Tuesday, August 19, 2025 B Development of the Muscular System 1. Origin of the Muscular System Muscle Type Germ Layer Origin Skeletal muscle Paraxial mesoderm (somites & somitomeres) Smooth muscle Visceral splanchnic mesoderm around gut + ectoderm (pupil, mammary, sweat glands) Cardiac muscle Visceral splanchnic mesoderm surrounding heart tube 2. Striated / Skeletal Musculature Head Muscles Derived from seven somitomeres (paraxial mesoderm). Axial, Limb & Body Wall Muscles • Derived from somites \rightarrow initially form as somitomeres (occipital \rightarrow tailbud) - ullet Somitomeres ullet form epithelial ball with a central cavity - \circ Ventral region \rightarrow becomes mesenchymal \rightarrow sclerotome (vertebrae & ribs) - Upper region → forms dermatome + 2 muscle forming regions: - Dorsomedial (DML) - Ventrolateral (VLL) #### Formation of Myotome - ullet Cells from DML + VLL migrate under dermatome ullet form dermomyotome - ullet VLL cells migrate *into lateral plate mesoderm* o form: - Infrahyoid muscles - Abdominal wall muscles (rectus abdominis, internal/external oblique, transversus abdominis) - · Limb muscles - ullet Remaining myotome cells ullet back muscles, shoulder girdle muscles, intercostals - 3. Primaxial vs Abaxial Domains Domain Components Development al Signal Source Primaxia Somite-derived muscle cells Neural tube 1 that remain near neural tube + notochord Abaxial VLL cells that cross the lateral Lateral plate somitic frontier into lateral mesoderm plate mesoderm ## 1 Lateral somitic frontier - Boundary between somite-derived & lateral plate mesoderm-derived components - Marks: - Border between primaxial vs abaxial muscle precursors - Border between dermis of back (somite) vs dermis of body wall (lateral plate) - O Border in rib development: - Bony rib \rightarrow primaxial sclerotome - ullet Costal cartilage that attaches to sternum ightarrow abaxial sclerotome ### 4. Innervation Muscle Type Innervation Epaxial muscles (back) Dorsal primary rami Hypaxial muscles (body wall & limbs) Ventral primary rami New concept of primaxial vs abaxial is based on origin, not innervation — however, epaxial (back) muscles are still innervated by dorsal rami, hypaxial by ventral rami. ### 5. Differentiation of Skeletal Muscle & Tendons - Myoblasts (muscle precursors) \rightarrow fuse \rightarrow long multinucleated fibers - ullet Myofibrils form o cross-striations visible by 3rd month - Tendons formed from sclerotome cells (adjacent to myotome) - ullet Transcription factor: SCLERAXIS ullet essential for tendon development - # Molecular Regulation of Muscle Development (High- ### Yield Points) 1. Key Signaling Pathways & Myogenic Regulatory Factors (MRFs) | Signal | Source | Target /
Effect | |-------------------------|---|--| | BMP4 + FGFs | Lateral plate
mesoderm | Induce VLL cells to express MyoD | | WNT proteins | Ectoderm & dorsal
neural tube | Work with
BMP4 to
activate MyoD
in VLL cells | | SHH (Sonic
Hedgehog) | Notochord & floor
plate of neural tube | Acts (with
WNT) on DML
cells →
induces MYFS
+ MyoD | # 3 Important: - SHH does not act on VLL cells - MyoD and MYFS are myogenic regulatory factors (MRFs) → transcription factors that activate skeletal muscle differentiation - 2. Patterning of Muscles Role of Connective Tissue Region Source of Pattern-forming CT Head Neural crest cells Cervical / Occipital Somitic mesoderm Body wall & Limbs Parietal layer of lateral plate mesoderm \bigcirc Myoblasts migrate into these regions \rightarrow pattern determined by the connective tissue, not by the myoblasts themselves. ### 3. Head Musculature - All voluntary muscles in the head = paraxial mesoderm (somitomeres & somites) - Includes tongue, extraocular muscles, and pharyngeal arch muscles - Exception \rightarrow Iris muscles (pupillary muscles) = derived from ectoderm of optic cup - Patterning directed by neural crest-derived connective tissue ### 4. Limb Musculature - Appears in 7th week as mesenchymal condensations at limb bud base - Mesenchyme = from dorsolateral somite cells (migrating into limb bud) - Patterning \rightarrow by connective tissue of lateral plate mesoderm (same source that forms limb bones) ### S. Cardiac Muscle Site | Feature | Description | |----------------------------|---| | Origin | Visceral (splanchnic) mesoderm
around heart tube | | Myoblasts | Do not fuse (unlike skeletal muscle) | | Intercellular
junctions | Become intercalated discs | | Specialized
bundles | Purkinje fibers \rightarrow conduct electrical impulses | | 6. Smooth Muscle | | Origin Dorsal aorta & large arteries Lateral plate mesoderm + neural crest cells Coronary arteries - proximal Neural crest cells segments Coronary arteries - distal segments Proepicardial mesoderm Gut and gut derivatives Splanchnic (visceral) layer of lateral plate mesoderm Pupillary sphincter & dilator muscles, sweat and mammary gland muscles Ectoderm Transcriptional Control of Smooth Muscle Differentiation - Serum Response Factor (SRF) - \rightarrow Master transcription factor for smooth muscle development - → Activated (upregulated) by growth factor-induced phosphorylation pathways - Myocardin + MRTFs (myocardin-related transcription factors) - \rightarrow Act as coactivators of SRF - \rightarrow Drive expression of smooth muscle-specific genes Clinical Correlates of Muscle Development Condition Description / Key Features Partial/complete absence of muscle Common; usually not severe (e.g., palmaris longus, serratus anterior, quadratus femoris) Poland sequence Absence of pectoralis minor + partial loss of pectoralis major (sternal head). Often associated with nipple/areola displacement and digital anomalies (e.g. syndactyly, brachydactyly). Prune belly syndrome Absence of abdominal musculature \rightarrow thin abdominal wall. Frequently associated with urinary tract malformations \rightarrow abdominal distension \rightarrow atrophy of abdominal muscles. Muscular dystrophy Inherited disorders with progressive muscle wasting. Duchenne muscular dystrophy (DMD) Most common (1/4,000 male births). X-linked recessive → affects males. No functional dystrophin → severe, early onset (<5 yrs). Becker muscular dystrophy (BMD) Milder form, later onset (8-25 yrs). Reduced/abnormal dystrophin. Dystrophin Cytoplasmic protein → links cytoskeleton to extracellular matrix via dystrophin-associated complex.