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SUMMARY

The transition state model of cell differentiation proposes that a transient win-
dow of gene expression stochasticity precedes entry into a differentiated state.
Here, we assess this theoretical model in zebrafish neuromesodermal progeni-
tors (NMps) in vivo during late somitogenesis stages. We observed an increase
in gene expression variability at the 24 somite stage (24ss) before their differen-
tiation into spinal cord and paraxial mesoderm. Analysis of a published 18ss
scRNA-seq dataset showed that the NMp population is noisier than its deriva-
tives. By building in silico composite gene expression maps from image data,
we assigned an ‘NM index’ to in silico NMps based on the expression of neural
and mesodermal markers and demonstrated that cell population heterogeneity
peaked at 24ss. Further examination revealed cells with gene expression profiles
incongruent with their prospective fate. Taken together, our work supports the
transition state model within an endogenous cell fate decision making event.

INTRODUCTION

Neuromesodermal progenitors (NMps) are axial progenitors that co-express the lineage-specific transcrip-

tion factors Brachyury/T/Tbxta and Sox2 and are competent to generate both neural (e.g. spinal cord) and

mesodermal (e.g., somite) fates at the single-cell level (Henrique et al., 2015; Wymeersch et al., 2021). Bi-

potent NM cells have been identified in amniotes such as mouse (Cambray &Wilson, 2002, 2007) and chick

(Brown and Storey, 2000; Guillot et al., 2021; Wood et al., 2019) as well as anamniotes such as Xenopus

(Davis and Kirschner, 2000; Gont et al., 1993), axolotl (Taniguchi et al., 2017) and zebrafish (Martin and Ki-

melman, 2012). Therefore, they are an evolutionary conserved cell population whose decision to generate

spinal cord and paraxial mesoderm provides an ideal system to explore the mechanisms of cell fate deci-

sion making in vivo.

Sox2 is a member of the family of B1 Sox transcription factors, which in zebrafish also includes Sox1a/1b/3/

19a/19b (Hu et al., 2021). These B1 transcription factors are functionally redundant, and quadruple knock-

down of Sox2/3/19a/19b demonstrated that together with Pou5f1 (Oct4) or Otx2, they play critical roles in

neural differentiation by regulating proneural genes (Neurog1, Her3) and signaling pathway genes

(Cyp26a1, Shh) (Okuda et al., 2010). Tbxta is an ortholog of Brachyury, which is a T box transcription factor

that directs posterior mesoderm formation (Martin and Kimelman, 2008; Schulte-Merker et al., 1994). Chro-

matin immunoprecipitation experiments have identified the direct regulatory targets of Tbxta (Tbx16,

Eve1, Fgf8, Sp5l), demonstrating that Tbxta is the key orchestrator of posterior mesoderm formation (Mor-

ley et al., 2009). Thus, Sox2 and Tbxta can be considered as primary regulators of the neural and meso-

dermal program respectively.

The degree to which NMps divide to produce daughter cells of both neural andmesodermal fates depends

on species-specific growth dynamics (Steventon andMartinez-Arias, 2017). In the zebrafish embryo, there is

little volumetric growth associated with posterior body elongation (Steventon et al., 2016) and proliferation

stops abruptly within the embryo around the 10 somite stage (ss) (Bouldin et al., 2014; Zhang et al., 2008).

Correspondingly, zebrafish tailbud NMps are a largely quiescent pool of mono-fated progenitors that give

rise to a limited portion of the posterior body axis (Attardi et al., 2018; Bouldin et al., 2014). In the mouse

embryo, using retrospective clonal analysis, long clones originating from a single cell have been observed

in both neural and mesodermal tissues (Tzouanacou et al., 2009), which is consistent with a proliferative

phase in the mouse NMps at around E9.5 (Wymeersch et al., 2016). Despite this difference in develop-

mental dynamics, two independent lines of evidence support the notion that zebrafish NMps are, like all
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other vertebrate NMps, competent toward both neural and mesodermal fates. First, single cell transplan-

tation experiments demonstrate that zebrafish NMps can be steered toward either neural or mesodermal

fates on manipulation of the canonical Wnt pathway (Martin and Kimelman, 2012). Second, a single cell

transcriptomic signature that contains conserved markers of both spinal cord and paraxial mesoderm

states have been discovered for the zebrafish NMps at late gastrulation/early tailbud stages of develop-

ment (Lukoseviciute et al., 2021). Thus, a conceptual clarification between NM competent cells and NM

progenitors (NMps) has been proposed, of which a differing proportion of NM competent cells act as

NMps in a stage- and species-specific manner dependent on the rate of proliferation (Binagui-Casas

et al., 2021; Sambasivan and Steventon, 2021). In this article, we refer to these cells as zebrafish tailbud

‘NMps’ to remain consistent with previous literature, although they are better understood as NM compe-

tent cells at post 10ss of development.

How do these zebrafish tailbud NMps differentiate into their NM derivatives? Differentiation has been

widely characterized as an ordered and largely deterministic succession of cellular states, specifically tran-

scriptomic states, that emerges from the activation of a set of master transcription factors in a gene regu-

latory network (Davis et al., 1987; Whyte et al., 2013). In this article, we define ‘‘cell states’’ to refer to spe-

cifically to transcriptomic states. If transcriptomic states strongly correlate with developmental lineage,

then we can sort single cells along a pseudotemporal axis of developmental progression using their tran-

scriptomic states as the similarity measure and infer the gene expression trajectories within these differen-

tiating cells. Elucidating the pseudotemporal axis has uncovered numerous insights into development

(Wagner et al., 2018; Wolf et al., 2019) and disease (Mukherjee et al., 2020; Petti et al., 2022). Despite their

utility, pseudotemporal ordering algorithms make a critical simplifying assumption: cells with similar tran-

scriptomic profiles are assigned to be closer together in their developmental maturity along a lineage

(Schier, 2020; Tritschler et al., 2019). This biological assumption has been challenged by several observa-

tions. First, in vitro studies revealed the prevalence of non-genetic heterogeneities within clonal stem

cell populations, where cells stochastically transition between distinct metastable states despite being

functionally homogeneous (Canham et al., 2010; Hayashi et al., 2008; Trott et al., 2012). In addition, global

transcriptomic trajectories may be driven by complex dynamics such as slow fluctuations that persist across

cell division cycles (Chang et al., 2008) and oscillatory dynamics in key regulators (Verd et al., 2018). Further-

more, distinct trajectories may converge to the same terminal fate (Packer et al., 2019). These observations

suggest that the relationship between cell fate and transcriptomic state can be complex (Casey et al., 2020)

and additional information is required before constraining the possible dynamics that arise from snapshot

data with the maximum parsimony assumption (Tanay and Regev, 2018; Weinreb et al., 2018).

Given the prevalence of non-genetic heterogeneities, cellular differentiation models have been developed

to account for their role in differentiation. Generally, thesemodels involve two qualitatively distinct phases -

an initial period of increased stochasticity where cells dynamically explore a broader region of state space

followed by the convergence into cell-type specific gene expression profiles. During the initial stochastic

phase, transcriptomic states and cell fates are less correlated as gene expression heterogeneity increases.

Taking a statistical mechanical perspective, this phenomenon of ‘regulated stochasticity’ is consistent with

cellular differentiation being a critical phase transition (Teschendorff and Feinberg, 2021). Models that

belong in this class include the Darwinian model of cellular differentiation (Capp and Laforge, 2020; La-

forge et al., 2005; Kupiec, 1997; Kupiec, 2014; Minelli and Pradeu, 2014; Paldi, 2020), the ‘exploratory’

model of stem cell decision-making (Halley et al., 2009) and the ‘transition state’ model (Antolovi�c et al.,

2019; Brackston et al., 2018; Moris et al., 2016; Martinez-Arias and Hayward, 2006; Muñoz-Descalzo

et al., 2012; Rué and Martinez Arias, 2015).

Initial non-genetic heterogeneity models came from early studies of hematopoietic progenitors, which

found that the progenitors simultaneously co-express genes from multiple lineages, producing a promis-

cuous gene expression profile in a phenomenon called multilineage priming. (Hu et al., 1997; Laslo et al.,

2006; Mikkers and Frisen, 2005). This observation has also been observed in vivo. Cells of the early Xenopus

gastrula were found to express genes from multiple germ layers, and when exposed to the mesendoder-

mal-inducing factor Activin, single cells co-express both mesoderm and endoderm genes within the same

cell (Wardle and Smith, 2004). Recent single-cell RNA sequencing (scRNA-seq) studies of Caenorhabditis

elegans also noted the occurrence of multilineage priming in numerous lineage branches (Packer et al.,

2019), providing further evidence against the strict deterministic, mosaic view of C. elegans development

that dominated early thinking (Martinez-Arias et al., 2013).
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Experimental observations of a surge in gene expression variability that precedes a commitment phase are

found predominantly in in vitro models such as hematopoietic stem cell differentiation models (Dussiau

et al., 2022; Hu et al., 1997; Mojtahedi et al., 2016; Moussy et al., 2017; Pina et al., 2012; Richard et al.,

2016), induced pluripotent stem cells (iPSCs) (Bargaje et al., 2017; Buganim et al., 2012) and mouse embry-

onic stem cells (mESCs) (Moris et al., 2018; Semrau et al., 2017; Stumpf et al., 2017). In contrast, in vivo ob-

servations of this phenomenon have been comparatively rare (Antolovi�c et al., 2019; Peláez et al., 2015).

In vivo evidence are vital to ensure that the preceding in vitro observations are not due to artifacts of

cell culture conditions (MacArthur and Lemischka, 2013; Smith, 2013) or reporter dynamics (Smith et al.,

2017).

Several indices have been developed to quantify gene expression variability. In a study of blood progenitor

cells, the critical transition index (Ic) was developed and shown to gradually increase as cells approach the

critical transition point. Ic is defined as a ratio of two averaged Pearson correlation coefficients: the average

correlations between all pairs of gene vectors divided by the average correlations between all pairs of cell

state vectors (Mojtahedi et al., 2016). Intuitively, as the cell population approaches the transition, the cell-

cell correlation term in the denominator decreases as cells become dissimilar from one another and the

gene-gene correlation term in the numerator increases as subset of genes change in concert, resulting

in a surge in the index. The critical transition index is similar to another index called the I score, which is

computed from a smaller set of dynamical network biomarkers (Chen et al., 2012,2015), in that they are

both derived from dynamical systems theory. Another measure of gene expression variability, derived

from information theory, is the Shannon entropy. Shannon entropy is defined for a probability distribution

andmeasures the extent of departure from the uniform distribution - the flatter the distribution, the greater

the entropy and the greater the degree of uncertainty (MacArthur and Lemischka, 2013). In particular, the

Shannon entropy can be computed per cell (intracellular entropy) or per gene (intercellular entropy), where

the latter aims to capture the gene expression variability of genes across an entire cellular population (Gan-

drillon et al., 2021). In our analysis of the NMp population, we compute both Ic and the intercellular entropy

of the NM index distribution to examine the gene expression variability of the NMpopulation.We compare

different regions of the tailbud where progenitor cells are either in neural, mesodermal or NM states as a

proxy for different timepoints of their differentiation.

In this article, we assessed the transition state hypothesis in vivo during the zebrafish tailbud NMp differ-

entiation event. Our results can be grouped according to two features of the hypothesis:
Transient increase in transcriptional heterogeneity during NMp differentiation

As photolabels of the NMp region at the 12ss revealed that cells only contribute to somites and spinal cord

from the 24 somite level onwards (Attardi et al., 2018), we focused on a time-window between the 18 and

30ss to capture the commitment event. By quantifying the single-cell levels of nuclear sox2 and tbxta

expression in NMps from 18ss to 30ssin situ, we demonstrate that the heterogeneity in expression of

both genes as well as the variability in NMp number peak at 24ss. In addition, by examining a publicly avail-

able 18ss scRNA-seq dataset of the zebrafish embryo (Wagner et al., 2018), we found that NMps have a

higher critical index and transcriptional noise relative to their derivatives, supporting the view that the

NMp population is noisier relative to their derivatives. Furthermore, by combining the expression of mul-

tiple NMp marker genes across multiple samples with an image alignment pipeline (ZebReg) and

computing the ‘NM index’, we found that the intercellular Shannon entropy, a measure of the population

heterogeneity, also peaks at 24ss.
Loosening of the relationship between cell state and cell fate: Existence of ‘rebellious’ cells

We exploited the relative biological simplicity of the zebrafish NMp system to relate cellular states to

cellular fates by examining the spatial locations of the NMps within our ZebReg composite maps. We iden-

tified an increase in the number of cells expressing a neural gene expression profile at the 24ss within the

mesoderm-fated domain. These are cells possessing a transcriptomic profile that is incongruent with their

prospective fate, indicative of an uncoupling of the relationship between cell state and cell fate. Following

the work of Mojtahedi et al., we labeled these cells as ‘rebellious’.

Taken together, our work supports the existence of a transition state and the presence of ‘rebellious’ cells

in vivo during zebrafish NMp differentiation.
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Figure 1. Heterogeneity in sox2 and tbxta expression and variability in the number and locations of NMps peak at 24ss

(A) Zebrafish NMps undertake a binary fate decision to differentiate into the posterior neural and mesodermal fates.

(B) 2D lateral slice showing sox2+tbxta+ nuclei (cyan surfaces) in the maturation zone.

(B0 ) 2D medial slice showing sox2+tbxta+ nuclei in the hypochord, pNPD and PW. pNPD: posterior notochord progenitor domain; PW: posterior wall.

(C–C00) Segmented NMp surfaces located in the (C) maturation zone (C0 ) PW (C00) pNPD.

(D, E, and F–F0) Maximum intensity projections of tbxta and sox2 shown alongside segmented surfaces of the posterior notochord (D) and posterior neural

tube (E). NMps are shown as points colored according to their (F) tbxta and (F0) sox2 expression levels. The red regions highlight the NMps in the posterior

wall that co-express intermediate levels of (F0) tbxta and (F00) sox2, which is also highlighted with a red region in (J).

(D0, E0, and F00) Histograms from 18ss to 30ss depicting the expression distributions of nuclear sox2 and tbxta distributions in the (D0) posterior notochord (E0)
posterior neural tube (F0) NMp populations. Each ridge plot displays the expression distributions of the specified cell population across all analyzed samples.

All three cell populations within a sample adopted the same Sox2 and Tbxta threshold value for min-max normalization (STAR methods: Quantification and

normalization of nuclear gene expression intensities in NMps).

(G–I00) HCR-stained samples at (G-G00) 18ss, (H–H00) 24ss and (I–I00 ) 30ss with three representative images per set. n: number of segmented NMps in each

sample.

(J) Scatterplots of sox2 and tbxta expression of NMps from 18ss to 30ssat three-somite intervals. Each point corresponds to the normalised nuclear sox2 and

tbxta intensities of a single NMp. The red boxes at each stage highlight NMps with intermediate levels of both genes.

(K) Box and whisker plots of the number of NMps from 18ss to 30ssat three-somite intervals. Each point corresponds to the number of NMps in a single

sample. The median NMp number is indicated in bold. n: total number of samples analyzed for each stage (biological replicate). N: number of distinct

imaging experiments, where different biological samples imaged on the same day are considered a single imaging experiment. Levene’s test for the

equality of variance was carried out for the NMp numbers at 24ss against the other four timepoints. *pvalue < 0.01.
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RESULTS

Heterogeneity in sox2 and tbxta expression and variability in the number and locations of

NMps peak at 24ss

To assess the number and location of zebrafish tailbud NMps over time, we performed HCR stains for sox2

and tbxta to quantify the mRNA expression of single cells in situwithin the zebrafish tailbud (Figures S1 and

S2A–S2E). First, we compared the expression of nuclear sox2 and tbxta in the NMps against the posterior

notochord and posterior neural tube populations (Figures S2F–S2H0). We find that the posterior notochord

population has a tight distribution of nuclear sox2 with a mean normalized intensity close to 0 and a

broader nuclear tbxta distribution (Figures 1D and 1D0). Conversely, the posterior neural tube population

has a tight distribution of nuclear tbxta with a mean normalized intensity close to 0 and a broader nuclear

sox2 distribution (Figures 1E and 1E0). On the other hand, the NMps are distinct from both populations as

they have broad marginal distributions of both nuclear sox2 and tbxta (Figures 1F–1F00).

Next, we quantified the nuclear sox2 and tbxta levels within the NMp population across the different

somitogenesis stages. In the gene expression scatterplots (Figure 1J), we find that most NMps are

sox2+lowtbxta + low. However, at 24ss, we also find a greater number of sox2+inttbxta + int NMps (Figure 1J

24ss red box), reflecting a transient increase in the transcriptional heterogeneity of theNMgene expression

states. We then quantified the number and position of NMps at each stage across multiple individual tail-

bud samples.We found significant variation in the position (Figures 1G–1I) and number (Figure 1K) of NMps

across samples at all stages under study. Notably, peak variability in NMp number occurred at the 24ss (Fig-

ure 1K). Taken together, our analysis demonstrates that a transient phase of increased heterogeneity in

sox2 and tbxta expression states occurs around 24ss. This closely matches the developmental stage at

which labeled NMps contribute to both spinal cord and paraxial mesoderm (Attardi et al., 2018) and there-

fore suggests that the increased heterogeneity precedes the commitment to either NM fate.

Analysis of 18ss scRNA-seq data reveals a peak in the critical index and transcriptional noise

index in the NMp population relative to its derivatives

A second prediction of the transition statemodel is that cells should explore a larger region of gene expres-

sion space prior to cell fate commitment as the progenitor basin flattens, resulting in a more dispersed

‘cloud’ of points in state space (Huang, 2009). Consequently, cell population heterogeneity would be ex-

pected to increase, with between-gene variation decreasing as cells up-regulate groups of either neural or

mesodermal genes in coordinated fashion (Mojtahedi et al., 2016). To assess this in the context of zebrafish

NMps in vivo, we made use of a published single-cell RNAseq dataset at 18ss (Wagner et al., 2018).

First, we reanalyzed the scRNA-seq data using an independent dimensional reduction and clustering

approach to obtain the 8 tailbud subclusters that include the NMps and their derivatives (STAR Methods).

We evaluated the robustness of our clustering approach which aimed at minimizing the clustering uncer-

tainty arising from the small number of identified cells in the dataset (6959) (STAR Methods; Figures S3
iScience 25, 105216, October 21, 2022 5
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Figure 2. Analysis of 18ss scRNA-seq data reveals a peak in the critical index and transcriptional noise index in the NMp population relative to its

derivatives

(A) UMAP embedding showing the 8 tailbud clusters at 18ss alongside the key differentially expressed genes used for manual annotation. UMAP: uniform

manifold approximation and projection.

(B) UMAP embedding in (A) colored by sox2 and tbxta expression and sox2-tbxta together to illustrate co-expression (in yellow).

(C–C00) Dot plots displaying the expression of differentially expressed genes from the tailbud (C) NMp cluster, (C0) Mesodermal clusters and (C00) Neural

clusters.

(D–D0) Distribution of the critical transition index Ic calculated using marker genes of each cluster along the mesodermal (D) and neural (D0 ) branches. A
bootstrapping procedure was applied in calculating Ic to account for the differences in cell number between cell clusters. Wilcoxon-Mann-Whitney unpaired

two-sample test ****p value < 0.0001; ns, not significant.

(E–E0) Distribution of pairwise cell-to-cell distances/transcriptional noise along the mesodermal (E) and neural (E0) branches. Wilcoxon-Mann-Whitney

unpaired two-sample test ****p value < 0.0001; ns, not significant.
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and S4). We include the expression of selected differentially expressed genes for the neural, mesodermal

and NMp clusters as dot plots (Figures 2C–2C00) and provide information on marker gene expression for

all 8 clusters in Table S3. In support of our manual annotation of the NMp cluster, we find that most of

the sox2+tbxta+ co-expressing cells are found within the NMp cluster, and the NMp cluster is sandwiched

between two neural clusters and five mesodermal clusters (Figures 2A and 2B). This is consistent with sox2

and tbxta emerging as differentially expressed genes in this cluster (Table S3). In addition, we validated a

subset of the identified NMp marker genes experimentally via HCR and find that they are all expressed

within the NMps within the tailbud (Figure S6), supporting the robustness of our in silico analysis.

We find that the NMp cluster is enriched for the posterior Hox genes hoxc13b, hoxc13a and hoxa13b,

with avg_log2FC of 1.02, 0.94 and 0.78 respectively (Table S3). Avg_log2FC measures the log fold-

change of the average expression of these genes in the NMp cluster versus the other clusters (Stuart

et al., 2019). In terms of signaling pathways, wnt8a and fgf8a appear as the top two genes enriched in

the NMp cluster, both of which are actively involved in NMp maintenance and differentiation (Goto

et al., 2017; Row et al., 2016). Notably, fgf8a is expressed in >80% of cells in the NMp cluster (PCT1 =

0.816) and <8% of cells in all other clusters (PCT2 = 0.075). Finally, our analysis also identified

cyp26a1, a retinoic-acid degrading enzyme that safeguards the Wnt/tbxta positive feedback loop,

with an avg_log2FC of 1.02 (Martin and Kimelman, 2010).

Besides identifying the known molecular players in NMp differentiation, we also uncovered numerous

other genes involved in a diverse range of processes. Genes with annotations that implicate their roles

in signaling pathways feature prominently and include wls, wnt8-2, and depdc7 for Wnt, angptl2b and

her12 for Notch, nog2 and id3 for BMP and fgf4 for FGF signaling. Also, three genes were annotated

with cytoskeleton-associated processes (tagln3b and enc1 have actin-binding activity and kif26ab regu-

lates microtubule motor activity), two possess histone deacetylase binding activity (znf703 and kdm6a)

and another two are associated with ubiquitination (traf4a and ubl3a). Interestingly, foxd3, a neural crest

marker, emerged as a candidate that is enriched in the NMp cluster, with an adjusted pvalue of

1.92 3 10�6. It is expressed in >20% of cells in the NMp cluster and <4% of cells across all the other 7 clus-

ters (Table S3). This observation confirms the results of recent study that revealed a common transcriptomic

signature of the neural crest and NM populations (Lukoseviciute et al., 2021).

Cell fate decision making has been proposed to be a critical transition event, with both these features

captured in a single Critical Transition Index that has previously been shown to predict a cell fate decision

making event within blood progenitors as they commit to either myeloid or erythroid lineages (Mojtahedi

et al., 2016). In similar vein, we computed the critical indices for the NMp, neural (pou5f3+ posterior NT and

posterior NT) and mesodermal (posterior PSM and tail somites) clusters (Figures 2D and 2D0). Along both

the neural and mesodermal differentiation trajectories, the NMp cluster cells have the highest critical in-

dex, which is consistent with a cell population undergoing a dynamical bifurcation.

Next, we assessed the level of transcriptional noise in the population, which measures the pairwise cell-cell

distances (Mohammed et al., 2017). We observed that the NMp cluster cells have a higher transcriptional

noise relative to the other cell populations (Figures 2E and 2E0). Therefore, both quantitative indices indi-

cate that the NMp cell population is noisier than either the neural or mesodermal progenitor states that

derive from theNMP population, lending support the hypothesis that NMps are approaching a critical tran-

sition at 18ss.
iScience 25, 105216, October 21, 2022 7



Figure 3. Gene expression imputation and the construction of a composite map via ZebReg demonstrates a peak in the NM index entropy at 24ss

(A) Application of ZebReg for the imputation of multiple genes onto a target composite image. In the panel, tbxta, cdh6, hes6, tcf, depdc7a and wnt8a are

imputed onto a target image that is stained only for sox2. sox2 is the common color channel used to assist the alignment of the source images onto the target

image. In this example, the resultant target image has 7 distinct color channels.

(B–B0) Coloring in silico NMps in the 18ss, 24 and 28ss composite maps by (B) sox2 expression (B0) tbxta expression levels.

(C) The top ‘Original’ row depicts the 2D projections of the HCR data at 18ss. The bottom ‘Imputed’ row depicts the corresponding expression of these

genes in the target composite image.
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Figure 3. Continued

(D) NM index density distributions computed from the 8-gene composite maps at 18ss, 24 and 28ss. Negative values of the NM index indicate mesodermal

bias, whereas positive values indicate neural bias. med: median; p.val: pvalue for the Shapiro-Wilk test; out: outlier percentage; H: empirical entropy

estimate; var: variance.

(E) Entropy estimates of the NMp index, with the estimation of the SE obtained via jackknife resampling. The entropy estimates consistently peak at 24ss.

entropy_jeffrey: Dirichlet-multinomial pseudocount entropy estimator (Dirichlet) with Jeffrey’s prior; entropy_laplace: Dirichlet with Laplace’s prior;

entropy_ML: empirical maximum likelihood estimator; entropy_MM: Miller-Madow estimator; entropy_shrink: James-Steintype shrinkage estimator.
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Gene expression imputation and the construction of a composite map via ZebReg

demonstrates a peak in the NM index entropy at 24ss

Our observation that the number and position of NMps vary extensively between stage-matched embryos,

especially at the 24ss, suggests that there is significant variability in sox2 and tbxta expression within the

NMps. Consequently, fixed measurements of gene expression from a single sample alone would be inac-

curate as it can only give an instantaneous snapshot capturing one out of many different gene expression

states that the NMp population can potentially explore. To leverage the gene expression information

across multiple tailbud samples, we developed a tool called ZebReg that takes images of stage-matched

zebrafish tailbud samples as inputs, converts them into point clouds and registers the point clouds

together to construct composite gene expression target maps (Figure 3A).

We first used ZebReg to impute the expression of 8 genes into three composite maps, one for each stage at

18ss, 24 and 28ss. Each composite map was constructed by combining the gene expression of 6 different

images across different HCR experiments (Figure S8 and Table S2), and each map displays the expression

of sox2 (Figure 3B), tbxta (Figure 3B’) and 6 other neural or mesodermal marker genes selected from our

scRNA-seq analysis within a target point cloud. As these maps contain spatial information of the tailbud

cells, we could identify the in silico NMps by virtue of their sox2 and tbxta co-expression as well as their

locations on the composite map (Figure S12). These in silicoNMps in the composite maps were also found

to be within the NMp regions in our probability map which were identified via a different approach

(Figure S14).

To assess the fidelity of our gene expression imputation procedure, we performed a gene-by-gene qual-

itative inspection of the spatial expression patterns in the composite maps to the corresponding patterns

observed in the original HCR images at 18ss. A visual comparison between the imputed and original im-

ages demonstrates a strong resemblance in their expression patterns (Figure 3C). For instance, sox2

and cdh6 are expressed strongly in the posterior neural tube and hypochord but not in the notochord. tbxta

is expressed strongly in the notochord progenitor zone and the dorsal PW. Thus, the overall visual corre-

spondence between the original and imputed gene expression images is evidence that ZebReg has

aligned these images appropriately, at least when assessed on a qualitative level. We also performed addi-

tional in silico validation experiments and demonstrated that ZebReg also preserves the quantitative rela-

tionships between genes (STAR Methods).

In a previous study involving the generation of NMps from mouse embryonic stem cells in vitro (Edri et al.,

2019), the authors developed an NMp index that measures the neural and mesodermal potentials of

different cultured cell populations. In similar vein, we used the composite maps to construct an ‘NM index’

which combines the information across 8 genes (STAR methods) and differs from the NMp index by Edri

et al. in several important dimensions (Table 1). We plotted the NM index distributions for the NMps in

the three composite maps (Figure 3D). These distributions reflect the neural/mesodermal biases of the

in silico NMps in these three stages, and cells can be classified as being either neural-biased, meso-

derm-biased or indecisive based on their NM index value (Figure S13A). We find that there is a consistent

neural bias in the NMps across all three stages which is reflected by the median NM index value.

To quantify the NM heterogeneity of the in silico NMps between these stages, we computed a series

of Shannon entropy estimators. Examining the empirical maximum-likelihood entropy estimator

(H) with the natural unit of information (nat), we observed a surge in value at 24ss with H = 6.23 nat,

compared to the neighboring values of H = 4.17 nat at 18ss and H = 3.18 nat at 28ss (Figure 3E).

This increase in entropy followed by a decline was also observed in the other entropy estimates (Fig-

ure 3E). Thus, our data suggest that the NMp population heterogeneity, measured by the intercellular

entropy, peaks at 24ss.
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Table 1. Differences in the construction of the NMp indices

Comparison NMp index (Edri et al., 2019) NM index

How is the index defined? Relationship between the neural averaged value/

potential and the mesodermal averaged value/

potential. This construction is similar to the

analysis of the Neural and Mesodermal

indices (Figure S13C)

A summary statistic defined as the difference

between the neural and mesodermal indices.

How are the gene expression

values normalised?

Z score normalization Min-max normalization

How many genes

(including Sox2 and Tbxta)

are used in the construction

of the index?

19 8

Are genes categorised? Yes. There are 4 neural genes and 15 mesodermal

genes. The effect of categorization is that neural

genes contribute only to the neural average value,

and mesodermal genes contribute only to the

mesodermal average value.

No. All 6 genes can contribute to both

indices (sox2 and tbxta contribute only

to the Neural and Mesodermal indices

respectively).

Do genes contribute equally

to the index?

Yes. For instance, the neural potential is an

average of the 4 neural genes

(including sox2)

No. Sox2 and tbxta has the highest

contribution to the index, with the

other 6 genes weighted for their

correlation to each gene. The

stage-wise correlations were

obtained from our segmented

NMp HCR data (Figure S10B)

How were genes selected? Supervised selection by experts. Unsupervised approach based on

analysis of scRNA-seq data.

Is the index defined at a

single-cell level?

No. The index is defined for entire cellular populations.

mRNA from bulk samples were extracted and quantified

via qRT-PCR.

Yes. Each cell is assigned a value

of the index based on imputed

gene levels.
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ZebReg’s composite maps reveal that the number of rebellious cells peak at 24ss

We further compared the canonicalWnt signaling activities and eventual cell fates (neural ormesodermal) of the

in silicoNMps against their NMgene expression states (NM index levels). Tomonitor the downstream transcrip-

tional activity of canonical Wnt signaling, we probed GFP RNA levels produced from a transgenic line that ex-

presses GFP downstream of seven multimerized TCF/LEF binding sites (Moro et al., 2012). Given that our data

consist of fixed snapshot images of theNMps, we cannot follow the differentiation of singleNMps over time and

thus, do not have direct information of their prospective fates. Nevertheless, snapshot images can inform us of

NMp fates due to their specific developmental features. In a previous study by Attardi et al., photolabelingof the

zebrafish NMps followed by single-cell lineage tracing in a light-sheet dataset demonstrated that these are

mono-fated and spatially segregated progenitors (Attardi et al., 2018). Consequently, a reliable fate map of

the tailbud NMps can be constructed, where the fate of an NMp can be inferred from its spatial location at

the mid to late somitogenesis stages. In addition, as NMps have low levels of proliferation (Attardi et al.,

2018, Figures S11A, S11B, S11D, and S11E) and apoptosis throughout 18ss–30ss (Figures S11A and S11C), we

can be confident that we are following the differentiation trajectory of an identified NMp over time.

Given the critical relationship between an NMps’ spatial location and its cell fate, we defined approximate

neural-fated and mesodermal-fated domains in our ZebReg composite maps following the fate map of At-

tardi et al. and assessed the NM index levels of the NMps within these domains (Figure 4A). We found cells

with NM gene expression profiles that are inconsistent with their prospective fates and labeled these cells

as ‘Incongruent’. Conversely, cells with compatible state-fate relationships are labeled ‘Congruent’. We

observed Incongruent cells with low/high NM index levels residing in the neural/mesoderm-fated domains

(Figure 4A blue arrows). As sox2 and tbxta are the primary orchestrators of the neural and mesodermal

gene expression programs respectively, these ‘incongruent’ cells are also found in our original HCR images

as sox2 (tbxta)-high NMps within the neural (mesoderm)-fated domains (Figure 4B).
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Figure 4. ZebReg’s composite maps reveal that the number of Rebellious cells peak at 24ss

(A) Demarcation of the neural-fated and mesoderm-fated domains in the composite maps. Non-NMps are colored gray,

whereas NMps are colored according to their NM index levels. Blue arrows mark incongruent cells.

(B–B00) HCR stains of a representative zebrafish tailbud at 24ss for tbxta and sox2. Segmented surfaces correspond to

NMps which are colored by the expression levels of tbxta (B) and sox2 (B0). Nuclear signals for sox2 and tbxta are shown to

illustrate co-expression (B00). Arrow heads mark Incongruent cells.

(C) Proportion of Congruent, Compliant and Rebellious cells in the mesoderm-fated and neural-fated domains at 18ss, 24

and 28ss. At each stage, summing up the number of Compliant and Rebellious cells yields the number of Incongruent

cells.
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Incongruent cells can be further classified as ‘Compliant’ or ‘Rebellious’ depending on whether their Wnt

signaling activities (tcf expression levels) are consistent or inconsistent with their NM gene expression

states (Table S1). We quantified the proportion of Compliant, Rebellious and Congruent cells in the meso-

dermal and neural-fated domains of our three composite maps (Figure 4C). At 18 and 28ss, with the
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exception of the 28ss mesoderm-fated domain, most cells are Congruent. Also, more Incongruent cells are

found in themesoderm-fated domain than the neural-fated domain. However, at the 24ss, we find a greater

number of Incongruent cells (Compliant and Rebellious) than Congruent cells in the mesoderm-fated

domain. Specifically, the number of Rebellious cells in the mesoderm-fated domain peaks at this stage.

Thus, consistent with the transition state model, we find a loosening of the relationship between cell state

and fate as reflected by the increase in the number of rebellious NMps at the 24ssprior to their commitment

to the NM fate.
DISCUSSION

Zebrafish tailbud NMps have proven to be an attractive in vivo system to assess the transition state hypoth-

esis. Specifically, we investigated whether a transient window of elevated stochasticity in gene expression

precedes the NMp differentiation event at around 24ss. Our study supports the existence of an in vivo tran-

sition state via 3 main lines of evidence. First, in our single-nuclei in situ HCR stains of Sox2 and Tbxta, we

found an increased variability in NMp cell number (Figure 1K) as well as gene expression heterogeneity at

24ss (Figure 1J). Second, analysis of the high-dimensional scRNAseq dataset at 18ss showed that the critical

transition index and transcriptional noise index peak in the NMps (Figures 2D and 2E), indicating that it is a

population with elevated noise levels. Third, by integrating multiple HCR stains into composite maps with

the ZebReg image registration tool and then computing the NM index distributions, we found an increase

in intercellular entropy in the NMp population specifically at 24ss (Figure 3E) and also document the exis-

tence of Rebellious cells in vivo (Figures 4B and 4C).

Our discovery of rebellious cells in the ZebReg composite maps recapitulates the finding by Mojtahedi

et al. in their in vitro study on the differentiation of a multipotent hematopoietic cell line (Mojtahedi et al.,

2016). Rebellious cells emerge at day 3 post-treatment as cells that express an erythroid profile when

stimulated with Granulocyte macrophage colony stimulating factor/IL-3 or a myeloid profile when stim-

ulated with erythropoietin. Eventually, cells disappear at day 6 post-treatment. In addition, ‘edge’ cells

were identified in cancer cell lines as cells that adopt a gene expression profile that is different from the

average profile in the population distribution (Li et al., 2016). This phenomenon is not unprecedented

in vivo. In an earlier study on Xenopus embryonic development (Wardle and Smith, 2004), cells that ex-

press a lineage marker at the ‘wrong’ place, such as Goosecoid expressing cells in the ventral instead of

the dorsal region of the embryo, were labeled‘rogue’ cells to indicate their abnormal expression profile.

These cells appear more frequently in the early gastrula stage and reduce in frequency at the late gas-

trula stage. In both cases, these rebellious/rogue cells are proposed to ‘fit in or die trying’ - they would

either die by apoptosis or transdifferentiate to adopt the appropriate gene expression profile if rescued

by delivery of the appropriate signal or through interactions with neighboring cells via the community

effect.

One of the key results is the transient increase in NMp cell number and gene expression variability at 24ss

(Figures 1J and 1K). What could be the plausible explanation for this phenomenon? The spike in the num-

ber of NMps is unlikely to be the result of cellular proliferation occurring around 24ssdue to very low pro-

liferation in the NMP region throughout the differentiation process (Bouldin et al., 2014; Zhang et al., 2008;

Figure S11). We also assessed for the possibility of temporal differences in apoptotic levels throughout tail-

bud development and found consistently low levels of apoptosis as well (Figure S11). Instead, we propose

that this arises because NMps are undergoing a critical transition around this developmental window. Dur-

ing NMp differentiation, stochastically fluctuating levels of Sox2 and Tbxta could result in the broad

range of distributions observed within the NMp population, leading to the identification of fewer or

more sox2+tbxta+ cells in our fixed imaging analysis. More Sox2+tbxta+ cells could be identified than

before as Sox2-Tbxta+ cells could upregulate Sox2 to reach detectable levels of expression (or vice versa).

Thus, the peak in cell number variability and gene expression heterogeneity at 24ss are interrelated, coin-

ciding with the NMps’ entry into the transition state as cells sample a broader set of Sox2 and Tbxta states.

This is consistent with the emergence of sox2+int tbxta + int cells at 24ss (Figure 1J, red box 24ss). The stron-

gest support for this explanation comes from previous lineage tracing studies demonstrating that NMps

begin to contribute to the spinal cord only after the 24 somite stage, as labeled descendants of the

NMP region only contribute to post-24 somite regions of the tail (Attardi et al., 2018). As the critical tran-

sition theory posits a decrease in correlation of cellular gene expression states between cells prior to their

differentiation (Mojtahedi et al., 2016), this observation extends our knowledge of the mechanisms under-

pinning the biological timing of NMP differentiation in vivo.
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To construct the gene expression composite maps, we developed an image registration tool, ZebReg,

which employs a point-based registration approach by converting the centroids of segmented zebrafish

nuclei surfaces into points. Image registration tools built for the study of zebrafish embryonic development

are rare. A gene expression atlas was constructed for the early embryonic shield stage (Castro-González

et al., 2014) and another registers reporter gene activities of embryos at prim-20 and long-pec stages (Geh-

rig et al., 2009). To the best of our knowledge, there is no existing image registration tool built for the pur-

pose of aligning zebrafish embryos at segmentation stages (10.33 hpf to 24 hpf) and for the quantification

of gene expression intensities in the zebrafish tailbud. We adopted a rigid transformation approach for

ZebReg as th e developing notochord is a prominent morphological landmark in the zebrafish tail, which

allowed us to crop the volumetric images easily to maintain a consistent field of view and thus simplify the

registration task considerably (Hajnal et al., 2001). Also, zebrafish tailbuds of around the same stage are

reasonably consistent in their morphology and there were no obvious shrinkage artifacts arising from

the experimental procedure. In cases where significant biological and technical variation exist (Fowlkes

et al., 2008), a pipeline that uses non-rigid transformationmethods for correction of these distortions would

be required (Keszei et al., 2017).

The development of theNMp indexwas critical for the quantitative analysis of the compositemaps.One feature

that was highlighted from the index is the neural bias in the NMps across all three developmental timepoints.

Given that the NM index is constructed using correlations, it may give a skewed estimate if the NMp genes cho-

sen from the scRNA-seq dataset for HCR validation are all highly correlated toward either the neural (Sox2) or

mesodermal (Tbxta) fates. To assess this possibility, we re-examined the correlation data of all 6 geneswith Sox2

and Tbxta (Figures S13E and S13E0). We found that for both genes at all three stages, the correlation values

spanned a range of positive and negative values, although there is a slight bias toward a positive correlation

toward Sox2 and negative correlation towardTbxta at the later stages. Thus, the reported neural bias is not a

consequence of examining genes specifically correlated positively to Sox2 or negatively to Tbxta only. In addi-

tion, our primary observation of a transient peak in entropy at 24ss remains unchanged when we computed the

naive index (Sox2-Tbxta). Indeed, the correlation between the naive index and the NM index is strong (around

0.8–0.9 for all 3 stages). In fact, when substituting Tbxta for TCF and Cdh6 for Sox2, given the relatively strong

correlation of each member of the pair with each other, the conclusion remains unchanged. Another approach

taken was to compute the NM index in a similar fashion to Edri et al. (2019) by categorising genes into either

neural or mesodermal categories. When the NM index was computed as (Sox2 + Cdh6) - (Tbxta + TCF), the

peak in entropy at 24ss is in fact even higher than the corresponding entropy value of the naive index at

24ss. Therefore, we can identify the peak in cell-cell variability at 24ss, where variability here is quantified in terms

of the entropy of the NM index distribution, in amanner that is robust to the precise choice of genes for the NM

index.We believe that this robustness is due to the increased gene-gene correlation within the individual neural

and mesodermal modules, as well as greater antagonism between both modules as NMps undergo a critical

transition around 24ss.

In the construction of the composite maps at 18ss, 24 and 28ss, the mesodermal and neural-fated domains

comprise varying numbers of cells, which is a consequence of the developmental dynamics of the zebrafish

NMps (Figure 1K). Our finding that the proportion of rebellious cells (Figure 4C) is highest at 24ss within the

mesoderm-fated domain extends a recent study on the connection between morphogenetic movements

and mesoderm fate acquisition in the zebrafish NMps (Kinney et al., 2020). Sox2 and canonical Wnt co-

expression in mesoderm-fated NMps primes these cells toward both neural and mesodermal fates and

acts as a developmental checkpoint that traps these cells in a poised, intermediate state. This intermediate

state where EMT is delayed resembles a hybrid EMT transition state found in cells with high potential for

metastasis (Yang et al., 2020). In fact, tbxta (Brachyury) is a driver of EMT in various tumors and is correlated

with metastatic activity and the acquisition of a mesenchymal phenotype (Chen et al., 2020). Thus, our work

emphasises a strong connection between the hybrid EMT transition state expressingmultiple intermediate

cell states (Sha et al., 2019) and the neural-mesodermal transition state (Steventon and Martinez-Arias,

2017). The correspondence between morphological fluctuations and the entry into a transitory state was

also recently proposed in a study on hematopoietic stem and progenitor cells (Moussy et al., 2017). As

NMps exit the transition state and differentiate into the neural or mesodermal fates, the heterogeneity

in sox2 and tbxta expression is resolved as NMps adopt either a high sox2/low tbxta (neural) or high

tbxta/low sox2 (mesodermal) expression profile (Figures 1D–1F). This is consistent with the proposed

role of Sox2 and Bra protein level ratios dictating the specific cell movements associated with each lineage

(Romanos et al., 2021).
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Recent work on multipotent zebrafish neural crest cells suggests that at least a portion of the neural biased

trunk neural crest (NC) progenitors arise from early neural biased zebrafish NMps at 5-6ss (Lukoseviciute

et al., 2021). A similar conclusion was reached in multiple studies of in vitro human pluripotent stem cell-

derived axial progenitors, demonstrating that the generation of trunk NCs involves an obligatory NMp

intermediate (Frith et al., 2018; Hackland et al., 2019). We identified sp5l, cdh6, znf703 and foxd3 as differ-

entially expressed genes of the NMp cluster; all of which have important roles in neural crest specification.

In addition, many differentially expressed genes identified from the NMp cluster are involved in signaling

pathways (FGF, Wnt, BMP) and the synergistic action of these pathways play a critical role in neural crest

differentiation (Sauka-Spengler and Bronner-Fraser, 2008). When we photolabelled the dorsal PW (NMp

region) at 18ss and tracked these cells until 28ss, we noticed that the anterior photolabels in the dorsal neu-

ral tube appear to be emigrating away whilst the posterior labels do not show signs of migration (Fig-

ure S11D). 24 h later, the photolabels were found to have spread more anteriorly, with the anterior labels

appearing more dispersed ventrally. When we photolabelled the dorsal PW at 28ss, we also found similar

photolabels in the dorsal neural tube 24 h post-photolabeling (Figure S11E). The localization of the labels in

the dorsal neural tube alongside the anterior pattern of cell migration strongly suggest that the differen-

tiation of the NMp-derived neural progenitors into the trunk NC progenitors continues throughout somito-

genesis and occurs even as we approach the end of somitogenesis. Therefore, we extend the observation

made by Lukoseviciute et al., providing support for an NMp to trunk NC progenitor lineage that occurs

even in the later tailbud NMp population.

To the best of our knowledge, our work is the first to directly catalog the transient surge in heterogeneity in

mRNA expression in vivo during an endogenous differentiation event in a wildtype vertebrate species.

Whilst several studies have proposed mechanistic models to explain the relationship between transcrip-

tional heterogeneity and cell fate commitment (Antolovi�c et al., 2017; Pina et al., 2012) and even functional

pluripotency (MacArthur and Lemischka, 2013), our study was not designed to discriminate between these

causal models. Instead, we focused on assessing the association between cell fate commitment and the

increase in gene expression heterogeneity in vivo. Future work, outside the scope of this article, is neces-

sary to fill in the mechanistic details that generate these heterogeneities during cell fate transitions in vivo.

Taken together, our work supports the existence of a transition state within an endogenous cell fate deci-

sion making event. Recognising the functional importance of transcriptional stochasticity and non-genetic

heterogeneities during differentiation has important practical consequences. It drove the discovery that

regulators of transcriptional noise may play a general role in the acquisition of malignancy by modulating

the balance between proliferation and differentiation (Domingues et al., 2020), and may be an important

dimension to consider when improving the efficacy of mesenchymal stem cell-based therapies (McLeod

and Mauck, 2017; Pacini, 2014). Seen alongside the evidence presented from other systems, it becomes

increasingly plausible that the transition state is not an idiosyncrasy of in vitro culture conditions or a pe-

culiarity of cancer models. We await future developments on whether the critical behaviors predicted in

the transition state model are a universal characteristic of cell state transitions in biological systems in vivo.
Limitations of the study

The colored ICP (cICP) algorithm employed in ZebReg will not be able to align point clouds exactly, as ze-

brafish tailbuds will inevitably differ from one another in their nuclei position and gene expression inten-

sities. Instead, for each nucleus from the source image, ZebReg can, at best, map it to its most similar

cell counterpart in the target image, based on their proximity to each other and similarity in expression

of a reference gene. For multiply mapped and unmapped target points, ZebReg imputes their gene

expression intensities by taking the average intensities of each point’s k-nearest neighbors (k = 5). This

approach assumes a degree of spatial autocorrelation in gene expression intensities of a point with its

neighbors. During the transition state where cell-cell correlation decreases, our approach may underesti-

mate the extent of cellular heterogeneity in the population due to the application of an averaging

procedure.

In our work, we adopted a descriptive, fixed imaging-based approach toward interrogating the level of

gene expression heterogeneities during NMp differentiation. Whilst the peculiarities of the zebrafish

NMp model enabled us to infer cellular fates from cellular positions, without adopting a live imaging

approach, we were unable to document the details of the transcriptional dynamics around 24ss (Weinreb

et al., 2018). Zebrafish embryos have been amenable to live RNA imaging using various techniques such as
14 iScience 25, 105216, October 21, 2022
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the MS2 labeling system (Campbell et al., 2015), 30 poly(A) tail labeling system (Westerich et al., 2020) and

molecular beacon sensors (Li et al., 2017) due to its optical transparency. Thus, future work could perform

live imaging of sox2 and tbxta mRNAs to monitor the changes in transcription dynamics around 24ss as

NMps enter and exit the transition state.
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Weber, G.H., Rübel, O., Huang, M.Y., Chatoor, S.,
DePace, A.H., Simirenko, L., Henriquez, C., et al.
(2008). A quantitative spatiotemporal atlas of
gene expression in the Drosophila blastoderm.
Cell 133, 364–374. https://doi.org/10.1016/j.cell.
2008.01.053.

Frith, T.J., Granata, I., Wind, M., Stout, E.,
Thompson, O., Neumann, K., Stavish, D., Heath,
P.R., Ortmann, D., Hackland, J.O., et al. (2018).
Human axial progenitors generate trunk neural

https://doi.org/10.1242/dev.173740
https://doi.org/10.1016/j.cub.2017.05.028
https://doi.org/10.1016/j.cub.2017.05.028
https://doi.org/10.1242/dev.166728
https://doi.org/10.1073/pnas.1621412114
https://doi.org/10.1073/pnas.1621412114
https://doi.org/10.1117/12.57955
https://doi.org/10.1016/j.ceb.2021.08.003
https://doi.org/10.1016/j.ceb.2021.08.003
https://doi.org/10.1242/dev.124024
https://doi.org/10.1101/gad.233577.113
https://doi.org/10.1101/gad.233577.113
https://doi.org/10.1371/journal.pcbi.1006405
https://doi.org/10.1016/S0960-9822(00)00601-1
https://doi.org/10.1016/S0960-9822(00)00601-1
https://doi.org/10.1016/j.cell.2012.08.023.Single-cell
https://doi.org/10.1016/j.cell.2012.08.023.Single-cell
https://doi.org/10.1242/dev.02877
https://doi.org/10.1242/dev.129.20.4855
https://doi.org/10.1242/dev.129.20.4855
https://doi.org/10.1242/dev.118968
https://doi.org/10.1242/dev.118968
https://doi.org/10.1371/journal.pbio.1000379
https://doi.org/10.1371/journal.pbio.1000379
https://doi.org/10.3389/fcell.2020.00659
https://doi.org/10.1002/wsbm.1471
https://doi.org/10.1002/wsbm.1471
https://doi.org/10.1371/journal.pcbi.1003670
https://doi.org/10.1371/journal.pcbi.1003670
http://refhub.elsevier.com/S2589-0042(22)01488-2/sref20
http://refhub.elsevier.com/S2589-0042(22)01488-2/sref20
http://refhub.elsevier.com/S2589-0042(22)01488-2/sref20
http://refhub.elsevier.com/S2589-0042(22)01488-2/sref20
https://doi.org/10.1038/nature06965
https://doi.org/10.3389/fonc.2020.00961
https://doi.org/10.3389/fonc.2020.00961
https://doi.org/10.3389/fgene.2015.00252
https://doi.org/10.3389/fgene.2015.00252
https://doi.org/10.1242/dev.165753
https://doi.org/10.1242/dev.165753
https://doi.org/10.1242/dev.127.2.255
https://doi.org/10.1242/dev.127.2.255
https://doi.org/10.1016/0092-8674(87)90585-X
https://doi.org/10.7554/eLife.51754
https://doi.org/10.7554/eLife.51754
https://doi.org/10.1186/s12915-022-01264-9
https://doi.org/10.1186/s12915-022-01264-9
https://doi.org/10.1242/dev.168187
https://doi.org/10.1242/dev.168187
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1145/358669.358692
https://doi.org/10.1016/j.cell.2008.01.053
https://doi.org/10.1016/j.cell.2008.01.053


ll
OPEN ACCESS

iScience
Article
crest cells. Elife 7, e35786. https://doi.org/10.
1101/272591.

Gandrillon, O., Gaillard, M., Espinasse, T.,
Garnier, N.B., Dussiau, C., Kosmider, O., and
Sujobert, P. (2021). Entropy as a measure of
variability and stemness in single-cell
transcriptomics. Curr. Opin. Syst. Biol. 27,
e100348. https://doi.org/10.1016/j.coisb.2021.05.
009.

Gehrig, J., Reischl, M., Kalmár, E., Ferg, M.,
Hadzhiev, Y., Zaucker, A., Song, C., Schindler, S.,
Liebel, U., and Müller, F. (2009). Automated high-
throughput mapping of promoter-enhancer
interactions in zebrafish embryos. Nat. Methods
6, 911–916. https://doi.org/10.1038/nmeth.1396.

Gont, L.K., Steinbeisser, H., Blumberg, B., and de
Robertis, E.M. (1993). Tail formation as a
continuation of gastrulation: the multiple cell
populations of the Xenopus tailbud derive from
the late blastopore lip. Development 119, 991–
1004. https://doi.org/10.1242/dev.119.4.991.

Goto, H., Kimmey, S.C., Row, R.H., Matus, D.Q.,
and Martin, B.L. (2017). FGF and canonical Wnt
signaling cooperate to induce paraxial
mesoderm from tailbud neuromesodermal
progenitors through regulation of a two-step
epithelial to mesenchymal transition.
Development 144, 1412–1424. https://doi.org/10.
1242/dev.143578.

Guillot, C., Djeffal, Y., Michaut, A., Rabe, B., and
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal Anti-Histone H3 (phosphor S10) Abcam Cat #Ab14955; RRID:AB_443110

Rabbit polyclonal Anti-caspase3 Abcam Cat #Ab13847; RRID:AB_443014

Secondary anti-mouse Alexa Fluor A488 ThermoFisher Scientific Cat # A32723; RRID:AB_2633275

Secondary anti-rabbit Alexa Fluor A633 Invitrogen Cat #A21071; RRID:AB_2535732

Chemicals, peptides, and recombinant proteins

4% paraformaldehyde (PFA) Sigma CAS no: 30,525-89-4

Agarose, low gelling temperature Sigma A9414

Dulbecco’s Phosphate Buffered Saline (PBS) Sigma D8537-500ML

DAPI Sigma CAS no: 28718-90-3

EDTA Sigma CAS no: 60-00-4

Triton-X Sigma CAS no:9002-93

Fetal bovine serum (heat-inactivated) ThermoFisher Scientific 10437028
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Methylcellulose Sigma M0512

RNaseA QIAGEN 19101

SSC buffer Scientific Laboratory Supplies S6639-1L

Methanol ThermoFisher Scientific CAS no: 67-56-1

VECTASHIELD Antifade mounting medium Vector Laboratories H-1000-10

Tween-20 ThermoFisher Scientific AAJ20605A

Critical commercial assays

In situ HCR v3.0 Molecular Instruments N/A

QIAquick PCR purification kit Qiagen 28104

SP6 mMessage mMachine kit Invitrogen AM1340

Deposited data

RNA seq NCBI Gene Expression Omnibus GEO: GSM3067194

ZebReg Code This paper https://doi.org/10.5281/zenodo.7053174

Experimental models: Organisms/strains

Wildtype Zebrafish embryos - Tüpfel long fin (TL) European Zebrafish Resource Center ZDB-GENO-990623-2

Wildtype Zebrafish embryos - AB European Zebrafish Resource Center ZDB-GENO-960809-7

Transgenic zebrafish embryos - Tg(7xTCF- Xla.Sia:GFP) Steven Wilson Lab; Moro et al., 2012 ZDB-TGCONSTRCT-110113-1

Oligonucleotides

Tbxta HCR probes This paper See Table S4

Sox2 HCR probes This paper See Table S4

Recombinant DNA

Hsp70L:p2a-NLS kikGR Benjamin Martin Lab; Row et al., 2016 ZDB-TGCONSTRCT-160321-3

Software and algorithms

Imaris (v9.2.1) Bitplane https://imaris.oxinst.com/

Python (v3.8) Python Software Foundation https://www.python.org/

Open3D (v0.11.0) Zhou et al., 2018 http://www.open3d.org/

(Continued on next page)

20 iScience 25, 105216, October 21, 2022

https://doi.org/10.5281/zenodo.7053174
https://imaris.oxinst.com/
https://www.python.org/
http://www.open3d.org/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

NanoDrop 2000c Spectrophotometer Thermo Scientific 13400411

35 mm glass bottom dish MatTek P35G-1.5-10-C

Inverted confocal Microscope Leica SP8

Inverted confocal Microscope Zeiss LSM700

KpnI-HF enzyme NEB R3142L
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Ben Steventon (bjs57@cam.ac.uk).

Materials availability

HCR probe sequences for sox2 and tbxta are documented in the supplementary file.

Data and code availability

d This article analyzes existing, publicly available RNA seq data. The accession numberfor the dataset is

listed in the key resources table. Microscopy data reported in this article will be shared by the lead con-

tact on request.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication.

The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this article is available from the

lead contact on request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Zebrafish husbandry

All zebrafish procedures were conducted under the Animals (Scientific Procedures) Act 1986Amendment

Regulations 2012, following ethical review by the University of Cambridge Animal Welfare and Ethical Re-

view Body (AWERB). Wildtype lines used are either Tüpfel long fin (TL), AB/TL or AB. The Tg(7xTCF-

Xla.Sia:GFP) reporter line (Moro et al., 2012) was provided by the Steven Wilson laboratory. All embryos

obtained were obtained and raised in standard E3 media at 28�C. Embryos were staged according to

Kimmel et al. (1995).

METHOD DETAILS

Version 3 hybridization chain reaction (V3 HCR)

Zebrafish embryos at the required stages were fixed in 4% PFA in DEPC-treated, calcium and magnesium-

free PBS at 4�C overnight. Embryos were then stained with V3 HCR (Choi et al., 2018). All hairpins were pur-

chased from Molecular Instruments. All probes were purchased from Molecular Instruments except for

sox2 and tbxta which were manually designed. After the staining procedure, samples were counterstained

with DAPI at a dilution of 1:1000 in 5xSSCT for 2 hours at room temperature. The tailbud region was cut out

with a forceps and eyelash tool, and then mounted on a 35 mm glass bottom dish (MatTek) with the

VECTASHIELD Antifade mounting medium for confocal imaging.

Quantification of nuclear gene expression intensities

HCR images were processed in Imaris (Bitplane). Unless otherwise stated, all sox2+tbxta+ HCR images

were analyzed for the number of NMps as described in Figure S1. Segmentation of the posterior neural

tube and notochord nuclei were conducted with reference to their known anatomical locations.

To normalize the Sox2 and Tbxta gene expression intensities in the different populations identified across

samples (posterior neural tube, posterior notochord, NMps), we performed the following steps. For each
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sample imaged, we recorded the highest and lowest signal intensities of Sox2 and Tbxta amongst all

segmented nuclei of that sample. If the signal intensities were derived from inappropriately segmented

nuclei, they were discarded and the next highest or lowest signal intensities were used instead to avoid

outlier values. These threshold intensity values were then used for min-max normalization of the signal

intensities.
Immunostaining

Zebrafish embryos at the required stages were fixed in 4% PFA in DEPC-treated, calcium and magnesium-

free PBS at 4�C overnight. Embryos were then co-stained with a 1:500 dilution of mouse anti-PH3 antibody

(Abcam, ab14955) and 1:500 dilution of rabbit anti-caspase3 antibody (Abcam, ab13847), as described in

Sorrells et al. (2013). Secondary anti-mouse Alexa Fluor 488-conjugated antibody and anti-rabbit Alexa

Fluor 647-conjugated antibody were both diluted in 1:500 PDT solution and incubated with the samples

overnight at 4�C. DAPI was added at the final step with a 1:1000 dilution in PDT and incubated for 2 h at

room temperature for nuclear detection. Images were quantified in the 3/4D Image Visualization and Anal-

ysis Software Imaris 9.2.1 (Bitplane). The percentages of mitotic or apoptotic cells for each sample were

calculated as the fraction of PH3+ or caspase3+ nuclei over the total number of nuclei in the tailbud, multi-

plied by 100.
Photolabeling with nuclear-targeted kikume

The hsp70L:p2a-NLS kikGR vector (Bouldin et al., 2015) was extracted from an overnight grown bacterial

culture. Briefly, bacterial cells were collected via centrifugation and washed sequentially with the following

3 buffers: P1 containing 50 mM Tris-Cl at pH 8.2, 10 mM EDTA at pH 8.0, RNase A (QIAGEN); P2 (filter-ster-

ilized) containing 0.8% NaOH and 1% SDS; P3 containing 3M KOAc that is adjusted to pH 5.5 with glacial

acetic acid. Plasmid DNA was precipitated with 70% isopropanol and washed with 70% ethanol before re-

suspension in nuclease-free water.

The vector was linearized by restriction digestion with the KpnI-HF enzyme (NEB), and subsequently puri-

fied using the QIAquick PCR purification kit (Qiagen). The purified, linearized plasmid was transcribed at

the SP6 promoter with the SP6 mMessage mMachine kit (Invitrogen), and lithium chloride precipitation

was carried out for mRNA recovery. Quantification of the transcribed kikGR mRNA was performed on

the NanoDrop instrument (Thermo Fisher).

One-cell stage zebrafish embryos were injected with the NLS-kikGR mRNA and then embedded in low gel-

ling point agarose (Sigma) at 1% w/v in E3 media at the bottom of a MatTek 35 mm glass bottom dish. Pho-

toconversion and image acquisition was performed on a Zeiss LSM 700 confocal microscope. Efficient, irre-

versible photoconversion of NLS-KikGR in the zebrafish embryos at mid-somitogenesis stages was carried

out by scanning the 405 nm laser at 15% laser power for approximately 30 seconds in a region of interest.
Confocal microscopy imaging

Samples were imaged on either a Zeiss LSM700 inverted confocal or a Leica TCS SP8 inverted confocal at

10X, 20X or 40X magnification.
Analysis of scRNA-seq data

Preprocessing 18hpf scRNA-seq dataset

The wildtype 18hpf zebrafish scRNA-seq raw counts dataset and the associated clusterIDs were down-

loaded from GEO with the accession number GEO:GSM3067194 (Wagner et al., 2018). First, outlier cells

with log-transformed library and feature sizes more than 3 median absolute deviations (MADs) from the

respective median metric values were removed. Genes that were not expressed in the dataset were filtered

out. At this quality control threshold, most genes and cells were retained for downstream analysis, resulting

in a dataset with 30296 genes x 6954 cells (381 genes and 8 cells discarded). The data was then converted

into a Seurat 3.0 object (Stuart et al., 2019) for subsequent analyses. Cell cycle scoring and regression were

performed in Seurat 3.0 using a set of cell-cycle associated genes for zebrafish (Lush et al., 2019), with the

S.Score and G2M.Score as inputs to the vars.to.regress argument in the SCTransform function. Data

normalization, scaling and the identification of the top 3000most variable genes were also carried out using

the SCTransform wrapper.
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Low dimensional embedding and Louvain clustering

The normalised and scaled data was projected into low dimensional subspace via principal components

analysis (PCA) with default settings for the RunPCA function. (Figure 2B). Following this, the uniform mani-

fold approximation and projection (UMAP) embedding was implemented via the RunUMAP function. To

perform clustering, groups of similar cells on the UMAP embedding were identified by generating a shared

nearest neighbor (SNN) graph of the dataset with the FindNeighbors function, and then clustered using the

Louvain algorithm with the FindClusters function at various resolutions. Subclustering on the tailbud cells

was performed in similar manner to the above clustering procedure, with a resolution of 1 set for the

FindClusters function. To examine the clustering results, clustering trees were plotted with the clustree

package whilst the adjusted rand index and clustering entropy were implemented in the mclust and

NMF packages respectively.

Identification of differentially expressed genes

For each cluster, supervised annotation was carried out by examining the marker genes identified by a

Model-based Analysis of Single-cell Transcriptomics (MAST) and a Wilcoxon Rank-Sum test. The tests

were carried out using the FindAllMarkers function in Seurat that compares cells in each cluster against

all other remaining clusters. The function is set to return only positive markers for each cluster (only.pos =

TRUE). Differentially expressed genes with an adjusted p-value less than 0.05 were retained for analysis.

They were then sorted in order of priority, based on the log fold-change of the average expression between

the cluster under study and the remaining 7 tailbud subclusters (avg_log2FC).

Robustness analysis of tailbud clustering assignments

To assess the robustness of our selection of the zebrafish tailbud cells from the 18hpf dataset, we employed

a different approach than Wagner et al. (Wagner et al., 2018) by embedding the 6,954 cells in the 18hpf

dataset into a Uniform Manifold Approximation and Projection (UMAP) space and using the Louvain com-

munity detection algorithm to identify clusters (Figure S3A).

We first assessed the similarity between the two data clusterings using the Adjusted Rand index (ARI) and

clustering entropy index. High ARI values and low entropy values are obtained across a wide range of clus-

tering resolutions, apart from the initial resolution of 0.2 (Figures S4A and S4C). In addition, analysis of the

clustering tree shows that at a resolution of 0.2, there are 11 clusters which continue to be split up gradually.

At increasing resolutions, the number of in-proportion edges (edges with low transparency) remain low

which indicates only minor changes in the clustering tree. At a clustering resolution of 0.8, we obtained

22 clusters (Figure S4B). When we re-examined the distribution of our tailbud labels against Wagner

et al.’s labels, we find that they are highly concordant (Figure S3B), suggesting that our selection of the ze-

brafish tailbud cells are robust across different analytical strategies. As the Louvain algorithm is stochastic,

we re-ran the algorithm for 10 iterations and retained cells that are consistently located in the tailbud clus-

ters for 9 and 10 iterations for downstream analyses (Figure S4D).

Critical index and transcriptional noise index

The critical index is defined as the ratio of two averaged Pearson correlation coefficients: the average cor-

relations between all pairs of gene vectors over the average correlations between all pairs of cell state vec-

tors (Mojtahedi et al., 2016). In the scRNA-seq analysis, to account for the differences in cell number be-

tween clusters, 200 cells from each cluster were randomly sampled with replacement to calculate the

index, and the procedure was repeated for 10,000 times. We also assessed the robustness of the critical

index to differences in cell number and number of marker genes used (Figure S5).

The transcriptional noise index was measured using the top 2000 highly variable genes of each cluster

following the work of Mohammed et al. (Mohammed et al., 2017).
Tailbud image registration with ZebReg

Overview of pipeline

ZebReg is a 3D, non-landmark-based image registration Python tool which we developed to integrate

cellular position and nuclear gene-expression information from confocal images of zebrafish tailbuds.

Leveraging on the open-source open3D library (Zhou et al., 2018), ZebReg implements a set of rigid
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body, point-based registration algorithms that are popular in the field of geometric registration to align a

3D point cloud (source cloud) into a reference point cloud (target cloud).

At present, we have tested ZebReg on zebrafish tailbuds ranging from 18ss to 30ss. Briefly, confocal images

were first preprocessed in Imaris to obtain segmented DAPI-stained nuclei (Figure S1). Next, to ensure a

consistent field of view, all nuclei posterior to the tip of the developing notochord for all the images

were retained for analysis. ZebReg performs the alignment by first importing the 3D centroid coordinates

and gene expression intensities (if present) of the segmented nuclei and converting each image into a point

cloud. Then, given a set of source clouds and a reference point cloud (target cloud), ZebReg finds the best

linear transformation (no shearing, stretching or other deformations) between each source cloud and the

target cloud. In addition, if color intensities of the source clouds are provided, ZebReg can map them onto

the target cloud by imputing the gene expression intensities in the target point cloud and thus generate a

composite image (See Figure S7).

Imputation of gene expression intensities

There are three possible sets of outcomes during the imputation procedure:

i) First, the mapping of the source point to the target point may be unique, in which case the target

point simply adopts the intensity value of the corresponding source point.

ii) In cases where there is not a single source point corresponding to the target point, ZebReg provides

the user with several options to resolve the discrepancy. If multiple source points map to the same

target point, the target point adopts either the mean or median of these source intensity values

(default: ‘median’).

iii) Alternatively, if there is no source point that corresponds to the target point, ZebReg provides three

options to impute the gene expression intensity of this target point: ‘null’, ‘complete’ or ‘knn’

(default ‘knn’). ‘null’ sets the intensity of the target point to 0, whilst ‘complete’ can be used if the

target point cloud already has an intensity channel for that gene, in which case the point simply re-

tains the original target intensity value. In the default ‘knn’ case, regression is performed based on

the k-nearest neighbors of the point (default n = 5) as implemented in the sklearn package. The

target point takes on the mean intensity value of the closest target points.

Notably, in cases ii) and iii), ZebReg imputes the expression intensities of the target points by borrowing

information from multiple source or neighboring target points.

Point set registration algorithms

To conduct the image alignment, ZebReg employs the following point set registration algorithms:

i) Random Sample Consensus (RANSAC)

The RANSAC algorithm is a non-deterministic global alignment algorithm that is used in ZebReg to provide

the initial coarse alignment for the ICP and cICP local algorithms (Fischler and Bolles, 1981).

ii) Iterative Closest Point (ICP)

In the vanilla ICP algorithm, the algorithm repeatedly updates the transformation required to map the

source to target cloud by minimizing the distance between points (Besl and McKay, 1992). In ZebReg,

we use the point-to-plane ICP variant due to its increased speed of convergence (Rusinkiewicz and Levoy,

2001).

iii) Colored Iterative Closest Point (cICP)

For images with a color channel in common, it is advantageous to consider their color on top of geometry

during point set registration. In these cases, ZebReg uses cICP, a modified version of ICP implemented in

open3D, which optimizes a joint geometric and photometric objective (Park et al., 2017).
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ZebReg carries out all alignments by first performing a coarse global alignment with RANSAC, followed by

either a finer alignment with ICP (if no color channel is supplied) or cICP (if a common color channel is pre-

sent in the source and target image).

In silico validation of ZebReg

First, we constructed amean absolute error (MAE) metric which quantifies the average difference in normal-

ized signal intensities of the shared color channel between the source and target image pair after image

registration. To assess the accuracy of ZebReg’s image alignment with the cICP algorithm, we selected

a source and target point cloud of the zebrafish tailbud and used the MAE as the test statistic in a permu-

tation test which tests the following hypotheses:

H0: ZebReg cICP registration has no effect on the color intensity residuals between source and target

clouds.

H1: ZebReg cICP registration reduces the color intensity residuals between source and target clouds.

In the permutation test, the sampling distribution under the null hypothesis was constructed by randomly

rearranging the order of the target color array, and then calculating the MAE using the permutated and

original target color arrays over 10,000 iterations. In effect, the null distribution provides the range of

MAE estimates under the condition where ZebReg’s reported correspondence mapping between the

source and target color arrays is random. The null distribution was then fit to a Gaussian distribution for

the computation of the 95% confidence interval (Figure S9A).

Next, to assess the effectiveness of the various point cloud registration algorithms, we registered a point

cloud with its rotated counterpart using 3 algorithms that are implemented in open3D: RANSAC, ICP and

cICP, and assessed whether they can successfully recover the correspondence map. (Figure S9B)

We then compared the cICP’s performance across the different datasets. The datasets we have chosen for

comparison were (Figures S9C and S9D):

� Test sample: Images of two separate zebrafish tailbuds at 18ss. Test sample exemplifies the perfor-

mance of the algorithm on an actual use case in practice.

� Lateral halves: Images of two lateral halves of a single 18ss tailbud image. Because the point clouds

do not overlap, any correspondence between the points in Lateral halves are spurious.

� AP: Images of the anterior and posterior ends of a single 18ss tailbud image. Like Lateral halves, any

correspondence found between points in AP is spurious.

In the absence of ground truth data or an alternative image registration method, to achieve a better grasp

of ZebReg’s performance, we benchmarked the registration results of these three datasets onto a noise

calibration curve, which we obtained from registering noise-shifted versions of the source cloud onto its

original copy.

Zero-mean Gaussian distributions with standard deviations ranging from 0 to 30 were sampled to

construct an array of noise matrices. These noise matrices were added to the positions of the source

clouds to generate an array of noise-shifted point clouds. Conceptually, each noise-shifted point cloud

is an in silico analogue of a tailbud that differs from its idealized, identical twin in nuclei position by a

prespecified level of noise. To construct the noise-calibration curve, all noise-shifted point clouds were

registered against the original source cloud, which returned the values for the fitness, inlier RMSE and

inlier MAE metrics. For the heavily noise-shifted point clouds, many points are classified as outliers and

therefore, the inlier metrics overestimate the registration quality by omitting these points. To correct

this, we scaled the inlier RMSE and inlier MAE metrics by the corresponding fitness and plotted the

scaled inlier RMSE and scaled inlier MAE values instead. Comparing our results (Figures S9E and

S9F), we conclude that ZebReg’s registration of Test Sample outperforms the Lateral halves and AP da-

tasets and returns acceptable fitness, inlier RMSE and MAE scores in its alignment of the Test Sample

dataset.
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Validation of ZebReg against HCR data

To assess whether the imputation procedure alters the gene expression distributions, we constructed Q-Q

plots of the original and imputed gene expression distributions of 12 genes at 18ss (Figure S10A). For the

purposes of the comparison of Q-Q plots, we also analyzed the expression of four additional genes (wnt8a,

thbs2, id3 and depdc7a) that were not used in constructing the composite maps.

We also assessed the extent to which ZebReg maintains the quantitative relationships between genes in

the NMps by comparing the pairwise linear correlations of imputed genes with the original correlations

from the HCR datasets (Figure S10B). A total of 17 gene pairs were compared. As a measure of how close

the original and imputed correlations are to each other, we computed theminimumdifference between the

imputed correlation and the associated original correlations (Figure S10C). The minimum difference was

computed by calculating the differences between the correlations obtained from the HCR images and

the correlation from the composite map, and then taking the minimum value of the differences.

Construction of in silico composite maps

To construct the composite maps for each stage, we first selected images across different samples to be

used for the imputation. Each image consists of sox2 and tbxta stained alongside one or two additional

genes and belongs to an image group. Specifically, there are a total of five image groups that correspond

to particular HCR experiments (Table S2): STT (sox2, tbxta, tcf), STHC (sox2, tbxta, hes6, cdh6), STSC (sox2,

tbxta, sp5l, cdh6), STTC (sox2, tbxta, tagln3b, cdh6) and STZC (sox2, tbxta, znf703, cdh6). For each of the

three composite maps (18ss, 24ss, 28ss), five images of the same stage, one from each of the five image

groups, were mapped onto a chosen target image using sox2 as the common color channel for cICP align-

ment (Figure S8). These six images for each composite map were chosen to best reflect the number and

spatial distributions of the in silico NMps in the resultant composite maps. In summary, each composite

map combines information across six images (one for the target image and five for the source images)

to generate an eight-dimensional (sox2, tbxta, cdh6, hes6, sp5l, tagln3b, tcf, znf703) point cloud image.
Analysis of the composite maps

Identification of in silico NMps

Following the construction of the composite map with ZebReg, imputed intensity values of all genes below

the 0.7 quantile threshold were set to 0 and rescaled by min-max normalization (Figure S12A). Amongst the

sox2+tbxta+ cells that were identified in the composite map, most were found within the approximate

NMp spatial regions (Figures S12Bi and S12Bii). Of the sox2+tbxta+ points that reside outside of the

NMp regions and are thus excluded from being NMps, they fall into two groups (Figure S12Bii). The first

group corresponds to the hypochord cells that constitute the bulk of these sox2+tbxta+ non-NMps in

the 18ss (47/146: 32%), 24ss (43/203: 21%) and 28ss (29/56: 52%) composite maps. The second group of cells

are found in the 18ss composite map only (17/146: 11%) and are a small population of aberrant cells that

have likely arisen from technical errors in either ZebReg’s alignment or mapping procedure. These cells

flank the hypochord and floor plate and thus may have been mistakenly assigned above-background levels

of sox2due to their proximity to these two sox2-expressing structures. After the removal of these two

groups of cells, the resultant 78, 183 and 27 in silico sox2+tbxta+ cells in the 18ss, 24ss and 28ss composite

maps are defined as the in silico composite map NMps. (Figure S12Biii)

Neural-mesodermal (NM) index construction

The neural-mesodermal index, NMj for the jth cell is defined as:

NMj = Nj � Mj (Equation 1)

where NMj, Nj, Mj are the neural-mesodermal index, neural index and mesodermal index of the jth cell,

respectively, and j = 1; 2;.;C for a total of C NMps.

The neural index, Nj, for the jth cell is defined as:

Nj = sox2j +
XG

k = 1

~rkð1 � εkÞGenekj (Equation 2)

whereGenekj is the min-max normalized expression intensity of the kthgene in the #jth cell; ~rk is the median

of the Pearson’s correlation coefficients of Genek and sox2, computed from the NMps segmented from all
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the HCR images of the same somite stage; εk is the interquartile range of Genek ’s correlation coefficients.

The (1 � εk ) term penalizes Genek ’s contribution to the neural index if it displays large variability in its cor-

relation coefficients between all the HCR images of that somite stage. The summation is applied to all the

genes, G, minus tbxta and sox2. The total number of genes is G+ 2.

The mesodermal index, M, is defined symmetrically but with tbxta replacing sox2 and the correlation co-

efficients calculated with respect to tbxta instead.We further verified that the NM index provides a sensible

summary of the NMp’s neural/mesodermal potential (Figures S13B–S13D) and is not systematically biased

towards either neural or mesodermal indices (Figures S13E and S13E0).

Construction of the NMp probability map

Tailbud images (source images) were aligned to an arbitrarily chosen target image tailbud. The NMp nuclei

in the source images were pre-segmented prior to alignment in Imaris (Bitplane) and hence, it is possible to

keep track of the number of times each target cell receives a mapping from a source NMp cell. Target cells

with a large count number is assigned a high probability of being an NMp. For visualization purposes, in my

probability maps, we displayed only target cells with a minimum count number of 2 for each probability

map (Figure S14).

Standard error of empirical entropy estimation

The standard error was estimated by the leave-one jackknife resampling method and is implemented using

the R bootstrap package (Efron and Tibshirani, 1993; Wiesner et al., 2017). In this method, the entropy was

repeatedly estimated but with one of the data points randomly removed during each computation.
QUANTIFICATION AND STATISTICAL ANALYSIS

Levene’s test for the equality of variance was carried out for the NMp numbers at 24ss (Figure 1) against the

other four timepoints. *p-value < 0.01. For all boxplots (Figure 2), the lower and upper hinges correspond

to the first and third quartiles. In addition, the upper whisker extends from the hinge to the largest value no

further than 1.5 times the interquartile range. Outlier samples are colored in red. Wilcoxon-Mann-Whitney

unpaired two-sample test ****p-value < 0.0001; ns = not significant.
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