

Vibrio

Sunday, August 3, 2025 1:03 PM

◆ VIBRIO - Overview

◆ Diseases Caused

- *Vibrio cholerae* → *Cholera* (severe watery diarrhea)
- *Vibrio parahaemolyticus* → Diarrhea after eating raw/undercooked seafood
- *Vibrio vulnificus* → Cellulitis and sepsis, especially after wound exposure to seawater

◆ Important Properties of Vibrio

◆ General Characteristics

- Shape: Curved, comma-shaped
- Gram status: Gram-negative rods
- Oxygen requirement: Facultative anaerobes
- Motility: Motile with polar flagella

◆ Cholera-Causing Strains

- Only O1 and O139 serogroups cause epidemic cholera
 - These produce cholera toxin
 - Toxin gene carried by lysogenic bacteriophage

◆ Serogroup Details

- O1 serogroup:

- Biotypes: *Classic* and *El Tor*
- Serotypes: *Ogawa*, *Inaba*, *Hikojima*
 - Biotypes = biochemical differences
 - Serotypes = antigenic differences

- O139 serogroup:

- First appeared in 1992, caused epidemics in India & Bangladesh
- Identified by O139 polysaccharide antigen

◆ Non-O1 Strains

- Do not cause cholera, but may cause milder diarrhea
- Lack cholera toxin gene (not lysogenized)

◆ Marine Vibrios

- *V. parahaemolyticus* & *V. vulnificus*

- Found in warm, salty seawater
- Halophilic: Require high NaCl concentration

◆ *Vibrio cholerae* – Pathogenesis & Epidemiology

◆ Transmission

- Fecal-oral route, mainly via contaminated water & food
- Common in areas with:
 - Poor sanitation
 - Overcrowding
 - Malnutrition
 - Inadequate medical care
- Asymptomatic human carriers:
 - In incubation or convalescence
- Animal reservoirs: Marine shellfish (e.g., shrimp, oysters)

◆ Epidemics

- 1960s-70s: Began in Southeast Asia, spread globally
- 1991: Outbreak in Peru, spread to Central & South America
- Most isolates were:

- El Tor biotype, usually Ogawa serotype

◆ High-Yield Table: Pathogenesis Comparison

Organism	Type of Pathogen	Typical Disease	Site of Infection	Main Therapy
is				

Vibrio cholerae	Toxigenic	Watery diarrhea	Small intestine	Fluid replacement
-----------------	-----------	-----------------	-----------------	-------------------

Campylobacter jejuni	Inflammatory	Bloody diarrhea	Colon	Antibiotics
----------------------	--------------	-----------------	-------	-------------

Helicobacter pylori	Inflammatory	Gastritis, peptic ulcer	Stomach, duodenum	Antibiotics
---------------------	--------------	-------------------------	-------------------	-------------

◆ Pathogenesis of Cholera

◆ Essential Requirements

- Colonization of small intestine

- Secretion of enterotoxin (choleragen)

◆ Resistance to Infection

- Large bacterial dose required (due to sensitivity to stomach acid)

- Increased susceptibility:

- Patients on antacids

- Gastrectomy patients (\downarrow stomach acid)

◆ Mucosal Adherence

- Bacteria adhere to brush border of intestinal epithelium

- Use of mucinase enzyme:

- Degrades protective mucosal glycoprotein layer

- Facilitates colonization

◆ Cholera Toxin (Choleragen)

◆ Structure

- AB exotoxin

- A subunit (active) → Enters cytosol, catalyzes ADP-ribosylation
- B subunit (binding) → Pentamer; binds GM1 ganglioside receptor

◆ Mechanism of Action

1. B subunit binds GM1 ganglioside on enterocyte surface
2. A subunit enters cell → ADP-ribosylates Gs protein
3. Gs protein becomes locked in active state
4. Adenylyl cyclase is persistently activated
5. ↑ cAMP → activates protein kinase A (PKA)
6. PKA phosphorylates ion channels

- Causes efflux of Na^+ , Cl^- , HCO_3^- , K^+
- Leads to massive water loss into gut lumen

◆ Result

- Profuse watery diarrhea
- No RBCs or WBCs in stool

◆ Virulence Factors

- CTX bacteriophage (ssDNA):
 - Carries genes for cholera toxin
 - Causes lysogenic conversion of non-toxigenic strains
 - Uses toxin-coregulated pili (TCP) as receptor for phage attachment

◆ Non-O1 *V. cholerae*

- Occasionally causes diarrhea
- Linked to consumption of shellfish
- Does not cause cholera due to lack of cholera toxin

◆ Clinical Findings

◆ Hallmark Symptom

- Watery diarrhea in large volumes
 - Referred to as "rice-water stools"
 - No blood or pus
 - Odorless, cloudy appearance

◆ Other Features

- No abdominal pain
- Symptoms due to fluid and electrolyte loss
 - → Dehydration
 - → Renal failure
 - → Cardiac failure
 - → Acidosis (due to bicarbonate loss)
 - → Hypokalemia (due to K^+ loss)

◆ Mortality

- Up to 40% without treatment
- With fluid/electrolyte replacement, disease is self-limited (resolves in ~7 days)

◆ Laboratory Diagnosis of Cholera

◆ Diagnostic Approach

- During epidemics:
 - Diagnosis is usually clinical
 - Laboratory testing not always needed
- In endemic areas or for detecting carriers:

- Use of selective media (not commonly used in U.S.)

◆ Stool Culture

- Sample: Diarrheal stool

- Media:

- MacConkey's agar:
 - Colorless colonies (due to slow lactose fermentation)
- TCBS (Thiosulfate-Citrate-Bile-Sucrose) agar (*high yield*):
 - Yellow colonies (due to sucrose fermentation)
- TSI (Triple Sugar Iron) agar:
 - Acid slant / acid butt
 - No gas or H_2S

- Biochemical Tests:

- Oxidase-positive (differentiates from Enterobacteriaceae)

- Serologic Confirmation:

- Agglutination test with polyvalent OI or non-OI

antisera

- Retrospective Diagnosis:

- Rising antibody titers in acute vs. convalescent-phase sera

- ◆ Treatment of Cholera

- ◆ Mainstay of Therapy

- Prompt fluid and electrolyte replacement:

- Oral Rehydration Therapy (ORT)
 - IV fluids for severe dehydration

- Addition of glucose:

- Enhances water and Na^+ absorption via sodium-glucose co-transport

- ◆ Antibiotics (Adjunctive)

- Not essential but beneficial:

- Shorten duration of diarrhea
 - Reduce shedding of organism

- Commonly used: Tetracycline

◆ Prevention of Cholera

◆ Public Health Measures

- Ensure clean water and safe food
- Sanitation, hygiene, and sewage control

◆ Vaccination

- Vaxchora (U.S.):
 - Live attenuated oral vaccine
 - For travelers to O1 endemic regions
- Killed oral vaccines:
 - Available in cholera-prone countries
 - Provide short-term protection

◆ Chemoprophylaxis

- Tetracycline effective in close contacts
 - But not effective in stopping epidemics

◆ Carrier Control

- Early detection and treatment of carriers helps limit outbreaks

◆ 2. *Vibrio parahaemolyticus*

◆ General Features

- Marine halophilic organism (requires high NaCl)
- Transmission: Ingestion of raw or undercooked seafood (esp. shellfish like oysters)
- Common in: Japan (due to raw fish consumption)
- Outbreaks reported on Caribbean cruise ships

◆ Pathogenesis

- Not fully understood
- Produces an enterotoxin similar to cholera toxin
- May show limited mucosal invasion

◆ Clinical Features

- Watery diarrhea (mild to severe)
- Nausea, vomiting, abdominal cramps, fever
- Self-limiting illness: lasts ~3 days

◆ Laboratory Diagnosis

- Culture media:

- Thiosulfate-citrate-bile salts-sucrose (TCBS) agar
- Tellurite-taurocholate-gelatin agar

◆ Differentiating Feature

- Grows in 8% NaCl (halophilic)

- *V. cholerae* cannot grow in such high salt

◆ Treatment

- No specific treatment required

- Illness is mild and self-limiting

◆ Prevention

- Proper refrigeration and cooking of seafood

◆ 3. *Vibrio vulnificus*

◆ General Features

- Marine halophilic organism

- Found in warm saltwater (e.g., Caribbean Sea)

◆ Mode of Infection

- Wound exposure to seawater or shellfish → Cellulitis
- Ingestion of raw seafood (e.g., oysters) → Sepsis
- High risk in:
 - Immunocompromised individuals
 - Patients with chronic liver disease (e.g., cirrhosis)

◆ Clinical Features

- Severe cellulitis (esp. in shellfish handlers)
 - Painful skin wounds
- Rapidly fatal septicemia
 - Often presents with hemorrhagic bullae

◆ Treatment

- Doxycycline is the drug of choice