Formation of the Primitive Gut

Divisions of the Gut Tube

- Due to cephalocaudal and lateral folding of the embryo:
 - \circ A portion of the endoderm-lined yolk sac cavity is incorporated into the embryo \to forms the primitive gut.
 - Remaining parts of the endoderm-lined cavity:
 - Yolk sac
 - Allantois
 - \rightarrow Stay outside the embryo.

Subdivisions of the Primitive Gut

- Foregut
 - Blind-ending tube at cephalic end.
- · Hindgut
 - o Blind-ending tube at caudal end.

Midgut

 Middle portion, temporarily connected to yolk sac via vitelline duct (yolk stalk).

Detailed Divisions

1. Pharyngeal Gut (Pharynx)

- From oropharyngeal membrane → respiratory diverticulum.
- Part of foregut, important for head & neck development.

2. Remainder of Foregut

 \circ From caudal to pharyngeal tube \rightarrow liver outgrowth.

3. Midgut

 \circ From caudal to liver bud \rightarrow junction of right 2/3 and left 1/3 of transverse colon (in adult).

4. Hindgut

 From left 1/3 of transverse colon → cloacal membrane.

Germ Layer Derivatives

- Endoderm →
 - Epithelial lining of digestive tract.
 - Parenchyma (functional cells) of glands:
 hepatocytes, pancreatic exocrine & endocrine cells.
- Visceral Mesoderm →
 - Stroma (connective tissue) of glands.
 - Muscle, connective tissue, peritoneal components of gut wall.

Mesenteries

Definition & Function

- Mesenteries = Double layers of peritoneum:
 - Enclose an organ.
 - \circ Connect organ \rightarrow body wall.
 - o Provide pathways for vessels, nerves, and

lymphatics to abdominal viscera.

- Intraperitoneal organs
 - \circ Completely enclosed by mesentery \rightarrow e.g., stomach, intestines.
- Retroperitoneal organs
 - · Lie against posterior body wall.
 - \circ Covered by peritoneum only on anterior surface \to e.g., kidneys.
- Peritoneal ligaments
 - · Specialized mesenteries.
 - Double layers of peritoneum that pass organ [→]
 organ or organ → body wall.

Development of Mesenteries

- Initially:
 - Foregut, midgut, hindgut in broad contact with posterior abdominal wall mesenchyme.

- By 5th week:
 - Connecting tissue bridge narrows.
 - \circ Caudal foregut, midgut, and major hindgut \to suspended by dorsal mesentery.

Dorsal Mesentery

- ullet Extends: Lower end of esophagus o cloacal region.
- Region-specific names:
 - Stomach → Dorsal mesogastrium (greater omentum).
 - Duodenum → Dorsal mesoduodenum.
 - \circ Colon \rightarrow Dorsal mesocolon.
 - Jejunum & ileum loops → Mesentery proper.

Ventral Mesentery

- Exists only in:
 - o Terminal part of esophagus.
 - · Stomach.
 - · Upper part of duodenum.
- Origin: Derived from septum transversum.

- Liver growth into septum transversum \rightarrow divides ventral mesentery into:
 - 1. Lesser omentum
 - From lower esophagus, stomach, upper duodenum → liver.
 - 2. Falciform ligament
 - From liver → ventral body wall.
- Clinical Correlate (Exam Tip):
 - Malrotation or abnormal fixation of mesenteries →
 can cause intestinal volvulus (life—threatening twisting
 of intestines).
 - Knowledge of mesentery is vital in surgical approaches (e.g., ligation of vessels within mesenteric folds).

Foregut Derivatives

Esophagus

Development

• ~4th week:

- Respiratory diverticulum (lung bud) arises from ventral foregut (border with pharyngeal gut).
- Tracheoesophageal septum partitions diverticulum from dorsal esophagus.
- ullet Result o Foregut divides into:
 - Ventral portion = Respiratory primordium (future trachea, lungs).
 - Dorsal portion = Esophagus.

Growth

 Initially short, but lengthens rapidly as heart & lungs descend.

Muscle & Nerve Supply

- Muscular coat from splanchnic mesenchyme:
 - Upper 2/3 → Striated muscle (innervated by Vagus nerve).
 - \circ Lower 1/3 \rightarrow Smooth muscle (innervated by

Splanchnic plexus).

Clinical Correlates: Esophagus

- Esophageal Atresia ± Tracheoesophageal Fistula
 - Caused by abnormal partitioning of foregut (tracheoesophageal septum deviation).
 - Most common type: Upper esophagus → blind sac, distal esophagus → connected to trachea near bifurcation.
 - Consequence: Polyhydramnios (amniotic fluid not swallowed).
- Esophageal Stenosis
 - Usually lower 1/3.
 - Causes: Incomplete recanalization, vascular abnormalities, ischemic accidents.
- Congenital Hiatal Hernia
 - \circ Failure of esophagus to lengthen sufficiently \to stomach pulled into thorax via esophageal hiatus.

Stomach

Initial Appearance

ullet 4th week o Fusiform dilation of foregut.

Growth & Rotation

- 1. Longitudinal Axis Rotation (90° clockwise)
 - \circ Left side \to anterior, Right side \to posterior.
 - Vagus nerves shift:
 - lacktriangle Left vagus ightarrow anterior wall.
 - lacktriangleright Right vagus ightarrow posterior wall.
 - \circ Posterior wall grows faster \rightarrow Greater curvature.
 - \circ Anterior wall slower \rightarrow Lesser curvature.
- 2. Anteroposterior Axis Rotation
 - \circ Pyloric end (caudal) \rightarrow moves right & upward.
 - \circ Cardiac end (cranial) \rightarrow moves left & downward.
 - \circ Final axis runs from above-left \rightarrow below-right.

Effect on Mesenteries

- Stomach attached by:
 - \circ Dorsal mesogastrium (\rightarrow greater omentum).

- Ventral mesogastrium (→ lesser omentum + falciform ligament).
- Longitudinal rotation:
 - \circ Pulls dorsal mesogastrium left \rightarrow forms Omental bursa (lesser peritoneal sac).
 - Pulls ventral mesogastrium right.

Spleen & Pancreas Development

- · Spleen primordium:
 - Appears as mesodermal proliferation in dorsal mesogastrium (~5th week).
 - · With rotation:
 - Connected to left kidney by Lienorenal ligament.
 - Connected to stomach by Gastrolienal ligament.

• Pancreas:

- Initially grows into dorsal mesoduodenum.
- Tail extends into dorsal mesogastrium.
- Fusion of dorsal mesogastrium with posterior abdominal wall → tail becomes secondarily retroperitoneal (covered only on anterior surface).

Clinical Correlates: Stomach & Mesenteries

- Malrotation of stomach \rightarrow abnormal position of omental bursa & curvatures.
- Pancreas anomalies (e.g., annular pancreas) often linked to abnormal rotations.

4 Exam Tips

- Always mention two axes of stomach rotation (longitudinal + anteroposterior).
- Stress nerve supply shift (vagus nerves) \rightarrow favorite MCQ/short note question.
- "Secondarily retroperitoneal" = organ initially intraperitoneal → fuses with posterior abdominal wall (Pancreas, parts of duodenum, ascending/descending colon).

Mesenteries & Omenta

Greater Omentum

- Rotation of stomach (anteroposterior axis) \rightarrow dorsal mesogastrium bulges down.
- ullet Continues to grow o double-layered sac hanging over transverse colon & small intestine like an apron.
- Later \rightarrow layers fuse \rightarrow single sheet hanging from greater curvature = Greater omentum.
- Posterior layer of greater omentum fuses with transverse mesocolon.

Ventral Mesogastrium → Lesser Omentum & Falciform Ligament

- Derived from septum transversum mesoderm.
- Liver cords grow into septum \rightarrow thins \rightarrow forms:
 - 1. Peritoneum of liver
 - 2. Falciform ligament (liver \rightarrow ventral abdominal wall)
 - Free margin contains umbilical vein → after birth → Ligamentum teres hepatis (round ligament).

3. Lesser omentum (stomach & duodenum \rightarrow liver)

- Subdivisions:
 - □ Hepatogastric ligament
 - □ Hepatoduodenal ligament (free margin).
- Hepatoduodenal ligament contents (Portal Triad):
 - · Bile duct
 - o Portal vein
 - Hepatic artery
- Forms roof of Epiploic Foramen of Winslow (connection between omental bursa [lesser sac] & greater sac).

Clinical Correlates - Stomach Abnormalities

- Pyloric Stenosis
 - Hypertrophy of pyloric circular (±longitudinal) muscle.
 - One of the most common gastric abnormalities in infants.
 - Presentation: 3-5 days after birth, projectile, nonbilious vomiting.

- Risk ↑ with neonatal erythromycin exposure.
- \circ Severe \rightarrow pyloric atresia (rare).
- Other rare anomalies:
 - Gastric duplications.
 - · Prepyloric septum.

Duodenum

Origin

- · Formed from:
 - o Terminal foregut + Cranial midgut.
- Junction \rightarrow just distal to liver bud origin.

Rotation

- ullet With stomach rotation ullet duodenum takes C-shaped loop, rotates to right.
- Growth of pancreatic head further shifts duodenum rightward.

Fixation

- Duodenum & head of pancreas pressed against dorsal body wall.
- Dorsal mesoduodenum fuses with posterior peritoneum \rightarrow disappears.
- Duodenum + pancreatic head \rightarrow secondarily retroperitoneal.
- Exception \rightarrow small part near pylorus (duodenal cap) retains mesentery \rightarrow remains intraperitoneal.

Lumen Changes

- 2nd month: epithelial proliferation → lumen obliterated.
- Soon after \rightarrow recanalized (failure \rightarrow duodenal atresia/stenosis).

Arterial Supply

- Dual blood supply (reflects dual origin):
 - Celiac artery (foregut part).
 - Superior mesenteric artery (midgut part).

Exam High-Yield Summary

- Greater omentum = dorsal mesogastrium.
- Lesser omentum + falciform ligament = ventral mesogastrium (septum transversum origin).
- Epiploic foramen of Winslow → opening between greater & lesser sac, bounded by hepatoduodenal ligament.
- Duodenum = secondarily retroperitoneal, except duodenal cap.
- Pyloric stenosis = projectile, non-bilious vomiting (common neonatal surgical emergency).

Liver & Gallbladder Development

Origin & Early Development

- Appears mid-3rd week as an outgrowth from distal foregut endoderm \rightarrow Hepatic diverticulum (Liver bud).
- · Liver bud growth:

- Proliferates into septum transversum (mesoderm between pericardial cavity & yolk sac stalk).
- \circ Connection with foregut narrows \rightarrow bile duct.
- Small ventral outgrowth from bile duct → Gallbladder + Cystic duct.

Differentiation

- Endodermal liver cords intermingle with vitelline & umbilical veins \rightarrow form hepatic sinusoids.
- Derivatives:
 - \circ Endoderm \rightarrow Hepatocytes (liver cells) & Biliary epithelium.
 - Mesoderm (septum transversum) → Hematopoietic cells, Kupffer cells, Connective tissue.

Peritoneal Relations

- ullet Liver invades septum transversum ullet divides it into:
 - O Lesser omentum (between liver & foregut).
 - o Falciform ligament (between liver & ventral body

wall).

- o Together = Ventral mesentery.
- Mesoderm on liver surface → Visceral peritoneum, except:
 - Bare area (cranial surface in contact with septum transversum → future diaphragm).
 - \circ Septum transversum mesoderm here \rightarrow Central tendon of diaphragm.

Functional Development

- 10th week:
 - \circ Liver = \sim 10% of fetal body weight.
 - Cause: Extensive hematopoiesis (major site of blood cell formation until last 2 months IV life).
- At birth \rightarrow liver = ~5% body weight (hematopoiesis subsides).
- 12th week: Hepatocytes begin bile secretion.
 - Bile duct + cystic duct + hepatic duct → Bile duct system established.

- \circ Bile enters duodenum \rightarrow contents turn dark green (meconium).
- Duodenal rotation \rightarrow shifts bile duct entrance from anterior \rightarrow posterior position (bile duct passes behind duodenum).

Clinical Correlates

- Normal Variants:
 - · Accessory hepatic ducts.
 - Gallbladder duplication (usually asymptomatic).
- Extrahepatic biliary atresia (1/15,000 births):
 - o Failure of bile ducts to recanalize.
 - \circ 15-20%: patent proximal ducts \rightarrow surgically correctable.
 - \circ Others \rightarrow fatal unless liver transplant.
- Intrahepatic biliary duct atresia / hypoplasia (1/100,000 births):
 - Often due to fetal infection.
 - o May be lethal or follow benign chronic course.

Exam High-Yield Pointers

- Hepatic diverticulum = endodermal origin.
- Kupffer cells, hematopoietic cells, connective tissue = mesodermal origin.
- Bare area of liver = contact with septum transversum (forms diaphragm's central tendon).
- Liver = main hematopoietic organ till late gestation.
- Bile secretion begins \sim 12th week \rightarrow meconium green.
- Extrahepatic biliary atresia = surgical emergency in neonates.

Pancreas Development

Origin

- Develops from 2 buds (endodermal in origin, from duodenal lining):
 - Dorsal pancreatic bud → grows into dorsal

mesentery.

 \circ Ventral pancreatic bud \rightarrow develops near bile duct.

Rotation & Fusion

- ullet Duodenum rotates right o C-shaped.
- Ventral pancreatic bud moves dorsally \rightarrow lies below & behind dorsal bud.
- ullet Buds fuse o form definitive pancreas.

Derivatives

- Ventral bud \rightarrow Uncinate process + Inferior part of pancreatic head.
- Dorsal bud → Remaining gland (body, tail, superior head).

Pancreatic Duct System

- Main pancreatic duct (of Wirsung):
 - Formed from distal part of dorsal duct + entire ventral duct.

- Opens into major duodenal papilla with bile duct.
- Accessory pancreatic duct (of Santorini):
 - o From proximal dorsal duct (if persists).
 - Opens into minor duodenal papilla.
- Failure of fusion (10% cases) \rightarrow double duct system persists.

Endocrine Development

- ullet 3rd month ullet Islets of Langerhans develop from parenchymal tissue.
- 5th month \rightarrow Insulin secretion begins.
- Other endocrine cells (glucagon, somatostatin) also differentiate from parenchyma.
- Connective tissue → from surrounding visceral mesoderm.

Clinical Correlates

1. Annular Pancreas

- Ventral bud has two components. Normally, both rotate together → fuse below dorsal bud.
- \circ If one rotates opposite direction \rightarrow duodenum encircled by pancreatic tissue.
- \circ May \rightarrow duodenal obstruction (vomiting, polyhydramnios in fetus).

2. Accessory Pancreatic Tissue

- Can occur anywhere from esophagus → Meckel's diverticulum.
- Most common site = stomach mucosa or intestinal mucosa.
- Histologically resembles normal pancreas.

Exam High-Yield Pointers

- Dorsal bud = main contributor.
- Ventral bud = uncinate + lower head.
- Main duct = fusion product; Accessory duct = remnant of dorsal duct.
- Insulin secretion begins ~5th month (important MCQ).

- Annular pancreas \rightarrow duodenal obstruction (vomiting after birth).
- Accessory pancreatic tissue \rightarrow can mimic other lesions but histology = pancreas.

Midgut Development

Basic Facts

- In 5-week embryo:
 - Midgut suspended by short dorsal mesentery.
 - Communicates with yolk sac via vitelline duct (yolk stalk).
- Extent in adult:
 - \circ Begins \rightarrow distal to bile duct opening in duodenum.
 - \circ Ends \rightarrow proximal 2/3 of transverse colon.
- Blood supply: Entire midgut = Superior Mesenteric Artery (SMA).

Primary Intestinal Loop

- Forms due to rapid elongation of midgut + mesentery.
- Loop apex connected to yolk sac \rightarrow vitelline duct.
- Cephalic limb → distal duodenum, jejunum, part of ileum.
- Caudal limb \rightarrow lower ileum, cecum, appendix, ascending colon, proximal 2/3 transverse colon.

Physiological Herniation

- 6th week: Rapid growth of midgut + large liver = abdomen too small.
- Loops herniate into umbilical cord (extraembryonic cavity).
- Called physiological umbilical herniation.

Rotation of Midgut

- · Occurs around axis of SMA.
- Counterclockwise (viewed from front).

- Total = 270° rotation:
 - o 40° during herniation.
 - o 180° during return to abdominal cavity.
- Jejunum & ileum \rightarrow form coiled loops.
- ullet Large intestine o elongates, but no coiling.

Retraction of Herniated Loops

- ullet 10th week: Loops return to abdomen due to ightarrow
 - · Regression of mesonephric kidney.
 - · Reduced liver growth.
 - o Expansion of abdominal cavity.

· Order of return:

- \circ Jejunum \rightarrow first (to left side).
- \circ Ileum \rightarrow later (to right side).
- Cecal bud = last to return (initially RUQ, later descends to RLQ).
- \circ Cecal bud forms \rightarrow appendix as diverticulum.

· Appendix position: often retrocecal or retrocolic.

Mesenteries & Fixation

- Primary mesentery = mesentery proper.
- During rotation, dorsal mesentery twists around SMA.
- Fusion & fixation:
 - \circ Ascending & descending colon \to fuse with posterior wall \to become retroperitoneal.
 - \circ Appendix, cecum (lower part), sigmoid colon \to retain free mesentery.
 - \circ Transverse mesocolon \rightarrow fuses with greater omentum \rightarrow retains mobility.
- Final attachment of jejunoileal mesentery → from duodenojejunal junction to ileocecal junction.

Exam High-Yield Points

- ullet Physiological herniation: 6th week ightarrow 10th week.
- Rotation total = 270° counterclockwise around SMA.

- ullet Cecal bud last to re-enter; initial RUQ o final RLQ.
- Retroperitoneal: ascending + descending colon.
- Mobile: transverse colon, sigmoid colon, appendix, cecum.
- Appendix positions: retrocecal (most common), retrocolic.

Clinical Correlates - Midgut Development

1. Abnormalities of Mesenteries

- Normal: Ascending colon (except caudal 1 inch) \rightarrow fuses with posterior abdominal wall \rightarrow peritoneum only on front & sides.
- Mobile cecum:
 - \circ Cause \rightarrow Persistence of portion of ascending mesocolon.
 - \circ Cecum remains mobile \rightarrow abnormal movements.
 - \circ Extreme form \rightarrow entire ascending colon mobile \rightarrow predisposes to volvulus.

- Retrocolic pockets:
 - \circ Cause \rightarrow Incomplete fusion of mesentery with posterior wall.
 - \circ May trap small intestine \rightarrow retrocolic hernia.

2. Body Wall Defects

A. Omphalocele

- Definition: Herniation of abdominal viscera through enlarged umbilical ring.
- Covering: Amnion + peritoneum (sac).
- Cause: Failure of bowel to return to abdominal cavity during 6th-10th weeks (physiological herniation persists).
- Contents: Liver, intestines, stomach, spleen, gallbladder (variable).
- Incidence: 2.5 / 10,000 births.
- Associations:

- High mortality (~25%).
- Cardiac anomalies (50%).
- Neural tube defects (40%).
- Chromosomal abnormalities (~15%).

B. Gastroschisis

- Definition: Protrusion of abdominal viscera directly into amniotic cavity.
- Site: Lateral to umbilicus (usually right).
- Cause: Defective closure of body wall near connecting stalk.
- Covering: No covering (not covered by amnion/peritoneum).
- Effect: Viscera exposed to amniotic fluid \rightarrow damage to bowel.
- Incidence: 1/10,000 births (\uparrow frequency, especially in young mothers <20 years).
- Associations:

- Not linked with chromosomal abnormalities.
- O Usually not associated with other anomalies.
- o Good survival rate.

3. Volvulus

- ullet Definition: Abnormal twisting of intestine ullet compromises blood supply.
- Complication: Ischemia \rightarrow necrosis of large segments \rightarrow may cause fetal death.

Exam Pointers

• Omphalocele vs Gastroschisis

Feature	Omphalocele	Gastroschi sis
Site	Umbilical ring	Lateral to umbilicus (right)
Covering	Amnion + peritoneum sac	No covering

Cause Failure of return of bowel Defective (6-10 wk) closure of

body wall

Associations Chromosomal anomalies, No

cardiac, NTDs

chromoso

mal

anomalies

Prognosis Poor (25% mortality) Good

survival

Clinical Correlates - Midgut (continued)

1. Vitelline Duct Abnormalities (2-4% of population)

Normally \rightarrow vitelline duct obliterates by week 7. Persistence \rightarrow anomalies:

A. Meckel's Diverticulum (Ileal diverticulum)

- Outpouching of ileum on antimesenteric border, ~
 40-60 cm from ileocecal valve.
- Rule of 2's (exam favorite 2):

- o 2% population
- o 2 feet from ileocecal valve
- 0 2 inches long
- Symptoms in 2% cases
- o 2 types of ectopic tissue: gastric & pancreatic
- Usually asymptomatic.
- ullet If ectopic gastric/pancreatic tissue ullet ulceration, bleeding, perforation.

B. Vitelline Cyst (Enterocystoma)

- ullet Central portion of duct persists o cyst formation.
- Both ends \rightarrow fibrous cords.
- Risk: bowel strangulation/volvulus around fibrous strands.

C. Vitelline Fistula (Umbilical fistula)

- Entire duct remains patent.
- Direct communication between ileum & umbilicus.
- ullet Clinical sign o fecal discharge at umbilicus.

2. Gut Rotation Defects

A. Malrotation

- Normal rotation = 270° CCW.
- Malrotation = only 90° rotation.
- Colon + cecum \rightarrow return first \rightarrow settle on left side (left-sided colon).
- ullet Can predispose to volvulus o ischemia.

B. Reversed Rotation

- Rotation 40° clockwise.
- Effect: Transverse colon lies behind duodenum & SMA (instead of anterior).

3. Intestinal Duplications

- Cysts/diverticula anywhere along gut (MC in ileum).
- ullet Range: long duplicated segment o small diverticulum.

- Symptoms: obstruction, bleeding (early in life).
- 33% associated with other defects: atresias, imperforate anus, gastroschisis, omphalocele.
- Cause: uncertain (possibly abnormal proliferation of gut parenchyma).

4. Gut Atresias & Stenoses

- Incidence: I in 1,500 births.
- Sites:
 - MC → duodenum
 - \circ Rare \rightarrow colon
 - Equal → jejunum & ileum

A. Causes

- I. Duodenal atresia (proximal) \rightarrow failure of recanalization.
- 2. Jejunal/ileal/colonic atresias \rightarrow vascular accidents (malrotation, volvulus, gastroschisis, omphalocele).

- 3. New evidence: defective gut differentiation \rightarrow misexpression of HOX, FGF genes.
- B. Types of Atresia/Stenosis
 - 1. Segmental loss (50%) \rightarrow portion of bowel absent.
- 2. Fibrous cord (20%) \rightarrow blind ends connected by cord.
- 3. Membranous stenosis (20%) \rightarrow thin diaphragm partially obstructs lumen.
- 4. Multiple atresias (5%).
- 5. Multiple stenoses (5%).
- 6. Apple Peel Atresia (10%) → jejunal atresia with distal small bowel coiled around a short mesenteric remnant; short gut syndrome.

C. Clinical Impact

- · Severity depends on site & length of involved bowel.
- Large involvement \rightarrow low birth weight, malabsorption, high morbidity.

Summary Table (High-Yield)

Abnormality	Cause	Key Feature	Clinical Significance
Meckel's diverticulum	Persistence of vitelline duct	2 feet from IC valve, antimesenteric	Painless bleeding, ulcer, perforation
Vitelline cyst	Middle duct persists	Cyst with fibrous cords	Risk of volvulus/ob struction
Vitelline fistula	Entire duct patent	Ileum ↔ umbilicus	Fecal discharge at umbilicus
Malrotation	Incomplete 40° rotation		Volvulus risk
Reversed rotation	Clockwise 40°	Transverse colon behind SMA	Obstruction

Duplications	Abnormal proliferation	Ileum MC site	Early obstruction /bleeding
noses	Recanalization failure / vascular insult / genetic	Duodenum MC site	Obstruction, vomiting, low birth weight
11.	Vascular accident	Jejunum, distal bowel spiraled	9

ion

Hindgut Development

- 1. Derivatives of Hindgut
 - Distal 1/3 of transverse colon
 - Descending colon
 - · Sigmoid colon
 - · Rectum
 - Upper part of anal canal
 - Endoderm of hindgut also contributes to \rightarrow bladder & urethra (internal lining)

2. Cloaca and Partitioning

- Cloaca = common endoderm-lined cavity at embryo's caudal end
 - \circ Posterior part \rightarrow primitive anorectal canal (hindgut)
 - \circ Anterior part \rightarrow primitive urogenital sinus (allantois entry)
- Cloacal membrane = endoderm + surface ectoderm, forms ventral boundary
- Urorectal septum:
 - Derived from mesoderm (yolk sac covering + tissue around allantois)
 - Grows caudally to separate cloaca into:
 - Anterior = urogenital sinus
 - Posterior = anorectal canal
 - \circ Tip of septum \rightarrow forms perineal body (important landmark in obstetrics)
- By end of week $7 \rightarrow$ cloacal membrane ruptures, creating:

- Anal opening (hindgut)
- Urogenital opening (urogenital sinus)
- 3. Development of Anal Canal
 - Upper $2/3 \rightarrow$ from hindgut endoderm
 - Lower $1/3 \rightarrow$ from ectoderm (proctodeum)

Steps:

- I. Ectoderm around proctodeum proliferates \rightarrow forms anal pit.
- 2. Anal pit deepens.
- 3. Anal membrane (former cloacal membrane) degenerates.
- 4. Continuity established between upper (endodermal) & lower (ectodermal) parts.
- 4. Blood Supply & Nerve Supply

Region of Origin Blood Innervation Epitheliu Anal Supply m

Canal

Upper 2/3	Endoderm (hindgut)	Superior rectal artery (IMA)	Autonomic (insensitive to pain)	Columnar
Lower 1/3	Ectoderm (procto deum)	rectal	Somatic (inferior rectal nerve, painful)	squamou

- Junction = Pectinate line (just below anal columns).
 - Landmark for epithelium, blood, lymph, innervation, clinical conditions (hemorrhoids, cancer spread).

Clinical Correlates - Hindgut Abnormalities

- 1. Rectourethral and Rectovaginal Fistulas
 - Incidence: ~1/5,000 live births
 - Cause: Abnormal cloaca/urorectal septum

development

- Cloaca too small OR urorectal septum fails to descend fully
- \circ Result: Hindgut opens anteriorly \rightarrow into urethra (male) or vagina (female)
- Clinical importance: Abnormal fecal passage through urinary/reproductive tract.
- 2. Rectoanal Fistulas & Atresias
 - · Spectrum of severity:
 - · Narrow tube to surface
 - o Fibrous remnant with no lumen
 - Cause: Misexpression of genes disrupting epithelial mesenchymal signaling
 - Exam Pearl:
 - Imperforate anus = anal membrane fails to break down.
- 3. Congenital Megacolon (Hirschsprung Disease)

- Definition: Aganglionic megacolon due to absence of parasympathetic ganglia in bowel wall.
- Origin of ganglia: Neural crest cells (migrate into gut wall).
- Genetic cause: Often RET gene mutation (tyrosine kinase receptor guiding crest migration).

Clinical Features:

- Failure to pass meconium
- · Abdominal distension
- Severe constipation

Distribution:

- · Rectum always involved
- 80%: Extends up to sigmoid midpoint
- 10-20%: Involves transverse & right colon
- 3%: Whole colon affected

Exam Pointers @

• Imperforate anus = anal membrane persists.

- Fistulas = urorectal septum maldevelopment.
- Hirschsprung's = neural crest migration failure \rightarrow RET gene.
- Always correlate with blood supply & pectinate line (upper vs lower anal canal).

1) Polyhydramnios + frothy secretions + respiratory distress at birth

Most likely diagnosis:

Esophageal atresia with tracheoesophageal fistula (TEF) — classically proximal blind pouch with distal TEF.

Embryological basis: Abnormal partitioning of the foregut by the tracheoesophageal septum \rightarrow esophagus ends blindly and/or connects to trachea.

Why polyhydramnios? Fetus can't swallow amniotic fluid → fluid accumulates.

Key complications: Aspiration, pneumonia, abdominal distension with ventilation.

2) 20-week scan: midline, membrane-covered mass containing bowel

Diagnosis: Omphalocele.

Embryological basis: Failure of physiologically herniated midgut (6-10 wks) to return to the abdominal cavity; viscera remain herniated through enlarged umbilical ring and are covered by amnion.

Prognosis: Guarded vs gastroschisis — high association with other anomalies (\approx 50% cardiac, \approx 40% NTDs) and chromosomal defects (\sim 15%); mortality \approx 25%. Outcome depends mainly on associated anomalies and size of defect.

3) Newborn girl: meconium per vagina + no anal opening

Diagnosis: Rectovaginal fistula with imperforate anus.

Embryological basis: Abnormal cloacal partitioning — urorectal septum fails to descend/fuse adequately (or cloaca too small) \rightarrow hindgut opens anteriorly into vagina; persistence of anal membrane \rightarrow imperforate anus.