- Embryology Respiratory System
- Formation of the Lung Buds
 - At ~4 weeks of development, the respiratory diverticulum (lung bud) appears as a ventral outgrowth from the foregut.
 - Its appearance and position are dependent on:
 - \circ 1 Retinoic acid (RA) produced by adjacent mesoderm \rightarrow
 - Upregulation of TBX4 transcription factor in the endoderm of the gut tube.
 - \circ TBX4 \rightarrow induces formation, growth, and differentiation of the developing lung.
 - Q Important MCQ Point

TBX4 is the key transcription factor responsible for initiating lung development.

- Germ layer origins:
 - \circ Endoderm \rightarrow epithelium of larynx, trachea, bronchi, and lungs.

- \circ Splanchnic mesoderm \rightarrow cartilage, muscle, and connective tissue of trachea and lungs.
- Separation of Lung Bud from the Foregut
 - Initially lung bud is in open communication with the foregut.
 - As the diverticulum grows caudally, two longitudinal ridges form \rightarrow tracheoesophageal ridges.
 - Fusion of these ridges forms the tracheoesophageal septum, which divides the foregut into:
 - Dorsal part → esophagus
 - Ventral part → trachea + lung buds
 - Communication with pharynx remains through the laryngeal orifice.
- Clinical Correlates

Tracheoesophageal Fistulas (TEFs) & Esophageal Atresia

- Cause: Abnormal partitioning of esophagus and trachea by tracheoesophageal septum.
- Incidence: ~1/3,000 births.

- Most common type (~90%):
 - Upper esophagus ends blindly
 - · Lower segment forms a fistula with trachea
- Other types:
 - \circ Isolated esophageal atresia \rightarrow 4%
 - \circ H-type TEF without esophageal atresia ightarrow 4%
 - \circ Remaining rare variations \rightarrow ~1% each

Associated Conditions

- Frequently associated with other congenital anomalies (33% have cardiac defects).
- · Part of VACTERL association:
 - Vertebral anomalies
 - Anal atresia
 - Cardiac defects
 - Tracheoesophageal fistula
 - Esophageal atresia
 - o Renal anomalies
 - · Limb defects

Complications

· Polyhydramnios:

- Swallowed amniotic fluid cannot reach the stomach/intestines in some TEF types.
- · Postnatal risks:
 - Gastric contents / amniotic fluid may enter trachea via fistula → pneumonitis, pneumonia
- Development of the Larynx

Germ Layer Origins

- ullet Endoderm o internal epithelial lining of the larynx
- Mesenchyme of 4th & 6th pharyngeal arches \rightarrow cartilages + muscles of larynx

Morphological Changes

- Rapid proliferation of arch mesenchyme causes the laryngeal opening to change:
 - \circ Initially \rightarrow sagittal slit
 - Later → becomes T-shaped
- Mesenchyme differentiates into thyroid, cricoid, and arytenoid cartilages, resulting in the adult appearance of the laryngeal orifice.

Recanalization Phase

- Laryngeal epithelium proliferates → temporarily occludes lumen
- Vacuolization & recanalization form laryngeal ventricles
 - \circ These are bordered by folds \rightarrow become false and true vocal cords

Innervation (A Frequently Asked)

- All laryngeal muscles derive from 4th & 6th arches \rightarrow supplied by Vagus nerve (CN X)
 - \circ Superior laryngeal nerve \rightarrow derivatives of 4th arch
 - \circ Recurrent laryngeal nerve \rightarrow derivatives of 6th arch
- Trachea, Bronchi, and Early Lung Development
 - ullet As the lung bud separates from the foregut ullet forms trachea + two bronchial buds
 - Week 5:
 - Each bronchial bud enlarges → right & left main

bronchi

- \circ Right \rightarrow forms 3 secondary bronchi (\rightarrow 3 lobes)
- \circ Left \rightarrow forms 2 secondary bronchi (\rightarrow 2 lobes)

Expansion of Lung Buds

- Grow caudally & laterally into pericardioperitoneal canals
- These canals gradually narrow and become separated by:
 - Pleuroperitoneal folds (→ separates from peritoneal cavity)
 - \circ Pleuropericardial folds (\rightarrow separates from pericardial cavity)
- ullet Remaining space o primitive pleural cavities

Pleura Formation

Structure Germ Layer Origin Fate

Mesoderm Splanchnic Visceral pleura covering lung mesoderm surface

Mesoderm lining Somatic Parietal pleura

the body wall mesoderm

Space between them

Pleural cavity

- Branching of Bronchial Tree
 - Secondary bronchi → divide dichotomously
 - Form:
 - 10 segmental (tertiary) bronchi in right lung
 - 0 8 segmental bronchi in left lung
 - $\circ \to \mathsf{basis}$ of bronchopulmonary segments
 - By 6th month $\rightarrow \approx 17$ generations of branches formed
 - After birth \rightarrow ~6 more generations occur
 - @ Regulation of branching = epithelialmesenchymal interactions

Signals originate in splanchnic mesoderm (e.g. FGF family)

 As branching continues, lungs gradually shift caudally \rightarrow at birth, tracheal bifurcation is at T4

level

Maturation of the Lungs

Stage Weeks Key Features

Pseudoglandular 5-16 wk Formation of

terminal

bronchioles

only; no

respiratory

bronchioles

or alveoli

Canalicular 16-26 wk Respiratory

bronchioles

 $form \rightarrow$

divide into

alveolar

ducts

Terminal sac 26 wk - birth

period

Terminal sacs

(primitive

alveoli)

develop;

capillaries

contact

epithelium

Alveolar period 8 months - childhood

Formation of mature alveoli with well-developed epithelium-capillary contacts

Maturation of the Lungs

Canalicular Phase (up to 7th month)

- Bronchioles continuously divide into smaller respiratory bronchioles
- · Vascular supply increases steadily
- ullet Each respiratory bronchiole ightarrow 3-6 alveolar ducts
- Ducts terminate in terminal sacs (primitive alveoli)
 → lined by flat alveolar cells closely associated with capillaries
- End of 7th month \rightarrow enough terminal sacs & capillaries present \rightarrow premature infant can survive

Late Fetal / Terminal Sac Period (last 2 months +

postnatal years)

- Number of terminal sacs increases steadily
- ullet Type I alveolar epithelial cells become thinner ullet capillaries protrude into sacs
- Formation of blood-air barrier (thin epithelium + capillary endothelium)
- Type II alveolar epithelial cells appear (~end of 6th month)
 - \circ Function \rightarrow produce surfactant
 - \circ Surfactant = phospholipid-rich fluid $\rightarrow \downarrow$ surface tension at air-alveolar interface

Before Birth

- Lungs are filled with fluid containing:
 - O High chloride, little protein
 - Mucus from bronchial glands
 - Surfactant (from type II cells)
- ↑ surfactant production near 34th week
 - \circ Small amount enters amniotic fluid \rightarrow activates

macrophages

- \circ Macrophages migrate \rightarrow produce IL-I β
- $\circ \to \uparrow$ prostaglandin production \to initiates uterine contractions
 - Fetal surfactant may help trigger labor

Fetal Breathing Movements

- · Begin before birth
- · Cause aspiration of amniotic fluid
- Help stimulate lung development and train respiratory muscles

At Birth

- Fluid in alveoli is rapidly absorbed (blood/lymph vessels)
- ullet Surfactant remains on alveolar surface \to prevents collapse during expiration
- ullet First breath o lungs expand and fill pleural cavities
- Clinical Correlate Surfactant and RDS

Condition Mechanism / Feature

Insufficient surfactant $\rightarrow \uparrow$ surface Respiratory

 $tension \rightarrow alveoli collapse$ Distress

Syndrome (RDS) (atelectasis) during expiration

~20% of deaths in premature Frequency

newborns

Alveoli partially collapsed, contain Histology

protein-rich fluid, hyaline membranes,

lamellar bodies

Artificial surfactant therapy + Management

Maternal glucocorticoids (stimulate

fetal surfactant production)

Congenital Lung Abnormalities

Description / Significance Abnormality

Blind-ending Very rare trachea /

absence of lungs

/ lung agenesis

Abnormal More common; may \rightarrow

bronchial supernumerary lobules (usually branching clinically insignificant, but may complicate bronchoscopy)

Ectopic lung lobes Arise from trachea or esophagus \rightarrow due to extra respiratory buds

Congenital lung cysts

Dilated terminal or larger bronchi \rightarrow honeycomb appearance on imaging; drain poorly, often \rightarrow chronic infections

- Postnatal Lung Development
 - ullet Respiratory movements at birth ullet air enters lungs ullet expands alveoli
 - Lung growth after birth:
 - Mainly due to increase in number of respiratory bronchioles and alveoli
 - o Only ~1/6 of adult alveoli are present at birth
 - Remaining alveoli form over the first ~10 years of life