Tuesday, August 19, 2025

B Development of the Muscular System

1. Origin of the Muscular System

Muscle Type Germ Layer Origin

Skeletal muscle Paraxial mesoderm (somites &

somitomeres)

Smooth muscle Visceral splanchnic mesoderm

around gut + ectoderm (pupil,

mammary, sweat glands)

Cardiac muscle Visceral splanchnic mesoderm

surrounding heart tube

2. Striated / Skeletal Musculature

Head Muscles

 Derived from seven somitomeres (paraxial mesoderm).

Axial, Limb & Body Wall Muscles

• Derived from somites \rightarrow initially form as somitomeres (occipital \rightarrow tailbud)

- ullet Somitomeres ullet form epithelial ball with a central cavity
 - \circ Ventral region \rightarrow becomes mesenchymal \rightarrow sclerotome (vertebrae & ribs)
 - Upper region → forms dermatome + 2 muscle forming regions:
 - Dorsomedial (DML)
 - Ventrolateral (VLL)

Formation of Myotome

- ullet Cells from DML + VLL migrate under dermatome ullet form dermomyotome
- ullet VLL cells migrate *into lateral plate mesoderm* o form:
 - Infrahyoid muscles
 - Abdominal wall muscles (rectus abdominis, internal/external oblique, transversus abdominis)
 - · Limb muscles
- ullet Remaining myotome cells ullet back muscles, shoulder girdle muscles, intercostals
- 3. Primaxial vs Abaxial Domains

Domain Components

Development al Signal Source

Primaxia Somite-derived muscle cells Neural tube

1 that remain near neural tube + notochord

Abaxial VLL cells that cross the lateral Lateral plate somitic frontier into lateral mesoderm plate mesoderm

1 Lateral somitic frontier

- Boundary between somite-derived & lateral plate mesoderm-derived components
- Marks:
 - Border between primaxial vs abaxial muscle precursors
 - Border between dermis of back (somite) vs dermis of body wall (lateral plate)
 - O Border in rib development:
 - Bony rib \rightarrow primaxial sclerotome
 - ullet Costal cartilage that attaches to sternum ightarrow abaxial sclerotome

4. Innervation

Muscle Type

Innervation

Epaxial muscles (back) Dorsal primary rami

Hypaxial muscles (body wall & limbs)

Ventral primary rami

New concept of primaxial vs abaxial is based on origin, not innervation — however, epaxial (back) muscles are still innervated by dorsal rami, hypaxial by ventral rami.

5. Differentiation of Skeletal Muscle & Tendons

- Myoblasts (muscle precursors) \rightarrow fuse \rightarrow long multinucleated fibers
- ullet Myofibrils form o cross-striations visible by 3rd month
- Tendons formed from sclerotome cells (adjacent to myotome)
- ullet Transcription factor: SCLERAXIS ullet essential for tendon development
- # Molecular Regulation of Muscle Development (High-

Yield Points)

1. Key Signaling Pathways & Myogenic Regulatory Factors (MRFs)

Signal	Source	Target / Effect
BMP4 + FGFs	Lateral plate mesoderm	Induce VLL cells to express MyoD
WNT proteins	Ectoderm & dorsal neural tube	Work with BMP4 to activate MyoD in VLL cells
SHH (Sonic Hedgehog)	Notochord & floor plate of neural tube	Acts (with WNT) on DML cells → induces MYFS + MyoD

3 Important:

- SHH does not act on VLL cells
- MyoD and MYFS are myogenic regulatory factors (MRFs) → transcription factors that activate skeletal muscle differentiation
- 2. Patterning of Muscles Role of Connective Tissue

Region

Source of Pattern-forming CT

Head

Neural crest cells

Cervical / Occipital

Somitic mesoderm

Body wall & Limbs

Parietal layer of lateral plate

mesoderm

 \bigcirc Myoblasts migrate into these regions \rightarrow pattern determined by the connective tissue, not by the myoblasts themselves.

3. Head Musculature

- All voluntary muscles in the head = paraxial mesoderm (somitomeres & somites)
 - Includes tongue, extraocular muscles, and pharyngeal arch muscles
- Exception \rightarrow Iris muscles (pupillary muscles) = derived from ectoderm of optic cup
- Patterning directed by neural crest-derived connective tissue

4. Limb Musculature

- Appears in 7th week as mesenchymal condensations at limb bud base
- Mesenchyme = from dorsolateral somite cells (migrating into limb bud)
- Patterning \rightarrow by connective tissue of lateral plate mesoderm (same source that forms limb bones)

S. Cardiac Muscle

Site

Feature	Description
Origin	Visceral (splanchnic) mesoderm around heart tube
Myoblasts	Do not fuse (unlike skeletal muscle)
Intercellular junctions	Become intercalated discs
Specialized bundles	Purkinje fibers \rightarrow conduct electrical impulses
6. Smooth Muscle	

Origin

Dorsal aorta & large arteries

Lateral plate mesoderm + neural crest cells

Coronary arteries - proximal Neural crest cells segments

Coronary arteries - distal segments

Proepicardial mesoderm

Gut and gut derivatives

Splanchnic (visceral) layer of lateral plate mesoderm

Pupillary sphincter & dilator muscles, sweat and mammary gland muscles

Ectoderm

Transcriptional Control of Smooth Muscle Differentiation

- Serum Response Factor (SRF)
 - \rightarrow Master transcription factor for smooth muscle development
 - → Activated (upregulated) by growth factor-induced phosphorylation pathways

- Myocardin + MRTFs (myocardin-related transcription factors)
 - \rightarrow Act as coactivators of SRF
 - \rightarrow Drive expression of smooth muscle-specific genes

Clinical Correlates of Muscle Development

Condition

Description / Key Features

Partial/complete absence of muscle

Common; usually not severe (e.g., palmaris longus, serratus anterior, quadratus femoris)

Poland sequence

Absence of pectoralis minor + partial loss of pectoralis major (sternal head). Often associated with nipple/areola displacement and digital anomalies (e.g. syndactyly, brachydactyly).

Prune belly syndrome

Absence of abdominal musculature \rightarrow thin abdominal wall. Frequently associated with urinary tract malformations \rightarrow abdominal distension \rightarrow atrophy of abdominal muscles.

Muscular dystrophy Inherited disorders with progressive muscle wasting.

Duchenne muscular dystrophy (DMD)

Most common (1/4,000 male births). X-linked recessive → affects males. No functional dystrophin → severe, early onset (<5 yrs).

Becker muscular dystrophy (BMD) Milder form, later onset (8-25 yrs). Reduced/abnormal dystrophin.

Dystrophin

Cytoplasmic protein → links cytoskeleton to extracellular matrix via dystrophin-associated complex.