Patrick T. Biltgen, Ph.D.

V.202405282109H

Copyright © Patrick T. Biltgen

All rights reserved.

Published by Tallaios

ISBN: 979-8-218-35148-9

Table of Contents

Chapter 1	Introduction	1
Chapter 2	The Origins of AI for Defense and Intelligence	3
Chapter 3	AI Basics	4
Chapter 4	AI Models	5
Chapter 5	Natural Language Processing	9
Chapter 6	Computer Vision	13
Chapter 7	Generative AI	22
Chapter 8	Optimization	28
Chapter 9	Agent-Based Modeling	31
Chapter 10	Defense Applications of AI	34
Chapter 11	Intelligence Applications of AI	39
Chapter 12	AI for Mission-Enabling Functions	46
Chapter 13	Data Labeling and Feature Engineering	48
Chapter 14	AI Hardware: GPU's, Cloud, and Edge	
	Computing	49
Chapter 15	AI Challenges	51
Chapter 16	AI Ethics and Governance	53
Chapter 17	AI Strategy and Implementation	55
Chapter 18	Operationalizing AI	58
Chapter 19	AI Business Models	60
Chapter 20	Towards Artificial General Intelligence	62

Chapter 1 Introduction

Figure 1. John Boyd's Observe, Orient, Decide, Act Decision Framework [1].

Figure 2, An expanded framework for "Orient" Considering Key Questions Relevant to AI.

English teacher CAI

In those lyrics, gravity is the metaphor or symbol of time. The song is about a reunion; the singer hasn't seen that person in a while and is surprised that time has not affected that person's health (no pulling from gravity). But at the same time, the singer is surprised that the person hasn't changed in any way (or still beautiful).

In short, the singer is surprised to see that the person has not changed after a long time!

English teacher CAI

The singer has 2 children, one is 5 years old and the other is 3 years old. The singer claims that she (I think that is a female singer) is a single mother. "He left me" means that the father of her two children is not there anymore.

I have written a book called AI for Defense and Intelligence. The book describes AI efforts for multiple branches of the Department of Defense and agencies in the Intelligence Community. It provides an overview of enabling techniques and highlights key AI developments that contribute to missions. The author's name is Patrick Biltgen. Write the foreword for this book, explain how long you have been working with the author, talk about his credentials in this area. Write this in a way that would make a human want to read the entire book.

ChatGPT, please write a 300+ page book on AI for defense and intelligence. Include non-fabricated references. Perfect spelling. Engaging tone. Use a lot of anecdotal examples. Incorporate results from government documents. Draw interesting figures to explain complex concepts clearly. Write this for a senior leader in defense and intelligence or a graduate student in national security studies.

I'm sorry, but writing an entire 300-page book is beyond the scope of what I can provide in this chat. However, I can certainly help you with specific questions or topics related to AI for defense and intelligence. Please let me know how I can assist you, and I'll be happy to provide information and insights.

Chapter 2 The Origins of AI for Defense and Intelligence

Table	1	Defense	and	Intelligence	Uses	for AI	Techniques	1950_Present
Table	1.	Detense	anu	intemgence	USUS	IUI AI	rechniques	1/30-11050110

Time Period	Focus on Missions and Uses	Dominant AI Techniques
1950s-1960s	Pattern Recognition, Strategic Planning	Logic-based Reasoning, Rule- Based Systems, Perceptrons and Artificial Neural Networks
1970s-1980s	Decision-making, Threat Assessment, and Planning	Expert Systems, Inference Engines, Symbolic Al
1990s	Improved Target Identification, Automated Text Analysis, Intelligence Information Processing	Computer Vision, Natural Language Processing, Reinforcement Learning
2000s	Uncrewed Aerial Vehicles, Autonomous Systems, Machine Learning-Driven Data Analysis, Cybersecurity	Robotics, Data Analysis, Support Vector Machines, Agent-Based Modeling
2010s	Image and Speech Recognition, Natural Language Processing, Object Detection, Autonomous Systems, Predictive Maintenance, and Logistics for Military Equipment	Machine Learning, Deep Learning, Generative Adversarial Networks (GANs), Convolutional Neural Nets (CNNs)
Early 2020s	Spacecraft Maneuver Detection, Automatic Security Classification, High- Quality Language Translation, Object Recognition from Satellite Imagery, Malware Detection (and Creation), Deepfake Propaganda	Generative AI, Large Language Models (LLMs), GANs, Retrieval Augmented Generation, Transformers, Multimodal AI, Explainable AI

Chapter 3 AI Basics

Figure 3. Topology of an Artificial Neural Network [2].

Figure 4. Example of an Unsupervised Learning Algorithm (Isolation Forest) using Satellite Maneuver Data [3].

Figure 5. Example of a Random Forest.

Table 2. Types of "Traditional" AI Models and their Strengths and Weaknesses.

Technique	Application	Pros	Cons
Logistic Regression	Predicting the probability of a binary outcome, like disease presence in biomedicine or click- through in advertisement	 Probabilistic outputs Easy to update with online gradient descent Outputs interpretable as log odds 	 Assumes linearity between the logit of the outcome and the predictors Requires careful treatment of multicollinearity
Naïve Bayes	Multiclass classification in natural language processing, document categorization, spam detection	 Scalability - scales linearly with the number of predictors and data points Handles missing values by ignoring the attribute during model building 	 Independence assumption between predictors, which is rarely true in real life The zero-frequency problem, where it assigns zero probability to unseen feature-label combinations
Support Vector Machines (SVM)	Classification and regression in text and hypertext categorization, image classification, bioinformatics, hand- written character recognition	 Effective in high dimensional spaces Robust to overfitting, especially in high- dimensional space Maximizes margin, so the model is determined by points near the decision boundary (support vectors) 	 Requires choice of a suitable kernel function Large-scale learning tasks are computationally demanding Black box nature makes it hard to interpret
Random Forests	Regression and classification tasks in various fields, including remote sensing, text processing, bioinformatics	 Robust to outliers Can handle large datasets with high dimensionality Provides variable importance measures Can use categorical or continuous variables Resistant to overfitting 	 Biased in multiclass problems towards more frequent classes Can be computationally expensive and slower to train on very large datasets More difficult to visually interpret than decision trees
Gradient Boosting	Any supervised learning task, often outperforms random forests; used in web search ranking and ecology	 Generally provides high predictive accuracy Allows optimization of different loss functions Works with heterogeneity in the data 	 Requires careful tuning of hyperparameters Can overfit if number of trees is too large Sensitive to noisy data and outliers, which can cause overfitting

AI Models

Figure 6. Topology of an LSTM Model. Adapted from [4].

Figure 7. Topology of a Convolutional Neural Network.

Figure 8. Transformer AI Model Architecture. Adapted from [5].

Tuble of I uncelonal incentations of encourt accourt mouths

	Seq2seq without attention	Seq2seq with attention	Transformer
Processing within encoder	RNN/CNN	RNN/CNN	Attention
Processing within decoder	RNN/CNN	RNN/CNN	Attention
Decoder-encoder	Static fixed-sized	Attention	Attention
interaction	vector		

Chapter 5 Natural Language Processing

Table 4. Summary of Machine Translation Techniques.

Technique	Summarv	Advantages	Disadvantages
Rule-Based Translation (RBMT)	Rule-based translation methods rely on a set of manually-created linguistic rules and dictionaries to translate text from one language to another.	 Can handle idiomatic expressions well when rules are available. Interpretable and easier to debug. Less dependent on parallel data. 	 Requires significant manual effort to create and maintain rules. Struggles with handling nuances and exceptions in languages. Limited scalability and adaptability.
Statistical Machine Translation (SMT)	Statistical machine translation uses statistical models to learn the mapping between source and target languages from a parallel corpus.	 Can learn from parallel data automatically. Better at handling language variations and ambiguities compared to RBMT. More scalable and adaptable to different languages. 	 Requires a large parallel corpus for training. Difficulty in capturing long-range dependencies. Less fluent and sometimes less accurate translations.
Neural Machine Translation (NMT)	Neural machine translation models leverage deep learning techniques, such as RNNs, LSTMs, and attention mechanisms, to generate translations.	 Produces higher- quality and more fluent translations. Can capture long- range dependencies and handle ambiguities. Continuously improves with larger datasets and advances in deep learning techniques. 	 Requires substantial amounts of parallel data for training. Computationally expensive to train and deploy. Can be harder to interpret and debug compared to rule-based systems

For example, consider the following sentence:

"North Korea conducted a missile test near the city of Wonsan on May 29, 2017."

A NER system would identify and classify the following entities:

North Korea (Country)

Wonsan (City)

May 29, 2017 (Date)

Figure 9. Process for Attribute-Based Sentiment Analysis (ABSA).

Version	Trained on	Parameters	Training time	Release date
GPT-1	Web pages	117 million	9 days	2018 (original paper released in 2015)
GPT-2	Web pages, books, Wikipedia, Common Crawl, news articles	1.5 billion to 1.7 billion	Multiple weeks to months	2019
GPT-3	Same as GPT-2 but with additional data sources and training techniques	175 billion	Multiple months	2020
GPT-4	Trained on a much larger data set with a larger context window, enabling longer conversations	1.7 trillion (est)	Multiple months;	2022/2023

Table 5	. Properties	of the GPT	Series o	f Large	Language	Models.
---------	--------------	------------	----------	---------	----------	---------

Figure 10. Process for Retrieval Augmented Generation (RAG).

THEN TO OF THE THE THE THE THE THE THEN TO THE
--

Hypothesis/Evidence	Russian Invasion	No Russian Invasion
Military build-up at the border	Supports	Contradicts
Official statements from Russia	Contradicts (if denying)	Supports (if denying)
Satellite imagery of troop movements	Supports	Contradicts
Reports from international observers	Supports	Contradicts
Economic sanctions	Neutral	Neutral
Activity at military bases	Supports	Contradicts
Cyber-attacks on Ukrainian infrastructure	Supports	Contradicts
Media reporting in Russia	Supports (if promoting)	Contradicts (if silent)
Diplomatic efforts	Contradicts (if ongoing)	Supports (if ongoing)
Unofficial communications leaks	Supports	Contradicts
Humanitarian conditions in border areas	Supports (if deteriorating)	Contradicts (if stable)
Reports of military hardware movements	Supports	Contradicts
Civilian evacuations	Supports	Contradicts
Activation of reserve forces	Supports	Contradicts
Changes in airspace control	Supports	Contradicts

Chapter 6 Computer Vision

Figure 11. YOLO (You Only Look Once) Process. Adapted from [6].

Table	7.	Com	parison	of Po	pular	Methods	for (CV-based	Object	Detection.
1.0010		COM	Par 19011		o enteen	1 I CON CAS	101	C / Dubeu		Detection

Method	Pros	Cons
R-CNN	 High accuracy in object detection due to the method of proposing regions. Can detect objects of various sizes due to multi-scale detection. 	 Slow and computationally expensive due to separate region proposal and classification steps. Not suitable for real-time applications.
SSD	 Fast; processes images in a single pass like YOLO. Maintains high accuracy by using multiple feature maps for detection. 	 Less accurate for smaller objects. Optimizing for both object detection and bounding box prediction can be difficult.
YOLO	 Fast and efficient - processes images in a single pass. Predicts multiple bounding boxes per grid cell, reducing false negatives. Good at detecting objects in context due to its global view of the image. 	 Struggles with small objects within groups of large objects. Lower performance in terms of precision compared to R-CNN and SSD.

Figure 12. Segment Anything Model (SAM) Process.

Figure 13. Application of Segment Anything to multiple intelligence use cases.

Computer Vision

Figure 14. Example of Ground-Based Object Detection Using Bounding Boxes and Computer Vision [7].

Figure 15. An Army chemical, biological, radiological, and nuclear specialist walks near an autonomous vehicle at the Yakima Training Center [8].

KH-7 Image of U.S. Capitol in Washington, DC, 19 February

Figure 16. Examples of Panchromatic, Multispectral, and Radar Imagery [9, 10, 11].

Figure 17. Example of Scale Variation from a typical ImageNet-like example (left) where the object fills most of the frame and a satellite image from xView (right) with multiple objects per frame [10].

Computer Vision

Figure 18. Automated LEO Image Quality Rating. Approved for Public Release, #AFMC-2019-0482 [12].

Figure 19. Example of Decrease in F1 Score as a Percentage of Intentionally

Figure 20. A satellite image shows damaged (in red) and undamaged (light blue) buildings in a residential subdivision after the October 2017 Tubbs Fire in Santa Rosa, Calif. Source: xBD and the DigitalGlobe Open Data Program.

[4] Dobilas, Saul. "LSTM Recurrent Neural Networks — How to Teach a Network to Remember the Past." Towards Data Science. https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e February 2022.

[5] Vaswani, A., et al. "Attention is All You Need." *Advances in Neural Information Processing Systems*. 2017.

[6] Redmon, Joseph, et al. "You Only Look Once: Unified, Real-Time Object Detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788. 2016.

[7] Staff Sergeant S. Morse, Defense Visual Information Distribution Service. "Artificial Intelligence: Status of Developing and Acquiring Capabilities for Weapon Systems." Government Accountability Office. GAO-22-104765. February 2022.

[8] Army Pfc. Valentina Y. Montano. Department of Defense Photo,

https://www.defense.gov/Multimedia/Photos/igphoto/2002255559/

[9] KH-7 Image of the U.S. Capitol 19 February 1966. Declassified Image from the National Reconnaissance Office. https://www.nro.gov/History-and-Studies/Center-for-the-Study-of-National-Reconnaissance/The-GAMBIT-and-HEXAGON-Programs/GAMBIT-and-HEXAGON-Images/

[10] Lam, Darius et al. "xView: Objects in Context in Overhead Imagery." arXiv 2018

[11] European Space Agency. Sentinel 1-B image of the Gulf of Finland. Captured September 6, 2017.

[12] Fletcher, Justin, "AI and Autonomy for Space Domain Awareness: Progress and Prospects. 17 May 2023. Presented at the Space Systems Command AI/ML Reverse Industry Day, Mountain View, CA.

May 17-18, 2023.

[13] Biltgen, Patrick. "Orient in the 4th Age of Intelligence." Presentation at the AFCEA Alamo Chapter Event, San Antonio, TX, November 5-9, 2018.

[14] Microsoft. "China Weather Balloon Detection." Presented at the Space Systems Command AI/ML Reverse Industry Day, Mountain View, CA. May 17-18, 2023.

[15] Automated Monitoring with Spectra AI, Courtesy of Blacksky, Inc.

[16] National Geospatial-Intelligence Agency. BIG-ST BAA (HM0476-23-BAA-0001) Geospatial-Intelligence Foundation Model. December 15, 2023.

[17] Hoehn, John R. "Joint All-Domain Command and Control: Background and Issues for Congress." Congressional Research Service. R46725. May 24, 2021.

[18] "Assured Autonomy Seeks to Guarantee Safety of Learning-enabled Autonomous

Systems." Defense Advanced Research Projects Agency Press Release, 16 Aug. 2017.

[19] Mills, Kevin. "Army's S&T Investment in Ground Vehicle Robotics." Powerpoint Presentation.

https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2018/groundrobot/MillsPT1.pdf. April 10, 2018.

[20] Brigadier General Steven J. Bleymaier, "Condition Based Maintenance Plus (CBM+)" presentation to the Early Sustainment Planning for the United States Air Force Workshop, December 3, 2018.

 [21] National Academies of Sciences, Engineering, and Medicine. "Early Sustainment Planning for the United States Air Force: Proceedings of a Workshop in Brief." The National Academies Press. 2019.
 [22] Thomas, P., "Blackjack: Military Space Pivot to LEO." DARPA Tactical Technology Office.

Presentation to the Future In-Space Operations Group. Distribution A, Approved for Public Release. August 22, 2018.

[23] IARPA. "HAYSTAC." https://www.iarpa.gov/research-programs/haystac

[24] Center for Strategic and International Studies (CSIS). "Assessing the Third Offset Strategy." Panel Session, October 28, 2016.

[25] United States Army. "Developing an AI/ML Operations Pipeline: Projkect Linchpin." August 30, 2023.

[26] Denaro, Brian. "Space Sensing." Presented at the Space Systems Command AI/ML Reverse Industry Day, Mountain View, CA. May 17-18, 2023.

[27] "Strategic Computing: New-Generation Computing Technology: A Strategic Plan for its

^[1] Boyd, John. "The Essence of Winning and Losing." Powerpoint Presentation 1996.

^[2] Biltgen, P., "A Methodology for Capability-Based Technology Evaluation for Systems-of-Systems." PhD. Dissertation. Georgia Institute of Technology. 2007.

^[3] Dyke, A. and Graham, Paul. "Digital Transformation in Space Operations Command." PowerPoint Presentation at the Space Systems Command AI/ML Reverse Industry Day. Mountain View, CA. May 18, 2023. Approved for Public Release.

Development and Application to Critical Problems in Defense. DARPA, October 28, 1983.

[28] DARPA. Overview of AI Historical Programs. Darpa.mil

[29] DARPA, "AlphaDogfight Trials Foreshadow Future of Human-Machine Symbiosis." August 26, 2020.

[30] DARPA. "AI Next Campaign." https://www.darpa.mil/about-us/ai-next.

[31] Launchbury, John. "A DARPA Perspective on Artificial Intelligence." Powerpoint Presentation. 2017.

[32] Office of the Director of National Intelligence. "The AIM Initiative. A Strategy for Augmenting Intelligence Using Machines." 2019.

[33] National Geospatial-Intelligence Agency (NGA). 2035 GEOINT Concept of Operations (CONOPS).

https://www.nga.mil/assets/files/2035_CONOPS_FINAL_Public_Release.pdf

[34] National Reconnaissance Office, Sentient Overview, January 12, 2015.

Approved for Public Release 2019/02/19 C05113708.

[35] National Reconnaissance Office, Sentient Overview, January 12, 2015.

Approved for Public Release 2019/02/19 C05113709.

[36] Aldridge, Dan. ALADDIN Proposers Day. IARPA-BAA-10-01.

[37] Adams, Terry. Deep Intermodal Video Analytics Proposers Day. IARPA-BAA-16-13.

[38] IARPA. Machine Intelligence from Cortical Networks (MICrONS) Program Summary. 2016.

[39] Microsoft Learn. "What is Azure AI Search?" https://learn.microsoft.com/en-us/azure/search/ search-what-is-azure-search November 22, 2023.

[40] Lane, Bryan, "Workflow Warfare: Business Process Transformation in the DoD." Joint AI Center. Powerpoint Presentation. March 24, 2021.

[41] Microsoft. "China Weather Balloon Detection." Presented at the Space Systems Command AI/ML Reverse Industry Day, Mountain View, CA. May 17-18, 2023.

[42] "Synthetaic." Solutions for Impossible AI Use Cases. Synthetaic, www.synthetaic.com. Accessed November 22, 2023

[43] NVIDIA. "Rapids Overview." https://developer.nvidia.com/rapids. Accessed October 2023.

[44] National Geospatial-Intelligence Agency. "NGA Technology Strategy."

https://www.nga.mil/assets/files/2005059P001_NGA_Technology_Strategy_APR_20-512_(1).pdf. 2020. [45] Biltgen, Patrick. "Orient in the 4th Age of Intelligence." Presentation at the AFCEA Alamo Chapter Event, San Antonio, TX, November 5-9, 2018.

[46] Rogers, A. "The Way the World Ends: Not with a Bang but a Paperclip." *WIRED*. Oct. 21, 2017. [47] "Responsible Artificial Intelligence Strategy and Implementation Pathway." United States

Department of Defense, 2022.

[48] Gunning, David. "Explainable Artificial Intelligence (XAI). Proposer's Day Slides. DARPA/I2O. August 11, 2016.

[49] Google. Face Detection Model Card Example. https://modelcards.withgoogle.com/face-detection.
 [50] Department of Defense. "DoD Data Analytics and Artificial Intelligence Adoption Strategy."
 Defense.gov, November 2, 2023.

[51] MLOps at INNOQ (Dr. Larysa Visengeriyeva, Anja Kammer, Isabel Bär, Alexander Kniesz, and Michael Plöd). MI-ops.org.

[52] Microsoft Corporation. "Machine Learning Operations." https://azure.microsoft.com/enus/products/machine-learning/mlops/#features

[53] Selvaraj, Natassha. "A Gentle Introduction to MLOps." Towards Data Science,

www.natasshaselvaraj.com/a-gentle-introduction-to-mlops/

[54] Bradley, J., Kurlansik, R., Thomson, M., and Turbitt, N., "The Big Book of MLOps – 2nd Edition." Databricks. 2023.

[55] National Geospatial-Intelligence Agency. "NGA Data Strategy 2021." October 2021.

[56] U.S. Government Accountability Office. "Artificial Intelligence: An Accountability Framework for Federal Agencies and Other Entities." GAO-21-519SP. June 30, 2021.

[57] OpenAI. GPT-4 Technical Report. arXiv, 2023.