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Approximated Gene Expression Trajectories (AGETs) for Gene
Regulatory Network Inference on Cell Tracks
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won Hwang1, Yuxuan Wang1, Brooks Paige2,4∗, Ben Steventon1∗ and Berta Verd1,3∗

ABSTRACT

The study of pattern formation has greatly benefited from
our ability to reverse-engineer gene regulatory network (GRN)
structure from spatio-temporal quantitative gene expression
data. Traditional approaches omit tissue morphogenesis, and
focus on systems where the timescales of pattern formation
and morphogenesis can be separated. In such systems, pat-
tern forms as an emergent property of the underlying GRN
and mechanistic insight can be obtained from the GRNS alone.
However, this is not the case in most animal patterning sys-
tems, where patterning and morphogenesis are co-occurring
and tightly linked. To address the mechanisms driving pattern
formation in such systems we need to adapt our GRN infer-
ence methodologies to explicitly accommodate cell movements
and tissue shape changes. In this work we present a novel
framework to reverse-engineer GRNs underlying pattern for-
mation in tissues undergoing morphogenetic changes and cell
rearrangements. By integrating quantitative data from live and
fixed embryos, we approximate gene expression trajectories
(AGETs) in single cells and use a subset to reverse-engineer
candidate GRNs using a Markov Chain Monte Carlo approach.
GRN fit is assessed by simulating on cell tracks (live-modelling)
and comparing the output to quantitative data-sets. This frame-
work generates candidate GRNs that recapitulate pattern for-
mation at the level of the tissue and the single cell. To our
knowledge, this inference methodology is the first to integrate
cell movements and gene expression data, making it possi-
ble to reverse-engineer GRNs patterning tissues undergoing
morphogenetic changes.
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INTRODUCTION
Embryonic pattern formation underlies much of the diversity of
form observed in nature. As such, one of the main goals in devel-
opmental biology is to understand how spatio-temporal molecular
patterns emerge in developing embryos, how they are maintained
and how they can change over the course of evolution. Over
the past three decades, the field has focused on the function
and dynamics of the gene regulatory networks (GRNs) underly-
ing these processes. GRNs can be formulated mathematically as
non-linear systems of coupled differential equations whose param-
eters can be inferred from quantitative gene expression data: a
methodology known as reverse-engineering (1; 2; 3; 4; 5; 6; 7; 8).
Reverse-engineering has been successfully applied to a myriad of
systems, from the Drosophila blastoderm to the vertebrate neu-
ral tube (9; 10; 11; 12), uncovering the mechanisms by which
GRNs read out morphogen gradients (13; 14; 12; 15; 16; 17), scale
patterns (18), control the timing of differentiation (19; 20; 21),
synchronise cellular fates (22) and evolve pattern formation (23).

Much of what we know about pattern formation has been learnt
from reverse-engineering GRN structure from spatio-temporal
quantitative data in systems where the timescales of pattern for-
mation and morphogenesis are different and can therefore be sep-
arated. In such systems, spatio-temporal gene expression profiles
are typically obtained by measuring gene expression levels across
the tissue of interest in fixed stained samples, and interpolating
between measurements at different time points (8). The under-
lying and seldom stated assumption, is that the gene expression
dynamics are much faster than the cell movements in the devel-
oping tissue, and that therefore cell movements can be ignored
over the timescales at which the pattern forms. This is true in
many systems and processes, such as segmental patterning in early
Drosophila embryogenesis. In systems where this is indeed the
case, pattern formation can be considered an emergent property
of GRN dynamics alone (24) and much insight can be drawn from
analysing reverse-engineered GRNs (10; 13).

In systems where tissue patterning and tissue morphogenesis
are coupled and occurring simultaneously, GRNs alone cannot
account for the resulting patterns. This has been recently recently
highlighted by work in organoids, where shape, size and cell
type distribution are difficult to control as a result of altered pat-
terning due to abnormal morphogeneses in unconstrained tissue
geometries (25). Therefore, in order to be able to understand devel-
opmental pattern formation in a broader range of systems, we
have to address how morphogenesis and GRNs together control
fate specification and embryonic organisation. Importantly, to be
able to do this, we need novel reverse-engineering methodologies
that will explicitly accommodate cell movements and tissue shape
changes.
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In this work we present a methodology to reverse-engineer
GRNs underlying pattern formation in tissues that are undergo-
ing morphogenetic changes such as cell rearrangements. As a
case study we focus on T-box gene patterning in the develop-
ing zebrafish presomitic mesoderm (PSM) (Fig.1A). T-box genes
coordinate fate specification along the PSM as cells move out of
the tailbud and make their way towards the somites (26). Cell
movements in the PSM can be live-imaged and followed in 3D
(27). By the time they reach a somite, cells in the PSM will have
undergone a stereotypical progression of T-box gene expression:
Tbxta and Tbx16 in the tailbud, followed by Tbx16 in the posterior
PSM and Tbx6 in the anterior PSM (Fig.1A&D). The Tbx16/Tbx6
boundary roughly marks the cells’ transition out of the tailbud and
in zebrafish it is thought to correlate with marked changes in cell
behaviours where extensive cell mixing in the tailbud gives way to
reduced, almost nonexistent mixing and neighbourhood cohesion
in the PSM (28). Therefore, while all cells will eventually have
undergone the same gene expression progression, their expression
dynamics will differ as cells spend variable amounts of time in
the tailbud (26). Despite this, a tissue-level pattern forms which
scales with PSM length during the course of posterior development
and somitogenesis (26). T-box pattern formation in the developing
zebrafish PSM is therefore a good example of a developmental pro-
cess where the molecular pattern across the tissue is an emergent
property of the GRN, the cell movements and tissue shape changes
involved in the tissue’s morphogenesis.

The reverse-engineering methodology presented in this paper
accommodates cell movements and tissue shape changes, repre-
senting tissue morphogenesis explicitly when reverse-engineering
GRNs. To do this, our methodology integrates two different
kinds of quantitative data: cell tracking data obtained from live-
imaging the developing tissue and three-dimensional quantitative
gene expression of the genes and signalling pathways of interest
over developmental time. We project the 3D gene expression data
onto the cell tracks to approximate gene expression trajectories
(AGETs) in single cells. Using a subset of AGETs from ten cells
pseudo-randomly spaced within the tissue we were able to reverse-
engineer candidate GRNs applying a Markov Chain Monte Carlo
(MCMC) approach. The fit of the resulting candidate GRNs is
assessed by simulating them in each cell in the tracks using initial
and boundary conditions extracted directly from the gene expres-
sion data, a methodology that we refer to as "live-modelling".
The resulting well-fitting GRNs were grouped into 22 clusters,
generating candidate GRNs that can be further investigated and
challenged using experimental work (26).

To our knowledge, this inference methodology is the first to
integrate cell movements and gene expression data, making it pos-
sible to reverse-engineer GRNs patterning tissues as they undergo
morphogenesis. We hope that this toolbox will contribute to
broaden the types of patterning systems that are studied quantita-
tively and mechanistically, increasing our understanding of pattern
formation in development and evolution.

RESULTS AND DISCUSSION
Approximating gene expression dynamics on single cell
tracks: AGETs

The ideal data to reverse-engineer gene regulatory networks would
be temporally accurate quantifications of gene expression dynam-
ics at the single cell level as the tissue develops. Unfortunately,
current state of the art in live gene expression reporter technology,

while very advanced, cannot follow three genes and two signalling
pathways simultaneously in space and time, while also ensuring
that the dynamics of all reporters faithfully recapitulate the expres-
sion dynamics of the genes of interest. For this reason, it has been
necessary to develop an alternative approach to effectively contruct
in-silico reporters which is based on approximating gene expres-
sion trajectories in the cells of tthe developing PSM, which we will
from now on refer to as AGETs (approximated gene expression
trajectories).

In brief, AGETs are obtained by projecting 3D spatial quantifi-
cations of gene expression in PSM cells obtained using HCRs and
antibody stains, onto the cells present at each time frame of a time
lapse of the developing PSM at approximately the same stages.
The projected expression levels are used to assign gene and sig-
nalling expression levels in every cell in the time lapse. The result
is an approximated gene expression trajectory for every cell in the
time lapse, which can now be used to reverse-engineer gene regu-
latory networks which, when simulated on the tracks recapitulate
T-box pattern formation on the developing PSM.

Data requirements and preparation
Two kinds of data are required to produce AGETs: cell tracks
obtained from live-imaging the developing tissue of interest and
quantitative spatial gene expression data at each developmental
stage covered by the tracks.

In this case study, cell tracks were obtained by live-imaging
a fluorescently labelled developing zebrafish tailbud between the
22nd and 25th somite stages using a two-photon microscope (see
(27) and Materials and Methods). The raw data obtained consists
of a series of point clouds representing the position of single cells
in 3D space at 61 consecutive frames, which were taken at two
minute intervals. The raw data were processed using a tracking
algorithm in the image analysis software Imaris to obtain the posi-
tion of single cells over time, and selected tracks were validated
manually. The resulting data are a collection of cell tracks that
describe the how individual cells move as the zebrafish tailbud and
PSM develop. A cell track provides spatial information over time
but is devoid of any information regarding gene expression levels
in each cell.

Gene expression levels were approximated from fixed tailbud
samples stained for the T-box gene products using HCR (29) and
antibody stains for the signals Wnt and FGF (see Materials and
Methods). If gene expression patterns don’t scale with the develop-
ment of the tissue, stage-specific stains should be used separately.
Otherwise, if the pattern of interest scales with tissue growth over
developmental time - as is the case in the developing zebrafish
PSM - images at different, but close, stages can be quantified and
pooled together. T-box genes - Tbxta, Tbx16 and Tbx6 - were
simultaneously stained for on zebrafish tailbuds that had been fixed
between the 23rd and 25th somite stages (SS) (Fig.1A). Of a total
of 13 images, ten were processed and used for fitting (2x 23SS,
3x 24SS and 5x 25SS). Three separate antibody stained samples
were used to quantify signals Wnt and FGF. In addition to the gene
expression, tailbuds were stained with DAPI to be able to locate the
cells by the position of their nuclei. Only one side of the zebrafish
PSM was used.

A processing pipeline was developed to quantify the imaging
data using the image anaysis software Imaris (Fig.1). The first
step in the pipeline consists of masking the PSM from the sur-
rounding tissues, including the spinal cord and the notochord. This
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was achieved by drawing a surface around the PSM using mor-
phological and gene expression landmarks as a guide to identify
different tissue boundaries (Fig.1B). Next, in order to consider
only gene expression levels inside of the isolated PSM, all gene
expression outside of the defined surface was set to zero (Fig.1C).
Background noise in the data was reduced by setting lower-bound
thresholds for every gene. These thresholds were chosen such that
Tbxta and Tbx16 would appear restricted to the posterior end of the
PSM (Fig.1Di, Dii, Ei and Eii) with their expression in the ante-
rior PSM reduced to zero. Similarly, thresholds were set for Tbx6
expression to eliminate any background expression in the posterior
PSM (Fig.1Diii and Eiii). Each gene is then normalized; normal-
ization had to be robust enough to noisy gene expression levels. A
Savitzky-Golay filter was applied to each gene to smoothen the sig-
nal (Fig.1D) and the smoothened maximum for each gene was set
to one. Finally, spots were created in each detected nucleus from
which a point cloud consisting of the 3D spatial coordinates and
associated Tbxta, Tbx16 and Tbx6 levels were extracted (Fig.1E).
The same pipeline was used to obtain the levels of signals Wnt and
FGF in single cells.

AGET construction
AGETs are constructed to approximate the gene expression
dynamics of single cells as they move and undergo complex
re-arrangements during tissue morphogenesis. This requires live-
imaging data, which provides information of the cell’s spatial
trajectories over time, to be combined with quantitative single cell
gene expression data. To achieve this, we project the pre-processed
HCR data (Fig.1E) onto the tracks to obtain an approximated read-
out of the gene expression and signalling levels that each cell
experiences as it moves.

The first step to project the extracted quantitative gene expres-
sion data onto the cell tracks is to align the point clouds represent-
ing the positions of the cells in 3D space processed from the HCRs
(Fig.1E) with the point clouds for each of the 61 time frames in the
time lapse (Fig.2A). We use point-to-plane ICP (iterative closest
point) to perform this alignment (30), which in brief, is an itera-
tive algorithm that seeks to map two point clouds onto each other
by recursively minimising the distance between them (see Mate-
rials and Methods, and Fig.2). Once the point clouds have been
aligned, equivalent regions of different PSMs will overlap in space
(Fig.2A) making it possible to use the quantitative gene expression
from cells in the processed HCRs to assign gene expression values
to the cells (represented by points) in the time lapse at each time
frame (Fig.2Bi and Bii and Algorithm1).

To approximate the gene expression and signalling values in
a cell from the time lapse, we first find its five closest neigh-
bouring cells from the processed HCR data. Since all PSMs have
been aligned as point clouds, we now have a point cloud repre-
senting cells from both the PSM in the time lapse and those from
the HCRs. The median gene expression and signalling values are
calculated from the expression and signalling values of the five
nearest neighbouring cells and assigned to the cell from the time
lapse (Fig.2B and Algorithm 1 for a more detailed description
of the process). Fig.2Bi shows the result of mapping T-box gene
expression data from ten pre-processed HCR images onto the first
frame of the tracking data and Fig.2Bii shows a quantification of
the gene expression levels for all cells along the posterior to ante-
rior axis. We repeat this procedure for each of the 61 frames in the
time lapse resulting in an approximated gene expression trajectory
(AGET) for every cell in the timelapse (Fig.2C and Supplementary

Movies 1 and 2). In addition, AGET construction was found to be
robust to the specific number of neighbours used as well as to the
method used to assign expression values at each time point (Sup-
plementary Figures1 and 2)

Using AGETs to reverse-engineer gene regulatory networks
that recapitulate pattern formation on a developing tissue

GRN models are often formulated as systems of coupled differen-
tial equations where state variables describe the concentrations of
the gene products of interest and parameters represent the interac-
tions between genes, as well as other factors such as production
and degradation rates. In the case of the T-box genes, there are
three state variables representing Tbxta, Tbx16 and Tbx6 levels
and a total of 24 parameters to be fit (see Materials and Meth-
ods). Dynamic data are required to constrain and fit such models,
and in this case these will be provided by the AGETs calculated
previously. AGETs will be used as the target expression dynam-
ics for the fitting procedure, where previously directly measured
gene expression dynamics would have been used. As with other
fitting procedures, an optimal parameter set will be one that min-
imises the difference between the target and the simulated data. We
chose to adapt a Markov Chain Monte Carlo (MCMC) algorithm
to use as our parameter sampling method since MCMC has been
extensively used and repeatedly validated for GRN inference (31).
In addition, MCMC and has the advantage of providing a popula-
tion of candidate networks by approximating the entire posterior
distribution for each GRN parameter.

Using all 1903 available AGETs to fit our models would be
ideal, as together they represent the tissue scale patterning dynam-
ics that we seek to recapitulate. However, this is currently com-
putationally expensive and ultimately unfeasible. Instead, we find
that good fits are obtained when fitting to an ensemble of as few
as ten AGETs provided that these span the length of the PSM. The
ten AGETs were selected semi-randomly, where a randomly cho-
sen set of ten AGETs would be visually inspected to ensure that
they included cells distributed across the antero-posterior length
of the PSM, and would otherwise be discarded. In addition, we
only selected AGETs of maximal duration, namely those that cor-
responded to cells that had been consecutively tracked for the
entire duration of the time lapse (61 frames). The ten AGETs used
for reverse engineering and their approximate position in an ide-
alised PSM are shown in Fig.2C.ii. For this case study, we found
that reverse-engineering using ten AGETs generated well-fitting
candidate networks while avoiding over-fitting and optimising the
computational time required, however we also found that increas-
ing the number of AGETs for reverse-engineering increased the
proportion of networks producing high quality fits (see Materials
and Methods, and Supplementary Figures 3 and 4). We expect that
the specific number of AGETs required to obtain good fits will be
problem-specific.

MCMC inference yields a collection of parameter sets or com-
binations (samples) that together approximate the posterior distri-
bution of the GRN’s parameters: for every parameter, we obtain
a probability distribution across its values, which provides infor-
mation about the values that are most likely to produce good fits.
We first chose to explore the network corresponding to the param-
eter set with the overall highest posterior probability score: the
maximum a posteriori - or MAP - sample (Fig.3A). We simu-
lated each of the ten AGETs used during the fitting procedure
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Fig. 1. Gene expression data preparation pipeline (A) Typical HCR image of a 22 somite stage zebrafish embryo tailbud stained for Tbxta (red), Tbx16
(yellow), Tbx6 (blue) and DAPI (gray). Anterior to the right, posterior to the left, dorsal up and ventral down from here on. (B) Surface masking the PSM
based on T-box gene expression and morphological landmarks. (C) Gene expression and nuclear marker in the masked PSM (as before Tbxta in red, Tbx16
in yellow, Tbx6 in blue and DAPI in gray). (D) Normalising gene expression levels: Tbxta and Tbx16 levels in the anterior PSM are normalised to zero while
posterior PSM levels of Tbx6 are normalised to zero, to eliminate background expression. A Gaussian filter has been then applied to each T-box gene to
smoothen gene expression across the PSM. (E) Nuclei are segmented using the DAPI channel creating spots in 3D space. Spots are coloured according to
the median intensity of each gene (i) Tbxta, ii) Tbx16 and iii) Tbx6 ), where purple denotes zero expression and red 1, which is the highest expression. The
spatial coordinates of the spots together with the median intensities were exported and used to generate the AGETs.

and then simulated all 1903 available AGETs, and visualised the
simulation on the tracks (Supplementary Movies 3 and 4). We
validate the quality of the inferred network by both comparing
single AGETs with their simulated counterparts (Fig.3B), and by
comparing the whole tissue-level gene expression profiles over
time (Fig.3C). We are especially interested in how well the sim-
ulations recapitulate whole tissue patterning dynamics, as these
result from simulating AGETs that had not been used for model
training. We discard parameter sets that simulate clear pattern aber-
rations, and consider a good fit to be when the position of gene
expression domain intersections does not differ by more than the
inter-embryonic biological boundary range (<10% A-P position)
in the simulated versus the approximated patterns (Fig.3C). While
quantitative measures of the goodness of fit can be easily defined,
such as comparing the log-likelihood between parameter sets or
calculating least-squares measures, these don’t necessarily reflect
whether aspects of the pattern that are of notable biological impor-
tance are being captured, and were therefore not favoured in this
part of the analysis.

Fig.3B.i compares four of the ten AGETs (relative positions
shown in Fig.3B.ii) (solid lines) used for model fitting with the
resulting simulations (dotted lines). The simulated expression
recapitulates well the target expression for the AGETs. The model
was formulated as a deterministic system without added stochas-
ticity which explains the smoothness of the simulated curves,
which nonetheless can be seen to recapitulate AGET gene expres-
sion levels and trends. Fig.3C shows simulated T-box expression
for each cell along the normalized posterior to anterior axis of the
PSM (dots). The simulated data have been fit at each separate time
point by curves which are then normalised (dotted curves) and
compared to the curves previously fit in the same way to all AGETs
(shown as solid curves). A comparison between AGETs and simu-
lations is shown at three different time points in Fig.3C (simulation
outputs at 33%, 66% and 100% total time respectively). Impor-
tantly, the overall position of the domains is recapitulated and the
position of domain intersections is within the preset biological
range of 10% A-P position. The full simulations can be found in
Supplementary Movies 3 and 4.
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Fig. 2. Calculating AGETs. (A) In orange is the processed HCR image showing the positions of the cells in the PSM (source point cloud) and in blue are
the positions of the cells taken from the first frame of the tracking data (target point cloud). Using ICP, all the source point clouds obtained from the HCR
images are aligned with the target point cloud obtained from each frame (61 in total) of the tracking data. This is illustrated by the overlapping orange, blue
and black point clouds in the resulting point cloud (botttom). (B) i. T-box gene expression from ten pre-processed HCR images has been used to assign
Tbox gene expression values to each cell in the first frame of the tracking data. Tbxta in red, Tbx16 in yellow and Tbx6 in blue. ii. Maximum projection of
the data (first time point of the AGETs) in i. quantified along the posterior to anterior axis. (C) i. Three AGETs representing approximated T-box gene and
signaling dynamics in three single cells at different position along the developing PSM (shown in C.ii). y-axis represents relative gene expression levels and
y-axis reflects the time frame in the time lapse (from 1 to 61). Tbxta in red, Tbx16 in yellow and Tbx6 in blue, Wnt in pink, FGF in green. (C) ii. Ten cell tracks
spanning the length of the PSM, whose AGETs were subsequently used for the GRN inference process. The ten cells have been chosen semi-randomly to
cover the A-P axis. The outline illustrates the shape of the PSM. The color gradedness indicates time in timeframes. AGETs associated with cells 4, 5 and 6
are shown in panel C.i.

Notably, there is a discrepancy between the AGETs and the
simulated anterior Tbx6 expression. The formulated GRN is unre-
alistic in this region, where additional factors secreted from the
somites are known to be down-regulating this transcription factor
(32). For this reason, it is reassuring and expected that the model
doesn’t recapitulate the pattern well in the anterior PSM border.
In addition, the model predicts that over time, a small percentage
of posterior cells will express low levels of Tbx6. Although unex-
pected, there is evidence suggesting that this is indeed the case
(26). Such low and sparse posterior expression of Tbx6 would
have been lost during the smoothing step in our data prepara-
tion pipeline, which is unable of capturing patterns of such fine
resolution as it stands. It is encouraging that candidate GRNs con-
sistently recapitulate this unexpected feature of the biology and

might suggest that the three genes considered are indeed causally
responsible for most of this molecular patterning system.

Parameter determinability and model clustering

MCMC is a parameter sampling algorithm, and as such it will
return an approximated posterior distribution for the GRN parame-
ters instead of a single estimate. This provides a range of candidate
networks that can be subsequently analysed and challenged in
combination with experimental approaches. Such parameter distri-
butions also provide valuable information regarding which model
parameters — and therefore genetic interactions — are tightly con-
strained by the data, and which aren’t and therefore appearing to
take on a broad range of values across the inferred networks. Such
information can lead to interesting hypotheses regarding which
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Fig. 3. Performance and fit of the GRN corresponding to the maximum a posteriori (MAP) parameters. (A) GRN topology with MAP parameters
obtained from the MCMC inference. (B)i. Simulated data (dotted curves) for four of the ten AGETs (solid curves) used for model fitting (B)ii. Illustrative spatial
location in the PSM of the four AGETs shown in B.i. (C) Snapshots showing simulated T-box gene expression along the normalized posterior (0) to anterior (1)
axis of the PSM at 33%, 66% and 100% of total simulation time respectively. (The full simulation and a quantitative comparison are shown in Supplementary
Movies 3 and 4). Dots correspond to the simulated T-box level in a given cell at a given position. The dotted curves have been obtained by fitting smooth
curves to the data simulated in all single cells (dots) at each separate time point and normalised. Solid curves have been obtained by fitting smooth curves
to the AGETs at each separate time point and normalising in the same way as was done for the simulated data.

aspects of the pattern evolution might be most strongly working
on.

While in the previous section we analysed the network corre-
sponding to the parameter set with the maximal posterior proba-
bility (MAP) to asses the goodness of fit of one of the candidate
GRNs, in this section we assess how well the posterior distribu-
tion has been approximated across candidate GRNs (Fig.4)). To do
this, we selected 1000 parameter sets at random from the posterior

distribution, representing 1000 distinct candidate networks. We
then proceeded to cluster them according to the similarity of their
parameter values using agglomerative hierarchical clustering (see
Materials and Methods). In order to be able to choose a representa-
tive to explore further for each cluster, we set the condition that the
parameter distributions within clusters should be uni-modal. After
imposing this condition, the algorithm returned 30 clusters and the
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Fig. 4. GRN clusters. The topologies of the mean networks are shown for the 22 well-fitting clusters recovered by the fitting. Rows correspond to repre-
sentative networks from each cluster, columns represent individual GRN parameters. Quantitative parameters are reduced to whether they are positive or
negative for illustration purposes. This can give the impression that some networks and clusters are the same, when in fact they are quantitatively distinct.
The percentage above a given parameter indicates the probability that said parameter is positive across clusters. Parameters marked with a blue circle were
defined as positive by the prior. In-sample log-likelihood for each network is provided as a measure of goodness of fit.

network with mean parameter values was picked as the represen-
tative for each cluster. We simulated the resulting 30 networks and
compared them with AGETs 1-10 used for fitting. The simulations
were visually inspected and networks returning aberrant patterns
were discarded along with all the networks in the cluster that they
belonged to. This process left a total of 22 clusters of well-fitting
GRNs (Fig.4).

Fig.4 shows the topology of the respresentative GRNs in each
of the resulting 22 clusters. By topology we mean whether param-
eters are positive (blue) or negative (negative). This provides only
a superficial illustration of the clusters which, while useful for
visualisation purposes, omits much of the complexity within these
classes since the clustering was done on the quantitative value of
the parameters. For this reason too, it might appear that representa-
tive networks of different clusters are the same, however although
that might be the case qualitatively (taking only into account
parameter signs), it isn’t the case quantitatively (for example net-
works 26, 22, 13, 12, 10, 2 and 6). 10 out of 24 parameters were
set as positive in the priors (Fig.4, round blue circles; see Materials
and Methods for justification), the remaining 14, which correspond
to parameters that represent the interaction strengths between T-
box genes and from Wnt and FGF to the T-box genes, could adopt
positive or negative values. The global probability of an activation
(positive parameter) is shown above each corresponding column
in Fig.4. Generally, for each parameter there is a clear preference
across all clusters, suggesting a degree of constraint in the deter-
minability of parameter values. We also recorded the in-sample
log-likelihood of each network as a measure of how well these net-
works fit the data (Fig.4, right). Given how close these values are,
we want to emphasise at this point that they should all be treated as
likely candidates and that further biological knowledge and exper-
iments are required to discriminate between them (26). In addition,
the number of AGETs used for fitting does not seem to affect
the general distribution of parameter values, although it can nar-
row down the spread of the posterior distributions (Supplementary
Figures 5 and 6).

CONCLUSION
Earlier reverse-engineering frameworks have been unable to
accommodate the role of cell rearrangements and tissue shape
changes in developmental pattern formation. This limitation has
heavily biased quantitative studies of pattern formation towards
systems where the timing of pattern formation and morphogen-
esis can be separated. However, the vast majority of patterning
processes in animal development do not meet this criterion and
in consequence, their study has been grossly under-represented in
the GRN literature. As a result, most of our collective knowledge
and understanding of the generation and evolution of developmen-
tal patterns has been constructed on the omission of any role that
might be played by cell movements, tissue shape changes and other
morphogenetic mechanisms.

This need not be the case going forward. Thanks to recent
advancements in live-imaging and spatial gene expression quan-
tification, the data required to adopt the reverse-engineering
framework presented in this paper is becoming available in an
ever-increasing number of species spanning the range of animal
phylogeny. This will make it possible to construct AGETs and
infer GRNs in a wider range of systems. Simulation and sub-
sequent analysis of patterning processes that are dependent on
or at least, co-occurring with cell movements will increase our
understanding of pattern formation and its evolution, and uncover
previously hidden general principles that weren’t accessible from
the restricted types of systems that we were studying. Furthermore,
this methodology will find applications well-beyond beyond the
study of developmental evolution. In particular, we anticipate a
warm reception from fields such as bio-engineering, regenerative
medicine and organoid biology, where understanding how 3D cell
cultures should be shaped and constrained as they grow to obtain
the desired final organisation is paramount and has proven not at
all trivial.

Finally, our methodology for the construction of AGETs pro-
vides a way in which to visualise approximated gene expression
dynamics and patterning without the need for fluorescent trans-
genic reporter lines, offering an alternative in the form of in-silico
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reporters. Once generatetd, in silico reporter lines require no fur-
ther use of live animals, resulting in a dramatic reduction of the
number of animals used in research. In addition, there is in prin-
ciple no limit to the number of genes that can be reported by
an in silico reporter line, in silico reporter lines could be readily
extended to non-model organisms, and they have the potential to
exhibit a higher fidelity to the actual dynamics of gene expression
since they bypass fluorescent reporter readouts altogether.

MATERIALS AND METHODS
Animal lines and husbandry

This research was regulated under the Animals (Scientific Proce-
dures) Act 1986 Amendment Regulations 2012 following ethical
review by the University of Cambridge Animal Welfare and Ethi-
cal Review Body (AWERB). Embryos were obtained and raised in
standard E3 media at 28°C. Wild Type lines are either Tupfel Long
Fin (TL), AB or AB/TL. The Tg(7xTCF-Xla.Sia:GFP) reporter
line (33) was provided by the Steven Wilson laboratory. Embryos
were staged as in (34).

In Situ Hybridisation Chain Reaction (HCR)

Embryos were incubated until they reached the the desired devel-
opmental stage, then fixed in 4% PFA in DEPC treated PBS with-
out calcium and magnesium, and stored at 4°C overnight. Once
fixed, embryos were stained using HCR version 3 following the
standard zebrafish protocol found in (29). Probes, fluorescent hair-
pins and buffers were all purchased from Molecular Instruments.
After staining, samples were stained with DAPI and mounted
using 80% glycerol.

Immunohistochemistry

Embryos were incubated until they reached the desired devel-
opmental stage, then fixed in 4% PFA in DEPC treated PBS
without calcium and magnesium, and stored at 4°C overnight. The
embryos were subsequently blocked in 3% goat serum in 0.25%
Triton, 1% DMSO, in PBS for one hour at room temperature. Our
read-out for FGF activity - Diphosphorylated ERK - was detected
using the primary antibody (M9692-200UL, Sigma) diluted 1 in
500 in 3% goat serum in 0.25% Triton, 1% DMSO, in PBS.
All samples were incubated at 4°C overnight and then washed in
0.25% Triton, 1% DMSO, in PBS. Secondary Alexa 647nm conju-
gated antibodies were diluted 1 in 500 in 3% goat serum in 0.25%
Triton, 1% DMSO, 1X DAPI in PBS and applied overnight at 4°C.

Imaging and image analysis

Fixed HCR and immunostained samples were imaged with a Zeiss
LSM700 inverted confocal at 12 bit, using either 20X or 40X
magnification and an image resolution of 512x512 pixels. Nuclear
segmentation of whole stained embryonic tailbuds was performed
using a tight mask applied around the DAPI stain using Imaris
(Bitplane) with a surface detail of 0.5µm. Positional values for
each nucleus were exported as X, Y, Z coordinates relative to the
posterior-most tip of the PSM where X, Y, Z were equal to (0,
0, 0). The PSM was then segmented by hand by deleting nuclear
surfaces outside of the PSM, including notochord, spinal cord,
anterior somites and ectoderm. PSM length was normalised indi-
vidually between 0 and 1 by division of the position in X by the
maximum X value measured in each embryo.

Single cell image analysis was conducted using Imaris (Bit-
plane) by generating loose surface masks around the DAPI stain
to capture the full nuclear region and a small region of cytoplasm.
Surface masks were then filtered to remove any masks where
two cells joined together or small surfaces caused by background
noise, or fragmented apoptotic nuclei. The intensity sum of each
channel was measured and normalised by the area of the surface.
Expression level was then normalised between 0 and 1 using the
maximum value measured for each gene, in each experiment.

Live imaging datasets of the developing PSM were created
using a TriM Scope II Upright 2-photon scanning fluorescence
microscope equipped Insight DeepSee dual-line laser (tunable
710-1300 nm fixed 1040 nm line) (see details in (27)). The
developing embryo was imaged with a 25X 1.05 NA water dip-
ping objective. Embryos were positioned laterally in low melting
agarose with the entire tail cut free to allow for normal devel-
opment (35). Tracks were generated automatically and validated
manually using the Imaris imaging software.

Aligning point clouds with ICP

We used the Python library Open3d (36) and the implementation of
the point-to-plane ICP (Iterative Closest Point) algorithm therein
(30) to perform the point cloud alignment. ICP algorithms can be
used to align two point clouds from an initial approximate align-
ment. The aim is to find a transformation matrix, that rotates and
moves the source point cloud in a way that achieves an optimal
alignment with the target point cloud. ICP algorithms work by
iterating two steps. First, for each point in the source point cloud,
the algorithm will determine the corresponding closest point in the
target point cloud. Second, the algorithm will find the transforma-
tion matrix that most optimally minimizes the distances between
the corresponding points. The result is a transformed source point
cloud that is closely aligned with the target point cloud. As a
pre-processing step, the source and target point clouds have been
re-scaled to have the same A-P length. Since we are working with
biological tissues, point clouds will not correspond exactly, dif-
fering slightly in size and shape. This will impact the quality of
the resulting alignment which had to be visually assessed and val-
idated. In this case study, three of the thirteen source images were
excluded from the analysis due to poor alignment.

AGET construction

While the main methodology used for constructing AGETs is
covered in the results section, below (Algorithm 1) we provide
pseudo-code that describes the same process.

Mathematical model formulation

We used a dynamical systems formulation model the T-box gene
regulatory network in the zebrafish PSM. The model’s aim is to
recapitulate the dynamics of T-box gene expression in every cell
in the developing zebrafish PSM, generating the emergence of the
tissue-level T-box gene expression pattern. We use a connectionist
model formulation which has been extensively used and validated
to previously model other developmental patterning processes (37;
14; 8).

The mRNA concentrations encoded by the T-box genes tbxta,
tbx16 and tbx6 are represented by the state variables of the dynam-
ical system. For each gene, the concentration of its associated
mRNA a at time t is given by ga(t). mRNA concentration over
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Algorithm 1: Mapping T-box gene expression from HCR
images onto tracking data

Result: AGETs: Cell tracks with dynamic T-box and
signalling expression information

Create target point clouds from tracking data Targeti, for
every time point i ∈ 1, ..., 61;

Create source point clouds with gene expression
information from HCR data Sourcej , for every source
image j ∈ 1, ..., 10;

for i in 1 : 61 do
for j in 1 : 10 do

Align Sourcej and Targeti using ICP registration;
for Cellk in Targeti do

Find n=5 closest neighbours of Cellk in
Sourcej ;

Calculate median Mijk of closest neighbours;
Assign Mijk to Cellk;

end
end
for Cellk in Targeti do

Calculate median Mik of medians Mijk from 10
source point clouds Source1:10;

Assign Mik to Cellk;
end

end
Extract all cell tracks with their assigned gene expression
(AGETs)

time is governed by the following system of three coupled ordinary
differential equations:

dga(t)

dt
= Raϕ(ua)− λaga(t) (1)

where Ra and λa respectively represent the rates of mRNA pro-
duction and decay. ϕ is a sigmoid regulation-expression function
used to represent the cooperative, saturating, coarse-grained kinet-
ics of transcriptional regulation and introduces non-linearities into
the model that enable it to exhibit complex dynamics:

ϕ(ua) =
1

2

(
ua√

(ua)2 + 1
+ 1

)
, (2)

where

ua =
∑
b∈G

W bagb(t) +
∑
s∈S

Esags(t) + ha. (3)

G = {tbxta, tbx16 , tbx6} refers to the set of T-box genes while
S = {Wnt,FGF} represents the set of external regulatory inputs
provided by the Wnt and FGF signalling environments. The con-
centrations of the external regulators gs are provided directly from
the AGETs into the simulation and are not themselves being mod-
elled. Changing Wnt and FGF concentrations over time renders
the parameter term

∑
s∈S

Esags(t) time-dependent and therefore,

the model non-autonomous (38; 39).
The inter-connectivity matrices W and E house the parameters

representing the regulatory interactions among the T-box genes,
and from Wnt and FGF to the T-box genes, respectively. Matrix

elements wba and esa are the parameters representing the effect
of regulator b or s on target gene a. These can be positive (rep-
resenting an activation from b or s onto a), negative (representing
a repression), or close to zero (no interaction). ha is a threshold
parameter denoting the basal activity of gene a, which acknowl-
edges the possible presence of regulators absent from our model.
To perform the live-modelling simulations, the same model for-
mulation is implemented in each cell in the time-lapse. Initial
concentrations of tbxta, tbx16 and tbx6 are read out directly from
the first time point of the AGET corresponding to that cell, and
dynamic Wnt and FGF values are updated from the same AGET.

Model fitting: MCMC approach

We used the Markov Chain Monte Carlo approach implemented in
the Python emcee library (40) to approximate the posterior distri-
bution of the GRN parameters. A property of this implementation
is the use of an ensemble of walkers, rather than a single one. To fit
to 10 AGETs, we used a uniform prior from -200 to +200, except
when the prior were restricted, and fitted to the time scale used in
the simulation. The time scale was chosen such that 1 equals the
time that the fastest cell takes to travel through the whole PSM
and enter a somite. We used a Gaussian distribution with fixed
standard deviations per gene to model the differences between sim-
ulated gene expression and target gene expression approximated
by the AGETs, and in this way obtain a likelihood function. We
ran the MCMC with 70 walkers and for a total of 50’000 steps.
Although the auto-correlation time was high and the acceptance
fraction with 4.1% was on the low side, the inferred parameters
led to well-fitting simulated data. Model training took approxi-
mately three days using 20 cores. To generate the supplementary
information figures where we assess the performance of fitting to
different numbers of AGETs, we use the same range for the prior
distributions, but this time with 100 walkers and 10,000 steps.
Supplementary Figure 7 shows how the mean acceptance fraction
increases per run with the number of AGETs used and the mean
auto-correlation score per run decreases as the number of AGETs
increases until 200 AGETs, and stabilises thereafter.
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Supplementary

Supplementary Fig. 1. AGETs are robust to calculation method. (A) The
spatial trajectories of four cells used in (B) to test AGET robustness to chang-
ing the rules used to calculate them. (B) Each row shows the AGET values
calculated for a cell (cell 1; located initially at 9% PA position, cell 2; located
initially at 21% PA position, cell 3; located initially at 55% PA position and
cell 4, located initially at 71% PA position) for tbxta (column 1), tbx16 (col-
umn 2) and tbx6 (column 3). AGETs are calculated taking the mean of the
five nearest neighbours (blue), the median of the nearest neighbour (red),
the median of the three nearest neighbours (greeen), the median of the five
nearest neighbours (orange) or the median of the ten nearest neighbours
(purple).

Supplementary Fig. 2. Tissue-level pattern is robust to AGET calcula-
tion method. (A) Approximated Tbox gene expression pattern on the PSM
when AGETs were calculated taking the mean of the five nearest neighbours.
(A.i.) Approximated tbxta in the cells of the PSM. Each dot represents the
position of a cell in the PSM (x,y-projection where dorsal is to the top and
posterior is to the left). Shade of red indicates approximated tbxta concentra-
tion (dark red, highest, white, lowest). (A.ii.) Approximated tbx16 in the cells
of the PSM. Shade of yellow indicates approximated tbx16 concentration
(dark yellow, highest, white, lowest). (A.iii.) Approximated tbx6 in the cells of
the PSM. Shade of blue indicates approximated tbx16 concentration (dark
blue, highest, white, lowest). (A.iv.) Tbox gene expression profiles. Each dot
represents the concentration of one of the tbox genes (tbxta (red), tbx16
(yellow) and tbx6 (blue) in a given cell. The position along the posterior to
anterior axis of each cell is given by its x-coordinate. (B) Approximated Tbox
gene expression pattern on the PSM when AGETs were calculated taking
the value of the nearest neighbour.(B.i.) Approximated tbxta in the cells of
the PSM. (A.ii.) Approximated tbx16 in the cells of the PSM. (A.iii.) Approx-
imated tbx6 in the cells of the PSM. (A.iv.) Tbox gene expression profiles.
(C) Approximated Tbox gene expression pattern on the PSM when AGETs
were calculated taking the value of the nearest neighbour.(C.i.) Approxi-
mated tbxta in the cells of the PSM. (C.ii.) Approximated tbx16 in the cells
of the PSM. (C.iii.) Approximated tbx6 in the cells of the PSM. (C.iv.) Tbox
gene expression profiles. (D) Approximated Tbox gene expression pattern
on the PSM when AGETs were calculated taking the value of the nearest
neighbour.(D.i.) Approximated tbxta in the cells of the PSM. (D.ii.) Approx-
imated tbx16 in the cells of the PSM. (D.iii.) Approximated tbx6 in the
cells of the PSM. (D.iv.) Tbox gene expression profiles. (E) Approximated
Tbox gene expression pattern on the PSM when AGETs were calculated
taking the value of the nearest neighbour.(E.i.) Approximated tbxta in the
cells of the PSM. (E.ii.) Approximated tbx16 in the cells of the PSM. (E.iii.)
Approximated tbx6 in the cells of the PSM. (E.iv.) Tbox gene expression
profiles.

12



1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

RESEARCH ARTICLE Journal of Experimental Biology (2019) 00, jebxxxxxx. doi:10.1242/jeb.xxxxxx

Supplementary Fig. 3. The proportion of parameter combinations producing good fits increases as the number of AGETs used for fitting is
increased (A) Networks obtained fitting to 10 AGETs. (B) Networks obtained fitting to 50 AGETs. (C) Networks obtained fitting to 100 AGETs. (D) Networks
obtained fitting to 200 AGETs. In each case, the MAP parameter set is taken from 6 independent random runs and the expression profile corresponding to
the last time point in the simulation is plotted. Each dot represents the concentration of one of the tbox genes (tbxta (red), tbx16 (yellow) and tbx6 (blue) in a
given cell. The position along the posterior to anterior axis of each cell is given by its x-coordinate. Acceptable fits are obtained regardless of the number of
AGETs used for fitting, but the proportion of acceptable fits increases with the number of AGETs.

Supplementary Fig. 4. Increasing the number of AGETs used for fit-
ting improves the fits, but good fits are obtained even when fitting to
small AGET numbers. Network parameters were inferred using 10, 50, 100,
200 and 745 AGETs to study how AGET number affected the goodness of
the fits. For each number of AGETs, 10 rounds of fitting were carried out
on three random sets of AGETs, each time using 200 walkers, resulting in
6000 sets of parameter sets inferred per AGET number. For each parameter
set, the likelihood score was calculated by comparing the simulated pattern
at the level of the tissue with the data. Likelihood scores are colour coded
according to the numer of AGETTs used and plotted on a histogram. Higher
likelihood scores reflect better fits. Using more AGETs results in higher aver-
age likelihood values and tighter distributions, however high likelihood values
are also obtained when smaller numbers of AGETs are used.
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Supplementary Fig. 5. Spread of parameter values obtained using 10,
50, 100 and 200 AGETs.

Supplementary Fig. 6. Spread of parameter values obtained using 200
AGETs.
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Supplementary Fig. 7. A. Mean acceptance fraction per run increases with
the number of AGETs used for fitting. B. Mean auto-correlation score per
run decreases as the number of AGETs increases until 200 AGETs, and
stabilises thereafter.

Supplementary Movie 1. Visualisation of the AGETs for Wnt and FGF
on the cell tracks. AGETs were calculated using the median of the five
nearest neighbours.

Supplementary Movie 2. Visualisation of the AGETs for Tbxta, Tbx16
and Tbx6 on the cell tracks. AGETs were calculated using the median of
the five nearest neighbours.

Supplementary Movie 3. Simulation of the MAP network on the cell
tracks.

Supplementary Movie 4. Comparison of simulated and approximated
Tbox gene expression on the cell tracks. Coloured dots represent the
concentration of tbxta (red), tbx16 (yellow) and tbx6 (blue) in a single cell,
plotted against the normalised position of the cell along the PSM, simu-
lated using the MAP network. Dotted lines represent the average simulated
tbxta (red), tbx16 (yellow) and tbx6 (blue) domain along the PSM. Solid lines
in the bottom right panel represent the average approximated tbxta (red),
tbx16 (yellow) and tbx6 (blue) domain along the PSM, where AGETs were
calculated using the median of the five nearest neighbours.
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