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A gene regulatory network that can adjust developmental timing
to in vivo and in vitro cell differentiation dynamics.
Timothy Fulton1, Kay Spiess1,2, Lewis Thomson1, Yuxuan Wang1, Bethan Clark1,3, Seong-
won Hwang1, Brooks Paige2,4, Berta Verd1,5∗ and Ben Steventon1∗

ABSTRACT

As tissues elongate, cell rearrangement alters positional infor-
mation as cells move within a morphogen gradient. Despite
being present in many patterning systems, the role of cell move-
ments is often ignored. Paraxial mesoderm elongation is an
ideal system to study this as cells rapidly mix within the pos-
terior progenitor zone while being exposed to both FGF and
Wnt morphogen gradients. By reverse-engineering gene reg-
ulatory networks that predict single cell expression trajectories
across the tissue, we find a network capable of recapitulating
the full range of dynamic differentiation profiles observed both
in vivo and in vitro. Simulating gene expression profiles on in
toto cell tracking data sets reveal that this gene regulatory net-
work is sufficient to maintain T-box gene expression patterns
in the context of real tissue morphogenesis. The model also
recapitulates the generation of heterogeneous tbx6 expression
in the posterior progenitor zone that we observe by single cell
measurements of gene expression in situ. Taken together, these
results demonstrate that gene regulatory networks can provide
sufficient dynamic range to adjust to cell rearrangement in vivo,
and altered developmental dynamics when cultured in vitro.

KEYWORDS: gene regulatory networks, cell rearrangements, pat-
tern formation

INTRODUCTION
During the elongation of the vertebrate body axis, rates of self-
renewal and cell differentiation must be precisely coordinated such
that a continual supply of progenitor cells are maintained through
embryo elongation (1; 2). This temporal coordination is especially
important within the presomitic mesoderm (PSM) as it is seg-
mented into somites at the anterior end of the tissue in a clock-like
process (3). While much has been studied regarding the temporal
dynamics of somitogenesis, less is known about the mechanisms
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that coordinate cell fate specification in the tailbud as cells pro-
gressively mature into a PSM cell state (4). In zebrafish embryos,
this maturation is marked by a transition from tbxta, through to
tbx16 and then tbx6 expression (5; 6). At the tissue level, a pattern
of gene expression emerges that is robust and aligns with a graded
decrease in both Wnt and FGF pathway activity (7; 8). Both mor-
phogens generate a wavefront of positional information that has
been shown to determine the dynamics of somitogenesis, together
with a Notch dependent clock (9; 10; 11; 12).

While cells are undergoing PSM maturation, they are also
undergoing a rapid series of cell rearrangements that are required
as a driver of PSM elongation. In chick embryos, it has been
shown that random cell rearrangements downstream of FGF sig-
nalling result in a coordinated posterior expansion of the tissue
along the anterior-posterior axis (13; 14). A similar transition
from a liquid-like state of high cell motility in the posterior to a
more solid-like state in the anterior has been observed in zebrafish
embryos (15; 16) and is linked to an increased amount of cell rear-
rangement in the posterior progenitor zone (17; 18). Analysis of
cell rearrangements in 3D further show how cells rapidly exchange
neighbours as the tissue compacts in the dorsal-ventral and medial-
lateral axes and elongates along the anterior-posterior axis (19).
How these movements impact the dynamics of progenitor cell mat-
uration at the single cell level, yet still enable the generation of
stable patterns of T-box expression at the tissue level is currently
unknown.

Recent work has highlighted the extent to which the dynam-
ics of the zebrafish somitogenesis clock is intrinsic to each cell.
Previous studies had shown that cells cultured in vitro are capa-
ble of eliciting transient oscillations of Notch pathway activity, as
assayed with reporters for her1 expression (20). However, it was
unclear whether such oscillations might be an emergent property
of cell populations operating via local signalling. More recently, it
has been demonstrated that her1 oscillations can still be observed
within isolated cultures of cells and in the absence of any signals
added to the medium (21). Importantly, these cells slow down their
oscillations and upregulate mesp expression, a marker of somite
polarity (21; 22). These results demonstrate that PSM differenti-
ation is to a large degree cell autonomous in zebrafish embryos.
Furthermore, they open the question of how the dynamics of an
intrinsic timer can be modulated to match the cell specific dynam-
ics of differentiation that occurs in vivo given individual rates of
movement from the tailbud.

To investigate the cell-intrinsic mechanisms that time cell dif-
ferentiation in response to external signalling, a common approach
is to reverse engineer a minimal gene regulatory network (GRN)
that is sufficient in its description of the system to recapitulate spa-
tial distributions of gene expression observed in situ (23). Such
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an approach has been successful increasing our understanding
of the dynamics of morphogen interpretation in a range of sys-
tems including the Drosophila blastoderm and vertebrate spinal
cord (24; 25; 26; 27). However, inferring GRNs that can recapit-
ulate the emergence of gene expression patterns in the context of
rapid cell rearrangements is challenging. Here, we aim to ascer-
tain whether a single gene regulatory network (GRN) can predict
the full dynamics of PSM differentiation in both in vivo and in vitro
contexts.

To determine the range of timings for the movement of cells
out of the tailbud, we first probed the limits of their differentia-
tion dynamics by culturing tailbud progenitors in vitro and assayed
the proportion of tbx16/6 expressing cells at subsequent time-
points. We then compared this to in vivo where cells undergo a
range of differentiation dynamics as a function of the time spent
in the posterior progenitor domain, and so are distributed across a
broad range of temporal trajectories. In a companion paper (8), we
developed a fitting and modelling framework that can operate in
the context of cell movements within the zebrafish PSM through
the mapping of gene expression patterns onto in toto cell track-
ing datasets. We first approximated gene expression trajectories
(AGETs) in single cells which were then used to reverse engineer
the parameters of a three transcription factor, two-signal network
(8). Here, we ask whether any of the parameter sets obtained
through this approach are sufficient to recapitulate all progenitor
maturation dynamics observed both in vivo and in vitro.

RESULTS.
A cell intrinsic timer drives differentiation of only a subset of
tailbud progenitors.

It has been previously reported that when cells are explanted
from the PSM of the zebrafish embryo, this triggers an intrin-
sic timer to differentiate into Mesp positive somitic mesoderm
(21). To assay the autonomy of T-box expression changes in iso-
lation, we aimed to measure tbx16 and tbx6 expression changes
in single cells explanted from the posterior-most region of the
tailbud. To check that we were able to accurately explant the poste-
rior progenitor region, we first injected embryos with nls-KikGR,
a photo-covertible protein that is targeted to the nucleus (28).
Explants were then taken from injected embryos where the poste-
rior 25% of the tailbud had been photo-labelled (Figure 1A). This
confirmed that the posterior-most region (containing cells with low
levels of tbx6 expression) was being taken for dissociation and
subsequent cell culture (Figure 1A; inset). To confirm the gene
expression state of these cells, we stained them for tbx16 and tbx6
and showed that most cells express high levels of tbx16 with only
a few cells expressing tbx6 (Figure 1B).

Explants taken from the posterior tailbud were dissociated by
gentle agitation in calcium and magnesium free PBS to produce
single cells in suspension, and cultured in adherent culture under
a media of defined L15 with no serum or signal factor supple-
mentation, as previously described in (21). Under these culture
conditions, cells downregulated expression of tbx16 and upregu-
lated their expression of tbx6 over a period of 6 hours, as measured
by HCR on fixed timepoint samples imaged at high magnification
(Figure 1C). Further examination using a tbx6::GFP reporter (29)
revealed that GFP fluorescence increased in only a proportion of
cells and that the GFP signal onset began in a proportion of cells
after approximately 200 minutes (3.5 hours) in culture (Figure
1D,E).

Cells stained using multiplex HCRs for tbxta, tbx16, tbx6 and
keratin18 at each time point were manually classified into five
categories: progenitors, which expressed tbxta and/or tbx16, tbx6
positive cells, epidermal cells expressing keratin18, dead cells
which showed abnormal nuclei shape or fragmented nuclei, and
other. Very few cells are observed dividing over this time course.
Over time, the proportion of tbx6 positive cells increases at the
expense of cells in the progenitor category (Figure 1F-G). These
results together demonstrate that once isolated in vitro, cells from
the posterior 25% of the tailbud have the potential to mature into
tbx6 positive cells and that this starts at approximately 3.5 hours
in culture.
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Fig. 1. Presomitic Mesoderm progenitor cells differentiate in vitro
forming a bimodal population of cells. (A) Labelling and dissection of
the posterior 25% of a 21 somite stage tailbud demonstrates explants are
produced mostly of labelled cells. Explant shown in image insert. (B) From
HCR data on whole explants, it is demonstrated that they are made of cells
expressing tbx16 and only a small number of tbx6 expressing cells. By dis-
sociation of these cells into single cells and culturing them in L15 media
without supplementation (C) cells are observed downregulating expression
of tbx16 and increasing expression of tbx6 in fixed time points using HCR.
(D) Using live imaging of a tbx6::GFP reporter, it was observed that GFP is
observed only in a proportion of cells and that the (E) GFP signal appears
synchronously in multiple cells after approximately 200 minutes in vitro cul-
ture. Cells not expressing GFP at this time do not express GFP even after
300 minutes of culture. Minimal to no cell divisions are observed occurring
over the time course. (F) Through manual classification of single cell multi-
ple HCR using tbxta, tbx16, tbx6, keratin18 probes, cells were defined as:
“progenitor” (expressing tbxta and tbx16), “tbx6” (expressing tbx6), “Epider-
mis” (expressing keratin18), “Dead” (with fragmented or unusual nuclei) or
“Other” (none of the above gene expression patterns). It was observed the
majority of cells begin the culture period as progenitors and that this propor-
tion decreases as the proportion of tbx6 cells increases. The proportion of
epidermis, other and dead cells stays relatively stable with some increase
in dead cells by six hours. G Examples of Progenitor Cells, tbx6 cells and
cells classified as Other which express both tbxta and tbx6 together at the
six hour time point. (C) n = 3 biological replicates; images representative.
(F) Displayed data from single experiment containing: 0hrs n=140 cells, 2hrs
n=123 cells, 4hrs n= 143 cells, 6hrs n=186 cells

.

Cells in vivo differentiate over a range of time-scales.

We next aimed to relate the dynamics of T-box gene expression
observed in vitro to the range of differentiation trajectories cells
undertake in vivo. We first measured the time taken for a clone of
15-20 photo-labelled cells to spread from the from a tbxta positive
progenitor region (Figure 2A) into a newly made somite (Figure
2C). Embryos were injected at the 1-cell stage with mRNA encod-
ing a mRNA encoding nls-kikGR, and then photo-labelled in the
posterior progenitor region at the 21 somite stage. We observed
that in multiple embryos, the fastest cell entered a somite within
3 hours of being labelled in the posterior, with other cells exhibit-
ing a range of longer times depending on how long they took to
exit the progenitor domain. This streaming behaviour of the photo-
labels placed in the progenitor domain is in contrast to the coherent
distribution of clones observed when cells are labelled in the PSM
(19), and is consistent with the idea that the non-directional move-
ment of cells in the progenitor zone helps to generate a progressive
entry of cells into the posterior PSM.

To relate these cell movements to transitions in T-box gene
expression, we used HCR to stain for tbtxa, tbx16 and tbx6 mRNA
(Figure 2D-G). We masked the notochord and notochord progen-
itor cells and removed this tbxta signal from the image so that
only the tbxta expressed within the PSM remained (Figure 2H-K).
The intensity of the HCR signal was then plotted across the PSM,
normalizing the axis (where 0 represents the posterior end of the
tailbud and 1, the posterior-most boundary of the most recently
formed somite) (Figure 2I,J). This made it possible to quantify the
expression patterns of the three T-box genes across the presomitic
mesoderm and tailbud (Figure 2H-J). Our analysis revealed that
cells undergo a range of temporal trajectories in gene expression,
with the fastest cells transiting through to a newly formed somite
in 3 hours.
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Fig. 2. Stable patterns of T-box gene expression are formed across the
presomitic mesoderm and tailbud despite cell mixing. (A-C) Labeling
of the posterior of the presomitic mesoderm in a 21 somite stage embryo
demonstrates that cells spread throughout the entire tissue with the fastest
cell entering the newly formed somite in 3 hours whereas other cells dif-
ferentiate over a continuous range of timescales. (D-G) The T-box gene
expression domains within the presomitic mesoderm using HCR against
tbxta, tbx16 and tbx6 at the 21 somite stage. Representative images shown.
(H-K) Axial tbtxa expression was masked in 3D, and ignored during analysis
to allow quantification of tbxta expression only within the paraxial mesoderm.
An example of the region masked, and the masking process is shown. (I)
Expression of T-Box genes are quantified by generating a maximum pro-
jection of the 3D image, then quantifying expression across a central zone,
from posterior to anterior. (J) These quantified levels of expression are plot-
ted along a normalized posterior (0) to anterior (1) axis where 1 represents
the posterior boundary of the most recently formed somite. Intensity of sig-
nal was also normalized between 0 and 1 from multiple embryos plotted
together. Ribbon = range of values measured; line = mean.

A reverse-engineered GRN recapitulates tissue-level T-box
pattern formation and in vitro T-box gene expression
dynamics.

We have observed that tailbud progenitors can differentiate over a
range of timescales in both in vitro and in vivo contexts. To inves-
tigate the underlying mechanisms that enable this, we set out to
reverse-engineer a GRN that could be interrogated in a manner
that links intrinsic gene-regulatory dynamics with cell movement.
GRNs formulated as dynamical systems have been very helpful
elucidating patterning mechanisms (see for example (30; 31; 32)
among many others), however existing methodologies to infer
GRNs from quantitative gene expression data have bypassed the
role of cell movements in patterning processes. For this reason we
developed a methodology that would allow us to infer GRNs driv-
ing pattern formation in tissues undergoing morphogenesis which
explicitly accommodated cell rearrangements and movements and
applied it to the developing zebrafish PSM (8).

To reverse-engineer GRNs from our HCR data we first con-
structed approximated gene expression trajectories (AGETs) that
approximate temporal changes in T-box expression and Wnt and
FGF signalling as cells move through the PSM. To achieve this
we combined a) HCR stains of tbxta, tbx16 and tbx6 expres-
sion (Figure 2 D-J), canonical Wnt activity as determined by the
activity of a TCF-GFP reporter line (33) (Figure 3A,C), FGF sig-
nalling activity through measurements of di-phosphorylated ERF
antibody staining (Figure 3B-C), and 3D cell tracking data from
time-lapse imaging datasets of the PSM (Figure 3D). In both T-
box expression and signalling activity datasets, nuclei of the PSM
were segmented and the corresponding intensity values carried for-
ward along with the point cloud (3D spatial) coordinates of each
cell. These were aligned with the cell tracking datasets using an
iterative closest point algorithm (Figure 3 - Supplementary Figure
1A-B) (8). Once aligned, AGETs are calculated to approximate
Tbox and signalling dynamics, and used to infer a GRN model of
T-box gene expression (Figure 3 - Supplementary Figure 1C). We
used a small randomly spaced subset of 10 AGETs and a Mar-
cov Chain Monte-Carlo algorithm to obtain sets of candidate GRN
parameters (Figure 3 - Supplementary Figure 1D).

We next selected and clustered the networks that were able to
recapitulate tissue-level T-box patterning when simulated on the
tracks, in addition to providing a good fit to the 10 AGETs used
for fitting. We simulated GRNs directly onto all the cell tracks
obtained from in toto live imaging (Figure 3D), by formulating the
GRN in each cell and simulating all of these in parallel using quan-
titative measurements of signal activity as inputs (Figure 3A-C)
(we refer to this as live-modelling due to its parallel to live-
imaging). This method allows us to observe the emergence and
maintenance of pattern at the level of the tissue from the dynam-
ics of gene expression being simulated in the single cells (Figure
3E), while still taking into account cell rearrangements explicitly.
We obtained 22 clusters of network. Here, networks were clus-
tered according to their quantitative parameter values, considering
the value of parameters in addition to their sign (either an activa-
tion or an inhibition (8)). Considering the sign alone results in 15
distinct network topologies that were capable of providing a good
fit to each AGET across the anterior-posterior length of the PSM
(Figure 3 - Supplementary Figure 2). Note that these networks fail
to capture the depletion of tbx6 at the anterior of the PSM as this is
known to be due to additional anterior repressors such as Ripply1
(34) that are absent in our model (Figure 3F,G).
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Fig. 3. A Reverse Engineered Gene Regulatory Network Can Reca-
pitulate in vivo Patterns of T-box Gene Expression With Cell Move-
ments. A-B Measurements of the signalling environments within the PSM
were made by either measuring the level of gfp mRNA produced from a
7XTCF::GFP reporter to measure the level of Wnt signalling, or via an anti-
body stain against diphosphorylated ERK to measure FGF signalling at
the 21 somite stage. C These images were quantified along a normalised
PSM axis as in Figure 2J. D We obtained live imaging data of the develop-
ing zebrafish PSM from the 21 somite stage onward and tracked individual
cells over 02:30hrs. t=0 shows the first frame in the time lapse where every
nucleus in the PSM is highlighted by the tracking algorithm with a spot. t = 30
shows the 30th time frame which corresponds to 01:15hrs into the time-lapse
and t = 60 shows the 60th frame in the movie, which corresponds to the end
of the time lapse at 02:30hrs. Data from (19). In these tracking data, newly
formed somites were deleted as soon as the morphological somite is formed.
Non-presomitic mesoderm tracks were deleted from the entire movie at all
time points. (E) The tracking data in (D) were used to implement the live–
modelling framework where reverse-engineered zebrafish T-box GRNs are
simulated on every cell track represented in silico. The live-modelling frame-
work allows us to observe how tissue-level patterning emerges as a function
of GRNs acting at the single cell level as the PSM undergoes morphogen-
esis. tbxta in red, tbx16 in yellow and tbx6 in blue. F Reverse-engineered
T-box GRN. G Quantified simulated gene expression patterns compared to
the gene expression patterns measured in the embryo, previously quanti-
fied using HCR. Each dot represents the simulated concentration of a T-box
gene in a single cell. Curves (dotted lines) were fitted and normalised to
the simulated gene expression and compared to the quantified experimen-
tal data (solid lines) at different time points (t=30 and t=60 shown here) to
assess the goodness of fit. (A-C) n=6 biological replicates; all data plotted;
line represents mean; ribbon represents range.

We next asked whether a single GRN can provide sufficient
dynamic range to also recapitulate the gene expression dynam-
ics observed when cells are cultured in vitro. We first quantified
signalling dynamics in the in vitro experiments, and used these
to simulate all 22 representative networks and selected networks
that also recapitulated the T-box expression dynamics measured
in vitro (Figure 3 - Supplementary Figure 1E). To characterise the
levels and dynamics of Wnt and FGF signals in vitro we quantified
Wnt signalling activity by performing HCR against gfp mRNA
produced from a Tg(7xTCF-Xla.Siam:GFP) zebrafish reporter line

which reports on active Wnt signaling (33) while FGF was assayed
using antibody staining against diphosphorylated ERK (Figure
4A-B). Quantification of these signals in multiple cells in vitro
revealed that the levels of Wnt and FGF signaling decline in sin-
gle cells over the 6 hours of culture. The cell population maintains
high ppERK phosphorylation during the first 4 hours before down-
regulating it at 6 hours (Figure 4C). Mean TCF reporter levels also
decline rapidly within the first two hours of culture and remain
low for the remaining duration of the timecourse (Figure 4D).
Next, we imaged at the single cell level in vitro using HCR stains
against tbx16 and tbx6 experiments and quantified expression lev-
els by masking around individual cells normalised by cell area.
From this we found bimodal differentiation dynamics in single
cells, where a population of cells increased their levels of tbx6 and
downregulated tbx16, while at the same time, other cells remain
tbx6 negative (Figure 4E,G).

Out of 22 networks, ten recapitulated both the downregulation
of tbx16 (Figure 4E,F) and the bimodal activation of tbx6 in single
cells in vitro (Figure 4G,H). Unable to discriminate between these
further based on fit, we selected a network whose predicted inter-
actions were also supported by the current literature, namely, the
network where tbx16 is predicted to activate tbx6. This has been
demonstrated in heatshock regulated tbx16 overexpression lines
which yield an increased expression of tbx6 (35). Additionally,
mutants in tbx16 have a loss of tbx6 expression (36) further evi-
dencing this interaction. It is also known that FGF activates tbx16
expression as dominant negative FGFR1 embryos display a loss
of tbx16 expression (37; 38). In imposing this selection criteria,
the remaining network proposed also infers that Wnt signalling
will repress the expression of tbx6; an interactions which is also
supported by experiments that show overexpression of the Wnt
inhibitor protein DKK1 results in an expansion of tbx6 expres-
sion (36). The experimental evidence that Wnt activates expression
of tbxta, as Wnt signalling activity inhibition results in a loss of
tbxta expression, has also been incorporated within this model as a
non-inferred prior parameter (35; 37). Taken together, these results
propose a GRN (Figure 3F) that has a number of inferred and prior
known interactions supported by the literature and capable of pre-
dicting differentiation dynamics of tailbud progenitors in vivo, on
cell tracks, and when cultured as single cells in vitro.
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Fig. 4. In vitro cultures of PSM cells differentiate as single cells with
dynamics predicted by a simulated gene regulatory network. Progeni-
tor cells were taken from a 21 somite stage emberyo and cultured in vitro.
(A-B) Cells maintain some level of Wnt and FGF signalling measured by gfp
mRNA production from a 7XTCF::GFP reporter or diphosphorylated ERK
antibody staining respectively. Examining these stains at the single cell level
demonstrate that (C-D) the level of FGF and Wnt signalling declines over the
time course with a gradual decline in mean ppERK activity and a more rapid
decline of TCF::GFP activity over time. (E & G) Examining single cell HCRs
for tbx16 and tbx6 demonstrate that the level of tbx16 declines and the level
of tbx6 increases in only some cells to form a bimodal population by 6 hours,
where some cells are tbx6 positive and others and still low in tbx6 expres-
sion. (F & H) Using the remaining 22 reverse engineered networks which
could generate patterns similar to those observed in vivo when simulated
on cell tracking data, simulation of single cells cultured in vitro and imaged
as individuals also predicted the formation of a bimodal population, as was
observed in vivo. (E-H) n=3 biological replicates; one experiment plotted;
data representative.

Cell movement direction, and not total displacement,
correlates with tbx6 upregulation in the PSM.

Our live-modelling framework makes it possible to explore the
differentiation dynamics of single cells within the PSM and to
associate these dynamics with the cells’ relative positions and
movements. We investigated how cells change their dynamics
of T-box expression as a function of their changing position by
choosing two cells that both begin the simulation at 23% posterior-
anterior position, but that as development proceeds, will diverge in
their positions and overall 4D trajectories: one cell will leave the
progenitor region and enter the PSM, making its way towards a
somite (Figure 5A), while the other will remain in the progenitor
region even moving slightly posteriorly over time (Figure 5D).

The first thing to note is that the signalling AGETs and ini-
tial Tbox concentrations are not the same for both cells despite
them being located at the same antero-posterior position. This
reflects the fact that AGETs are constructed from 3D gene expres-
sion quantification and retain the heterogeneity present in the data,
which is present even across narrow spatial domains (8). The next
thing to note, is that the cell that moves anteriorly will continue
to upregulate FGF and downregulate Wnt (Figure 5B), while the
cell that remains in the progenitor region will maintain high Wnt
signalling levels and low FGF (Figure 5E). The cell which exited
the progenitor region is predicted by the model to reduce its tbxta
and tbx16 expression levels and slowly increase tbx6 expression
(Figure 5A,C). By contrast, the cell which remains embedded in
the progenitor region throughout the simulation, is predicted to
maintain high levels of tbxta and tbx16 expression, and a low level
of tbx6 expression (Figure 5D,F). Together, this provides an exam-
ple of how the live modelling approach can be utilised to explore
how individual cell gene expression trajectories might be impacted
by cell movement and/or its initial gene expression conditions.

Our model suggests that it is a cell’s overall movement along
the anterior-posterior axis rather than the total distance it travels
(track length) that determines its maturation dynamics. Figure 5G
shows that cells starting in the posterior-most 25% region of the
progenitor region will experience a larger change in tbx6 expres-
sion levels if their overall displacement is positive (towards the
anterior) than negative (towards the posterior), as reflected by the
larger lightly-coloured area in the top left quadrant as compared
to the bottom left one. In contrast, the total distance travelled
by a cell in the same region does not correlate with the level of
tbx6 change that it will experience, which is shown by the com-
parable shading in both top and bottom left quadrants in Figure
5H. These observations suggest that cell movements could have
a role in modulating the dynamics of progenitor maturation by
generating dynamic exposure to spatial signalling environments.
However, local heterogeneity in gene expression levels between
individual cells is likely to be a key determinant in the rate of gene
expression change as this determines the initial conditions for each
trajectory simulation.
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Fig. 5. Tbx6 upregulation is a function of cells’ initial position and the
total distance travelled along the posterior-to-anterior PSM axis, but
not of the total distance travelled. (A. top) Relative position of the cell
within the zebrafish PSM at the start of the simulation (23.8321% posteri-
or-anterior at time = 0) and (A. bottom) at the end of the simulation (time =
61). (B) Signalling AGET and (C) simulated T-box gene expression dynam-
ics for the cell shown in (A). (D. top) Relative position of the cell within the
zebrafish PSM at the start of the simulation (23.8361% posterior-anterior at
time = 0) and (D. bottom) at the end of the simulation (time = 61). (E) Sig-
nalling AGET and (F) simulated T-box gene expression dynamics for the cell
shown in (D). (G) Visualisation of the degree of change in tbx6 gene expres-
sion over the simulation compared to total cell movement in the direction of
the anterior-posterior axis for cells starting in the posterior 25% region of
the PSM. Positive Total Movement in AP represents anterior cell movement
whereas negative Total Movement in AP represents posterior cell movement.
Cells have the largest change in tbx6 expression when displacing anteriorly.
Aberrant tbx6 expression in posterior moving cells can be observed in the
bottom left quadrant where cells are moving towards the posterior yet upreg-
ulating tbx6 expression, shown by the light ochre colouring. (H) Visualisation
of the degree of change in tbx6 gene expression over the simulation com-
pared to total track length for cells starting in the posterior 25% region of the
PSM.The total distance a cell travels shows no correlation with the degree
of tbx6 gene expression change as top and bottom quadrants show similar
degrees of ochre shading.

As Figure 5G and H also reveal a degree of heterogeneity in
the level of tbx6 expression change within cells starting in the
posterior-most 25% of the embryonic tailbud. This is reflected by
the existence of patches of all three tones of orange in the top and
bottom left quadrants of Figure 5G and H. In particular, the pres-
ence of light ochre patches in the bottom left quadrant of Figure
5G suggests that a subset of cells upregulate tbx6 without leaving
the progenitor domain.

As a result, when simulated on live tracking data, our network
predicts a degree of tbx6 expression heterogeneity within the tail-
bud (Figure 6A-B). To identify whether there is indeed a posterior
bias of ectopic expression of tbx6 as predicted by the live mod-
elling, the nuclei within the PSM were segmented (Figure 6C)
and then classified as either anterior or posterior relative to the
posterior end of the notochord within each embryo (Figure 6D).
Following this, cells with aberrant gene expression were identi-
fied in each domain, defined as expressing tbx6 in the posterior, or
tbx16 in the anterior domain (Figure 6E). The frequency of aber-
rant gene expression was measured and we confirmed a posterior
bias in erroneous gene expression, as predicted by the live mod-
elling (Figure 6F) indicating that although this system is able to
generate deterministic patterns at the level of the tissue (Figure 2D-
F), it does so from noisy gene expression at the single cell level, as
seen in vivo (Figure 6G).

Fig. 6. Live modelling predicts cell level heterogeneity (A-B) Live mod-
elling simulations predict that some cells upregulate tbx6 in the posterior
domain of the PSM, where tbx16 would be expected to be expressed by the
end of the simulation. (A) All three genes are shown: tbxta in red, tbx16 in
yellow and tbx6 in blue. (B) Same as (A) showing only tbx6 expression in
blue. (C-E) By examining whole mount HCR images from embryos at the
21 somite stage, and segmenting individual nuclei, cells could be classified
as either posterior or anterior relative to the end of the notochord. (F) Cells
in each of these domains could then be classified and the number of cells
expressing tbx6 in the tbx16 domain and vice versa counted. This demon-
strates a posterior bias in aberrant gene expression as predicted by the live
modelling simulations. (G) These aberrant cells can be identified in slices of
HCR data. (F) n= 3 embryos measured; bar = mean.

CONCLUSIONS
During development, cells undergo state transitions at a rate that is
in part determined by cell intrinsic timers of differentiation. Mech-
anistically, this developmental tempo is set by the time it takes for
the underlying GRN to elicit changes in gene expression. It is to
a large degree also dependent on protein production and degra-
dation rates within each cell (39; 40), and species can vary these
rates in a manner that is linked to their basal metabolic rate (41).
In a multi-cellular context, extrinsic signals can further tune the
dynamics of this process by controlling the activation or inhibition
of other nodes within a GRN, leading to the creation of a non-
autonomous dynamical system where the state change of a cell
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is modulated by the strengths of signal inputs that it encounters
(42). Dynamical systems models appropriately account for both
intrinsic and extrinsic timers of differentiation and are therefore a
powerful tool to probe how gene expression patterns emerge dur-
ing development (24; 25; 26; 27). Here, we present a GRN that can
explain the temporal dynamics of PSM progenitor differentiation
in vitro, and crucially is also able to recapitulate the emergence of
tissue-level T-box pattern formation in vivo in the context of cell
rearrangement.

Probing the predicted dynamics of gene expression change for
single cells within our model has revealed two insights. Firstly, an
unexpected degree of heterogeneity observed for tbx6 expression
in the posterior progenitor domain. Gene expression heterogeneity
is a common feature of progenitor populations that has in many
cases been linked to underlying stochasticity in gene expression at
the transcriptional level (43). While this is also likely to be the case
for T-box genes in the PSM, our model points to a second source
of noise in the system. GRNs are configured in such a way that
produces a temporal delay in response to morphogen exposure,
as such cells will not immediately adjust their expression state in
situations where they move into an altered signalling environment.
Dissecting these multiple sources of heterogeneity in developing
systems will be an important step in fully exploring the role of
gene expression noise in vivo.

A second insight derived from our model relates to the role of
cell movements in the emergence of tissue-wide gene expression
patterns. To generate patterns of T-box expression in the PSM,
cells must tune their intrinsic dynamics of differentiation to the
rate at which they exit the tailbud and enter the PSM. We observe
that cells delayed in their exit from the progenitor region delay
their upregulation of tbx6. As such, cell movements might be
playing an important role in regulating the dynamics of cell dif-
ferentiation, potentially by determining the level and dynamics
of morphogen exposure. This emphasises the difficulty in deter-
mining gene function from mutant phenotype analysis alone as a
given signal or transcription factor may have dual impact on gene
expression patterns, firstly through the regulation of other network
nodes to control their levels of expression but also indirectly via
the regulation of cell movements within the tissue in question.
This is especially important in the context of PSM development
where signals such as Wnt and FGF have known functions in
also regulating epithelial-to-mesenchymal transitions (7; 37; 44).
In addition, tbx16 has a clear role in both the specification of meso-
dermal cell fate and the control of cell movement from the tailbud
(38). Finally, oscillations in Wnt and FGF signalling, as well as
downstream transcription factors are known to occur and offer and
additional dynamic input to the system (45; 46). Here, we present
a novel theoretical approach that considers both GRN interactions
and cell movements. We envisage that this will be a powerful tool
when testing proposed network interactions in the context of cell
tracking data obtained from both wild-type and mutant embryos.
In doing so, it is expected that the proposed GRN will become
refined to incorporate additional feedback from both T-box gene
function and cell movements to the timing of progenitor matura-
tion. In particular, our proposed network includes a repression of
tbxta by FGF, where current experimental evidence supports an
activation of tbtxa (38), potentially reflecting a lack of important
interactions in our current model.

The timing of progenitor contributions to the pre-somitic meso-
derm are known to be controlled, at least in part, by the progressive

expression of Hox genes that progressively delay progenitor addi-
tion as the body axis extends (47; 48). This timing mechanism is
intrinsic to the progenitor cell populations that are fated towards
the somitic mesoderm in the primitive streak, and controls the tim-
ing of cell dispersion as cells undergo an increase in cell motility
(49). In this study, we follow the timing of progenitor contribu-
tion over a 3 hour time window, during which minimal changes in
Hox expression occur (50). Instead, we focus on the impact that
cell rearrangement has on the anterior-posterior spacing of cells
across the paraxial mesoderm and how this relates to the timing
of cell maturation as marked by changes in T-box gene expres-
sion. We propose that this modelling framework provides sufficient
dynamic range to explore the ways that tissue morphogenesis is
coordinated with cell fate. Whether this be through controlling ini-
tial gene expression heterogeneity, rates of cell movements or the
dynamics of signal transduction.

Embryonic development is characterised by a series of multi-
scalar interactions where dynamic state changes of individual
cells, when coupled with cell movements and morphogen expo-
sure, can lead to the emergence of gene expression patterns at
the tissue level. Cell movements themselves are likely to also be
impacted by tissue level properties such as the liquid-to-solid tran-
sition observed in the PSM (15; 16), and furthermore via forces
acting between adjacent tissues during the process of posterior
body elongation (51; 19; 52; 53). As such, it is essential that
we approach the role of GRNs in development in a context of
multi-tissue morphogenesis to gain a complete picture develop-
ment. The live-modelling framework utilised here provides an
in-road into achieving this as it enables predictions to be gener-
ated of how specific GRN topologies can lead to pattern emergence
in multiple morphogenetic contexts. This might be in the con-
text of interpreting complex mutant phenotypes or to probe how
developmental systems respond to perturbations at the level of
physical tissue properties, tissue geometry or multi-tissue mechan-
ical interactions. Furthermore, while in many cases it is assumed
that evolution acts to drive changes in gene expression through
altering GRN interactions, our work points to an equivalent poten-
tial in altering cell movements within a tissue in question while
conserving the GRNs. Exploring the multi-dimensional regulation
of evolutionary change is therefore an important direction for the
field.
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Fig. 3. Supplementary 1: Live Modelling Pipeline. A Three independent
datasets are collected. Cell level tracking data in three dimensions is col-
lected from live imaging individual embryos. Three dimensional T-box gene
expression patterns and signalling information are obtained from fixed spec-
imens. B These three datasets are registered together in 3D. C Individual
AGETs are extracted for both signalling data and T-box gene expression. D
Networks able to simulate these AGETs are reverse engineered using an
MCMC pipeline. E The 100 reverse engineered networks are filtered by their
ability to accurately predict gene expression patterns at the tissue level by
making qualitative comparison to measured profiles (Figure 2F). Following
this, networks were filtered by their ability to reproduce the observations of
bimodal tbx6/tbx16 gene expression observed when cells are grown in vitro
(Figure 4 G-I). Finally, netoworks were filtered using known network interac-
tions obtained from the literature. F The remaining network is simulated on
tracking data and produces patterns of T-box gene expression in 3D, which
can then be compared to experimentally measured patterns.

Fig. 3. Supplementary 2: 15 Possible Network Topologies. Following
the generation of 100 networks which successfully able to simulate gene
expression patterns of individual AGETs, filtering these networks and then
clustering by network topology, 15 networks are retained. Of these, only one
(Network 5) also contains the literature inferred network parameters.
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MATERIALS AND METHODS
Animal Husbandry

This research was regulated under the Animals (Scientific Proce-
dures) Act 1986 Amendment Regulations 2012 following ethical
review by the University of Cambridge Animal Welfare and Ethi-
cal Review Body (AWERB). Embryos were obtained and raised in
standard E3 media at 28◦C. Wild Type lines are either Tüpfel Long
Fin (TL), AB or AB/TL. The Tg(7xTCF-Xla.Sia:GFP) reporter
line (33) was provided by the Steven Wilson laboratory. Embryos
were staged as in (54).

Primary Culture of Tailbud Progenitor Cells

Cells were explanted from the tailbud as in (20; 21). Effort was
made to remove the ectoderm prior to dissection. Cells were dis-
sected in calcium and magnesium free PBS in order to promote
cell dissociation. Cells were cultures in 8 well Ibidi Micro-Slides
under the fully defined L15 media supplemented with PenStrep
solution to limit bacterial growth.

RNA extractions were made in triplicate, from independent
experiments, using Trizol Reagent (Ambion LifeTechnologies)
following a standard protocol and reverse transcription using
Superscript III (Invitrogen). Resultant cDNA was quantified using
SYBRGreen with liquid handling robot (Qiagility, Qiagen) and
analysed on a RotorGeneQ thermocycler (Qiagen).
Primer sequences:
axin2 5’-TACCCTCGGACACTTCAAGG-3’
and 5’-TGCCCTCATACATTGGCAGA-3’;
sprouty4 5’-CACGCGCCCTAGTATCAAAC-3’
and 5’-GGGATCTTGGTGAAGTGTGC-3’;
EF1a 5’-GGAGACTGGTGTCCTCAA-3’
and 5’-GGTGCATCTCAACAGACTT-3’.
Concentration of cDNA was estimated using an in-house MAK2
analysis method, as described previously (55).

In Situ Hybridisation Chain Reaction (HCR)

Embryos were raised to the required stage then fixed in 4%
PFA in DEPC treated PBS without calcium and magnesium at
4◦C overnight. Embryos were then stained using HCR following
the standard zebrafish protocol found in (56). Probes, fluorescent
hairpins and buffers were all purchased from Molecular Instru-
ments. After staining, samples were counter stained with DAPI
and mounted under 80% glycerol.

Immunohistochemistry

Embryos were raised to the required stage then fixed in 4% PFA
in DEPC treated PBS without calcium and magnesium at 4◦C
overnight. Embryos were then blocked in 3% goat serum in 0.25%
Triton, 1% DMSO, in PBS for one hour at room temperature.
Diphosphorylated ERK was detected using the primary antibody
(M9692-200UL, Sigma) diluted 1 in 500 in 3% goat serum in
0.25% Triton, 1% DMSO, in PBS. The samples were incubated at
4◦C overnight then washed in 0.25% Triton, 1% DMSO, in PBS.
Secondary Alexa 647nm conjugated antibodies were diluted 1 in
500 in 3% goat serum in 0.25% Triton, 1% DMSO, 1X DAPI in
PBS and applied overnight at 4◦C.

Imaging and Image Analysis

Samples were imaged using a Zeiss LSM700 inverted confocal
microscope at 12 bit, 20X or 40X magnification, with an image

resolution of 512x512 pixels. Single cell HCR was imaged using a
Nikon Ti inverted widefield microscope at 63X magnification.

Image analysis of confocal images was done using the line
drawing tool on Fiji (57; 58) set to a width of 50 pixels. Lines
were drawn following the curve of the embryo, through the centre
of the PSM from posterior PSM to the posterior most clear somite
boundary. Profiles were normalised to the length of the PSM and
signal intensity as individual embryos by dividing the measured
value by the maximum value of that embryo.

Nuclear segmentation of whole embryos stained using HCR
was conducted using a tight mask applied around the DAPI stain
using Imaris (Bitplane) with a surface detail of 0.5µm. Touching
surfaces were split using a seed size of 4µm. Values were exported
as X, Y, Z coordinates relative to the posteriormost tip of the PSM
where X, Y, Z were equal to (0, 0, 0). The PSM was then seg-
mented by hand by deleting nuclear surfaces outside of the PSM,
including notochord, spinal cord, anterior somites and ectoderm.
Only the PSM closest to the imaging objective, therefore of highest
imaging quality was measured with the distal PSM also removed.

Intensity mean values of each transcription factor HCR sig-
nal were exported and normalised between 0 and 1 by dividing
each cell’s mean signal intensity by the maximum measured within
that sample, per gene. PSM length was normalised individually
between 0 and 1 by division of the position in X by the maximum
X value measured in each embryo.

Single cell image analysis was conducted using Imaris (Bit-
plane) by generating loose surface masks around the DAPI stain
to capture the full nuclear region and cytoplasm. Surface masks
were then filtered to remove any masks where two cells joined
together or small surfaces caused by background noise, or frag-
mented apoptotic nuclei. The intensity sum of each channel was
measured and normalised by the area of the surface, as surface
area and transcript intensity had been demonstrated to correlate.
Expression level was then normalised between 0 and 1 using the
maximum value measured for each gene, in each experiment.

Live imaging datasets of the developing PSM was created using
a TriM Scope II Upright 2-photon scanning fluorescence micro-
scope equipped Insight DeepSee dual-line laser (tunable 710-1300
nm fixed 1040 nm line). Embryo was imaged with a 25X 1.05 NA
water dipping objective. Time step and frame number as per figure
legend. Embryos laterally in low melting agarose with the entire
tail cut free to permit normal development (59).

Model formulation

We formulated the T-box gene regulatory network using a dynam-
ical systems formulation. The models aim is to recapitulate the
dynamics of T-box gene expression for any cell, or rather a gen-
eral cell, in the developing zebrafish PSM. We use a connectionist
model formulation previously used to model other developmental
patterning processes (60).

The mRNA concentrations encoded by the T-box genes tbxta,
tbx16 and tbx6 are represented by the state variables of the dynam-
ical system. For each gene, the concentration of its associated
mRNA a at time t is given by ga(t). mRNA concentration over
time is governed by the following system of three coupled ordinary
differential equations:

dga(t)

dt
= Raϕ(ua)− λaga(t) (1)
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where Ra and λa respectively represent the rates of mRNA pro-
duction and decay. ϕ is a sigmoid regulation-expression function
used to represent the cooperative, saturating, coarse-grained kinet-
ics of transcriptional regulation and introduces non-linearities into
the model that enable it to exhibit complex behaviours:

ϕ(ua) =
1

2

(
ua√

(ua)2 + 1
+ 1

)
, (2)

where

ua =
∑
b∈G

W bagb(t) +
∑
s∈S

Esags(t) + ha. (3)

G = {tbxta, tbx16 , tbx6} is the set of T-box genes while S =
{Wnt,FGF} is the set of external regulatory inputs provided by
the Wnt and FGF signalling environments. The concentrations of
the external regulators gs are interpolated from quantified spa-
tial mRNA expression data (Figure 1J) and translated into time
as explained in the main text to used as dynamic inputs to the
model. Changing Wnt and FGF concentrations over time renders
the parameter term

∑
s∈S

Esags(t) time-dependent and therefore the

model non-autonomous (61; 25).
The interconnectivity matrices W and E house the parameters

representing the regulatory interactions among the T-box genes,
and from Wnt and FGF to the T-box genes, respectively. Matrix
elements wba and esa are the parameters representing the effect of
regulator b or s on target gene a. These can be positive (represent-
ing an activation from b or s onto a), negative (repression), or close
to zero (no interaction). ha is a threshold parameter representing
the basal activity of gene a, which acknowledges the presence of
regulators absent from our model. Model parameters are detailed
in Table S1.

Model fitting and selection

We have developed a methodology that makes it possible to
reverse-engineer gene regulatory networks that might be driving
4D tissue-level pattern formation during morphogenesis. Prior to
the development of this methodology, it was only possible to con-
fidently reverse-engineer GRNs underlying pattern formation in
developmental processes where the timescales of pattern forma-
tion and morphogenesis could be separated. This was because it is
only possibly to accurately quantify the gene expression dynamics
of multiple genes of interest in a single cell (or at a given position
in the tissue) from static confocal stains of the tissue at different
developmental stages if the cells are not significantly changing
their position over time. Otherwise, the quantification at a given
position in the tissue reflects the gene expression dynamics of
many cells, and not that of a single cell, which is what the GRN
is modelling, leading to inaccurate GRN predictions. This limita-
tion has hence historically greatly restricted the types of patterning
processes that could be reverse-engineered.

In order to extend the application of reverse-engineering
approaches to a wider variety of patterning processes -particularly
those where the timescales of pattern formation and morphogene-
sis are coupled - we have developed a novel methodology that is
based on approximating gene expression trajectories of single cell
tracks and using these for gene regulatory network inference. In
brief, this methodology can be split into two main parts: generating
approximated gene expression trajectories (AGETs) for every cell
track, and using a Markov Chain Monte Carlo parameter sampling

algorithm to infer candidate GRNs that can recapitulate the gene
expression dynamics of a subset of the AGETs. Candidate GRNs
are then selected for further study based on their ability to recapit-
ulate the tissue-level patterning dynamics, and other case-specific
factors.

In order to construct the AGETs we align and project gene and
signalling quantifications obtained from confocal imaging HCR
and immuno stained tailbuds onto each time frame in the time-
lapse of the developing PSM. Each cell in the time frame is
assigned gene expression and signalling levels averaged from the
five closest cells to it from the quantification. This is repeated for
each frame, and results in an approximated gene and signalling tra-
jectory for each cell in the movie. Ten AGETs were then selected
pseudo-randomly along the PSM and used for network inference.
The MCMC algorithm was run 100 times, and solutions were
resolved into 22 clusters that were able to recapitulate tissue-level
T-box patterning when simulated on the tracks. Representative
networks of these 22 clusters were then used to simulate the dis-
sociation experiments and one network was selected for further
study. For further details of this methodology please refer to the
methodology paper (8).

Live modelling framework.

The live-modelling framework consists on simulating gene reg-
ulatory networks in every cell represented in tracks obtained
from live-imaging a developing tissue, using as initial condi-
tions approximated concentrations of tbxta, tbx16 and tbx6 in
each cell, and updating Wnt and FGF values dynamically as the
cells’ positions changes during morphogenesis. The cell tracks
used in this work, span four somite stages and were obtained
from live-imaging a developing zebrafish PSM using a multipho-
ton microscope. The position of each cell in the PSM was recorded
in 3D space as an (x, y, z) coordinate every 2.5 minutes. The
coordinate system was such that the origin (0,0,0) was set at the
posterior-most tip of the PSM. The positive x-axis runs in the pos-
terior to anterior direction through the middle of the PSM, the
positive y-axis runs from centre to dorsal PSM and the positive
z-axis, from centre to lateral PSM. The raw tracking data were
manually modified to terminate tracks once these had entered a
newly formed somite, ensuring that the dataset would only contain
the tracks of cells within the PSM. Newly formed somites can be
identified in the tracks by eye as soon as their posterior boundary
forms.

The simulations are initialised using T-box gene expression and
signalling profiles (Figure 1C, J) that were used to fit the gene
regulatory network model. At the first time point, T-box expression
profiles (Figure 1C) are projected onto the normalised length of the
PSM, and cells are assigned tbxta, tbx16 and tbx6 values according
to their posterior to anterior position (x-axis). These values will
be used as the initial conditions from which to simulate the gene
regulatory network model in every cell. The same methodology is
used to assign each cell with initial Wnt and FGF values.

The model is allowed to run in every cell for the duration
between time points in the tracks using the Wnt and FGF values
previously assigned. At the next time point, the position of the cell
is updated to the tracking data. The new length of the PSM is again
normalised, signalling profiles are the projected onto the newly
normalised PSM and cells will update their Wnt and FGF values
again according to their new relative positions in the PSM. The
model will run again simulating the time between tracking time
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points using the last simulated tbxta, tbx16 and tbx6 values as the
initial conditions and the recently updated values for Wnt and FGF.
This will be done iteratively until the last tracking time point. Cells
which appear between time points, following cell division or a new
track for example, are initialised in the same way cells were at the
first time point. By simulating a GRNs in each cell of a developing
tissue, we are able to asses it’s patterning capabilities within a real-
istic morphogenetic context, including realistic accounts of tissue
shape changes and cellular rearrangements.
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