The Integumentary System

Friday, August 22, 2025

6:08 PM

Integumentary System - Skin Development

Overview

- Largest organ of the body.
- Dual origin:
 - 1. Epidermis \rightarrow from surface ectoderm.
 - Dermis → from underlying mesenchyme (mesoderm + neural crest).

Epidermis Development

- 1. Initial stage:
 - Embryo initially covered by single-layered ectoderm.

2. 2nd Month:

- \circ Ectoderm divides \rightarrow forms periderm (epitrichium) = superficial flattened layer.
- 3. With basal layer proliferation:

O Intermediate zone forms.

4. By 4th Month \rightarrow definitive 4 layers:

- Basal layer (germinative layer) → stem cell layer;
 forms ridges & hollows → fingerprints.
- \circ Spinous layer \rightarrow large polyhedral cells with tonofibrils.
- Granular layer → keratohyalin granules.
- \circ Horny layer (stratum corneum) \rightarrow dead keratinized cells \rightarrow protective barrier.

5. Periderm fate:

 \circ Shed in 2nd half of intrauterine life \rightarrow cells found in amniotic fluid.

6. Melanocytes:

- \circ Derived from neural crest \rightarrow migrate into epidermis by 3rd month.
- Contain melanosomes → transfer melanin to keratinocytes.
- Responsible for skin & hair pigmentation.

Dermis Development

• Derived from mesenchyme with 3 sources:

- 1. Paraxial mesoderm \rightarrow dermis of back.
- 2. Lateral plate mesoderm \rightarrow dermis of limbs & body wall.
- 3. Neural crest cells \rightarrow dermis of face & neck.
- · 3rd-4th months:
 - \circ Dermis (corium) forms dermal papillae \to project into epidermis.
 - Each papilla usually contains a capillary loop or sensory nerve ending.
- Deeper dermis (subcorium) \rightarrow rich in fatty tissue.

Special Features at Birth

- Vernix caseosa:
 - O Whitish, greasy covering over newborn skin.
 - o Formed by:
 - Sebaceous gland secretions.
 - Degenerated epidermal cells.
 - Fine hairs.
 - \circ Function \rightarrow protects skin against maceration by amniotic fluid.

Clinical Correlates

1. Pigmentary Disorders

- ullet Piebaldism o patchy absence of melanocytes o areas without hair/skin pigment.
- Waardenburg Syndrome (WS):
 - Features: white forelock, heterochromia iridis, depigmented patches, deafness.
 - \circ Cause: defective neural crest migration \to absence of melanocytes in stria vascularis.
 - \circ Gene: PAX3 mutations \rightarrow WSI & WS3.
- Albinism (oculocutaneous albinism OCA):
 - \circ Defect in melanin synthesis/processing \to little/no pigmentation in skin, hair, eyes.
- · Vitiligo:
 - Autoimmune destruction of melanocytes.
 - O Patchy depigmentation in skin, hair, oral mucosa.
 - Associated with other autoimmune diseases (esp. thyroid disease).
- 2. Fingerprints (Dermatoglyphics)

- · Formed by epidermal ridges (from basal layer).
- Appear on fingertips, palms, soles.
- ullet Genetically determined o unique to each person.
- · Clinical importance:
 - Used in forensics & genetic studies.
 - Abnormal patterns seen in chromosomal disorders (e.g., Down syndrome).

3. Keratinization Disorders

- Ichthyosis:
 - \circ Excessive keratinization \rightarrow scaly, dry skin.
 - Mostly autosomal recessive, some X-linked.
- Severe form Harlequin fetus:
 - o Thick, cracked, armor-like skin.
 - o Often fatal shortly after birth.

Hair Development

Origin

- From epidermis (ectoderm) \rightarrow solid proliferations from germinative (basal) layer.
- These proliferations grow downward into dermis.

Stages of Development

1. Hair Bud Formation

Solid epidermal outgrowth penetrates dermis.

2. Hair Papilla Formation

- Terminal end of hair bud invaginates, forming hair papilla.
- Papilla filled with mesodermal tissue → blood vessels & nerve endings.

3. Differentiation

- \circ Central cells of hair bud \rightarrow spindle-shaped \rightarrow keratinized \rightarrow hair shaft.
- \circ Peripheral cells \rightarrow cuboidal \rightarrow epithelial hair sheath.

4. Surrounding Mesenchyme

- o Forms dermal root sheath.
- Also gives rise to arrector pili muscle (smooth

muscle).

S. Growth

- Continuous proliferation of epithelial cells at base pushes hair shaft upward.
- \circ By end of 3rd month \rightarrow first hairs appear (eyebrows & upper lip).
- First hair = lanugo hair: fine, soft, temporary → shed around birth and replaced by coarser terminal hair.

Associated Structures

- Sebaceous Glands:
 - Develop as buds from epithelial wall of hair follicle.
 - \circ Central gland cells degenerate \rightarrow form sebum (oily secretion).
 - Sebum passes into hair follicle → reaches skin surface.

Clinical Correlates

Abnormalities of Hair Distribution

1. Hypertrichosis (excessive hairiness)

- Cause: increased number of hair follicles.
- Types:
 - Localized \rightarrow e.g., lumbosacral region over spina bifida occulta.
 - Generalized → entire body covered.

2. Atrichia (congenital absence of hair)

 Usually associated with other ectodermal defects (e.g., teeth & nail anomalies).

Sweat Glands & Mammary Glands Development

Sweat Glands

Types

1. Eccrine Sweat Glands

- Origin: Buds from germinative layer of epidermis.
- \circ Growth: Buds extend into dermis, coiling at the ends \rightarrow form secretory portion.
- Associated smooth muscle cells also derive from epidermal buds.
- Mode of secretion: Merocrine (exocytosis).
- O Function: Temperature regulation.
- Distribution: Present all over body (except a few regions like lips, external genitalia).

2. Apocrine Sweat Glands

- Origin: From same epidermal buds as hair follicles.
- Location: Axillae, pubic region, face, areola, perianal region.
- Development: Begin functioning only at puberty (hormonal influence).
- Opening: Into hair follicles (not directly onto skin).
- O Secretion: Contains lipids, proteins, pheromones.
- Odor: Due to bacterial breakdown of secretions.
- Mode of secretion: Classified as apocrine (part of cytoplasm lost with secretion).

Mammary Glands

- · Modified sweat glands.
- Initial appearance:
 - As bilateral mammary lines (ridges) → thickened epidermis.
 - \circ Extend from axilla to inguinal region (base of forelimb \rightarrow hindlimb).
- Most of mammary line disappears, except a small portion in thoracic region \rightarrow persists & penetrates underlying mesenchyme.

Stages

1. Sprouting stage

- 0 16-24 solid epithelial sprouts form.
- \circ Later canalize \rightarrow lactiferous ducts.

2. Nipple formation

- \circ Initially \rightarrow ducts open into epithelial pit.
- \circ After birth \to mesenchymal proliferation everts the pit \to nipple.

3. At birth

- o Only duct system present.
- No alveoli or secretory units.

4. At puberty (female)

- O Under influence of estrogen & progesterone:
 - Branching of ducts.
 - Formation of alveoli & secretory cells.

Clinical Correlates

Sweat Glands

Not many embryological anomalies described.
 Important mainly for function & secretion type.

Mammary Glands

1. Polythelia

- Accessory nipples due to persistence of mammary line fragments.
- Usually in axillary region.
- Most common mammary abnormality.

2. Polymastia

Extra breast develops along mammary line.

3. Inverted Nipple

- o Failure of epithelial pit to evert.
- Clinical importance: May mimic or predispose to pathological nipple inversion in adults.

Exam Points

- Eccrine = all over body, merocrine, temp regulation.
- Apocrine = puberty, hair follicle association, apocrine secretion.

- Mammary gland = modified sweat gland, ridge origin, ducts form prenatally, alveoli only after puberty.
- Abnormalities: Polythelia > Polymastia > Inverted nipple.