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Abstract

There is much talk about information in biology. In developmental biology, this
takes the form of “positional information,” especially in the context of morphogen-
based pattern formation. Unfortunately, the concept of “information” is rarely defined
in any precise manner. Here, we provide two alternative interpretations of “positional
information,” and examine the complementary meanings and uses of each concept.
Positional information defined as Shannon information helps us understand decoding
and error propagation in patterning systems. General relativistic positional information,
in contrast, provides a metric to assess the output of pattern-forming mechanisms. Both
interpretations provide powerful conceptual tools that do not compete, but are best
used in combination to gain a proper mechanistic understanding of robust patterning.

While we feel information theory is indeed a valuable tool in providing fundamen-
tal insights into the nature of communication problems, it is certainly no panacea
for the communication engineer, or a fortiori, for anyone else.

Claude Shannon, The Bandwagon, 1956.
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1. Introduction

The use of the term “information” is “strikingly prominent” in con-

temporary biology (Godfrey-Smith, 2007). Broadly speaking, it is motivated

by the idea that biological activities—such as perception, cognition, and

signaling—are best understood in terms of information processing and

representation (Godfrey-Smith & Sterelny, 2007). In evolutionary biology,

inheritance can be treated as the flow of information from parents to off-

spring (Godfrey-Smith & Sterelny, 2007). In cell and developmental

biology, it has come to reflect the common notion that genes exert their

causal effects by carrying information about their products and the

phenotypic traits that result from their expression (Godfrey-Smith, 2007;

Griffiths, 2001; Maynard Smith, 2000). This view originated with Erwin

Schr€odinger’s book “What is Life?” (1944) in which he postulates a

“codescript” underlying order in biology. It became firmly entrenched with

the elaboration of the genetic code (Godfrey-Smith, 2007). Since then, it has

taken on some very strong meanings, such as the view that genes are “made

of information,” that phenotypic traits are “encoded” by genes, or that

regulatory processes can be viewed as the execution of a “genetic program”

(Godfrey-Smith, 2007). Through the use of such computational metaphors,

“information” has become a fundamental concept in biology.

But strictly speaking, “information” only applies to the genetic code,

where DNA sequences can be said to encode RNA and protein products

in a well-defined sense (e.g., Griffiths, 2001).1 All other talk about infor-

mation in biology uses the term vaguely, either denoting some kind of

correlation between observables, or remaining entirely at the metaphorical

level. This is one of the main reasons why the use of the concept has been

heavily criticized. Sarkar (1996, p. 187), for example, observes that “there is

no clear, technical notion of ‘information’ in molecular biology. It is

little more than a metaphor that masquerades as a theoretical concept and

(…) leads to a misleading picture of possible explanations in molecular

biology.” Similarly, Griffiths (2001) calls information “a metaphor in search

of a theory,” while Longo, Miquel, Sonnenschein, and Soto (2012) deny

outright that information is a proper observable for biology, quoting

Godfrey-Smith and Sterelny (2007), which state that “enthusiasm for

1 Alternative splicing and RNA editing complicate the picture, but do not alter the fact that there is a

strong and relatively straightforward correlation between DNA and RNA sequences.
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information in biology has been a serious theoretical wrong turn” as it

“fosters naive genetic determinism.”Wewill encounter this particular prob-

lem again when we discuss information in the context of developmental

biology.

At the heart of this conceptual confusion lies the fact that “information”

can be defined and applied in two very different ways. In its weaker and

more clear-cut sense, information measures contingent but non-accidental

correlations between a signal and its source. This sense of the term originates

with Claude Shannon’s theory of information, which is concerned with the

accuracy of signals transmitted through some kind of channel (Shannon,

1948). Shannon information is sometimes (rather confusingly) called causal

information (Griffiths et al., 2015). This notion of information is counter-

intuitive and has several important limitations. First of all, Shannon infor-

mation is highest when the signal is random. It is not meant to capture

the quantity of meaningful information contained in a signal. Because of this,

Shannon information cannot convey false information. It cannot misrepre-

sent, as happens, for example, with the transmission of a deceitful signal, or

the misexpression of a gene during development (Godfrey-Smith, 2007).

Moreover, Shannon information flows both ways: we can learn as much

about the source from the signal as the other way around. However, infor-

mation flow is asymmetric in most biological contexts: genes are inherited

from parents to offspring only, development unravels genomic information

over time, and inductive signaling conveys information from the inducer to

the target tissue.

This is why “information” in biology is often used in a richer semantic or

intentional sense of the term. In this sense, “information” is about the con-

tent or meaning of a signal. The richer semantic concept is required if we

are to move from a mere description of correlations to a causal-mechanistic

understanding of biology, for instance, if we want to explain how a particular

tissue interprets an inductive signal, how a particular pattern is generated

during development, or how a character trait has originated, been modified,

and inherited across generations in evolution (Godfrey-Smith & Sterelny,

2007).2 Only semantic information can distinguish between true and false

signals (e.g., honest or dishonest advertising during mating rituals), or

correct (wild-type) development and aberrations induced by genetic or

2 Even a causal-mechanistic understanding of translation and transcription—the very processes that

underlie the genetic code—requires a semantic notion of “information” since many aspects of these

processes (e.g., which tRNA matches which particular amino acid) are evolutionarily contingent.

221Dynamic positional information



environmental perturbations. In return, semantic information poses

some formidable conceptual problems of its own. How do we define

“meaning” in a context without intentionality or a conscious interpreter?

Meaning for whom? What is the signal about? How is its normativity,

its proper function, defined and how did it come about? If we are to take

semantic concepts seriously in biology—and not interpret them as merely

metaphorical—then we need answers to these questions.

One way to interpret meaning in biology is through a teleosemantic (or

teleofunctional) approach (reviewed in Godfrey-Smith & Sterelny, 2007). It

provides a reductive explanation of semantic information as derived from

evolution. Genes semantically specify their wild-type products and traits

because their function has been adapted to this task by natural selection.3

In this sense, adaptive evolution results in genes that truly represent the traits

they are involved in generating. Meaning depends on an etiological account

of function, which derives from evolution (Wright, 1973).

Unfortunately, there are many problems with this approach. It is overly

adaptationist, assuming that all traits represented by genes have a proper

function. Moreover, it cannot account for exaptations, and other contingent

or opportunistic features of evolution. Finally, it ignores the fact that

evolution at the genetic, gene network, morphological, and behavioral

levels can often be quite dissociable (Needham, 1933; see also DiFrisco &

Jaeger, 2019; Von Dassow &Munro, 1999). What is functionally conserved

at one level may not be at another.

An alternative and complementary way to interpret meaning and func-

tion in biology is by examining how a particular process contributes to the

overall self-maintaining dynamics of a living system. This is the systemic or

organizational approach to function (Cummins, 1975; Mossio, Saborido, &

Moreno, 2009). In this framework, the meaning or function of a process,

trait, or signal is determined by its contribution to the continued and healthy

survival of an organism.

In what follows, we will focus on the specific problem of “positional

information” in developmental biology and how it is used to study pattern

formation by morphogen gradients (Wolpert, 1968, 1969, 1989, 1994,

1996; see, Briscoe & Small, 2015 and Green & Sharpe, 2015, for recent

reviews and contextualization). We provide a short historical overview on

definitions and applications of the term, and examine how they correspond

3 This mirrors the approach which claims to use teleonomy—purposive function evolved by natural

selection—to explain teleological aspects of organisms (Mayr, 1965; Pittendrigh, 1958).
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to either one of the two basic meanings of information introduced above.We

discuss the use of Shannon information theory to study error propagation and

precision in gradient-based pattern formation. We compare this to more

semantic, causal-mechanistic, approaches to the same problems, and show

how the two perspectives can complement each other to yield a deeper

understanding of robust developmental patterning. Finally, we discuss how

discussions about function inform our view of the evolution of positional

information, and provide a number of suggestions for future research

directions in the field.

2. Positional information and developmental biology

Information talk first appears in the field of developmental biology

through the invention of the “genetic program” metaphor, which histori-

cally originated in two convergent ways (reviewed in Peluffo, 2015). On the

one hand, Jacob and Monod (1961) noted that the logic of transcriptional

regulation—in bacteria, and presumably also in other organisms—provides

the basis for a “co-ordinated program of protein synthesis and the means to

control its execution” (Peluffo, 2015, p. 686).4 On the other hand, Mayr

(1961) stipulated that such a genetic program shaped by natural selection

can explain the apparent goal-orientedness and function of the organismic

traits and behaviors it determines. In this sense, informational metaphors

were seen as a solution to the problem of teleology in biology (see our

discussion of the teleosemantic approach in the Introduction). Primarily,

however, the program metaphor represents the idea that the genome

encodes a complete set of instructions for the construction of an organism

under the influence of a given environment (see DiFrisco & Jaeger, 2019,

for a detailed criticism of this idea).

A few years later, Apter and Wolpert (1965) review some less well-

known efforts to apply information theory directly to the development

of an organism. They compare a naı̈ve approach, which literally considers

development as a communication channel between embryo and adult,

and a more sophisticated, program-based approach inspired by the argu-

ments of Jacob, Monod, and Mayr. The paper focuses on the problem of

preformationism: is it realistic, or even possible, that the egg contains a

sufficient amount of information or instructions to determine the adult

4 This idea closely resembles Schr€odinger’s (1944) “hereditary code script,” but Jacob andMonod do not

seem to have been aware of Schr€odinger’s book and do not cite it in their publication (Peluffo, 2015).
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phenotype? This question is easy to answer for the naı̈ve approach. Several

authors in the late 1950s and early 1960s had attempted to estimate the

(Shannon) information content of successive developmental stages, from

egg to the full-grown organism. Although afflicted by much uncertainty

and serious controversies over what to measure, they conclude that the

information content of the adult must be orders of magnitude higher than

that of the egg. Therefore, development cannot be treated directly with

information theory, as Shannon information can never increase between

source and signal (Apter & Wolpert, 1965). Much later, Developmental

System Theory (DST) returns to this argument, and bases its criticism of

informational approaches to development on this fundamental point (see,

for example, Griffiths & Gray, 2001; Griffiths & Stotz, 2018; Oyama, 1985).

The case of the genetic program is more difficult to judge. Apter and

Wolpert (1965) note that much of the information increase from egg to adult

is due to the increasing complexity of spatial organization. Earlier authors

(especially Monod) had neglected this rather obvious problem when com-

paring bacteria to elephants. This raises two important questions. First, how

much of this information is redundant, meaning that it does not require an

explicit representation in the egg? And second, how do we measure aspects

of complexity, which go beyond the capabilities of Shannon’s information

theory? Apter andWolpert (1965) focus on the first of these questions asking

how a “program for development” could implement increases in spatial

complexity.

As a consequence of this discussion, Wolpert (1969) develops the notion

of “positional information” through a simple conceptual model of gradient-

based patterning, the French Flag (Wolpert, 1968), which is intended to

illustrate how spatial information can be “encoded” in a developmental

program (Fig. 1A). The gradient-based French Flag model consists of a

one-dimensional tissue, made up of a row of cells. At one end of the tissue,

there is a source of diffusible morphogen; at the other end, there is a sink,

where the morphogen molecule gets degraded. If there is no morphogen

production or degradation in between source and sink, diffusion will gen-

erate a linear concentration gradient of the morphogen across the tissue

(Fig. 1A). This gradient is then read out by its target cells. If above or below

specific thresholds of morphogen concentration, a target cell will activate

alternative sets of genes that determine its future fate. To distinguish it from

a general inductive signal, the morphogen gradient must span at least two

such thresholds, leading to three (or more) distinct territories of gene expres-

sion in the target tissue, colored blue, white, and red in case of the French
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Flag (Fig. 1A). The pattern scales across variable tissue sizes as long as

the strength of the source and the sink are held constant. In this model,

morphogen concentration is said to “encode positional information,”

which can be decoded by the target cells to reduce their uncertainty about

where in the tissue they are located (Wolpert, 1969). In this sense,

“positional information” provides a static and feed-forward coordinate

system, which is imposed onto the tissue by the signal encoded in the spatial

distribution of the morphogen gradient.

Fig. 1 The French Flag Model and Positional Information. (A) Wolpert’s original
gradient-based French Flag Model (1968). A morphogen diffuses from its source (green)
across a tissue toward its sink (pink), where it is degraded. Concentration thresholds in
the resulting spatial gradient (T1 and T2) are read out by cells in the tissue, leading to the
establishment of different territories of target gene expression (blue, white, and red).
This model treats development as a two-step process: first, positional information is
imposed on the target tissue by themorphogen gradient (step 1). Later, this information
is interpreted by cells in the tissue leading to distinct pathways of differentiation (step 2).
Concentration thresholds in the gradient correspond exactly to borders of expression ter-
ritories. Downstream activity profiles are determined by themorphogen in a feed-forward
manner. (B) A revised French Flag, incorporating target domain shifts and increasing pre-
cision over time. Both depend on feedback regulation involving target genes. In this
revised model, which is now explicitly dynamic, there is no longer a precise correspon-
dence between concentration thresholds in the gradient and the final position of target
domain boundaries. Positional information now explicitly depends on feedback regula-
tion from downstream activity. Simplified from Jaeger, J., Irons, D., & Monk, N. (2008).
Regulative feedback in pattern formation: Towards a general relativistic theory of positional
information. Development, 135, 3175–3183 and Jaeger, J. (2011). The gap gene network.
Cellular and Molecular Life Science, 68, 243–274.
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Wolpert (1969) argues that positional information is a “mechanism”

according to which cells in a developing tissue have their position specified

in relation to one or more reference points in the system (the source and

the sink at the boundaries of the tissue). Cells that have their positional infor-

mation specified with respect to the same points constitute a field. This

reduces the classic embryological concept of the morphogenetic field to a

“mechanism” represented by the genetic program in a spatial patterning

context. Importantly, specification occurs before, and is disconnected from,

subsequent cellular andmorphological differentiation. Spatial pattern forma-

tion is seen as an essentially two-step feed-forward process. This allows

Wolpert (1969) to speculate that positional information may be universal

between different lineages of organisms, a view he later saw confirmed by

the discovery of conserved Hox gene clusters and their expression across

animal phyla (Wolpert, 1994, 1996).

The discovery of molecular gradients involved in patterning a wide vari-

ety of developmental systems led to the widespread adoption of the term

“positional information” far beyond its originally intended scope. While

some of its use can be precisely defined in the context of gradient-based pat-

terning (see, for example, Briscoe & Small, 2015), most of it remains vague

and metaphorical, indicating a general sense that “cells know where they

are in a developing embryo.” This has led to controversies and discussions

analogous to those concerning the use of “information” in biology in gen-

eral. Here, we will focus on two recent attempts to make the term precise:

on the one hand, work on patterning precision that interprets “positional

information” in terms of Shannon’s theory; and on the other hand, work

on the mechanisms of patterning dynamics that provides an alternative inter-

pretation of “positional information,” not as a mechanism, but as a metric for

embryonic patterning. This metric is an epiphenomenon of the underlying

patterning dynamics.

3. Precision in patterning: Positional information as
Shannon information

Positional information, as originally defined by Wolpert in 1969,

proposes that spatial asymmetry in a signal can be used by cells to determine

their relative position in a tissue. Concentration thresholds in the gradient

determine boundaries between distinct territories of gene expression

(see Fig. 1A). 20 years later, Wolpert’s model received a great boost in pop-

ularity with the discovery that a spatial gradient of the Bicoid (Bcd) protein
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determines position in a concentration-dependent manner in the early

blastoderm embryo of the vinegar fly Drosophila melanogaster (Fig. 2A)

(Driever & N€usslein-Volhard, 1988a, 1988b; Struhl, Struhl, &

Macdonald, 1989). Bcd is a prototypical example of what Turing (1952)
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Fig. 2 Error propagation through the segmentation gene network in Drosophila. (A) The
blastoderm-stage embryo of Drosophila melanogaster is patterned through hierarchical
interactions among regulatory layers of the segmentation gene network. Regulatory
input is provided by maternal morphogen gradients such as the Bicoid (Bcd) protein
gradient (shown in brown, projected onto a schematic embryo). Maternal gradients reg-
ulate expression of the zygotic gap genes. Maternal and gap genes together then gen-
erate the periodic 7-stripe patterns of pair-rule genes which, in turn, activate the
segment-polarity genes, whose 14-stripe patterns form a molecular prepattern for
the process of morphological segmentation, which occurs later in development.
Curved arrows indicate cross-regulation among members of each hierarchical layer
in the network. (B) Bcd (brown) activates early expression of the gap gene
Hunchback (Hb, red) in a concentration-dependent manner. Fluctuations in Bcd and
Hb concentrations are indicated by bright lines. (C) Positional information as
Shannon information: the main graph shows measured Hb expression data (dots), with
the average activity profile (red line) and error bars indicating standard deviations.
Dashed arrows indicate specific concentration levels of Hb. Small graphs show the prob-
ability (prob.) of being at a certain position, given a specific concentration of Hb. From
these distributions, the mutual information between concentration and relative posi-
tion can be calculated. In this way, positional information can be shown to correspond
to Shannon information (see text). (C) Is highly simplified from Dubuis, Samanta, and
Gregor (2013)). Unless indicated otherwise, graphs in all panels show relative protein
concentration levels (conc.) plotted against relative position (rel. pos.) along the
anteroposterior axis: anterior (ant) is to the left, posterior (post) to the right.
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had called a morphogen (a form-giving substance; see also Jaeger & Reinitz,

2006). This experimental work established a causal link between morpho-

gen gradient distribution and the resulting fate map of the embryo. But it

did not yet provide a detailed quantitative characterization or mechanistic

explanation of the intermediary developmental processes. These processes

are governed by hierarchical regulatory interactions between the layered

components of the segmentation network: gap, pair-rule, and segment-

polarity genes (Fig. 2A) (Akam, 1987; Ingham, 1988).

Well-nigh another 20 years had to pass before the methodological

advances required to start addressing these issues became available.

Gregor, Wieschaus, McGregor, Bialek, and Tank (2007) provide the first

detailed experimental characterization of the temporal dynamics, repro-

ducibility, and precision of the Bcd gradient. The authors estimated the

precision limit of positional information encoded by the Bcd gradient in

the presence of diffusion-induced noise (Gregor, Tank, Wieschaus, &

Bialek, 2007). The detected amount of spatial precision in the gradient

was remarkably high, very close to the predicted theoretical limit. Even

more unexpected, however, was the precision with which Bcd positions

the expression domain boundary of one of its targets, the gap gene hunchback

(hb) (Fig. 2B). In fact, the measured levels of precision for the hb domain

boundary are not compatible with purely feed-forward regulation by Bcd

alone. In the absence of other candidate maternal inputs, Gregor, Tank,

et al. (2007) invoked the possibility that nuclei in the blastoderm embryo

must be able to perform spatial averaging when measuring Bcd concentra-

tions. This mechanism reappears in later theoretical work (Hillenbrand,

Gerland, & Tka"cik, 2016; Sokolowski & Tka"cik, 2015), but is currently
not supported by any experimental evidence.

Be that as it may, these results do suggest a surprisingly tight level of

control very early in the patterning process. This is further corroborated

by quantitative measurements of maternally deposited bcd mRNA in

Drosophila wild-type and mutant embryos, which reveal that fluctuations

in the levels of mRNA are as small as those measured for Bcd protein,

and that the amount of mRNA is directly proportional to bcd gene dosage

in the mother (Petkova, Little, Liu, & Gregor, 2014; see also Liu,

Morrison, & Gregor, 2013). This raises the possibility that developmental

precision and reproducibility in the Drosophila embryo is controlled, or at

least initiated, by the mother.

One central aspect of the quantitative work discussed so far is the attempt

to precisely measure the amount of positional information encoded in an
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observable gene expression pattern. How is this achieved? Dubuis, Samanta,

et al. (2013) introduce a quantitative framework, which is further developed

in Tka"cik, Dubuis, Petkova, and Gregor (2015). As a first step, Dubuis,

Tka"cik, Wieschaus, Gregor, and Bialek (2013) generated a dataset, in which

the concentrations of all four trunk gap genes—hb, Kr€uppel (Kr), knirps (kni),
and giant (gt)—were measured simultaneously by immunofluorescent

staining in the same embryo. By a careful dissection of experimental versus

biological “errors,” this allowed the authors to quantify relative expression

levels as well as (co-)variation of expression patterns. To capture the posi-

tional information present in each pattern, Dubuis, Samanta, et al. (2013)

assess entropy (uncertainty) reduction in each blastoderm nucleus by

quantifying the mutual information between morphogen concentration

and spatial position (Fig. 2C).

Mutual information is one of the central quantities in information theory

(Shannon, 1948). Shannon proposed his theory as a means to quantify com-

munication through a noisy transmission channel. As an input, a message is

encoded by a transmitter. This message is then sent down the channel and

decoded by the receiver, providing the read-out or output of the system.

The channel is noisy: information only decreases, but never increases during

transmission. In his theory, Shannon introduced the concept of entropy as a

measure of uncertainty in a random variable. He definedmutual information

as a measure of the statistical dependence between two random variables, in

the case of the transmission channel, its input and output. More specifically,

mutual information measures the reduction in the uncertainty (or entropy)

of the output given a noisy measurement (or transmission) of the input.

Mutual information is extremely useful and broadly applicable. This has

several reasons: first, it accounts for both linear and non-linear correlations

between variables. Second, it is independent of the units of measurement,

always being measured in bits (roughly, the number of yes/no questions

that would need to be answered to account for the measured reduction

in uncertainty/entropy). Finally, mutual information is symmetric. It does

not depend on the direction of the flow of information. We can predict

the state of the output, given a certain input, but we can also estimate the

state of the input, given a certain output.

By formally equating positional information to mutual information

between morphogen concentration and spatial position, Dubuis and col-

leagues enable the straightforward application of Shannon’s theory to pattern

formation (Fig. 2C). We can now measure the positional information

contained in any observed morphogen distribution. Individual gap gene
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profiles, for example, contain approximately two bits of information

(hb: 2.25 bits; Kr: 1.95 bits; kni: 1.75 bits; gt: 1.84bits; Dubuis, Samanta,

et al., 2013). Interestingly, this is almost twice the amount of information

that would be carried if gap genes were simple on/off switches: graded

concentration profiles obviously matter. Together, all four gap genes encode

4.27 bits of information, evenly distributed along the anteroposterior axis of

the embryo, which is sufficient to convey a unique identity to each nucleus

based on its particular spatial position (Dubuis, Samanta, et al., 2013;

Petkova, Tka"cik, Bialek, Wieschaus, & Gregor, 2019).

Unfortunately, there is something not quite right with this simple

picture of tight maternal control with subsequent feed-forward transmission

of positional information. When the amplitude of the Bcd protein gradient

is perturbed experimentally, the resulting changes in downstream gene

expression are corrected, or canalized, toward the wild-type state (Liu

et al., 2013). Generally, the precision of gap and pair-rule expression

increases and becomes more independent of maternal inputs over time

(Dubuis, Tka"cik, et al., 2013; Petkova et al., 2019; Surkova et al., 2008).
This requires cross-regulatory interactions downstream of the maternal gra-

dients (Manu et al., 2009a), indicating that regulatory feedback among target

genes is essential for the control of patterning robustness, reproducibility and

ultimately precision in the Drosophila blastoderm.

One way to tackle this issue is to treat the gap gene network as an optimal

decoder of positional information, as first suggested in Liu et al. (2013).

A later study tests this suggestion explicitly by “predicting” the position

of stripe positions for the pair-rule gene even-skipped (eve) under the assump-

tion that the positional information provided by maternal gradients is

optimally decoded through the gap genes (Petkova et al., 2019). The authors

show that the terminal maternal system is affecting the precision of gap genes

expressed in the central region of the embryo (where terminal genes are not

expressed). This leads to the claim that downstream regulatory interactions

integrate different maternal inputs across the embryo, which may explain

why precision at late stages is higher than predicted from feed-forward

regulation by Bcd alone.

Theoretical studies provide further support that integration of multiple

gradients can lead to higher precision. Applied to the opposing gradients of

Bcd and the posterior gradient of Caudal (Cad) protein in the Drosophila

embryo, this work found that positional information, measured in terms

of maximum likelihood, was highest in the middle of the embryo and

reduced toward the poles (Morishita & Iwasa, 2009, 2011).
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All of this leaves us with intriguing evidence that information decoding

may be optimal, and with the fact that patterning is astonishingly precise

already early on in the Drosophila blastoderm, but without any convincing

mechanistic explanation of how any of this could be achieved. The focus

of all the work described so far is on feed-forward error propagation from

maternal gradients to their downstream targets. This (perhaps somewhat

excessive) focus may explain the necessity to invoke implausible mechanistic

assumptions such as spatial averaging to account for the observed levels of

precision. But are gap genes really just integrating inputs from different

maternal systems, or do they actively contribute to the control of patterning

precision through cross-regulatory feedback over time? The evidence we

have described so far simply cannot answer that.

As we have mentioned above, Shannon-style positional information is

symmetrical, and therefore agnostic concerning the flow of information

in the system. Another problem is that we do not even have a proper null

model to tell us what levels of precision (or what kind of error propagation

behavior in general) we should expect from a heavily feedback-driven

regulatory system such as the segmentation gene network. Shannon’s infor-

mation theory is ill-suited for this context.

The problem is that the information-based approach has been expanded

from its initial application to a well-defined problem—the feed-forward reg-

ulation of early hb expression by its only known activator Bcd (e.g., Gregor,

Tank, et al., 2007; Gregor, Wieschaus, et al., 2007)—to an overall paradigm

for studying patterning in the complex regulatory context of the gap and

pair-rule networks (e.g., Liu et al., 2013; Petkova et al., 2019). By doing

so, has this approach transgressed its proper limits? To answer this question,

we need to take a closer look at the mechanisms of gene regulation under-

lying pattern formation in the Drosophila blastoderm.

4. Patterning precision versus patterning mechanism

Measurements of expression co-variation are not only useful for

measuring positional information, but also enable us to make inferences

about other aspects of stability in pattern formation. Of particular interest

in this regard is the claim that biological systems must be in a state of crit-

icality to be both robust and adaptable (see Mora & Bialek, 2010). As

Kauffman (1993) put it, biological systems must be poised at “the edge of

chaos”—stable against small perturbations yet close to a bifurcation bound-

ary where the behavior of the system can change drastically and abruptly.
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Critical systems exhibit a number of characteristic signatures. Krotov,

Dubuis, Gregor, and Bialek (2014) assume that domain boundaries can be

modeled by a simple two-gene network. From these simple models, they

derive four predicted signatures of criticality, which they identify in the

gap gene expression data fromDubuis, Tka"cik, et al. (2013). This leads them
to conclude that the gap gene system is in a state of criticality all along the

anteroposterior axis of the embryo (Krotov et al., 2014). Unfortunately, this

work is based on a number of simplifying assumptions which call this

conclusion into question. Their models only consider the interactions of

overlapping gap genes (and do not even specify these in any detail), ignoring

the strong repression between genes with mutually exclusive spatial domains

( Jaeger, 2011). Furthermore, the analysis focuses exclusively on local

patterning at boundary interfaces. Finally, the authors assume that gap gene

patterns are at steady-state, which is not the case (see below). Consequently,

their analysis fails to consider the transient expression dynamics of gap genes,

and neglects much of the regulatory complexity of the system.

Although this work may be seen as a step toward mechanistic inves-

tigation of patterning precision, it also highlights the need for dynamic

models with the relevant level of detail that have been rigorously validated

against experimental evidence. Only such models will yield solid mechanis-

tic insight. Luckily, theDrosophila blastoderm provides a unique opportunity

for such a detailed, data-driven modeling approach (see Jaeger, 2009, 2018;

Jaeger, Manu, & Reinitz, 2012). Over the past two decades, quantitative

data sets of segmentation gene expression have been generated (see

Ashyraliyev et al., 2009; Surkova et al., 2008, among others), that enable

us to fit detailed models of gap gene regulation (Ashyraliyev et al., 2009;

Crombach, Wotton, Cicin-Sain, Ashyraliyev, & Jaeger, 2012; Jaeger,

Blagov, et al., 2004; Jaeger, Surkova, et al., 2004; Manu et al., 2009a,

2009b; Perkins, Jaeger, Reinitz, & Glass, 2006; Verd et al., 2018; Verd,

Crombach, & Jaeger, 2017; Verd, Monk, & Jaeger, 2019).5 The solutions

resulting from these fits provide a detailed representation of the complex

regulatory mechanisms governing the dynamics of gap gene expression.

These mechanisms are entirely consistent with the extensive experimental

evidence that is available in this system (reviewed in Jaeger, 2011).

5 This data-driven modeling approach has also been extended to non-model species of flies (Diptera),

such as the mothmidgeClogmia albipunctata (Crombach, Garcia-Solache, & Jaeger, 2014), and the scut-

tle fly Megaselia abdita (Crombach, Wotton, Jim#enez-Guri, & Jaeger, 2016).
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What have we learned from these mechanistic models? The first impor-

tant point to note concerns the dynamics of gap gene expression. While

boundaries of gap gene expression domains remain stationary over time

in the anterior, they shift toward the anterior in the posterior region

of the embryo, resulting in an accordion-like narrowing and sharpening

of the shifting domains (Fig. 3A) ( Jaeger, Blagov, et al., 2004; Jaeger,

Surkova, et al., 2004; Surkova et al., 2008). These two qualitatively different

types of expression dynamics are governed by different regulatory mecha-

nisms. Stable anterior domain boundaries result from different nuclei con-

verging toward different attractor states in a multi-stable dynamic regime

(Fig. 3A) (Manu et al., 2009b; Verd et al., 2017). For example, a nucleus

may converge toward a state of high hb expression, or toward a state of high

Kr expression, depending on the amount of maternal morphogen it has been

exposed to. In contrast, shifting domain boundaries in the posterior result

from an underlying damped oscillator mechanism (Fig. 3A) (Verd et al.,

2018). Each nucleus in this region of the embryo goes through part of a

stereotypical succession of gap gene expression whose temporal sequence

(from Kr–kni to gt–hb) is imposed by the oscillator. Different nuclei start

at different positions in this sequence—they are phase-shifted with regard

to each other—depending on their maternal inputs. This leads to an appar-

ent anterior movement of posterior domains—so-called kinematic shifts6—

although no gap protein is actually being transported across the tissue.

A second important point, which affects our understanding of the

stability of the system, is that the gap gene network never reaches steady

state. Gap gene dynamics remain transient throughout the blastoderm stage

(Verd, Crombach, & Jaeger, 2014; Verd et al., 2017). Even though far from

steady state, gap gene regulation shows canalysed behavior in the posterior

region of the embryo, as first demonstrated by Manu et al. (2009a, 2009b).

Canalization means that system trajectories converge toward each other long

before the system approaches its attractors. In the case of the damped

oscillator, it happens because of strong repressive feedback between comple-

mentary gap genes hb/kni and Kr/gt (Verd et al., 2019). This may provide a

possible mechanism for the observed increase in precision of gap gene

expression over time.

6 AMexican wave in a soccer stadium is a good example of such a kinematic phenomenon. It originates

from a temporal sequence of armmovements by each spectator, and travels around the stadiumwithout

any people actually changing position.
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Fig. 3 Mechanisms for gap gene regulation. (A) The dynamics of gap gene expression
differ between the anterior (ant) and posterior (post) halves of theDrosophila embryo. In
the anterior, domain boundaries remain stationary while in the posterior, they shift
toward the anterior over time (indicated by dashed blue arrow). Stable boundaries in
the anterior are positioned by a multi-stable dynamical regime that causes different
nuclei to converge toward different stable attractor states (represented as red andwhite
circles indicating high expression of the red and white gene, respectively). Shifting
boundaries in the posterior are governed by a damped oscillator mechanism, which
causes nuclei to cycle through a stereotypical succession of gene expression states (only
shown for white and blue here). Nuclei are phase-shifted with respect to each other,
depending on their position in the embryo. This leads to the kinematic shifts of the
domain boundaries in this region. (B) Schematic regulatory topology of the gap gene
network (including external activating inputs bymaternal gradients of Bicoid, Bcd, in the
anterior, and Caudal, Cad, in the posterior). T-bars indicate repressive cross-regulatory
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Our third and last point is that the gap gene system exhibits modular

dynamics, even though its regulatory structure (or topology) shows nomod-

ularity at all (Fig. 3B) (Verd et al., 2019). This is because different subsets of

gap genes are expressed and active in different regions of the embryo, which

allows us to identify three individual subcircuits, or dynamical modules:

AC/DC1 consists of hb, Kr, and gt and contributes to patterning through

its multi-stable regime in the anterior region of the embryo; AC/DC2 con-

sists of hb, Kr, and kni, and is in a critical state throughout the central region;

AC/DC3 consists of Kr, kni, and gt and implements the damped oscillator

in the posterior. Interestingly, AC/DC2 straddles the bifurcation boundary

between stationary and shifting domains in the middle of the embryo

(Fig. 3B). This suggests that the gap gene system is critical in the central

region only, while exhibiting stable dynamics further anterior and posterior,

contradicting the claim by Krotov et al. (2014) that the network is critical

throughout. What kind of consequences this may have for patterning

precision remains an open question.

5. General relativistic positional information (GRPI)

In contrast to statistical work based on information theory, our

detailed analysis of the dynamics driven by the gap gene system provides

a realistic and accurate causal-mechanistic explanation of how gap genes

pattern the fly blastoderm. This mechanistic aspect of patterning is not in

contradiction but complementary to questions of precision and error prop-

agation. However, only the latter can be handled within the framework of

Shannon’s information theory. To confuse the two aspects amounts to a

interactions between gap genes hunchback (hb), Kr€uppel (Kr), knirps (kni), and giant (gt).
Line thickness indicates relative interaction strength. The gap gene network can be sub-
divided into three dynamical modules: AC/DC1 is in a multi-stable regime, active in the
anterior; AC/DC2 is critical, exhibiting bothmulti-stability andmono-stability with spiral-
ing trajectories in the central region of the embryo; AC/DC3 is in a mono-stable regime
with spiraling trajectories, active in the posterior. All subcircuits share the same network
topology, but consist of distinct subsets of gap genes, with overlap between the
modules. Simplified from Verd, B., Clark, E., Wotton, K. R., Janssens, H., Jim#enez-Guri, E.,
Crombach, A., & Jaeger, J. (2018). A damped oscillator imposes temporal order on posterior
gap gene expression in Drosophila. PLoS Biology, 16, e2003174; Verd, B., Monk, N., &
Jaeger, J. (2019). Modularity, criticality, and evolvability of a developmental gene regulatory
network. eLife, 8, e42832. Graphs in (A) show relative protein concentration levels (conc.)
plotted against relative position (rel. pos.) along the anteroposterior axis: anterior (ant)
is to the left, posterior (post) to the right. See text for details.
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category error, muddling statistical with causal-mechanistic explanation

(see also Calcott, Pocheville, & Griffiths, 2018). Causal-mechanistic expla-

nation of patterning calls for a radically different, semantic, interpretation of

“positional information.”

The dynamic conceptual framework of “general relativistic positional

information” (GRPI) ( Jaeger, Irons, & Monk, 2008; Jaeger & Reinitz,

2006) provides such a semantic interpretation7 (Fig. 1B). It treats positional

specification in strictly processual terms: there is no particular point in

time at which a cell becomes specified in terms of its position within the

tissue. Instead, specification is seen as a dynamic process that ends with

stable determination of cell fate. There is no invariable coordinate system

as in the French Flag anymore. More importantly, there is no one-to-one

correspondence between morphogen concentration and cell fate. Instead,

the interpretation of the signal depends on the state of the target cell,

dynamically changing over time ( Jaeger et al., 2008). This is very close

to Waddington’s interpretation of morphogens as “evocators,” exerting

their effect dependent on the “competence” of the target cells ( Jaeger &

Reinitz, 2006; Waddington, 1940, 1956). Here, the role of the receiving

cell is one of active, dynamic, and context-dependent interpretation. The

cell needs to be ready (or “competent”) for the signal to evoke an appropri-

ate response. Therefore, the relevant content of the signal becomes funda-

mentally semantic and context-dependent. Moreover, the shape of the

morphogen gradient itself is often altered in the process ( Jaeger et al., 2008).

Instead of a statically imposed coordinate system, we now have a dialectic

interaction between gradient and target tissue (Fig. 1B) that establishes a

dynamic positional metric, which is not only actively interpreted but also

actively altered by the receiving cells. Conceptually, this is analogous to

the difference between absolute space and time in Newtonian versus

dynamically malleable spacetime in Einstein’s theory of general relativity

( Jaeger et al., 2008). Just as spacetime geometry emerges from the interplay

between massive objects with their environment, so does GRPI emerge

from reciprocal interactions between gradient and tissue. In this sense, it

is not a “mechanism” in the sense of Wolpert (1968, 1969), but a mere

reflection, an epiphenomenon, of the underlying regulatory dynamics.

7 Since its original publication, there has been some debate on whether GRPI should be seen as a type of

“information” at all. In what follows, we will argue that it should indeed, as it can be smoothly inte-

grated into a systemic or organizational account of function and semantic information.

236 Johannes Jaeger and Berta Verd



Still, GRPI is a type of semantic information, since it conveys a

“meaning” to the cell, namely, about its time- and context-dependent rel-

ative position in a developing embryo. Its role within the organism is to

establish the proportions and relative positions of different parts and organs.

This is a central contribution to the continued survival of the organism:

without it, a living system could not mature to its adult stage and reproduce.

Therefore, it has a clear systemic or organizational function (see Cummins,

1975; Mossio et al., 2009). Note again that this interpretation is fundamen-

tally different to the information-theoretic analysis of error propagation,

which asks how precise a pattern can be. Here, we ask instead, how the

specific pattern of an individual organism comes to be in the first place.

The first question makes no sense in the absence of the second. But only

answering both questions together yields a complete understanding of

how development proceeds. Yet, surprisingly, there are only very few

studies that have tried to integrate the two approaches.

6. Mechanisms for patterning precision

One of the few studies that integrates patterning mechanisms and pre-

cision in the way suggested above examines morphogen-based patterning in

the vertebrate neural tube (Zagorski et al., 2017). Different populations of

neurons develop at different dorso-ventral positions in this growing tissue

(Fig. 4A). Cell specification depends on two antagonistic morphogen gra-

dients: one of Sonic Hedgehog (Shh) emanating from the floor plate and

ventral neural tube, and another one of bone morphogenetic protein

(BMP) emanating from the dorsal end of the tissue (Fig. 4A). As the neural

tube grows, cells experience changing concentrations of both morphogens.

As in the case of the gap gene network, cross-repressive interactions among

target genes alter the response of the receiving cells over time. At this level of

abstraction, patterning in the fly blastoderm embryo and the vertebrate neu-

ral tube follow very similar regulatory principles (see Briscoe & Small, 2015).

Zagorski et al. (2017) ask a very simple question: what kind of regulatory

network provides the most accurate fit to the observed target gene expres-

sion patterns given an antagonistic arrangement of contrapolar morphogen

gradients of Shh and BMP?What is special about this study is that the authors

fit their model to both expression patterns and a decoding map based on a

maximum-likelihood analysis of the system (based on the methodology of

Tka"cik et al., 2015). This type of analysis predicts error propagation patterns
based on the assumption that the system achieves optimal decoding of the
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positional information provided by the upstream morphogenetic gradients.

Dynamical models, implementing various topologies of target gene net-

works, were fit to both gene expression data and the predicted decoding

map (Fig. 4B). This approach evaluates which network topology gets closest

to optimal decoding while faithfully reproducing the observed patterns of

gene expression.

The network topology that emerges from this dual-aspect fitting proce-

dure is a fully connected network with reciprocal repressive interactions

between all target genes (Fig. 4B) (Zagorski et al., 2017). As long as we

cannot constrain the fit with more detailed evidence on individual regula-

tory interactions, it may not be surprising that this is the case. One reason is

methodological: the more interactions in a model, the more free parameters

there are, and hence degrees of freedom for the fit. Another reason is

dynamic: feedback regulation generally allows for tighter and more fine-

grained control. Lastly, we cannot entirely exclude the possibility that

there may be a missed alternative topology that would fit the data and

Fig. 4 Patterning and optimal decoding in the vertebrate neural tube. (A) The
vertebrate neural tube is patterned by two antagonistic morphogen gradients: Sonic
Hedgehog (Shh) and bone morphogenetic protein (BMP). These gradients induce
different states of target gene expression (shown in red, white, and blue). As the tissue
grows over time, cells experience changing concentrations of morphogens. Cross-
regulatory feedback between target genes further modifies the boundary positions
of expression territories. (B) Models of the response network implement various com-
binations of target gene interactions drawn from the fully connected topology shown
here. Thesemodels are fit to both spatio-temporal gene expression data and a decoding
map derived from maximum likelihood under an optimal decoding assumption. This
forces fitting solutions to reproduce both the dynamics and fluctuations of gene expres-
sion correctly. The best-fitting solution across all models is achieved with a fully con-
nected network topology. See text for details. Panel (A) simplified from Briscoe, J. &
Small, S. (2015). Morphogen rules: Design principles of gradient-mediated embryo pattern-
ing. Development, 142, 3996–4009.; Panel (B) simplified from Zagorski, M., Tabata, Y.,
Brandenberg, N., Lutolf, M. P., Tka"cik, G., Bollenbach, T., Briscoe, J., & Kicheva, A. (2017).
Decoding of position in the developing neural tube from antiparallel morphogen gradients.
Science, 356, 1379–1383.
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decoding map better, since the search of parameter space is not exhaustive,

and the convergence to the best solution never guaranteed for such complex

model-fitting procedures.

But despite all these caveats, there is progress here. First of all, this study

shows, for the first time, that it is possible to achieve optimal decoding in a

morphogen-driven patterning system, while closely reproducing the

observed dynamics of gene expression. And second, it introduces an integra-

tivemethodology ofmechanisticmodeling combinedwith error-propagation

analysis that should be used much more widely in the study of developmental

regulation, not only in the context of morphogen-based pattern formation.

Indeed, such an integrative approach will be necessary to reconcile

causal-mechanistic and information-based studies of the segmentation gene

system of Drosophila. As it stands, our knowledge of these two comple-

mentary aspects of gene regulation in the fly blastoderm, are based on

incompatible assumptions.

How patterning occurs in the gap gene system has been studied with

data-driven models of the network that fit the dynamics of the observed

(averaged) patterns of gene expression very closely (Ashyraliyev et al.,

2009; Jaeger, Blagov, et al., 2004; Jaeger, Surkova, et al., 2004; Manu

et al., 2009a, 2009b; Verd et al., 2018, 2017, 2019). These models are fully

compatible with the available experimental evidence on gap gene regulation

(reviewed in Jaeger, 2011), but do not reproduce the observed patterns

of expression fluctuations in the system very accurately. In contrast, our

knowledge of error propagation and optimal decoding in the system is

based on extremely precise, quantitative measurements of expression

(co-)variation, in the absence of realistic mechanistic models of the under-

lying regulatory dynamics (Dubuis, Samanta, et al., 2013; Dubuis, Tka"cik,
et al., 2013; Krotov et al., 2014; Liu et al., 2013; Petkova et al., 2019). These

measurements indicate that decoding must be near optimal in the gap gene

system, but we do not know how this is achieved at the level of regulatory

mechanisms. As already mentioned, these two approaches do not compete,

but represent two different sides of the same coin. The sobering truth is that,

as long as they remain in contradiction, we cannot claim to truly understand

all important aspects of patterning in this most carefully studied model

system for pattern formation.

7. Conclusions

Here, we have argued that information-based and causal-mechanistic

approaches to pattern formation seek complementary types of explanations,
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which are of a fundamentally different nature (Fig. 5). Shannon’s informa-

tion theory provides powerful tools to investigate precision, error propaga-

tion and decoding of positional information in patterning systems. If we

interpret positional information sensu Shannon, however, it no longer

represents an instructive program or mechanism of pattern formation as

argued byWolpert (1968, 1969). Information-based explanations are corre-

lational (statistical), while mechanistic explanations must be framed in causal

terms. The latter require detailed experimental evidence on the relevant

interactions among components of the underlying regulatory network,

as well as a detailed and accurate dynamic model of the system to show

how these interactions synergize to generate the observed patterning output

(see DiFrisco & Jaeger, 2019).

In contrast, information-based explanations are independent of mecha-

nistic detail (Tka"cik et al., 2015). On the one hand, this can be advantageous

if we are interested in a broad theory of patterning precision, which aims at

Fig. 5 Two different kinds of explanation. Shannon positional information and General
Relativistic Positional Information (GRPI) are two alternative ways in which the concept
of information can be made precise in the context of pattern formation. The represent
two entirely different kinds of explanation, two different types of perspectives, on the
same underlying pattern-forming system. See text for details.
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predicting rather than explaining features of regulation. For instance, an

information-theoretic framework enables us to test the hypothesis that

transmission of information is close to optimal decoding in different classes

of regulatory networks, and asks what types of target gene expression

patterns indicate such optimal decoding (Hillenbrand et al., 2016; Tka"cik,
Callan, & Bialek, 2008; Tka"cik et al., 2015; Tka"cik, Walczak, & Bialek,

2009, 2012; Sokolowski & Tka"cik, 2015; Walczak, Tka"cik, & Bialek,

2010; reviewed in Tka"cik andWalczak (2011). This is certainly a fascinating

question to pursue. Preliminary evidence suggests that optimal decoding

may indeed apply both in the Drosophila blastoderm and the vertebrate neu-

ral tube (Dubuis, Samanta, et al., 2013; Gregor, Tank, et al., 2007; Petkova

et al., 2019; Zagorski et al., 2017).

However, it remains to be seen whether this insight can be further

generalized. In particular, it is not at all clear whether the essential underly-

ing assumption of optimal decoding holds in a broader developmental and

evolutionary context. Model organisms are often chosen because of their

short generation times and fast development. As a consequence, these crea-

tures often show genetically hardwired modes of development, while slower

developers are likely to rely more heavily on a combination of genetic and

cellular-physical mechanisms of morphogenesis (see, for example, Love,

2018; Newman, 2008, 2012; Newman & Bhat, 2009; Salazar-Ciudad,

2010). This may introduce a bias toward model systems exhibiting high

levels of decoding optimality. It will be challenging but worthwhile to gain

the evidence on patterning in slow-developing non-model organisms

required to resolve this issue.

On the other hand, the lack of specificity of information-based

approaches prevents us from learning anything particular about the

mechanisms underlying any given developmental system. This is a serious

limitation, because details do matter in biology. Evidence from the few

developmental systems for which we have suitable experimental and

modeling-based data indicate that biological pattern formation is heavily

feedback-driven (e.g., Briscoe & Small, 2015; Jaeger, 2018; Jaeger et al.,

2008). Unfortunately, we do not yet know how the flow of positional infor-

mation is regulated in feedback-heavy systems. Shannon’s original theory is

not applicable in the presence of regulatory feedback, and efforts to extend

it have not gone beyond very simple examples of genetic auto-regulation

(Tka"cik et al., 2012). An integrative approach, combining information-based

as well as causal-mechanistic analysis and modeling with detailed experimen-

tal evidence will be required to transcend this fundamental limitation.
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There is one last philosophical point to make: our argument reveals

that information-based and causal-mechanistic approaches provide different

perspectives on the same underlying reality. Both perspectives deal with the

same physico-chemical processes, the same regulatory systems composed of

material entities and the dynamic interactions between them. Depending on

our interpretation, these interactions result in an overall flow of information,

or an overall mechanistic flow of cause-and-effect. Therefore, information

theory provides us with an alternative angle to the problem of pattern for-

mation. But information is not a thing. It is not a substance. Genes cannot be

“made of information” and the “genetic program” remains a metaphor

(Godfrey-Smith, 2007).

Instead, information is a conceptual tool, to be employed with a

clear understanding of its meaning. Unfortunately, there is much loose talk

about information in biology, which leads to confusion and unnecessary

arguments. As Shannon (1956) himself noted, “information is no panacea.”

It must be used in clearly specified ways. We have shown that there are two

alternative ways of precisely defining “positional information” in the con-

text of pattern formation. Shannon information helps us to understand

statistical patterns of error propagation and decoding in pattern-forming sys-

tems. General relativistic positional information (GRPI), in contrast, is a

semantic metric for cells to “read” and “interpret” their relative position

in a growing embryo. Both of these conceptual tools are complementary.

They are most practical and powerful when used together with a clear

understanding of their domains and limits of application.
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