Third Month To Birth: The Fetus and Placenta

Saturday, August 9, 2025

Fetal Period (9th Week to Birth)

Definition

- Time frame: Beginning of 9th week \rightarrow Birth.
- Key features:
 - o Maturation of tissues and organs.
 - Rapid growth of body.

Measurement of Fetal Size

- Crown-Rump Length (CRL): Sitting height (vertex \rightarrow buttocks).
- \bullet Crown-Heel Length (CHL): Standing height (vertex \rightarrow heel).
- Measurements in cm correlate with fetal age in weeks/months.
- Growth pattern:
 - o Length: Rapid in 3rd-5th months.
 - Weight: Most rapid in last 2 months.

Pregnancy Duration

- From LNMP: ~280 days (40 weeks).
- From Fertilization: ~266 days (38 weeks). (Exam Tip: Age is calculated from fertilization in developmental discussions.)

Monthly Developmental Changes

Third Month (Weeks 9-12)

- · Head proportion:
 - O Start of month: ~ 1/2 CRL
 - End of month: Growth of body accelerates, head growth slows.
- Facial changes:
 - \circ Eyes move from lateral \rightarrow ventral position.
 - Ears move to definitive position at side of head.
 - o Face becomes more human-like.
- · Limbs:
 - Reach relative proportions, but lower limbs slightly shorter & less developed than upper

limbs.

• Ossification:

 Primary ossification centers in long bones & skull appear by week 12.

• External genitalia:

O Distinct enough to determine sex via ultrasound.

• Gut development:

Herniated intestinal loops (present at week 6)
 retract into abdominal cavity by week 12.

• Reflex activity:

 Present in aborted fetuses — shows muscle activity.

Fourth & Fifth Months (Weeks 13-20)

- Length: Rapid increase CRL ~15 cm by end of 5th month (~½ newborn's length).
- Weight: Minimal gain (<500 g).
- Hair:

- Fine hair (lanugo) covers body.
- Eyebrows & scalp hair visible.
- · Fetal movements:
 - o Felt by mother during 5th month (quickening).

Second Half of Pregnancy (Weeks 21-40)

- Weight gain:
 - \circ Significant; last 2.5 months \rightarrow 50% of term weight (~3200 g) added.
- · Sixth Month:
 - O Skin: Red & wrinkled (little connective tissue).
 - Survival difficult if born early respiratory &
 CNS not fully coordinated.
- 6.5-7 Months:
 - CRL ~25 cm, weight ~1100 g.
 - Survival chance ~40%.
- Last 2 Months:
 - \circ Fat deposition \rightarrow rounded contours.

 Skin covered by vernix caseosa (whitish, fatty; sebaceous gland secretions).

End of Ninth Month (Full Term)

- Head: Largest circumference (important for birth canal passage).
- Measurements:
 - Weight: 3000-3400 g.
 - CRL: ~36 cm.
 - CHL: ~50 cm.
- Sexual characteristics: Pronounced; testes should be in scrotum.

Time of Birth & Gestational Age

Precise Timing

- Actual duration from fertilization: 266 days / 38 weeks.
- Obstetric calculation (LNMP): 280 days / 40 weeks from 1st day of Last Normal Menstrual Period (LNMP).
- Fertilization window:

- O Docyte fertilized within ~12 hours of ovulation.
- Sperm can survive up to 6 days before ovulation.
- \circ Most pregnancies occur when intercourse happens within 6 days before ovulation \rightarrow day of ovulation.

Challenges in Dating Pregnancy

- Patient recall: Fertilization day hard to determine —
 often seen by doctor after 2 missed periods.
- Implantation bleeding: May occur ~14 days after fertilization \rightarrow can be mistaken for menstruation.
- Cycle irregularity: Can lead to major miscalculations.
- Normal delivery window: Within ±10-14 days of calculated date.
- Premature: Born before 37 weeks.
- Postmature: Born significantly after calculated date.

Fetal Age Determination Methods

- Early pregnancy (7th-14th week):
 - \circ CRL (Crown-Rump Length) via ultrasound \to

accuracy: ±1-2 days.

- Mid-late pregnancy (16th-30th week):
 - O Biparietal diameter (BPD).
 - · Head circumference.
 - · Abdominal circumference.
 - · Femur length.
- Importance: Helps plan delivery, detect growth restrictions, anticipate complications (e.g., small pelvis, birth defects).

Clinical Correlates: Low Birth Weight & IUGR

Normal Birth Size

- Weight: 2,500-4,000 g (average ~3,200 g).
- Length: ~51 cm (20 in).

Low Birth Weight (LBW)

- Definition: Weight < 2,500 g, regardless of gestational age.
- Main causes:
 - o Preterm birth (<37 weeks).

o Intrauterine Growth Restriction (IUGR).

Intrauterine Growth Restriction (IUGR)

- Definition: Failure to reach optimal intrauterine growth \rightarrow pathologically small.
- Small for Gestational Age (SGA):
 - O Birth weight < 10th percentile for gestational age.
 - May be pathologic (IUGR) or constitutional (healthy small).
 - Important to differentiate to avoid unnecessary high-risk interventions.

Epidemiology & Risks

- Incidence: ~10% of newborns.
- Risks:
 - Neurological problems.
 - Congenital malformations.
 - · Meconium aspiration.
 - O Hypoglycemia, hypocalcemia.
 - Respiratory distress syndrome (RDS).
- Long-term risks (Barker's Hypothesis):

- · Adult obesity.
- O Hypertension.
- O Hypercholesterolemia.
- O Cardiovascular disease.
- Type 2 diabetes.

Causes of IUGR

- · Genetic: Chromosomal abnormalities.
- Maternal:
 - o Poor health (hypertension, renal, cardiac disease).
 - · Malnutrition, low socioeconomic status.
 - O Smoking, alcohol, drug use.
- Infections: Rubella, CMV, toxoplasmosis, syphilis.
- Placental: Placental insufficiency.
- Multiple births: Twins, triplets.
- Environmental teratogens.
- Ethnicity: Higher in blacks than whites.

Growth-Promoting Factors

Prenatal Growth

- Insulin-Like Growth Factor I (IGF-I):
 - Mitogenic + anabolic effects.
 - Expressed by fetal tissues; serum levels correlate with growth.
 - IGF-I gene mutations → IVGR persisting after birth.

Postnatal Growth

- · Growth Hormone (GH):
 - \circ Acts via GH receptor (GHR) \rightarrow stimulates IGF-I synthesis.
 - GHR mutations → Laron's Dwarfism:
 - Marked short stature.
 - Sometimes blue sclera.
 - Little/no IUGR (because fetal growth does not depend on GH).

Fetal Membranes & Placenta - Trophoblast Changes

Placental Origin

- Fetal component:
 - \circ Trophoblast + extraembryonic mesoderm ightarrow form chorionic plate.

- Maternal component:
 - Uterine endometrium (decidua basalis).

Development by Beginning of 2nd Month

- Trophoblast features:
 - \circ Numerous secondary and tertiary villi \to radial appearance.
- Stem (anchoring) villi:
 - \circ Extend from chorionic plate mesoderm \rightarrow cytotrophoblast shell.
- · Villous structure:
 - Outer layer: Syncytiotrophoblast.
 - Beneath: Cytotrophoblast layer.
 - Core: Vascular mesoderm (with developing capillaries).

Extraembryonic Vascular System Formation

- 1. Capillaries form inside villous core.
- 2. Connect with capillaries in chorionic plate and connecting stalk.

3. Together form extraembryonic vascular system — links fetus to placenta.

Maternal Blood Supply to Placenta

- Source: Uterine spiral arteries.
- Mechanism of blood entry into intervillous spaces:
 - Endovascular invasion by cytotrophoblast cells.
 - Origin: Ends of anchoring villi.

• Process:

- 1. Cytotrophoblasts replace maternal endothelial cells in spiral arteries.
- 2. Undergo epithelial-to-endothelial transition.
- 3. Spiral arteries transform:
 - Small-diameter, high-resistance → largediameter, low-resistance.
 - Increases maternal blood flow to intervillous spaces.

Villous Maturation

· 3rd-4th Month:

- Small free villi grow from stem villi into intervillous spaces.
- Initially primitive: multiple layers (syncytium, cytotrophoblast, connective tissue, endothelium).
- By early 4th Month:
 - Cytotrophoblast cells & some connective tissue cells disappear from most villi.
 - Exchange barrier reduced to:
 - 1. Syncytiotrophoblast
 - 2. Endothelial wall of fetal capillaries
 - \circ Barrier becomes thinner \rightarrow more efficient exchange.

Syncytial Knots

- Definition: Large pieces of syncytium (with multiple nuclei) that break off into maternal intervillous blood.
- ullet Fate: Enter maternal circulation ullet degenerate without symptoms.
- Importance: Sign of normal villous turnover.

Cytotrophoblast Regression

- ullet Progresses from smaller villi o larger villi.
- Some cytotrophoblast always persists in large villi (structural support), but not involved in exchange.

Clinical Correlate - Preeclampsia

Definition

- Disorder of pregnancy characterized by:
 - Maternal hypertension
 - Proteinuria
 - O Due to reduced organ perfusion.

Epidemiology

- Occurs in ~5% of pregnancies.
- Can progress to eclampsia (preeclampsia + seizures).
- Leading cause of maternal mortality in USA.

Onset & Risks

- Sudden onset: 20 weeks gestation \rightarrow term.
- Risk factors:

- 1. Previous preeclampsia
- 2. Nulliparity (first pregnancy)
- 3. Obesity
- 4. Family history
- 5. Multiple gestation (twins or more)
- 6. Medical conditions (HTN, diabetes)
- 7. Hydatidiform mole \rightarrow tends to occur early in pregnancy

Consequences

- Fetal growth restriction.
- Fetal death.
- · Maternal death.

Pathophysiology (Key Exam Point)

- Probable trophoblastic disorder.
- Cytotrophoblast cells fail to undergo normal epithelial-to-endothelial transformation.
- · Result:
 - o Poor invasion of maternal spiral arteries.
 - Arteries remain high-resistance, narrowdiameter.

- · Reduced uteroplacental blood flow.
- Exact mechanism linking to HTN & proteinuria still unclear.

Treatment

- Only definitive cure = Delivery of baby.
- Challenge: Balancing maternal safety with fetal maturity to avoid complications of preterm birth.

Exam Tip:

Preeclampsia vs Eclampsia -

- Preeclampsia = HTN + proteinuria
- Eclampsia = Preeclampsia + seizures

Chorion Frondosum & Decidua Basalis

Early Chorion (First Weeks)

· Villi cover entire chorionic surface.

Later Development

• Embryonic pole:

- \circ Villi persist, branch, and expand \rightarrow Chorion frondosum ("bushy chorion").
- Abembryonic pole:
 - Villi degenerate → smooth surface = Chorion laeve.

Decidua (Functional Endometrium in Pregnancy)

- Decidua basalis:
 - · Located over chorion frondosum.
 - Decidual plate: Compact layer of large decidual cells rich in lipids & glycogen.
 - · Firmly attached to chorion.
- Decidua capsularis:
 - O Covers abembryonic pole.
 - Becomes stretched & degenerates as pregnancy progresses.
- Decidua parietalis:
 - O Lines remainder of uterine wall.

Fusion Events

- Chorion laeve contacts decidua parietalis \rightarrow fusion \rightarrow obliteration of uterine lumen.
- Only chorion frondosum + decidua basalis form functional placenta.
- Amnion + chorion fuse → amniochorionic membrane.
 - Obliterates chorionic cavity.
 - \circ Ruptures at labor \rightarrow "water breaking".

Structure of the Placenta

By Beginning of 4th Month

- Two components:
 - 1. Fetal portion \rightarrow Chorion frondosum
 - 2. Maternal portion \rightarrow Decidua basalis
- Fetal side: Bordered by chorionic plate.
- Maternal side: Bordered by decidual plate (part of decidua basalis).
- Junctional zone:
 - Trophoblast + decidual cells intermingle.
 - o Contains decidual cells + syncytial giant cells.

- Rich in amorphous extracellular material.
- Most cytotrophoblast cells have degenerated by this stage.

Intervillous Spaces

- · Located between chorionic plate & decidual plate.
- Filled with maternal blood.
- Origin: Derived from lacunae in syncytiotrophoblast.
- Lining: Syncytium (fetal origin).
- · Villous trees extend into maternal blood lakes.

Decidual Septa

- Formed during 4th-5th months.
- Project into intervillous spaces but do not reach chorionic plate \rightarrow spaces remain interconnected.
- Core: Maternal tissue.
- ullet Surface: Syncytial layer ullet always separates maternal blood from fetal tissue.
- Function: Divide placenta into 15-20 compartments =

Cotyledons.

Placental Growth

- Enlarges in proportion to uterus.
- Covers 15-30% of internal uterine surface.
- Thickening due to arborization of villi, not deeper invasion into maternal tissue.

Full-Term Placenta

- Shape: Discoid.
- Diameter: 15-25 cm.
- Thickness: ~3 cm.
- Weight: 500-600 g.
- Expulsion: ~30 min after birth (afterbirth).
- Maternal surface:
 - o 15-20 cotyledons (bulging areas).
 - o Grooves between cotyledons = decidual septa.
- Fetal surface:

- \circ Covered by chorionic plate \rightarrow amnion externally.
- O Chorionic vessels converge toward umbilical cord.
- Cord attachment: Usually eccentric, sometimes marginal, rarely velamentous (insertion into membranes outside placenta).

Circulation of the Placenta

Maternal Circulation

- 80-100 spiral arteries:
 - Pierce decidual plate.
 - Open into intervillous spaces → maternal blood under pressure bathes villi with oxygenated blood.
- · Return flow:
 - \circ Blood drains toward decidua \rightarrow endometrial veins \rightarrow maternal circulation.

Intervillous Spaces

- Mature placenta \rightarrow ~150 mL maternal blood at a time.
- Replenished: 3-4× per minute.

• Blood bathes chorionic villi \rightarrow exchange of gases, nutrients, waste.

Surface Area for Exchange

- Chorionic villi surface area: 4-14 m².
- Not all villi participate \rightarrow only those with fetal vessels in close contact with syncytium.
- Brush border (microvilli) on syncytium $\rightarrow \uparrow$ surface area $\rightarrow \uparrow$ exchange rate.

Placental Barrier

Definition & Type

- Placental membrane: separates maternal blood in intervillous spaces from fetal blood in chorionic villi.
- Not a true barrier \rightarrow many substances pass freely.
- Human placenta = Hemochorial type → maternal blood in direct contact with chorionic tissue.
- Normally no mixing of maternal & fetal blood, but microscopic defects allow occasional fetal RBC escape.

Initial 4 layers (early pregnancy):

- 1. Endothelial lining of fetal vessels.
- 2. Connective tissue in villus core.
- 3. Cytotrophoblastic layer.
- 4. Syncytiotrophoblast.

From 4th month onward:

- Membrane thins \rightarrow endothelial lining directly contacts syncytium.
- Purpose: ↑ efficiency of maternal-fetal exchange.

Clinical Correlation - Hemolytic Disease of the Fetus & Newborn (HDFN)

Cause

- Some fetal RBCs cross placenta → enter maternal circulation.
- Maternal immune system may recognize foreign RBC antigens \rightarrow isoimmunization.
- Antibodies attack fetal RBCs \rightarrow hemolysis \rightarrow anemia.

Terminology

- Old term: Erythroblastosis fetalis \rightarrow used when severe anemia caused \uparrow erythroblast production.
- Preferred term: Hemolytic disease of the fetus and newborn (HDFN).

Severe Complication

- Fetal hydrops:
 - O Generalized edema + effusions into body cavities.
 - May cause fetal death if untreated.

Rh (CDE) Group - Most Dangerous

- Rh (D antigen) \rightarrow high immunogenicity.
- · Mechanism:
 - Mother Rh-negative, fetus Rh-positive.
 - Fetal blood enters maternal circulation (e.g., microbleeds in placenta, childbirth).
 - \circ First exposure \rightarrow sensitization.
 - \circ Subsequent pregnancies \rightarrow earlier & more severe hemolysis.

Prevention

• Screen all pregnant women early for:

- ORh type.
- Anti-D antibodies.
- In Rh-negative women without antibodies:
 - o Rh immunoglobulin (RhIg) at:
 - 28 weeks gestation.
 - After potential feto-maternal bleed (amniocentesis, miscarriage).
 - Post-delivery (if newborn Rh-positive).
- Since RhIg introduction (1968) \rightarrow HDFN from Rh almost eliminated in the USA.

ABO Incompatibility

- Can also cause HDFN, but milder.
- ~20% pregnancies \rightarrow maternal ABO incompatibility.
- Only ~5% clinically affected.
- · Postnatal treatment effective.

Functions of the Placenta

- 1. Exchange of Metabolic & Gaseous Products
 - Gases:

- \circ O_2 , CO_2 , $CO \rightarrow$ simple diffusion.
- \circ Term fetus extracts 20-30 mL O_2/min from maternal circulation.
- Oxygen delivery depends mainly on placental blood flow, not just diffusion capacity.

• Nutrients & Electrolytes:

- \circ Amino acids, free fatty acids, carbohydrates, vitamins \rightarrow rapid transfer.
- Transfer ↑ as pregnancy advances.

• Maternal Antibody Transmission:

- o IgG transport begins ~14 weeks.
- o Passive immunity against maternal infections.
- Neonate makes own IgG, but adult levels reached by ~3 years.
- Complement system components made by late 1st trimester.

2. Hormone Production (all in syncytiotrophoblast)

Hormone	Timing	Function
Progesterone	From 4th month	Maintains pregnancy; corpus luteum no

longer essential.
Estrogens (esp. Gradually ↑, Uterine growth,
estriol) peaks near mammary gland
term development.

hCG First 2 Maintains corpus months luteum; detectable in urine → pregnancy test.

Somatomammo Throughout Gives fetus priority for tropin pregnancy glucose; diabetogenic effect in mother; lactogen) promotes breast development for lactation.

Clinical Correlates - Placental Barrier Limitations

Hormonal Transfer

- Freely crosses: most maternal steroid hormones.
- Slowly crosses: thyroxine.
- Synthetic hormones:
 - Some progestins → may masculinize female fetus.

- \circ Diethylstilbestrol (DES) \rightarrow crosses easily; causes:
 - Clear-cell carcinoma of vagina.
 - Cervix & uterus malformations in females.
 - Testicular abnormalities in males.

Infections Crossing Placenta

- Rubella, Cytomegalovirus, Coxsackie, Variola, Varicella, Measles, Poliovirus.
- May cause fetal infections → cell death, birth defects.

Drugs Crossing Placenta

- ullet Most drugs & metabolites ullet cross freely; many are teratogenic.
- · Heroin & cocaine: cause fetal addiction.

Amnion & Umbilical Cord Development

- · Primitive Umbilical Ring (5th week):
 - Contains:
 - 1. Connecting stalk \rightarrow all antois + umbilical vessels (2 arteries, I vein)
 - 2. Yolk stalk (vitelline duct + vessels)

- 3. Canal between intra- and extraembryonic cavities
- Amnion Growth \rightarrow Envelops connecting & yolk stalks \rightarrow primitive umbilical cord
- Early cord contents: yolk stalk, umbilical vessels, intestinal loops, allantois remnant
- By 3rd month:
 - \circ Amnion contacts chorion \rightarrow chorionic cavity obliterated
 - Yolk sac shrinks/obliterates
 - \circ Intestinal loops return to abdomen \rightarrow cavity in cord gone
 - Final cord: 2 arteries + I vein in Wharton's jelly
- · Wharton's jelly: Proteoglycan-rich; protects vessels
- Artery walls: Muscular + elastic → rapid constriction after cord clamping

Placental Changes Near Term

Signs of \downarrow exchange capacity:

1. ↑ Fibrous tissue in villus core

- 2. Thickened fetal capillary basement membranes
- 3. Obliterated villous capillaries
- 4. Fibrinoid deposition \rightarrow infarction of intervillous lake or whole cotyledon

Amniotic Fluid

- Source: Mostly maternal blood; partly from amniotic cells
- · Volume:
 - \circ 10 wks \rightarrow 30 mL
 - \circ 20 wks \rightarrow 450 mL
 - \circ Term \rightarrow 800-1000 mL
- Functions:
 - 1. Cushion from trauma
 - 2. Prevent adhesion to amnion
 - 3. Allow movement
- Turnover: Replaced every ~3 hrs

- · By 5th month:
 - o Fetus swallows ~400 mL/day
 - Fetal urine (mostly water) contributes
 - · Placenta handles waste removal
- During labor: Amniochorionic membrane → hydrostatic wedge for cervical dilation

Clinical Correlates

Umbilical Cord Abnormalities

- Normal: 2 arteries, I vein; 50-60 cm long; I-2 cm diameter
- Length:
 - \circ Short \rightarrow may cause placental detachment during delivery
 - Long → may wrap around neck (usually harmless)
- Single umbilical artery (~0.5% births):
 - o 20% risk of cardiac/vascular defects
 - Cause: agenesis or early degeneration

Amniotic Bands

- ullet Tear in amnion o fibrous bands
- May wrap around fetal parts → amputations, constrictions, craniofacial defects

Amniotic Fluid Disorders

- Polyhydramnios (>1.5-2 L)
 - Causes: idiopathic (35%), maternal diabetes (25%), fetal CNS defects (\pm swallowing; e.g., anencephaly), GI atresia (e.g., esophageal)
- Oligohydramnios (<400 mL)
 - Causes: renal agenesis (↓ urine), amniotic leak
 - Complications: fetal compression (clubfoot), lung hypoplasia
- PROM (Premature rupture of membranes)
 - Before labor; ~10% pregnancies
 - \circ Preterm PROM (<37 wks): ~3% pregnancies \rightarrow major cause of preterm labor
 - Risks: prior PROM, prematurity, Black race, smoking, infection, severe polyhydramnios

Fetal Membranes in Twins

Multiple Gestations - General Facts

- Current frequency: >3% of all live births (USA)
- Twin rate in USA (2008): 32.6 per 1,000 births
- Increase due to:
 - 1. ↑ Maternal age at childbirth
 - 2. ↑ Fertility treatments (ART, ovulation induction)
- I. Dizygotic (Fraternal) Twins
 - Incidence: ~40% of twins
 - · Mechanism:
 - \circ 2 oocytes ovulated \rightarrow fertilized by 2 different sperm
 - \circ Genetically distinct, like regular siblings \to may be same or opposite sex
 - Membranes & Placenta:
 - Usually: separate placenta, chorion, and amnion (dichorionic diamniotic)
 - \circ Sometimes: placentas/chorions fuse \to possible erythrocyte mosaicism (RBC exchange via

vascular anastomoses)

- Risk Factors:
 - Maternal age (↑ incidence; doubles at ~35 years)
 - Fertility procedures (ART, gonadotropins)
- 2. Monozygotic (Identical) Twins
 - Incidence: 3-4 per 1,000 births (constant worldwide)
 - ullet Mechanism: Single zygote o splits at various stages

Placenta Charian Amnian

Examp

Timing of Splitting & Resulting Membranes

Stage of

splitting	riacenta		KIMI)OII	le
2-cell stage (very early)	Separate	Separate	Separate	Dichor ionic diamni otic
Early blastocyst (inner cell mass splits)	Common	Common	Separate	Monoc horion ic diamni otic

Bilaminar	Common Common	Common	Monoc
germ disc			horion
(before			ic
primitive			monoa
streak)			mnioti
			c

- Blood supply: Usually balanced even if placenta is shared
- Rare: Monoamniotic $\rightarrow \uparrow$ risk of cord accidents

3. Higher-Order Multiples

- Triplets: ~I per 7,600 pregnancies
- Quadruplets, quintuplets: rarer,
 † with fertility drugs (gonadotropins) and ART

Clinical Correlates in Twins

A. General Risks

- ↑ Perinatal mortality & morbidity
- ~60% born preterm
- ↑ Low birth weight incidence
- Infant mortality = $\sim 3 \times$ higher than singletons

B. Vanishing Twin Syndrome

- One fetus dies in utero (first trimester/early second)
- Mechanisms:
 - · Resorption
 - Fetus papyraceus (compressed remains)

C. Twin-Twin Transfusion Syndrome (TTTS)

- Occurs in ~15% of monochorionic monozygotic twins
- Cause: Unbalanced placental vascular anastomoses

 →
 - \circ Donor twin: reduced blood flow \to smaller, anemia
 - \circ Recipient twin: excess blood \rightarrow larger, polycythemia
- Prognosis: Poor \rightarrow 50-70% risk of death of both twins

D. Conjoined Twins

 Due to partial splitting of primitive node/streak at later stage

- Classification: by nature & degree of union (thoracopagus, pygopagus, craniopagus, etc.)
- May be joined by skin bridge or liver bridge
- Possible cause: misexpression of Goosecoid gene
- Famous example: Chang and Eng (joined at abdomen; lived normal adult lives)

Dizygotic Twins - Hormonal Influence

- Brother-sister pairs:
 - Testosterone transfer from male twin to female twin (via shared maternal environment → amniotic fluid/placental circulation)
 - o Effects on female twin:
 - Square jaw
 - Larger teeth
 - Better spatial ability & ball skills
 - ↓ Marriage likelihood (-15%)
 - ↓ Fertility (~25% fewer children)

Parturition (Birth)

1. Pre-labor Uterine Changes

- Gestational weeks 34-38: Myometrium unresponsive to birth signals
- Last 2-4 weeks:
 - \circ Upper uterus \rightarrow myometrium thickens
 - \circ Lower uterus & cervix \rightarrow softens & thins (cervical ripening)

2. Stages of Labor

Stage	Events	Main Forces
Stage I	Effacement (thinning) + dilatation of cervix to full	Uterine contractions → amniotic sac or fetal head presses on cervix
Stage 2	Delivery of fetus	Uterine contractions + intra- abdominal pressure from abdominal
Cl . 2		muscles
Stage 3	Delivery of placenta & fetal	Uterine

contractions +
intraabdominal
pressure

3. Mechanism of Uterine Contractions

- Upper uterus: Retracts → lumen progressively smaller
- Lower uterus: Expands → directs fetal movement downward
- Frequency:
 - Early: ~10 min apart
 - Late (Stage 2): <1 min apart, lasting 30-90 sec
- ullet Pulsatile pattern essential \to prevents prolonged interruption of uteroplacental blood flow

Clinical Correlates - Preterm Birth

Definition: Birth before 37 completed weeks

- Incidence (USA): ~12% of births
- Significance:

- · Leading cause of infant mortality
- Major contributor to morbidity

Causes:

- 1. Preterm PROM (Premature rupture of membranes)
- 2. Premature onset of labor
- 3. Pregnancy complications \rightarrow indicated early delivery

Risk Factors:

- · Previous preterm birth
- Black race
- Multiple gestations
- Maternal infections:
 - Periodontal disease
 - Bacterial vaginosis
- Low maternal BMI

Proposed Mechanisms of Labor Initiation

 Retreat from maintenance: Withdrawal of pregnancy-supporting factors (e.g., hormones)

- Active induction: Stimulatory factors acting on uterus
- · Likely combination of both

Here's how to tackle these problems step-by-step using embryology reasoning and clinical application.

Exercise Problems

Problem 1

Q: Ultrasound at 7 months \rightarrow excess fluid in amniotic cavity.

A: Polyhydramnios

Definition:

- Polyhydramnios = Excess amniotic fluid
- Criteria: Amniotic fluid index (AFI) > 24 cm OR single deepest vertical pocket > 8 cm

Causes:

1. Fetal swallowing defect (commonest cause)

- \circ Anencephaly \rightarrow no swallowing reflex
- Esophageal/intestinal atresia → fluid cannot pass to stomach/intestines
- 2. Maternal diabetes mellitus → fetal polyuria from osmotic diuresis
- 3. Multiple gestations
- 4. Fetal anemia $\rightarrow \uparrow$ cardiac output $\rightarrow \uparrow$ urine production
- 5. Idiopathic (~50% cases)

Mechanism:

- Normally \rightarrow amniotic fluid is swallowed by fetus \rightarrow absorbed in GIT \rightarrow transferred to maternal circulation via placenta.
- In swallowing defect or blockage, fluid accumulates

 → polyhydramnios.

Problem 2

Q: Exposure to toluene at 3rd week gestation \rightarrow "placenta protects against toxins" — Is this correct?

A: Incorrect

Why?

- ullet Placenta is not an absolute barrier ullet many toxins, drugs, viruses cross.
- 3rd week = early embryonic period (gastrulation, early organ primordia) → high teratogenic vulnerability.
- Toluene = lipophilic organic solvent \rightarrow easily crosses placenta by diffusion \rightarrow can cause fetal toxicity & malformations.

Key points about placenta as barrier:

- Effective for: Some bacteria, large molecules (e.g., most proteins)
- Ineffective for:
 - Lipid-soluble toxins (e.g., alcohol, organic solvents, some pesticides)
 - Viruses (rubella, CMV, HIV)
 - o Many drugs (thalidomide, warfarin)
- In first trimester, teratogen exposure can cause major structural malformations.

✓ Final Answers:

- Polyhydramnios often due to fetal swallowing defects (e.g., anencephaly, esophageal atresia), maternal diabetes, multiple gestations, or idiopathic causes.
- 2. No placenta is not an absolute barrier; toluene can cross and harm the developing embryo, especially during the critical early weeks.