisms

- Alcohol / drug intoxication → ↓ cough reflex
→ aspiration
- CNS disorders → impaired clearance

2. Respiratory Abnormalities

- Viral infections → mucosal damage
- Bronchial obstruction
- Impaired mucociliary clearance

3. Cardiovascular Disease

- Pulmonary congestion
- Heart failure

4. Splenectomy / Functional Asplenia

- Sickle cell disease
- Nephrotic syndrome
- High risk of OPSI

5. Trauma

- Skull fracture with CSF leak → Predisposes to meningitis

💡 Exam Pearl: Pneumococcus = most dangerous pathogen in asplenic patients

Clinical Findings

- Sudden onset chills + high fever
- Cough with pleuritic chest pain
- Rusty sputum (RBC breakdown)
- Bacteremia: 15-25% cases
- Recovery: 5-10 days with antibody formation

Associated Infections

- Otitis media
- Sinusitis
- Mastoiditis
- Conjunctivitis
- Pericarditis
- Meningitis
- Sepsis (leading cause in asplenic patients)

Flowchart: Clinical Course

Inhalation of pneumococcus → Alveolar infection (Fever, cough, pleuritic pain) → Rusty sputum production → Bacteremia (15-25%) → Local or systemic complications → Anticapsular antibody formation → Recovery in 5-10 days

Laboratory Diagnosis

Microscopy

- Gram-positive lancet-shaped diplococci in sputum

Culture

- Blood agar → α -hemolytic colonies
- Bile soluble
- Optochin sensitive

Special Tests

- Quellung reaction → capsular swelling
- Blood culture → positive in 15-25%
- CSF culture → meningitis cases

Rapid Tests

- Latex agglutination → capsular antigen in CSF
- Urinary antigen test → C-polysaccharide

📌 Important: Antibiotic sensitivity testing is mandatory

Treatment

Drugs of Choice

- Severe infection: Penicillin G
- Mild infection: Penicillin V (oral)

Alternatives

- Fluoroquinolones (Levofloxacin)
- Macrolides (Azithromycin, Erythromycin)

Resistance

- Low-level resistance (~25%) → altered PBPs
- High-level resistance (15–35%) → multiple PBPs
- ~~✗~~ No β -lactamase production

Resistant Strains

- Severe → Vancomycin
- Less severe → Ceftriaxone / Levofloxacin

Table: Antibiotic Choices

Condition	First-Line	Alternatives	Resistant Strains
Severe	Penicillin G	Levofloxacin, Macrolides	Vancomycin
Mild	Penicillin V	Azithromycin, Erythromycin	Ceftriaxone, Levofloxacin

Prevention

High-Risk Groups

- Children <5 years

- Elderly >50 years 😊
- Immunocompromised
- Splenectomized patients

Vaccines

- PCV13 (Prevnar 13)
→ Conjugate vaccine (polysaccharide + diphtheria toxoid)
- PPSV23 (Pneumovax 23) → Polysaccharide vaccine

Boosters

- At 65 years (if vaccinated earlier)
- Age 2-64 if asplenic, HIV+, on chemotherapy

Additional Points

- Protection lasts ~5 years
- Herd immunity via childhood vaccination
- Serotype replacement (e.g., 19A) → addressed by PCV13

Flowchart: Pneumococcal Prevention

High-risk individuals

- PCV13 vaccination (children, immunocompromised)
- PPSV23 in adults >50 years
- Booster doses when indicated
- Reduced nasopharyngeal carriage in children
- Decreased adult disease burden
- Surveillance for serotype replacement

→ The End <-