



**Proposed Syllabus for** 

Four Year Undergraduate Programme (FYUGP)

of

Bachelor of Science in Information Technology (B.Sc. IT)

Semester - 2

With Effect From Academic Year 2022 - 2023

As Per Revised Curriculum and Credit Framework for the FYUGP under the provisions of NEP - 2020

# **B.Sc.I.T.** Course Structure F.Y.U.G.P.(Semester -II)

| Sem | Paper                | Paper Title                                           | L-T-P | Credits | Contact<br>Hours |
|-----|----------------------|-------------------------------------------------------|-------|---------|------------------|
|     | Code                 |                                                       |       |         |                  |
|     | AEC-2                | Language and<br>Communication Skills:<br>(English)    |       | 2       |                  |
|     | SEC-2                | Skill Enhancement Course-2                            |       | 3       |                  |
|     | MDC-2                | Multi-disciplinary Course-2                           |       | 3       |                  |
| II  | MN- 2A<br>(Theory)   | Entrepreneurship<br>Development                       | 3-0-0 | 3       | 45               |
|     | MN-2A<br>(Practical) | Entrepreneurship<br>Development Lab                   | 0-0-1 | 1       | 30               |
|     | MJ-2(Theory)         | Data Structures using C                               | 3-0-0 | 3       | 45               |
|     | MJ-3(Theory)         | Digital Electronics                                   | 3-0-0 | 3       | 45               |
|     | MJ(Practical-2)      | Data structure using C and<br>Digital Electronics Lab | 0-0-2 | 2       | 60               |
|     |                      | <b>Total Credits</b>                                  |       | 20      |                  |

| MN-2A: ENTREPRENEURSHIP DEVELOPMENT |                |              |
|-------------------------------------|----------------|--------------|
| 3 Credits                           | 45 Class Hours | Semester II. |

#### **OBJECTIVES**

It provides exposure to the students to the entrepreneurial cultural and industrial growth so as to prepare them to set up and manage their own small units.

#### **Detailed Syllabus:**

| Unit-1 | Introduction: The entrepreneur(8 Classes)Definition, emergence of entrepreneurial class; Definition and concern of Entrepreneurship, role<br>of social economic environment; classification, Characteristics and importance of entrepreneur;<br>leadership; risk taking ; decision making and business planning, Role of entrepreneur                                                                                                                                                                                                                                                                                                              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit-2 | Promotion of a venture:(8 Classes)Opportunities analysis; external environmental analysis (economic, social and technological,<br>competitive factors), legal requirements of establishment of a new unit and rising of funds;<br>Venture capital sources and documentation required.                                                                                                                                                                                                                                                                                                                                                              |
| Unit-3 | Entrepreneurial Behaviour:(10 Classes)Innovation and entrepreneur (Concept, Creativity, Invention & Innovation, Strategy for<br>Innovation, Effective Commercialization, Innovation and Intellectual Property Rights),<br>entrepreneurial behavior and Psycho- theories.Entrepreneurial Development Programmes (EDP): EDP, their role, relevance and achievements;<br>role of government in organizing EDP's critical evaluation.                                                                                                                                                                                                                  |
| Unit-4 | Entrepreneurship & Innovation: (12 Classes)<br>Overview of project identification, search of a business idea, Identification of project, Business<br>Opportunities, Understanding Design Thinking {concept and scope, key factors of design<br>thinking, benefits, phases (Empathize, Define, Ideate, Prototype, Test)}<br>Creativity: Creativity, identification creative tools (S-C-A-M-P-E-R), Vertical thinking, lateral<br>thinking, Critical Thinking, Phases of decision making, Critical thinking and objectivity, Applying<br>structured knowledge to unstructured problems, Domain criteria, traditional and out-of-the-box<br>thinking. |
| Unit-5 | Legal and ethical considerations:(7 Classes)Legal forms of business organization, ethical Issues and social responsibilities of an entrepreneur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# Books:

1. Vasant, DCSAI; Entrepreneurship, Himalaya Publishing House, 2003.

2. Taneja &S.L. Gupta.; Entrepreneurship Development, 2003.

3. Pandey , I.M.; venture capital- The Indian Experience, Prentice Hall of India, 2003.

4. Tandon B.C, "Environment and Entrepreneur ", Chug publication, Allahabad.

| MN-2 (Pr): Entrepreneurship Development Lab |                           |              |
|---------------------------------------------|---------------------------|--------------|
| 1Credit                                     | 15 Class Hours (30 Hours) | Semester II. |

#### **Practical Work**

| 1 | Case studies of successful entrepreneurs                                                                                                                                                    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Conducting mock interviews: testing initiatives, team spirit and leadership                                                                                                                 |
| 3 | Conducting meeting: purpose, procedure, participation, physical arrangements, recording and writing of minutes.                                                                             |
| 4 | Share Your Story: Identify area of innovation and prepare a project of design thinking<br>in the area of Your choice and present it through Sketch modeling (Preparing project<br>proposal) |
| 5 | Conduct Market survey to know the demand for different products.                                                                                                                            |
| 6 | Presentations by the students (Individual, Groups)                                                                                                                                          |

| MJ-2 (Th): Data Structures using C |                |              |
|------------------------------------|----------------|--------------|
| 3 Credit                           | 45 Class Hours | Semester II. |

### Objectives

- To know details about the Data Structure
- Applications, advantages and limitations of various data structures.
- To know real life use and implementation of various data structures.
- Analyse and compare the different algorithms.

### **Course Outcomes**

After the completion of this course, students will be able to:

- Understand the properties of various data structures.
- Identify the strength and weaknesses of different data structures.
- Design and employ appropriate data structures for solving computing
- Problems.
- Analyze and compare the efficiency of algorithms.

# **Detailed Syllabus:**

| <b>Unit 1</b><br>5 classes  | Algorithms and Analysis of Algorithms: Definition, Structure and Properties of Algorithms, Development of an Algorithm, Data Structures and Algorithms, Data Structure – Definition and Classification, Efficiency of Algorithms, Asymptotic Notations, Average, Best and Worst case Complexities.                                                    |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Unit 2</b><br>10 classes | <b>Arrays, Stacks and Queues</b> : Array Operations, Number of Elements in an Array,<br>Representation of Arrays in Memory, Applications of Array, Stack- Introduction, Stack<br>Operations, and Applications of Stack., Queues-Introduction,Operations on Queues,<br>Circular Queues, Other Types of Queues, Applicationsof Queues.                  |
| <b>Unit 3</b><br>10 classes | Linked List, Linked Stacks and Linked Queues: Singly Linked Lists, Circularly<br>Linked Lists, Doubly Linked Lists, Applications of Linked Lists.<br>Introduction to Linked Stack and Linked Queues, Operations on Linked Stacks and<br>Linked Queues, Implementations of Linked Representations, Applications of Linked<br>Stacks and Linked Queues. |
| <b>Unit 4</b><br>10 classes | <b>Trees, Binary Trees, BST, and Graph</b> : Trees: Definition and Basic Terminologies,<br>Representation of Trees, Binary Trees: Basic Terminologies and Types,<br>Representation of Binary Trees, Binary Tree Traversals<br>Introduction, BST: Definition and Operations, Graph-: Definition and adjacency lists &<br>adjacency matrix Operations.  |
| Unit 5<br>10 classes        | <b>Sorting and searching</b> : Introduction, Selection Sort, Insertion Sort, Quick Sort, Bubble Sort, Heap Sort.<br>Searching: Introduction, Sequential Search and Binary Search.                                                                                                                                                                     |

#### **Books:**

- 1. BalujaG S, "Data Structure through C", Ganpat Rai Publication, New Delhi, 2015.
- 2. Horowitz E., Sahni S., Susan A., "Fundamentals of Data Structures in C", 2nd Edition, University

| MJ-3 (Th): Digital Electronics |                |              |
|--------------------------------|----------------|--------------|
| 3 Credit                       | 45 Class Hours | Semester II. |

# Objectives

- Understand the Truth Table.
- Identify the number of variables and their simplification importance.
- Understand different circuits for the implementation of Boolean equations.
- Identify Register Transfer, Micro-operations and Central Processing Unit
- Describe performance evaluation of computers, computer architecture and organization, computer arithmetic, Memory and CPU design.

# **Course Outcomes**

After the completion of this course, students will be able to:

- Minimize the circuit diagrams by use of K-Map concepts and Boolean Algebra.
- Analyse the outcome of the circuit designed.
- Comprehend the digital design logic
- Design and Analysis of a given digital circuit combinational and sequential
- Use Boolean simplification techniques to design a combinational hardware circuit

# **Detailed Syllabus:**

| <b>Unit 1</b><br>7 classes | <b>Binary Systems And Data Representation:</b> Digital Systems, Binary Numbers, Number Base Conversions, Octal and Hexadecimal Numbers, Complements, Subtraction of Unsigned Numbers, Fixed-Point Representation, Floating-Point Representation, Signed Binary Numbers, Binary Codes, Binary Storage and Registers, Binary Logic.                                                                                                                                                                 |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit 2<br>12 classes       | <ul> <li>Digital Logic Circuits: Digital Computers, Logic Gates, Boolean algebra, Complement of a Function, Map Simplification, Product-of-sum simplification, Don't care conditions.</li> <li>Combinational Logic: Combinational Logic Circuits &amp; Realisation with Logic Gates         <ul> <li>Half &amp; Full Adders and codes, Multiplexers, De-multiplexes, Encoders, Decoders, Codes Converters, Sequential Circuits, JK, RS, T, D, Master – Slaves Flip – Flop.</li> </ul> </li> </ul> |
| Unit 3<br>6 classes        | <b>Digital Components</b> : Integrated Circuits, Registers, Register with parallel load, Shift Registers, Bidirectional Shift Registers, Binary Counters, Binary counter with parallel load, Synchronous and Asynchronous Counters.                                                                                                                                                                                                                                                               |
| Unit 4<br>8 classes        | <b>Central Processing Unit</b> : Introduction, General Register Organization, Stack Organization, Register Stack, Memory Stack, , Evaluation of Arithmetic Expressions, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Program Interrupt, Types of Interrupts, Reduced Instruction Set Computer (RISC).                                                                                                                                                  |
| Unit 5<br>12 classes       | <b>Memory Organization:</b> Memory Hierarchy, Main Memory, RAM and ROM Chips,<br>Memory Address Map, Auxiliary Memory, Magnetic Disks and Tape, Associative<br>Memory, Hardware Organization, Read/Write Operation, Cache Memory, Associative<br>Mapping, Direct Mapping, Virtual Memory, Address Space and Memory Space,<br>Address Mapping Using Pages, Associative Memory Page Table, Page Replacement,<br>Memory Management Hardware.                                                         |

# Books:

1) M.Morris Mano-Digital Design, 3rd Edn, Pearson Education, New Delhi - 2005.

2) B.Ram –Fundamental of Microprocessors And Microcontrollers –Dhanpat Rai Publications, Eighth Edition.

# MJ–2 (Pr): PRACTICAL For MJ-2 & MJ-3 2 Credit 30 Classes (60 Hours) Semester II

# List of Programs as Assignments for MJ-2:

- Program to implement stack using arrays.
- Program to convert infix notation to postfix notation using stacks.
- Program to implement queue using arrays.
- Program to implement circular queue using arrays.
- Program to create add remove & display element from single linked list.
- Program to count number of nodes in linear linked list.
- Program to accept a singly linked list of integers & sort the list in ascending order.
- Program to represent polynomial using linked list.
- Program for the creation of binary tree, provide insertion & deletion in c.
- Program for pre-order, post-order & in-order traversals of a binary tree using non recursive.
- Program to count no, of leaves of binary tree.
- Program to implement bubble sort program using arrays.
- Program to implement merge sort using arrays.
- Program to implement selection sort program using arrays.
- Program to implement insertion sort program using arrays.
- Program to implement linear search using arrays.
- Program to implement binary search using arrays.

#### List of Programs as Assignments for MJ-3:

- Explore the working principles of basic logic gates like AND, OR, NOT, NAND, NOR and XOR. Build and analyze logic circuits using truth tables and Boolean expressions.
- Create practical examples of combinational circuits such as encoders, decoders, multiplexers, and demultiplexers using logic gates.
- Learn about flip-flops, registers, and counters.