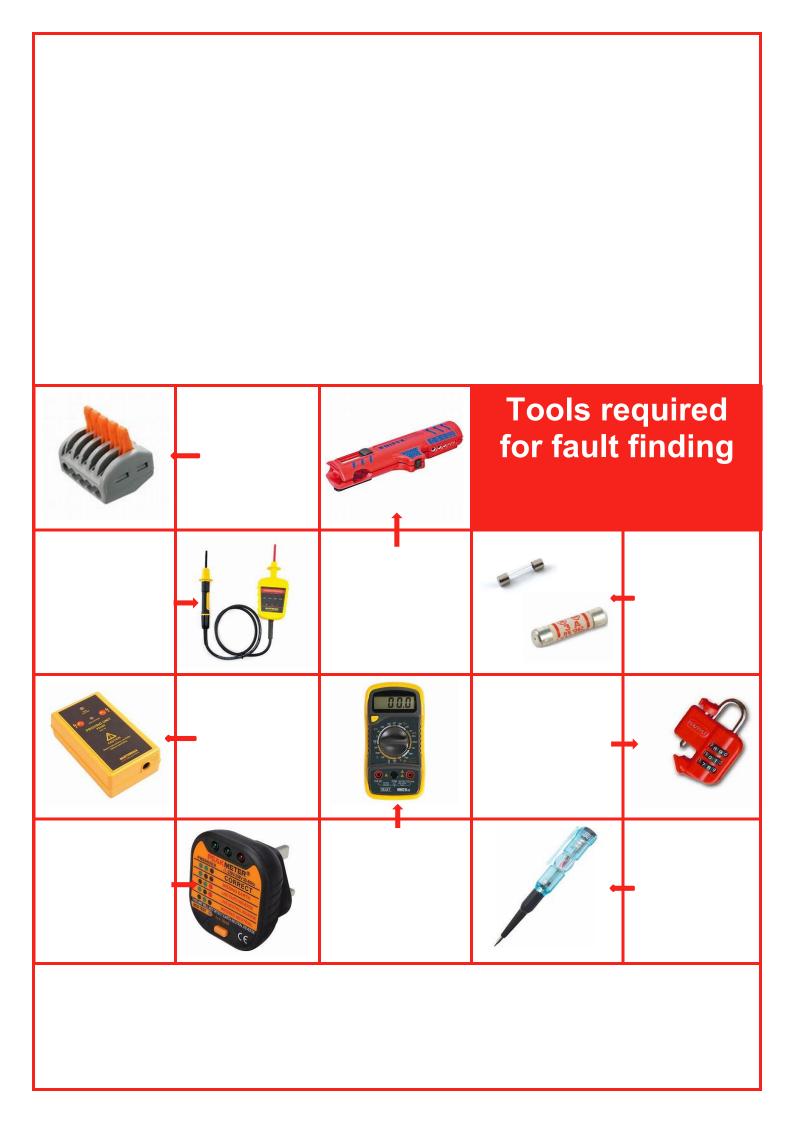
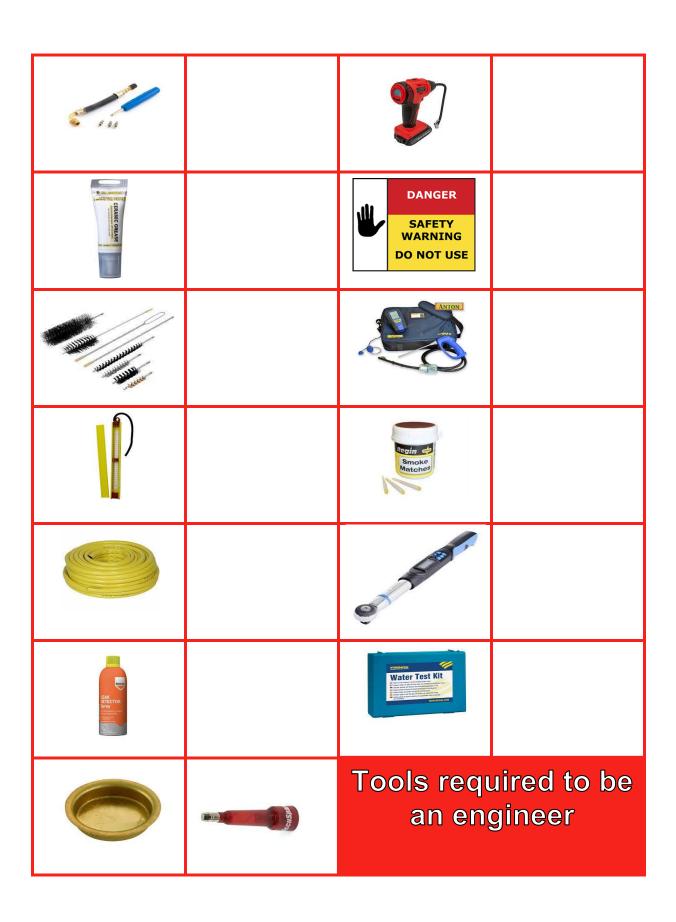


System design


Fault finding


Jonathon Hallam

Disclaimer

The following information is a guide only for training purposes, under no circumstancces will Jonathon Hallam or Warriors of Warmth be laible for any content

Happy to help, here to help

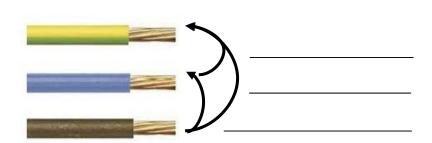
Disclaimer

It is illegal to work on gas appliances if you are not qualified or registered.

Do not work with electricty if you are not qualified

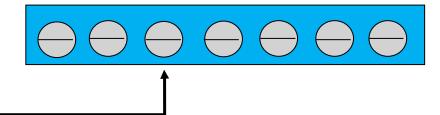
The following information is a guide for training purposes only. Under no circumstances will Warriors of Warmth or Jonathon Hallam be liabe for any consequence relating to information from this booklet

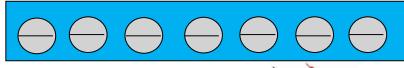
Understanding your Multi meter Permissionable allowance-Com NC NO


Electrical safety

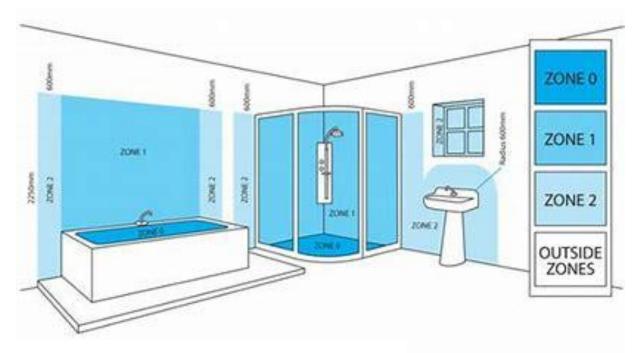
External fuse

Internal fuse_____




Methods of electrical testing

Earth to terminal



Terminal to terminal

Notes;

Ingression Protection (IP) Rating Chart

IP67

SOLIDS

Protection against solid object greater than 50mm

Protection against solid object greater than 12.5mm

Protection against solid object greater than 2.5mm

Protection against solid object greater than 1mm

Limited ingress of dust. Will not interfere with equipment

No ingress of dust permitted

Protection level not formally tested

1

2

3

4

5

6

X

WATER

Protection against rertically falling droplets

Protection against vertically falling droplets when titled up at 15°

Protection against spraying water up to an angle of 60°

Protection against splashes of water from all directions

Protection against low pressure jets of water

Protection against high pressure jets of water

Protection against immersion in water between 15cm - 1m deep for 30 minutes

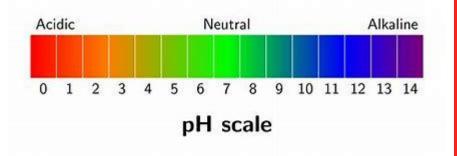
Protection against immersion in water under pressure for long periods

Protection for close-range, powerful, hightemperture water jets

9k

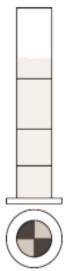
Protection level not formally tested

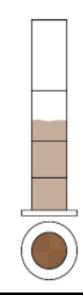
Above: Guidelines for installing appliances in bathrooms

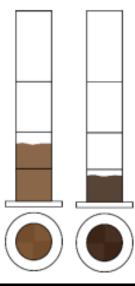

Left: IP codes which are mentioned for Heat pumps

BS7671 Covers electical installations

Testing Ph levels for heating warranty results should be between 8 – 8.5

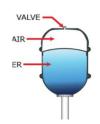

Water Quality

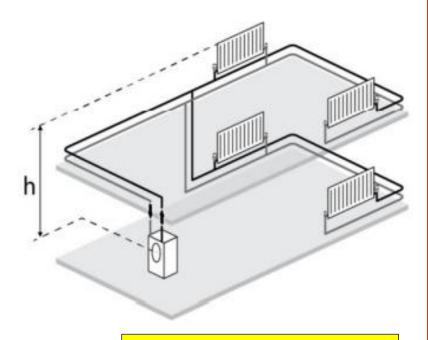



Turbidity

A turbidity tube is a visual tool to help you judge which water treatment best practice solution is appropriate.

Examples




Clean System	Light Fouling	Heavy Fouling
Recommend check	Recommend drain system	Recommend system to be
inhibitor levels.	and re-dose with inhibitor.	cleaned.

Vessel Pressures

Static Height, h (m)	Pre-Charge Pressure (bar)			
0				
1				
2	0.5			
3	0.5			
4				
5				
6	0.6			
7	0.7			
8	0.8			
9	0.9			
10	1.0			

Example 150litres @1bar/PRV3bar = 16.3litre vessel

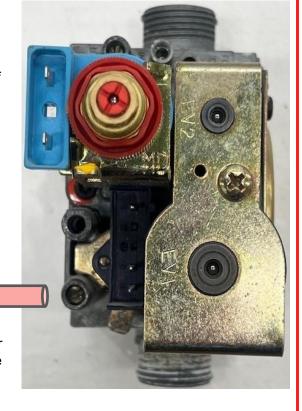
Or

150 x 0.109 = 16.3

Fact

Connections on heating vessels can block with sludge, when charging vessels lubricate Shrader valve

Safety valve setting (bar)	3.0 2.5				2.0			
Vessel charge and initial system pressure (bar)	0.5	1.0	1.5	0.5	1.0	1.5	0.5	1.0
Total water content of system (litres)	Select an Expansion Vessel with a nominal volume not less than that given below (litres)							
25	2.1	2.7	3.9	2.3	3.3	5.9	2.8	5.0
50	4.2	5.4	7.8	4.7	6.7	11.8	5.6	10.0
75	6.3	8.2	11.7	7.0	10.0	17.7	8.4	15.0
100	8.3	10.9	15.6	9.4	13.4	23.7	11.3	20.0
125	10.4	13.6	19.5	11.7	16.7	29.6	14.1	25.0
150	12.5	16.3	23.4	14.1	20.1	35.5	16.9	30.0
175	14.0	19.1	27.3	16.4	23.4	41.4	19.7	35.0
200	16.7	21.8	31.2	18.8	26.8	47.4	22.6	40.0
225	18.7	24.5	35.1	21.1	30.1	53.3	25.4	45.0
250	20.8	27.2	39.0	23.5	33.5	59.2	28.2	50.0
275	22.9	30.0	42.9	25.8	36.8	65.1	31.0	55.0
300	25.0	32.7	46.8	28.2	40.2	71.1	33.9	60.0
Multiplying factors for other system volumes	0.0833	0.109	0.156	0.094	0.134	0.237	0.113	0.2



Check filter to gas valve is clear Warm base with hair dryer this may free solenoid jumper

Remove harness and measure resistance should be within 10% of manufacturers guidelines

Gas Valves

Place U guage/manometer on gas valve inlet & isolate gas, check tightness then put boiler in demand, if pressure lost then gas valve is functioning

Isolate power and remove cables before using a multi metre on NTC

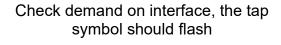
Vaillant/Glow Worm NTC

Clean wet pocket

Move clip on NTC to reconnect on pipe surface

Temperature	Resistance		
-15 °C	30.501 Ω		
-10 °C	27.917 Ω		
-5 °C	25.537 Ω		
0 °C	22.913 Ω		
5 ℃	20.387 Ω		
10 °C	17.862 Ω		
15 ℃	15.649 Ω		
20 °C	12.486 Ω		
25 °C	10.000 Ω		
30 ℃	8.060 Ω		
35 ℃	6.535 Ω		
40 ℃	5.330 Ω		
45 °C	4.372 Ω		
50 °C	3.605 Ω		
55 °C	2.989 Ω		
60 °C	2.490 Ω		
65 °C	2.084 Ω		
70 °C	1.753 Ω		
75 ℃	1.481 Ω		
80 °C	1.256 Ω		
85 °C	1.070 Ω		
90 °C	0.916 Ω		
95 °C	0.786 Ω		
100 °C	0.678 Ω		
105 ℃	0.586 Ω		
110 °C	0.509 Ω		
115 ℃	0.443 Ω		

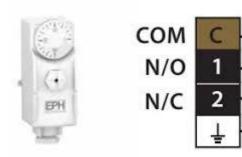
Temp (°C)	Resistance	Т
± 10%	(Ω)	
5	28,490	
10	22,161	
15	18,088	
20	14,772	
25	11,981	
30	9,786	
35	8,047	
40	6,653	
45	5,523	

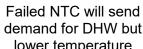

Temp (°C)	Resistance
± 10%	(Ω)
50	4,608
55	3,856
60	3,243
65	2,744
70	2,332
75	1,990
80	1,704
85	1,464
90	1,262

No hot water

Is the flow switch flashing on demand?

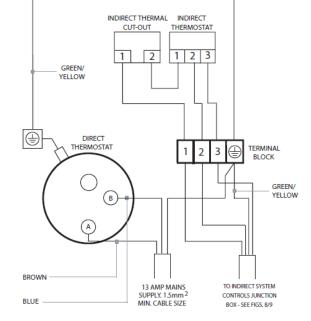
Works on the Hall effect principle magnetism returning the voltage from spinning impellor




Cylinder stats

Live 240Vdc

Live 240Vdc



Fluatuating DHW temp May mean blocked plate to plate

demand for DHW but lower temperature

Place demand, confirm diveter movement, view motor for resistance Vailliant and gl;ow worm 150Ω, Voltage is usually 24Vdc

Is there live at the Orange calling for DHW from the cylndier stat?

Check internal fuse, usually most Boilers are 1amp slow blow

Try warming hair PCBs with hair dryers to reenergise capacitors

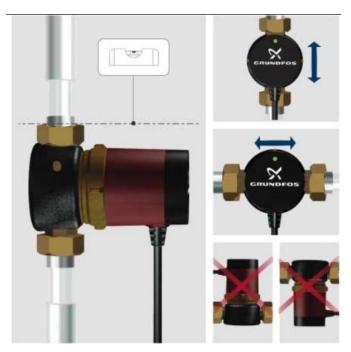
Whilst carrying out wet repairs on appliances use cling film to protect PCB

Youtube Video

https://youtu.be/mLzEWmsyKwE

Electrodes

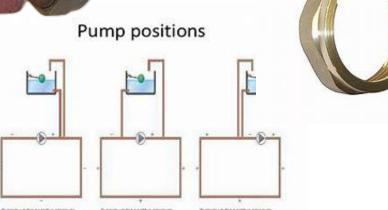
HT usually between 1k or 5k


Spark inline testing tool will light if theres voltage at the electrode which fits between the electrode and HT cable

Rectification works by converting AC to DC when flame is ignited, the ionisation is measured in micro amps which is on the multi meter display usually 5 -7 Microamps will be

Heating pumps

- Set multi meter to resistance Ω
- Use probes across L & N
- Less than 100Ω = replace
- No resistance/infinity = replace
- Approx 120 250Ω = Ok
- If loud clean bearings
- Free & bleed shaft using anti seize screw
- If water runs out anti seize screw pump insufficant
- Usually blows fuse



Above are recommended pump positions

Above is an unprofessional situation the pump screw is above the electical connections so ideally the head needs rotating

Stock pump nuts, incase old connections are cut off

Pump settings

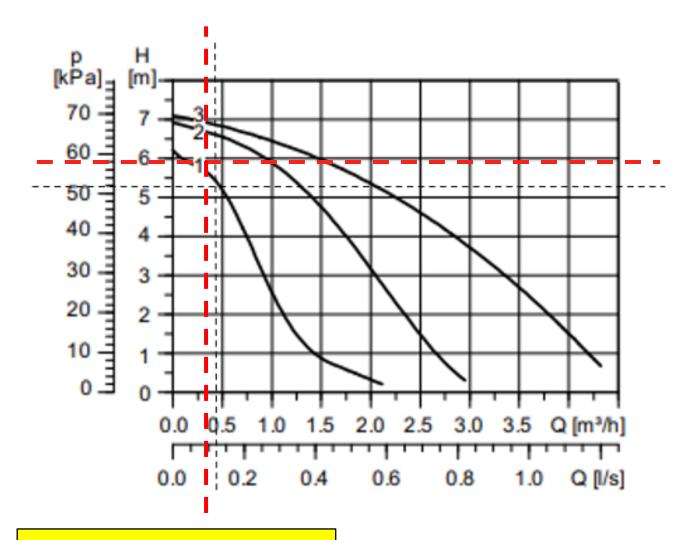
Flow rate =

10m = 1bar 1bar = 9.807Kpa

Kw = Kw of boiler

TD = temperature difference 20

SH = Specific heat 4.2


Multiply by 1000 for kg/s

Example;

3 bed house, 2 storey 6m head & 12Kw boiler

$$0.6 \times 9.807 = 5.88$$
kpa

$$20 \times 4.2 = 84 \quad 20 \div 84 = 0.24$$

Fact

If you remove anti seize cap and water runs out when pump is on, this can indicate pump is running too slow

Motorised valves

- Check for demand
- Confirm arm / ball has moved
- Check power is present

Y Plan system

- Set multi meter to Ω
- From white to Neutral 2000 2500Ω

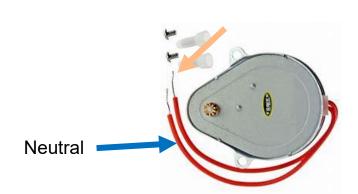
Cables

White = Htg on (remember white for rads)

Grey = Htg off

Orange = hot Boiler pump live

S Plan system


- Brown to Neitral 2000 - 2500Ω

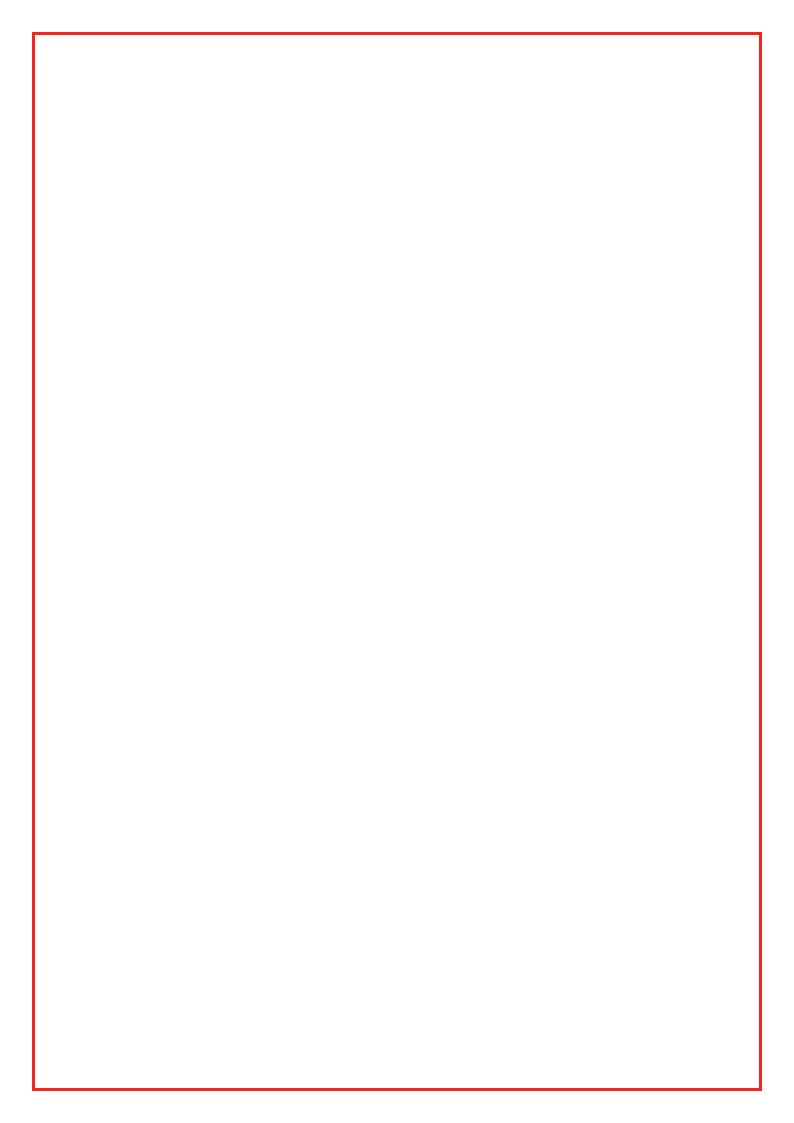
Cables

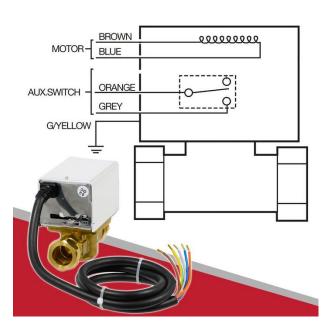
Grey = Permanent live

Brown = Htg / DHW

Orange = Hot water Boiler pump live

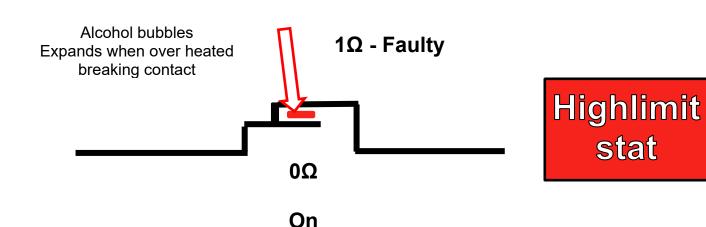
From room/cylinderstat

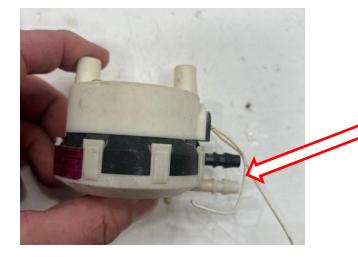

Live (brown)


Opens zone

Permanent live(Grey)

Switch live (Orange) Sends power to pump & boiler


NO = Normally open NC = Normally closed Com = Live


Microswitches

NC - off

Com - live

NO - On

Air tubes connecting air pressure switch must be assessed for bloclages, water or blocked

Air pressure switch

Air pressure can give various faults when the micro switch seizes either leaving the appliance permanently off or on

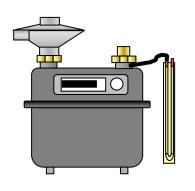
White vinegar diluted mix or condensate from trap can be sprayed into Hex for cleaning. Aluminium hot water only

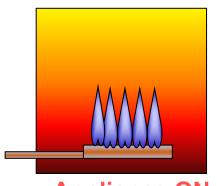
	Co/Co2 Ratio				
Appliance type	No Air Gas ratio	With air gas ratio			
Central heating boiler	0.008	0.004			
BBu Fire	0.008 0.020	0.004 N/A			
Fires (Flueless)	0.001	N/A			
Flues (LFE)	0.020	N/A			

Example: 5.1% Oxygen (closest to) 5.0 8.99 CO2 (closest to) 8.8 89ppm meaning the test results come back at 0.0006 in shaded area above this means that it is safe and doesn't require a service Before using 525 ar

Using a Flue Analzser

Flue intake tegrity check 20.9%

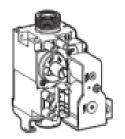

Shut boiler down as either AR or ID (Unsafe to use).


%	%		- 1	Trees.			CO ppm										
Caypen	60,	10	/90	100	150	300	250	200	360	400	450	500	550	600	850	700	790
3.0	10.2	0.0001	0.0005	0.0010	0.0015	0.0020	0.0025	0.0029	0.0034	0.0039	0.0044	0.0049	0.0054	0.0059	0.0064	0.0069	0.0074
4.0	9.6	0.0001	0.0005	0.0010	0.0016	0.0021	0.0026	0.0031	0.0036	0.0042	0.0047	0.0052	0.0007	0.0063	0.0068	0.0073	0.0078
4.5	9.3	0.0001	0.0005	0.0011	0.0016	0.0022	0.0027	0.0032	0.0038	0.0043	0.0048	0.0054	0.0059	9.0065	0.0070	0.0075	-
10,1	9.1	0.0001	0.0005	0.0011	0.0016	0.0022	0.0027	0.0033	0.0038	0.0044	0.0049	0.0055	0.0000	0.0066	0.0071	0.0077	
44	8.8	0.0001	0.0006	0.0011	0.0017	0.0023	0.0028	0.0034	0.0640	0.0045	0.0051	6.0057	0.0063	0.0068	0.0074	name.	
4.0	8.5	0.0001	0.0006	0.0012	0.0018	0.0024	0.0029	0.0035	0.0041	0.0047	0.0053	0.0059	0.0065	0.0071	0.0076		
8.5	8.2	0.0001	0.0006	0.0012	0.0018	0.0024	0.0030	0.0037	0.0043	0.0049	0.0055	0.0061	0.0067	0.0073	BARRY.		
7.0	7.9	0.0001	0.0006	0.0013	0.0019	0.0025	0.0032	0.0038	0.0044	0.0051	0.0057	8.6063	0.0070	0.0076	1000		
7.5	7.6	0.0001	0.0007	0.0013	0.0020	0.0026	0.0033	0.0039	0.0046	0.0053	0.0059	0.0066	0.0072	0.0079			
8.0	7.3	0,0001	0.0007	0.0014	0.0021	0.0027	0.0034	0.0041	0.0048	0.0055	0.0062	0.0068	0.0075	-			
8.0	6.8	0.0001	0.0007	0.0015	0.0022	0.0029	0.0037	0.0044	0.0051	0.0019	0.0044	0.0074	Allen .				
16.0	6.2	6.0002	0.0008	0.0016	0.0024	0.0032	0.0040	0.0048	0.0056	0.0045	0.0073	1,000					
11.0	5.6	0.0002	0.0009	0.0018	0.0027	0.0036	0.0045	0.0054	0.0063	0.0071	-						
12.0	3.1	0.0002	0.0010	0.0020	0.0029	0.0039	0.0049	0.0003	8.0069	NAME OF							
13.0	4.5	0.0002	0.0011	0.0022	0.0033	0.0044	0.0056	0.0067	0.0076								
14.0	3.9	0.0002	0.0013	0.0026	0.0038	0.0091	0.0064	0.0077	E-1000								
15.0	3,4	0.0002	0.0015	0.0029	0.0044	0.0009	0.0074	Name .									

Boiler Requires Service

Before using gas analyser use outside air to purge (20.9 air) Check air intake to flue is at the same level or flue may be brok

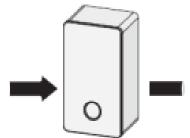
Boiler may be NCS or AR



Working Pressure

Appliance ON

WORKING Pressure

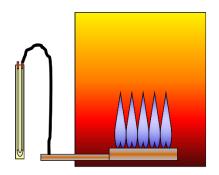


Gas Valve Inlet Test Point

[D]



1mb



1.5mb

WORKING Pressure at Appliance

Appliance ON

Gas	
Mimium pressure loss	
Mimium pressure allowed	
Water	
Minimum water pressure	
Minimum flow rate	

2 min gas flow m ³	Heat input Kw	Heat input Kw	Answer
	(gross)	(net)	
0.034	10.98	9.89	Boiler Kw (net)
0.036	11.63	10.48	Gas m³/hr
0.038	12.27	11.06	
0.040	12.92	11.64	
0.042	13.57	12.22	re
0.044	14.21	12.80	- ra

Gas rating

Answer

Kw

M³/hr

Gross input gas rate ready reckoner for domestic metric index meters

2 minutes gas flow rate		ate per our	Calculated heat input			
m ³	m ³	ft ³	kW	Btu/hr		
0.001	0.03	1.06	0.3	1,100		
0.002	0.06	2.12	0.6	2,200		
0.003	0.09	3.18	1.0	3,300		
0.004	0.12	4.24	1.3	4,400		
0.005	0.15	5.31	1.6	5,500		
0.006	0.18	6.37	1.9	6,600		
0.007	0.21	7.43	2.3	7,700		
0.008	0.24	8.49	2.6	8,800		
0.009	0.27	9.55	2.9	9,900		
0.010	0.30	10.61	3.2	11,000		

2 minutes gas flow rate		ate per our		culated t input
m ³	m ³	ft ³	kW	Btu/hr
0.020	0.60	21.22	6.4	22,000
0.030	0.90	31.83	9.7	33,000
0.040	1.20	42.44	12.9	44,000
0.050	1.50	53.06	16.1	55,000
0.060	1.80	63.67	19.3	65,900
0.070	2.10	74.28	22.5	76,900
0.080	2.40	84.89	25.8	87,900
0.090	2.70	95.50	29.0	98,900
0.100	3.00	106.11	32.3	109,800
0.200	6.00	212.22	64.4	219,700

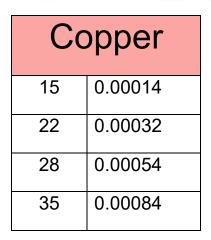
Gas rating chart for domestic gas meters (up to 6 m³/hr) which measure gas in m³ Average CV = 38.76MJ/m³ -1040btu/ft³

mº in 2 min	kW (gross)	kW (net)
0.002	0.65	0.58
0.004	1.29	1.16
0.006	1.94	1.75
0.008	2.58	2,33
0.010	3.23	2.91
0.012	3.88	3.49
0.014	4.52	4.07
0.016	5.17	4.66
0.018	5.81	5.24
0.020	6.46	5.82
0.022	7.11	6.40
0.024	7.75	6.98
0.026	8.40	7.57
0.028	9.04	8.15
0.030	9.69	8.73
0.032	10.34	9.31
0.034	10.98	9.89
0.036	11.63	10.48
0.038	12.27	11.06
0.040	12.92	11.64
0.042	13.57	12.22
0.044	14.21	12.80
0.046	14.86	13.39
0.048	15.50	13.97
0.050	16.15	14.55

1000		ENGRICATES
m·in 2 min	(gross)	(net)
0.052		1000000
0.054	17.44	15.71
0.056	18.09	16.30
0.058	18.73	16.88
0.060	19.38	17.46
0.062	20.03	18.04
0.064	20.67	18.62
0.066	21.32	19.21
0.068	21.96	19.79
0.070	22.61	20.37
0.072	23.26	20.95
0.074	23.90	21.53
0.076	24.55	22.12
0.078	25.19	.22.70
0.080	25.84	23.28
0.082	26.49	23.86
0.084	27,13	24.44
0.086	27.78	25.03
0.088	28.42	25.61
0.090	29.07	26.19
0.092	29.72	26.77
0.094	30.36	27.35
0.096	31.01	27.94
0.098	31.65	28.52
0.100	32.30	29.10

m in 2 min	kW (gross)	kW (net)
0.102	32.95	29.68
0.104	33.59	30.26
0.106	34.24	30.85
0.108	34.88	31.43
0.110	35.53	32.01
0.112	36.18	32.59
0.114	36.82	33.17
0.116	37.47	33.75
0.118	38.11	34.34
0.120	38.76	34.92
0.122	39.41	35.50
0.124	40.05	36.08
0.126	40.70	36.66
0.128	41.34	37.25
0.130	41.99	37.83
0.132	42.64	38.41
0.134	43.28	38.99
0.136	43.93	39.57
0.138	44.57	40.16
0.140	45.22	40.74
0.142	45.87	41.32
0.144	46.51	41.90
0.146	47.16	42.48
0.148	47.80	43.07
0.150	48.45	43.65

mi in 2 min	kW (gross)	kW (net)		
0.152	49.10	44.23		
0.154	49.74	44.81		
0.156	50.39	45.39		
0.158	51.03	45.98		
0.160	51.68	46.56		
0.162	52.33	47.14		
0.164	52.97	47.72		
0.166	53.62	48.30		
0.168	54.26	48.89		
0.170	54.91	49.47		
0.172	55,56	50.05		
0.174	56.20	50.63		
0.176	56.85	51.21		
0.178	57.49	51.80		
0.180	58.14	52.38		
0.182	58.79	52.96		
0.184	59.43	53.54		
0.186	60.08	54.12		
0.188	60.72	54.71		
0.190	61.37	55.29		
0.192	62.02	55.87		
0.194	62.66	56.45		
0.196	63.31	57.03		
0.198	63.95	57.62		
0.200	64.60	58.20		


Meter	IV(m3)
G4 / U6	0.008
U16	0.025
E6	0.0024

IVm + IVp + IVf = Ivt

M = gas meter

P = pipe

F = fittings 10% of pipe

Purging

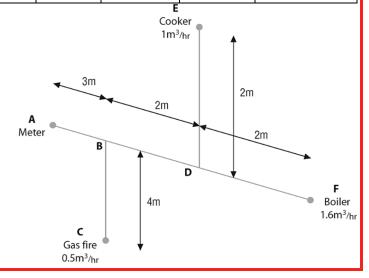
If the installation volume exceeds 0.02m³ direct purging through cooker or burners, less then 0.02m³ you may purge through a fitting.

Tightnes testing & purging up to 35mm allowed with max volume of 0.035m³ however the meter capacity must not exceed 16m³/h

Ventilate area

Remove any electrical switches

No smoking or naked lights


Equivalent Length (m) Nominal Pipe Size Fittings Bends Tee A) Tee A) 45⁰ 90⁰ Copper 90° elbow (Entering Branch) (Exiting Branch) ≤ 15 mm ≤ 15 mm 0.15 0.20 R 1/2 0.40 0.75 1.20 20 mm 22 mm 0.20 0.30 0.60 1.20 1.80 R 3/4 25 mm R 1 28 mm 0.25 0.40 0.80 1.50 2.30 R 11/4 32 mm 35 mm 0.30 0.50 1.00 2.00 3.00 A) Use the largest connection size on the fitting that is not necessarily the branch size

Gas Pipe sizing

Flow Rate	Hea	t Input		Nominal Pipe Size (mm) A)								
	Gross	Net	8	10	12	15	22	28	35			
(m3/h)	(kW)	(kW)	(6)	(8)	(10)	(13)	(19)	(25)	(32)			
0.25	2.70	2.46	0.2675	0.0710	0.0255	0.0077	0.0014	0.0004	0.0001			
0.50	5.40	4.91	0.8348	0.2188	0.0777	0.0231	0.0040	0.0011	0.0004			
0.75	8.10	7.37		0.4285	0.1514	0.0447	0.0077	0.0022	0.0007			
1.00	10.81	9.82		0.6940	0.2444	0.0719	0.0123	0.0035	0.0011			
1.25	13.51	12.28			0.3553	0.1042	0.0178	0.0050	0.0016			
1.50	16.21	14.73			0.4833	0.1414	0.0240	0.0067	0.0021			
1.75	18.91	17.19			0.6276	0.1832	0.0311	0.0086	0.0027			
2.00	21.61	19.65			0.7877	0.2296	0.0388	0.0108	0.0034			
2.25	24.31	22.10			0.9630	0.2804	0.0473	0.0131	0.0042			
2.50	27.01	24.56				0.3353	0.0565	0.0156	0.0049			
2.75	29.72	27.01				0.3945	0.0663	0.0183	0.0058			
3.00	32.42	29.47				0.4577	0.0769	0.0212	0.0067			
3.25	35.12	31.93				0.5249	0.0880	0.0243	0.0077			
3.50	37.82	34.38				0.5960	0.0998	0.0275	0.0087			
3.75	40.52	36.84				0.6709	0.1123	0.0309	0.0097			
4.00	43.22	39.29				0.7496	0.1253	0.0345	0.0108			
4.25	45.92	41.75				0.8321	0.1390	0.0382	0.0120			
4.50	48.63	44.20				0.9182	0.1533	0.0421	0.0132			
4.75	51.33	46.66					0.1681	0.0462	0.0145			
5.00	54.03	49.12					0.1836	0.0504	0.0158			
5.25	56.73	51.57					0.1996	0.0548	0.0172			
5.50	59.43	54.03					0.2162	0.0593	0.0186			
5.75	62.13	56.48					0.2334	0.0640	0.0200			

Pressure loss to the appliance must be lower then 1mb in total pipe route.
Incorrect sized pipe can lead too poor combustion readings

Pipe section	Gas rate	Pipe length	Estimated Pipe dia	Fitting allowance		Corrected length	Pressure loss	Calculated pressure loss
	M3/h			Туре	length		Mb/pm	
A – B	3.1	3	22	Elbow x 2	1.2	4.2	0.0880	0.37
B – C	0.5	4	15	Elbow x 3 Tee(exit) x 1 _(22m)	3	7	0.0231	0.1617

Heating

Pipe sizing.

Fact

Flow rate for heating should be 1m/s, lower sludge can settle, 1.5 can be disruptive, 2.5 can erode pipes, Part L, states flow temperatures should be 55° with a DT of 20°

System design

Reference:

BS 5449 **BS EN 806**

Pipe Dia (mm)	Watts			
8	1500			
10	2500			
15	6000			
22	13000			
28	22000			
35	34000			

Pipe Flow rates

= Rad Watts

TD = Temp diff

SHC = Specific Heat

Low loss header sizing (m/s)

Kw = Boiler output

SHC = Specific heat

DT = Temperature diff

Kw x 3600 ÷ 1000 SHC x DT

Bypass setting

KW / Dt x 4.20

Manufacturers guidelines mini flow & system head

Radiator Sizing

TD x 4.186

Ventilation heatloss

V = Room volume m²

N = Air change p/hour

0.33 = Specific heat of air

TD = Temp diff, between -3° + desired room temp

i.e;

living room 1980 3m x 3m x 4m @21

 $0.33 \times 36 \times 1.5 \times 24 = 427.68$

 $0.33 \times V \times N \times TD = heat loss$

In Coastal areas -5 can be used for outside

Room	Category A (Pre 2000)	Category B (2000)	Category C (New build)		
Lounge/living room	1.5	1	0.5		
Dining/breakfast room	1.5	1	0.5		

U-Valves for new build								
Room	U-Value							
Pitched insulated roof	0.20							
Flat roof	0.20							
Walls	0.30							
Internal walls	1.6							
Floors	0.25							
Windows & doors	2							

Correction factors

Htg flow – htg return = water temp Water temp – desired room temp =

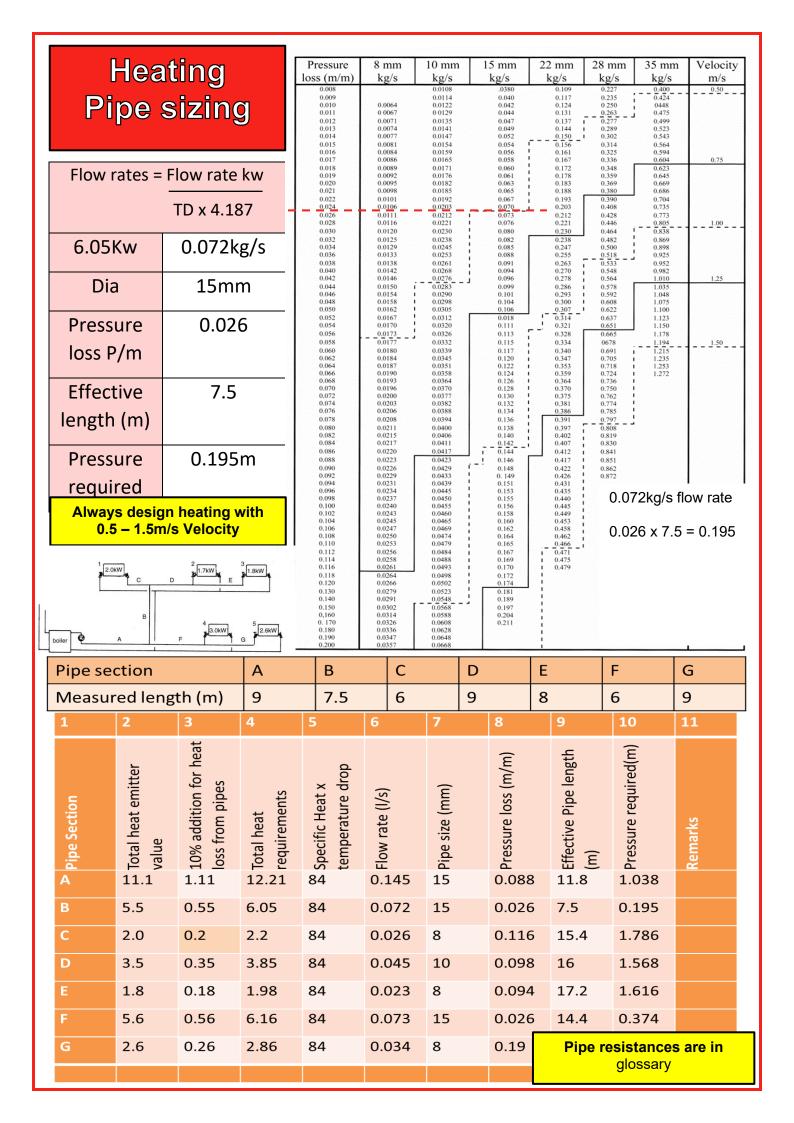
Boiler flow is 70 return temperature is 50, Water mean temperature is 60

Deduct room temperature of 21, equals 39.

39 falls between figures so accurate Calculations are needed.

0.748 - 0.629 = 0.119

0.119 = 0.024 -the figure per $^{\circ}$ C difference


0.748 - 0.024 = 0.748

)	0.406
3	0	0.515
3	5	0.629
4	0	0.748
4	5	0.872
5	0	1.000
5	5	1.132
6	0	1.267

Further details in Glossary

Unheated areas the temperature should be registered as 10°

				Room	heat	loss	S				
Surface elemen	t	area (m2)	x	U Valv (W/m2		X	Temp dif (oC)	=	he	esign at loss vatts	Totals
			х			х		=			
			х			х		=			
			х			х		=			
			х			х		=			
			х			х		=			
			х			х		=			
			х			x		=			
				Air h	eat lo	oss					
Air changes (1.5)	x	Room volume (m3)	x	Temp/d (21 + -3		x	Vent factor 0.33	=			
			x			x		=			
Fabric heat loss	5	+	Ai	ir heat los	SS		+ 15%	=			
		+						=			
				heat loss 1 & 2 = 3	3			=			
			Н	eat en	nitte	er	size				
Flow 70	+	R	eturr	55	÷ 2		 Room ten 	np 21	=	N	IWT
	+								=		•
M	MWT					CF	correct factor	=		Radiato	or size
х								=			

Pipe Centres	Conversation factor
100	10
150	6.6
200	5

Pipe lengths

UFH facts

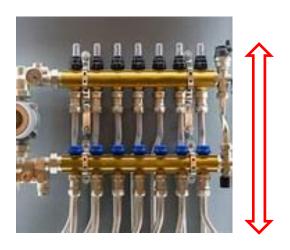
RA = Area of room
PC = Pipe centre
DfM = Distance from manifold x 2
Add 5%

le;

RA – 24m2 PC 150mm DfM – 6m

24 x 6.6 = 158 158/2 = 79.50 6 x 2 = 12 91.5 + 5% = 95.8m

ie;


RA – 12_{M2} PC - 150_{MM} DfM - 6

 $12 \times 6.6 = 79.2m$ DfM = 12m

Sub total = 91.2m + 5%(4.5)

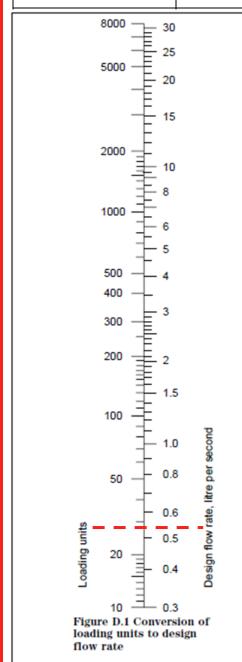
Total = 95.7m

Below is the W/m2 produced from the pipe centres, as you can see 100mm centres provides more heatput

DFM; Distance from manifold

Flow Rate		Friction	Loss (kPa/m)	
(L/min)	16mm PE-X	20mm PE-X	25mm PE-X	32mm PE-X
0.5	0.01	0.00	0.00	0.00
1	0.04	0.01	0.00	0.00
2	0.15	0.04	0.01	0.00
3	0.31	0.09	0.03	0.01
4	0.53	0.15	0.05	0.02
5	0.80	0.23	0.08	0.02
10	2.88	0.84	0.28	0.08
12	4.04 1.18		0.39	0.12
14	5.37	1.57	0.51	0.15
16	6.88	2.00	0.66	0.20
18	8.55	2.49	0.82	0.24
20	10.39	3.03	1.00	0.30
25	15.70	4.58	1.50	0.45
30	22.00	6.41	2.11	0.63
35	29.26	8.53	2.80	0.83
40	37.46	10.92	3.59	1.07
45	46.58	13.57	4.46	1.33

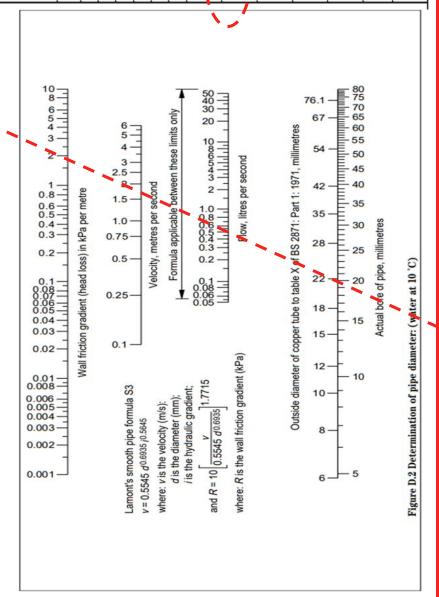
30 MWT	100	150	200	250	300
18 rtemp					
30	37	34	31	29	26


le, 80 x 0.15 = 1.2

Pipe	Heat output W/m.				
centres(mm)	2				
100	91.4				
150	82				
200	74				
250	66.4				
300	60				
Based on 75mm screed & 45° mean temp					

Hot & Cold Pipe Sizing

Below example


Garden tap x 2	10
Bath x 2	8
Sink	2
Shower	2
Wash basin	1
W/machine	2
D washer	2

Draw-off point	Q_A	Q _{min}	Loading units					
	l/s	l/s						
Washbasin, handbasin, bidet, WC-cistern	0,1	0,1	1					
Domestic kitchen sink, - washing machine ^a , dish washing machine, sink, shower head	0,2	0,15	2					
Urinal flush valve	0,3	0,15	3					
Bath domestic	0,4	0,3	4					
Taps /garden/garage)	0,5	0,4	5					
Non domestic kitchen sink DN 20, bath non domestic	0,8	0,8	8					
Flush valve DN 20	1,5	1,0	15					
For non domestic appliances check with manufacturer.								

Maximum flow rate velocity 3m/s this prevents water hammer, 27 LU against he chart equals too 5.5l/s & flow rate of 1.7ls which points to 22mm pipe

Table 3.2 — Copper														
Max. load	LU	1	2	3	3	4	6	10	20	50	165	430	1 050	2 100
Highest value	LU			2			4	5 /	8					
d _a x s	mm	12 x	1,0		15 x	1,0		18 x ,0	22 x 1,0	28 x 1,5	35 x 1,5	42 x 1,5	54 x 2	76,1 x 2
d _I	mm	10,0			13,0			16,0	20,0	25	32	39	50	72,1
Max length of pipe	m	20	7	5	15	9	7	1	i					

Hot water demand

Hot water Demand

Basic

Demand	Cylinder size	Kw req	Boiler allowed
2 bed, 1 bath	125	7.2	2
3 bed, 1 bath	145	8.4	2.5
4 bed, 1 bath	165	8.4	2.5
4 bed, 1 bath + 1 shower	175	10	2.5
4 bed, 2 bath	225	13	3.0

Calculated formula

Heat required

SHC x Kg x Tr =

SHC =

Kg = litres of water

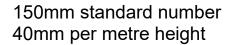
Tr = Temperature rise

Period

Secs

Hot & Cold Pipe sizing (unvented DHW)

Loading units

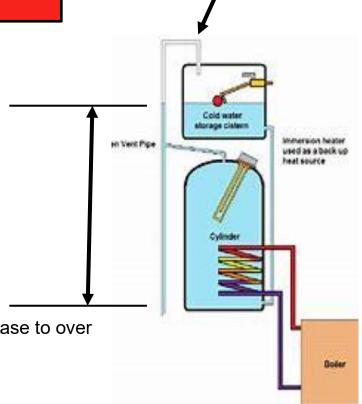

Appliance	Loading units
Basin/WC	1
Sink/Shower/W.machine	2
Urinal	3
Bath	5
Non domestic	8
Taps/Garden	5

Diameter per Units

LU	1	2	3	3	4	6	10	20	50	165	430
Dia (mm)	15	15	15	15	15	15	22	22	28	35	42

Hot water ventilation pipe

How to calculate vent pipe height?


150 + 40 =vent height

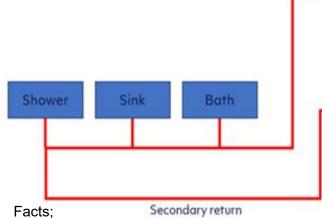
Height from cylinder base to over pipe level

ı.e

4m height from cylinder base to over flow pipe

 $4 \times 40 + 150 = 310$ mm

To hot outlets


Secondary

circulation

pump

Isolation

valve

- Return pump must be bronze
- Must connect onto cylinder 1/4 from top
- 5°TD from draw off & return
- Minimum return temp 50° within
- Minimum 0.5l/s
- Secondary return must be a minimum 2 x dia smaller then distruption
- Return with more than 15ltres needs expansion vessel
- Pump works on timer

Pipe	15ltr in
dia	m
15	107
22	48
28	30

Isolation

Non

return valve

valve

Secondary circulation

Immersion heater

Unvented Hot water

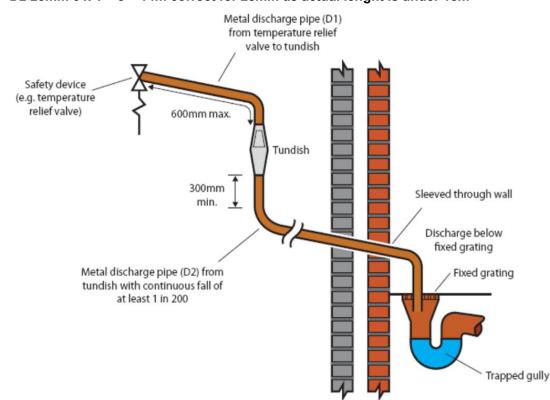
20lpm 1.5 – 3.5 bar

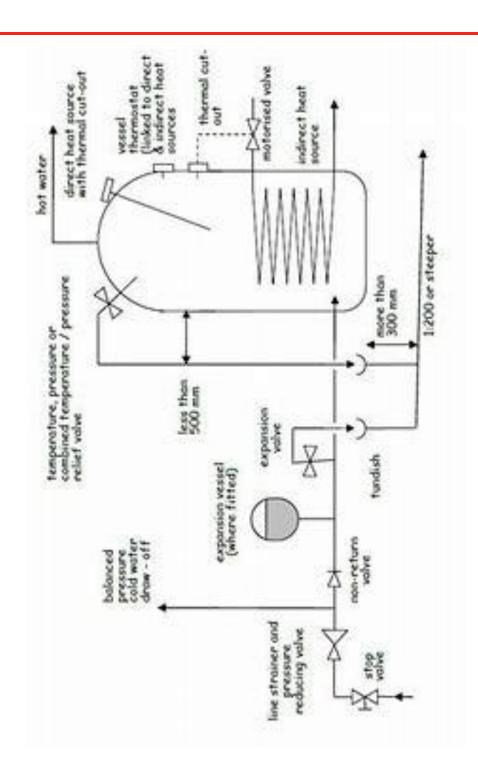
- D2 next dia above D1
- Discharge should be copper
- Terminate 100mm above ground with cage
- Must terminate 3m from plastic surface (gutter/roof sheeting)
- D2 discharges in solvent weld must be clipped every 300mm/labelled with a HepVo valve
- Warning audio light device for disable tennats

Valve Outlet size	Minimum size of discharge D1	Minimum size of discharge D2 (From tundish)	Maximum resistance, expressed as a length of straight pipe	Resistance created by each bend or elbow
G1/2``	15mm	22mm	Up to 9m	0.8m
		28mm	Up to 18m	1m
		35mm	Up to 27m	1.4m
G3/4``	22mm	28mm	Up to 9m	1m
		35mm	Up to 18m	1.4m
		42mm	Up to 27m	1.7m
G1``	28mm	35mm	Up to 9m	1.4
		42mm	Up to 18m	1.7m
		54mm	Up to 27m	2.3m

Example:

Current install, cylinder has G1/2" exit, 6 bends on D2 route which is 8m long


Two options follow;


D2 -- 22mm

D1 = 15mm -- D2 22mm 6 x 0.8 + 8 = 12.8m incorrect too long for 22mm

D2 - 28mm

D1 = 15mm - D2 28mm 6 x 1 + 8 = 14m correct for 28mm as actual length is under 18m

Temperature guidelines

60° daily for 60mins

Showers 43°

Care home 43°

Basin 38 - 41°

Sinks 46 – 48°

Bath 44°

Unvented Cylinder safety temperatures

Thermostat 60°

ECO 85°

Energy cut off

(switches electric off to boiler)

Temperature relief valve 95°

(Poopet valve)

Pump pressure adjustment

Pressure on/off adjustment switch

Run time

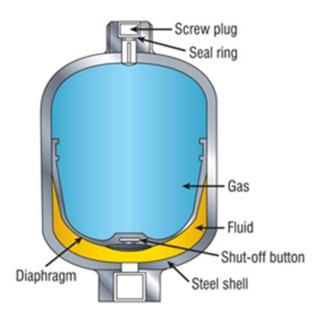
Booster pumps

Pump run times

L/m x Run time = flow rate

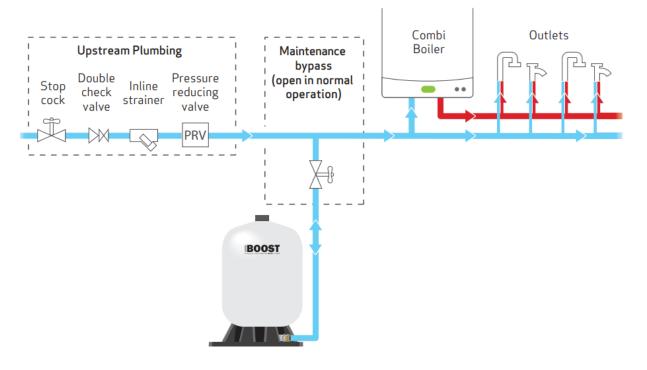
66l/m x 10 = 660litres

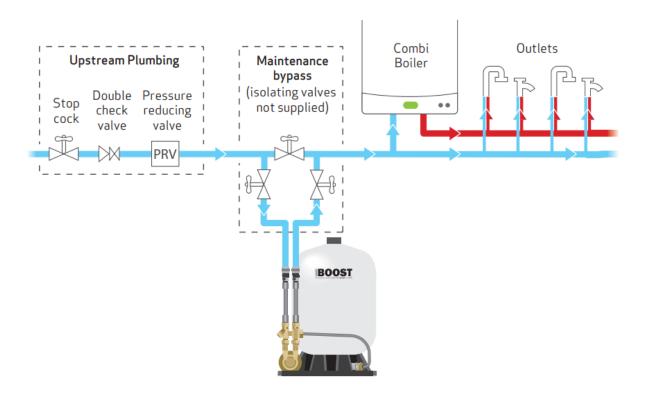
Operating pressures:

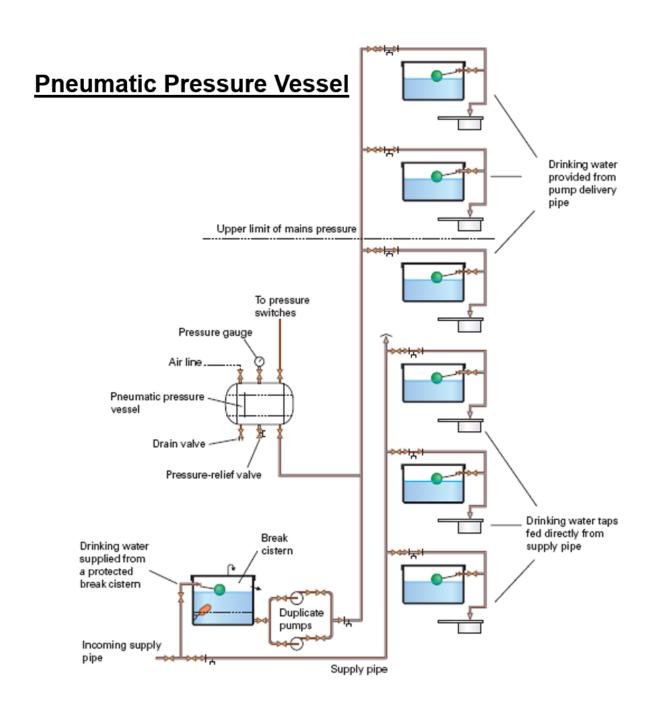

Accumulator operates between P1 and P2

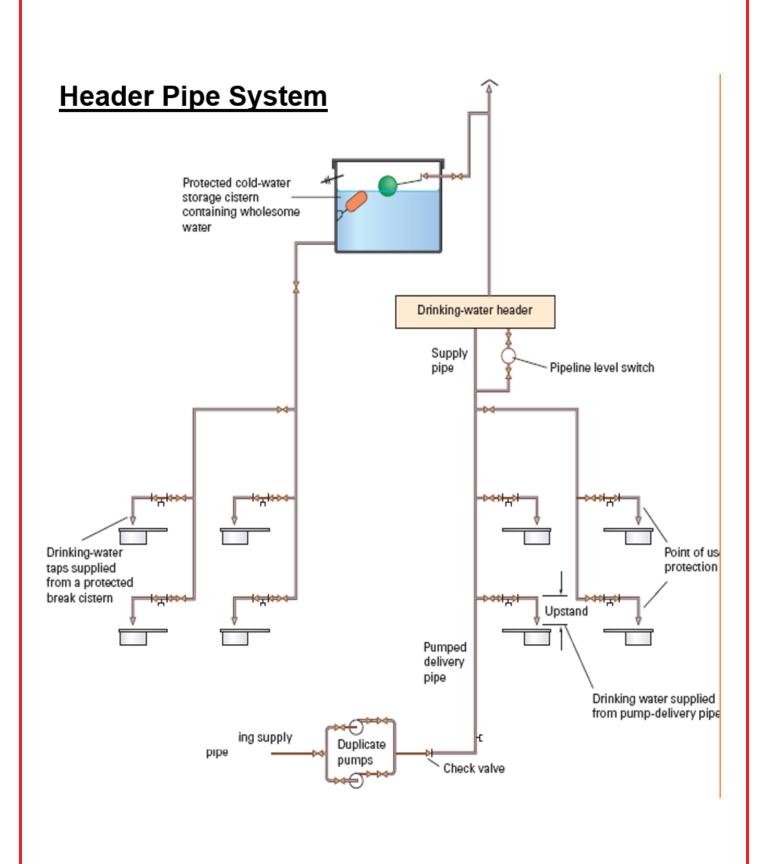
P1 = minimum operating pressure

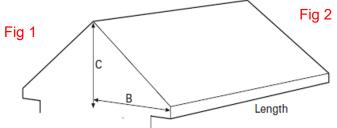
P2 = maximum operating pressure


PO = pre-charge pressure (normally 90% of P1)


- allows a small amount of water to remain in the vessel at all times
- prevents the bladder collapsing completely during each operating cycle.




Pre charge in some vessels simulate charging pump


Unpumped

For roofs between 10° and 50° pitch, this can be calculated by using the following formula:

 $\underline{C} + B$ × length of roof = effective roof area in m²

Тур	e of surface	Effective design area				
1	Flat roof	plan area of relevant portion				
2	Pitched roof at 30° Pitched roof at 45° Pitched roof at 60°	plan area of portion x 1.29 plan area of portion x 1.50 plan area of portion x 1.87				
3	Pitched roof over 70°	elevational area x 0.5				

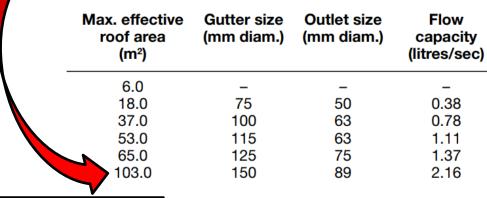
Gutter sizing

or any wall

Fig 3	0.016 • Newcastle
	0.016 0.020 0.020 • Kingston-upon-Hull
	0.020 Manchester 0.020 Nottingham 0.020 Not
0.016	0.018 Birming/rain 0.022 0.022 0.014 0.016 0.022 0.022 0.022 0.022 0.022
0.016	0.018 0.020 0.018 0.020 0.022

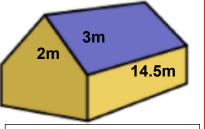
Fig 4	Risk factor
Eaves gutters	1,0
Eaves gutters where water overflowing would cause particular inconvenience, e.g. over entrances to public buildings	1,5
Non-eaves gutters and in all other circumstances where abnormally heavy rain or blockage in the roof drainage system could cause water to spillover into the building	2,0
For non-eaves gutters in buildings where an exceptional degree of protection is necessary, e.g. - hospital operating theatres - critical communications facilities - storage for substances that give off toxic or flammable fumes when wet buildings housing outstanding works of art	3,0

Q = Fall (dia 2) R = Rain fall intensity (dia 3) C = Risk factor of dwelling (dia 4) A = area (dia 1)


$A \times Q \times R \times C =$

 $1+3 \times 14.5 \times 1.5(fall) = 87$

 87×0.020 (rain intensity) = 1.74


 $1.74 \times 1(Risk factor) = 1.74$

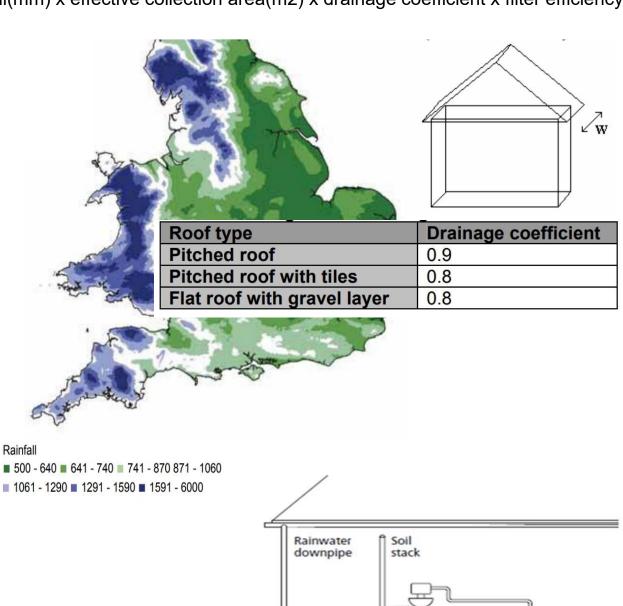
Location	Nottingham
Pitch	45
Dwelling	House no risk factor

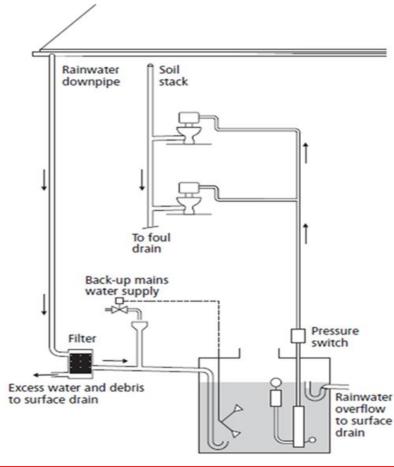
Ref: Reg H BS 12056

Areas greater than 25m2 needs a Shoe exit

Distance from outlet & stop end.
Gutter depth x 50 =

Distance between outlets.
Gutter depth x 100 =


100m gutter 50mm depth


 $100 \times 50 = 5m$

How to size rainwater tanks;

Black water systems

Annual fall(mm) x effective collection area(m2) x drainage coefficient x filter efficiency

Capacity is based on 150l/p a day Based on 45 day emptying cycles

Drainage design

le 4 bed house

Capacity = $4 \times 150 \times 45 = 27000$ litres (27m3)

Capacity design

150 - 180 l/p

20001

Capacity for 10 people

 $(10 \times 180) + 2000 = 3800$

Table 1

Usage of appliances	K
Dwelling, office	0.5
Frequent use hospital, schools, restaurant & hotel	0.7
Congested toilets, showers & public	1.0
Special use laboratry	1.2

Table 2

Appliance	System DU
Basin	0.3
Shower & plug	1.3
Bath	1.3
Sink	1.3
Dishwasher	0.2
WC cistern (6I)	1.7
W/machine	0.8/1.2

Soil pipe sizing

Table 3

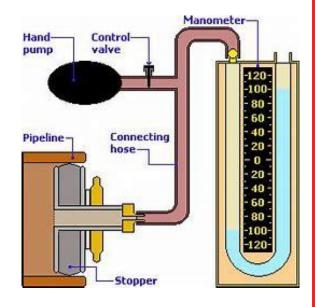
Stack	System (I/s) flow rate fr						
DN	Square entries	Swept entries					
80	2.0	2.6					
90	2.7	3.5					
100	4.0	5.2					
125	5.8	7.6					

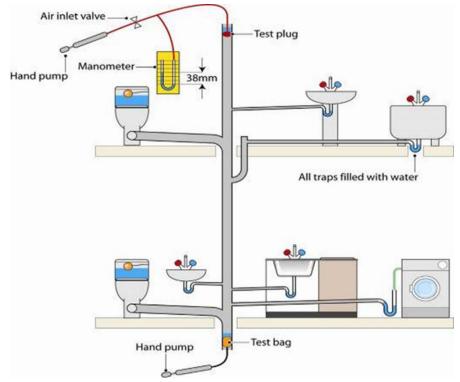
Waste water flow rate

Fr = K √Total DU

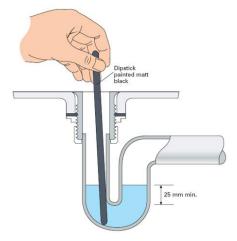
i.e

10 floors


4 x wc 4 x 1.7 = 6.8 2 x basin 2 x 0.3 = 0.6 2 x baths 2 x 1.3 = 2.6 2 x sinks 2 x 1.3 = 2.6 2 x W/m 2 x 1.2 = 2.4 Sub total 15 Total block 150


 $\sqrt{150}$ = 12.247 12.247 x 0.5 = 6.12l/ps

DN 125mm stack needed


Drainage testing

- Fill trap seals with water
- Bung ventilation pipe with stop
- Using hand pump charge to 38mm
- Should be no drop after 3minutes

Drainage performance testing

To performance test sanitation, run at least 3 – 4 appliances WC, bath, basin and sink. Once water has drained away, using a dipstick check the trap seals must have at least 25mm water depth, this process should be carried out 3 times

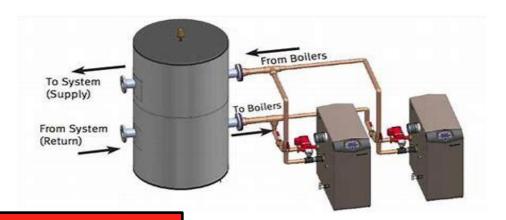
Heat Pump design

	GUIDANCE	GUIDANCE TABLE			space ng SPF		size Factor ther emitter		Und	erfloor hea screed	iting:		erfloor hea iminium pa	
		Temperature Star Rating	Heating circuit flow temperature °C	GSHP	ASHP	Domestic Fan Corvector/Fan- assisted Radiator	Standard Radiator	Fan Coil Unit	with TILE	with W00D	with CARPET	with TILE	with WOOD	with CARPET
		CONTRACT	35	4.3	3.6	4.3	6.8	5.0	PS±300	PS±300	PS≤200	PS≤200	PS≤200	PS≤150
		thanhanhanhanhanhanhanhanhanhanhanhanhanh	40	4.1	3.4	3.1	4.3	3.5	PS≤300	PS≤300	PS±300	PS≤300	PS≤300	PS≤200
	Room specific heat loss less	****	45	3.7	3	2.4	3.1	2.6	PS≤300	PS≤300	PS±300	PS≤300	PS≤300	PS±300
	than 30 W/m²	******	50	3.4	2.7	2.0	2.4	2.1	PS≤300	PS≤300	PS≤300	PS≤300	PS≤300	PS≤300
		thinhinh	55	3.1	2.4	1.7	1.9	1.7	PS≤300	PS≤300	PS±300	PS≤300	PS≤300	PS≤300
		\$	60	2.8	2.1	1.4	1.6	1.5	PS≤300	PS≤300	PS≤300	PS≤300	PS≤300	PS≤300
			35	4.3	3.6	4.3	6.8	5.0	PS±300	PS≤100		PS≤100	- Reduce I	eat loss
		that the	40	4.1	3.4	3.1	4.3	3.5	PS±300	PS≤200	PS≤150	PS≤200		
	Roon specific heat loss 30	****	45	3.7	3	2.4	3.1	2.6	PS≤300	PS≤300	PS≤300	PS≤200	PS≤200	PS≤150
	to 50 W/m²	thinhinhinhinhinhinhinhinhinhinhinhinhinh	50	3.4	2.7	2.0	2.4	2.1	PS≤300	PS±300	PS≤300	PS≤300	PS≤200	PS≤200
		thinhinh	55	3.1	2.4	1.7	1.9	1.7	PS≤300	PS≤300	PS±300	PS≤300	PS≤300	PS≤300
	****	ûnûnûnîn <mark>a</mark>	60	2.8	2.1	1.4	1.6	1.5	PS≤300	PS≤300	PS≤300	PS≤300	PS≤300	PS≤300
	Room specific heat loss 50 to 80 W/m ²		35	4.3	3.6	4.3	6.8	5.0	PS≤100	Panina 1	eat loss			
		than than	40	4.1	3.4	3.1	4.3	3.5	PS≤200				Reduce I	eat loss
		thinhinh	45	3.7	3	2.4	3.1	2.6	PS≤300	PS≤100	PS≤100	PS≤150		
		*****	50	3.4	2.7	2.0	2.4	2.1	PS≤300	PS≤200	PSs150	PS≤200	PS≤100	
		thininini the	55	3.1	2.4	1.7	1.9	1.7	PS≤300	PS±300	PS≤200	PS≤200	PS≤150	PS≤100
educing fabric and/or		\$1\$1\$1\$1\$1\$\$	60	2.8	2.1	1.4	1.6	1.5	PS≤300	PS≤300	PS≤300	PS≤300	PS≤200	PS≤150
entilation heat losses	0	hhhhhhh	35	4.3	3.6	4.3	6.8	5.0						
n move a room up to		ជា	40	4.1	3.4	3.1	4.3	3.5	PS≤150	Reduce I	eat loss		- Reduce I	eat loss
ext specific heat loss d, making it easier to	Room specific heat loss 80	thinhinhinhinhinhinhinhinhinhinhinhinhinh	45	3.7	3	2.4	3.1	2.6	PS≤200			PS≤100	Same and the same	
achieve a good SPF.	to 100 W/m ²	thininini	50	3.4	2.7	2.0	2.4	2.1	PS≤250	PS≤100	PS≤100	PS≤150		
		นำนำนำนำนำ	55	3.1	2.4	1.7	1.9	1.7	PS≰300	PS≤200	PS≤150	PS≤200	PS≤100	
- 1 1		นำนำนำนำนำ	60	2.8	2.1	2.1	1.6	1.5	PS≤300	PS≤250	PS≤ 250	PS≤200	PS≤150	PS≤100
970	1	CONTRACT	35	4.3	3.6	4.3	6.8	5.0						
	Room speciofic	ininininininininininininininininininin	40	4.1	3,4	3.1	4.3	3.5						
	heat loss 100	นั้นนั้นนั้น	45	3.7	3	2.4	3.1	2.6	Radi	ce heat to	K<		duce heat	nss
	to 120 W/m ²	นำนำนำนำนำ	50	3.4	2.7	2.0	2.4	2.1			<u> </u>			
		นำนำนำนำ	55	3.1	2.4	1.7	1.9	1.7						
		rananananananananananananananananananan	60	2.8	2.1	1.4	1.6	1.5	ļ					
		CONTRACT	35	4.3	3.6	4.3	6.8	5.0						
	Doom coosifie	ininininininininininininininininininin	40	4.1	3.4	3.1	4.3	3.5						
	Room specific heat loss 120	www.	45	3.7	3	2.4	3.1	2.6	Redi	ce heat lo	55	Re	duce heat	loss
	to 150 W/m ²	thininini i	50	3.4	2.7	2.0	2.4	2.1						
		นนนนนนน	55	3.1	2.4	1.7	1.9	1.7						
		THE THE PERSON THE	60	2.8	2.1	1.4	1.6	1.5						

Buffer Sizing

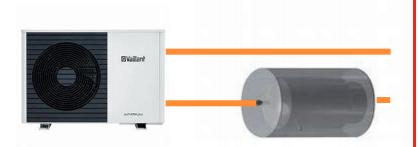
 $V = \frac{Q \times t \times 60}{4.18 \times DT}$

i.e


5 x 15 x 60 4.18 x 5 V = tank volume

Q = heat load (5kw)

DT = Delta T (rads 10° / Udfr 5°)


60 = 60 seconds

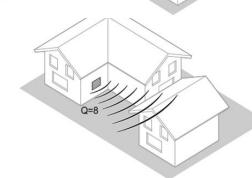
T = HP compressor starts in hour

Sizing Volumizers

Volumisers are installed to prevent systems freezing, should the primary pipework be lower than 20l then a volumiser should be installed

0.141	15mm copper
0.311	22mm copper
0.5l	28mm copper
600 x 1000 rad	61

Heat pump performances with outside temperatures


Output Water 45°C		UNITS	4 kW	6 kW	8 kW	12 KW	15 KW
Outside Air at 0°C	Qh	KW	3.17	4.02	5.11	8.03	9.80
	COP	kW/kW	2.57	2.43	2.42	2.44	2.48
Outside Air at -3°C	Qh	KW	2.93	3.71	4.41	7.39	9.06
	COP	kW/kW	2.42	2.31	2.34	2.32	2.36

Heat Pump location

Q = 4

Q = 8

Table 1:

Q = 2

Q rating	4	5	6	8	10	12	15	20	25
<u>2</u>	-20	-21	-23	-26	-28	-29	-31	-34	-36
<u>4</u>	-17	-19	-20	-23	-25	-26	-28	-31	-33
<u>8</u>	-14	-16	-17	-20	-22	-23	-25	-28	-30

Table 2:

Restriction	db reduction
Solid barrier between assessment position	-10
Move HP 25cm to be seen from assessment position	-5

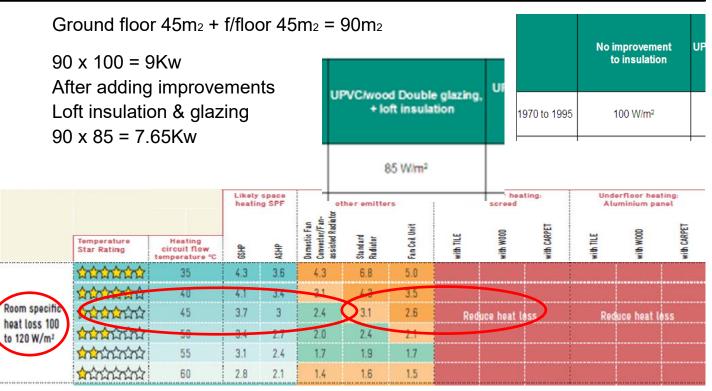
Table 3:

Difference between two noise levels	Correction factor
5	1.2
6	1
7	0.8
8	0.6

Scenario; ASHP installed against wall, manufacturers data states 55db, this install is partially covered with wall and the assessment position is 4metres away

Description	Result
1 Manufacturers db	55db
2 Installed against single wall	Q4
3 Distance from wall	4m
4 Db reduction 4m @Q4 (table 1)	-17
5 Brick wall between assessment (table 2)	-5
5 55 + -17 + -5 =	33db
6 MCS approval guide (table 3) 40 – 33 = 7	0.8
7 Final 40 + 0.8 =	41
8 figure is below 42	Permitted

Heat pumps can now be installed upto 1m from boundary


Result

Heat Pump Sizing

Add 200watts p/p for DHW

Dwelling 1970 no improvements

	No improvement to insulation	UPVC/wood Double glazing, + loft insulation	UPVC/wood Double glazing, + loft & cavity wall insulation
1970 to 1995	100 W/m²	85 W/m ²	70 W/m²
1996 to 2005	80 W/m²	70 W/m ²	60 W/m²
2006 to 2010	50 W/m²	50 W/m ²	50 W/m ²
New build	40 W/m ²	40 W/m ²	40 W/m ²

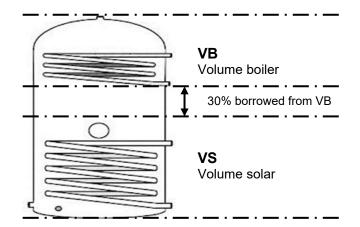
Scenario

Bungalow with 90m² floor area, dwelling heat loss of 10500kw 1980 built located in Humberside.

Heating system 35° under floor heating system incorporating HPC cylinder $\frac{10500}{90} = 117 \text{w/m}^2$ heat loss

Sap Calculation methods

Solar sizing


Below table is for new build properties where number of people is unknown

For example 120m² TFA equals 111litres VD

The solar VS must be able to hold 80% of the VD

110 x 0.8 = 88.8

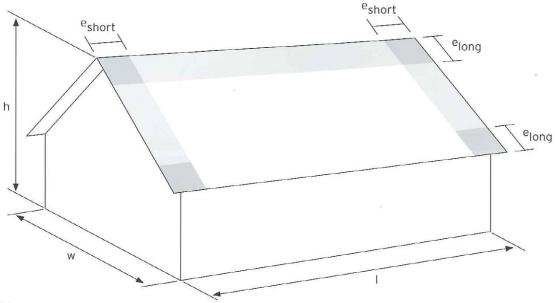
88.8litres is lower than the VS volume of 105litres so therefore the cylinder is correct

BSRIA method

46 + (26 x number of occupants)

For example 3 people

99.2 VS


Total Floor area TFA	Assumed Occupancy	Hot water demand
(m2)		(litre/day)
40	1.4	72
80	2.5	100
120	3.0	111
200	3.2	116
300	3.4	121
400	3.6	127

Solar panel sizing

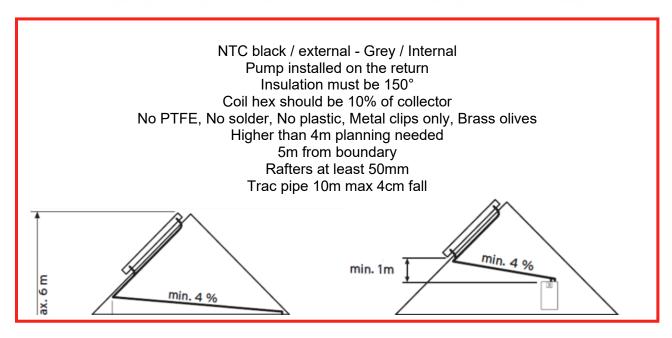
50 litres per panel South facing 30°

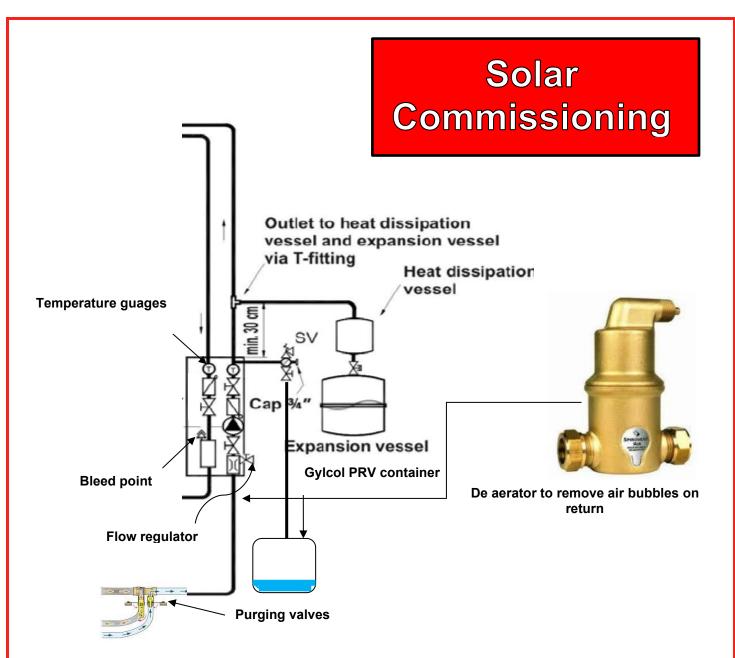
Purge for 30mins remove air

Key:

- w. Building width
- h. Building height
- I. Building length

Calculate the building width w, building height h and building length I.


The values for the edge clearances to be observed, $^{\rm e}$ short and $^{\rm e}$ long can be found in the following tables.


	w		Building height h (m)									
	(m)	5	6	7	8	9	10	11	12	13	14	15
	8			10			1.0					
	9						1.0					
(E)	10			1.0								
Building width w (m)	11	1.0		1.1								
widt	12	1.0		1.2								
ding	13	1.0	1.2					1.3				
Build	14	1.0	1.2					1.4				
	15	1.0	1.2	1.4	1.4 1.5							
	16	1.0	1.2	1.4								
	17	1.0	1.2	1.4 1.6 1.7								
	18	1.0	1.2	1.4	1.6				1.8			

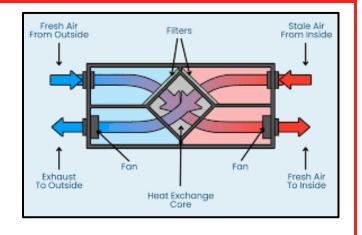
	1	Building height h (m)										
20.	(m)	5	6	7	8	9	10	11	12	13	14	15
	10						1.0					
	11	1.0					1.	.1				
(m)	12	1.0		1,2								
	13	1.0	1.2		1.3							
Building length	14	1.0	1.2		1.4							
ding	15	1.0	1.2	1.4				1.	5			
Build	16	1.0	1.2	1.4				1.	6			
	17	1.0	1.2	1.4	1.4 1.6 1.7							
	18	1.0	1.2	1.4	1.4 1.6 1.8							
	19	1.0	1.2	1.4	1.4 1.6 1.8 1.9							
	20	1.0	1.2	1.4	1.6	1.8			2.	.0		

Edge clearances: ^eshort (m)

Edge clearances: ^elong (m)

Servicing

Comissioning	min	max
Flow rate	2l/m	3l/m
Ph levels	7	9
Refractometer	-16	-26
Sanitise	30mins	retest
Flush	30mins	Assess no air bubbles
Pressure	2bar	6bar


How to calculate flow rates for solar

Kw x T SHC x TD

Kw amount of energy collector can absorb, Time 1sec SHC fluid gycol 3.9 Temperature difference 6

MVHR

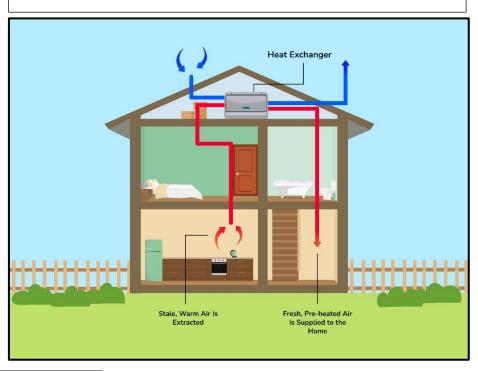
- Maxium velocity:4m/s
- Pressure drop: 1pa/m
- Never greater then:
- 19l/s for first bedroom & 6l/s additional bedroom
- 0.3l/sp/m²

Flow rate

Floor area $\times 0.3$ l/s = l/s flow rate

Convert to m³

 $Fr \times 3.6 = m^3/hr$


Heating requirement

Density of air: 1.2kg/m SHC: 1.005kj/kg DT: 21°

0.029m³/s x 1.2kg x 1.005kj/kg x 20 = 0.699kw +10%

Circular duct sizing

Based on velocity Fr x MV = ie $0.029 \div 4 = 0.00725$ m²

Installation facts

- Rigid ducting should be supported every 1m
- Fans should be no more than 400mm from ceiling
- Condensation traps must be installed
- Sealed with non harding sealant & self tapping screws
- Horizontal runs should slope away from fan
- Flexible ducting 90% of its length
- Flexible no longer than 1.5m
- Flexible supported every 600mm

Sizing air conditioning units

Calculating air conditiioning required to meet demands,

allow 0.15 per Kw

elements to consider;

- Deduct by 10% if room in shaded area
- Add 10% if in high sun light exposureIf oven in room incase by 1.15Kw
- If more than 2 individuals add 0.18kw pp

(Floor width x Floor length) x 0.15 =

Example room 5.5m by 7.5m, 20 people inside

Temperature Conversion

Celsius to Kelvin

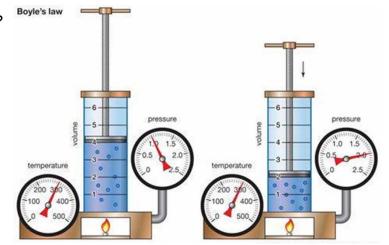
Celsius Kelvin + 273

Conversation for Fahrenheit

Celsius Fahrenheit (cx 1.8) + 32 =

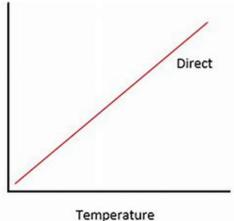
Fahrenheit Celsius $F - 32 \div 1.8 =$

Example

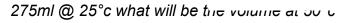

Tyre pressure is 11.41I @44psi,

What will the pressure be at 10.66l?

 $P1 \times V2 \div V1 = P2$


 $44 \times 11.41 = 47.36$

10.6



Boyes Law

Example

Always concert to Kelvin

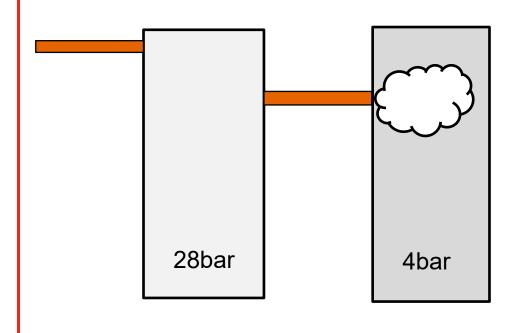
$$25 + 273 = 298$$

$$50 + 273 = 323$$

275 = ??? = 88.825 divide by lower T1 for new V1 = 298 298 Multiply 323

Example

A vessel is 250k in temperature with volume of 3.5l, when the vessel temperature is increased to 400k what will be the new volume?


$$\underline{V1} = \underline{V2}$$
 $\underline{3.5}$ $\underline{\times}$ = $\underline{?} = 3.5 \times 400 = 1400$
 $\underline{71}$ $\underline{72}$ $\underline{250}$ $\underline{+}$ $\underline{400}$ Ans: $1400 \div 250 = 5.6$

Flash gas usually occurs after the expansion valve where the pressure changes.

Boiling point at sea level is 100° at 1.01bar, however boiler point on a mountain is lower 92° at 8k feet due to lower pressure

Flash gas

Chillers

Calculate the amount of heat that must be removed from 500 kg of poultry that is to be stored at -18°C if it is to enter the refrigerated space at 7°c.

Specific heat of poultry before freezing = 3.18 kj/kg KSpecific heat of poultry after freezing = 1.55 kj/kg KLatent heat of fusion (hfg) = 246 kj/kgFreezing temperature of poultry = -2.75°c

QT = hSB + hSA + hL

Where:- QT = Total heat.

hSB = sensible heat before freezing hSA = sensible heat after freezing

hL = Latent heat

QSB = sensible heat before freezing

 $QSB = m \times sp.ht \times td$

 $QSB = 500 \times 3.18 \times (7 - (-2.75))$

 $QSB = 5L00 \times 3.18 \times 9.75$

 $QSB = kg \times kj/kg K \times K$

 $QSB = 500 \times 3.18 \times 9.75 = 15502.5 \text{ kj}$

QSA = sensible heat after freezing (sensible heat is adding heat)

 $QSA = m \times sp. ht. \times td$

 $QSA = 500 \times 1.55 \times (-2.75(-18))$

 $QSA = 500 \times 1.55 \times 15.25$

 $QSA = kg \times kj/kg K \times K$

 $QSA = 500 \times 1.55 \times 15.25 = 11818,75 \text{ kj}$

QL = Latent heat after freezing (heat that doesnt change)

QL = m x hfg

 $QL = kg \times kj/kg$

 $QL = 500 \times 246 = 123000 \text{ kj}$

QT = QSB + QSA + QLT =

QT = 15502.5 + 11818.75 + 123000 = 150321.25 kj

Air conditioning

Solar gain = radiation

Heat gain = room generated

Heat gain (w) = $(Area m_2) x (U valve W/m_2 K) x (Sat - Int temp)$

- All testing should confirm with BSEN 378
- New or old system
- Refrigeration type
- New systems x 1.43
- Old systems x 1.1
- LP temperature 320
- HP temperature 550 (water cooled 430)
- If needed remove drier
- Nitrogen can cause suffocation

Existing (c)	New (c)	Side
1.1 x 55	1.43 x 55	HP
1.1 x 32	1.43 x 32	LP
1.1 x 32	1.43 x 43	Water cooled

CALCULATION OF STRENGTH TEST = $1.1 \times PS$

EXAMPLE

HIGH SIDE (Air cooled condenser)

55°C on R407F = 26.16 Bar

26.16 Bar × 1.1 = 28.78 Bar on the high side

LOW SIDE (Heat exchanger exposed to indoor ambient)

27°C on R407F = 11.07 Bar

11.072 Bar × 1.1 = 12.18 Bar

High Side Strength Test Pressure = 28.78 Bar

Low Side Strength Test Pressure = 12.18 Bar

REMEMBER: The high side test pressure could exceed the rating of the pressure relief valves (PRV's). If this is the case, then they should be removed and plugged for the strength test procedure.

Leak Check Report

Site Name and address		Date	
		Leak checked by	
		Company Name	
Location of plant		Equipment Model	
Refrigerant Type	Single / Blend	Refrigerant Qty (kg)	

Condenser

Calculated Discha	arge Pressure (I	bar)		
Calculated Discha (°c) (using pressure read		ire		
Discharge Pressure (bar)	Condensing Temperature (°c)	Liquid Line Temperature (°c)	Air On Temperature	Air Off Temperature
Temperature Difference			9	

Evaporator

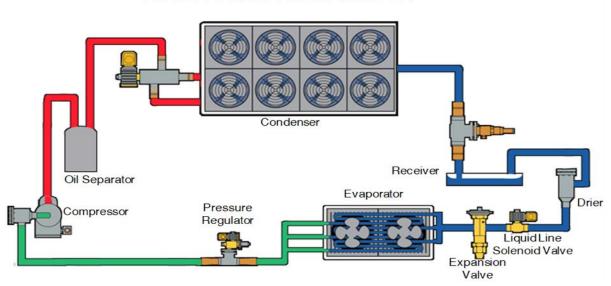
Calculated Su	ction Pressure	(bar)		
Calculated Su (°c) (using pressure	ction Tempera	ture		
Suction Pressure (bar)	Evaporating Temperature (°c)	Suction Temper (°c)	 Air On Temperature (°c)	Air Off Temperature (°c)
Temperature Difference				

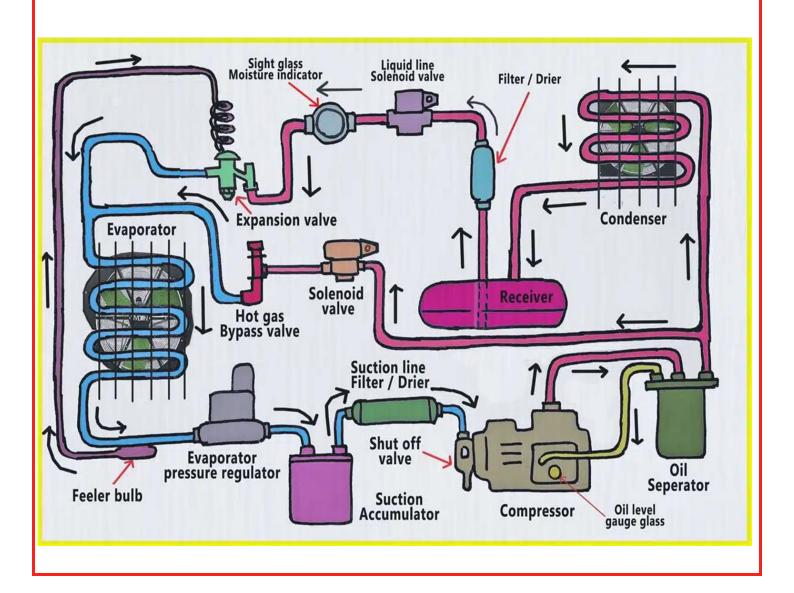
	Safety group		
Higher Flammability	A3	В3	
Lower	A2	B2	
Flammability	A2L*	B2L*	
No flame Propagation	A1	B1	
	Lower Toxicity	Higher Toxicity	

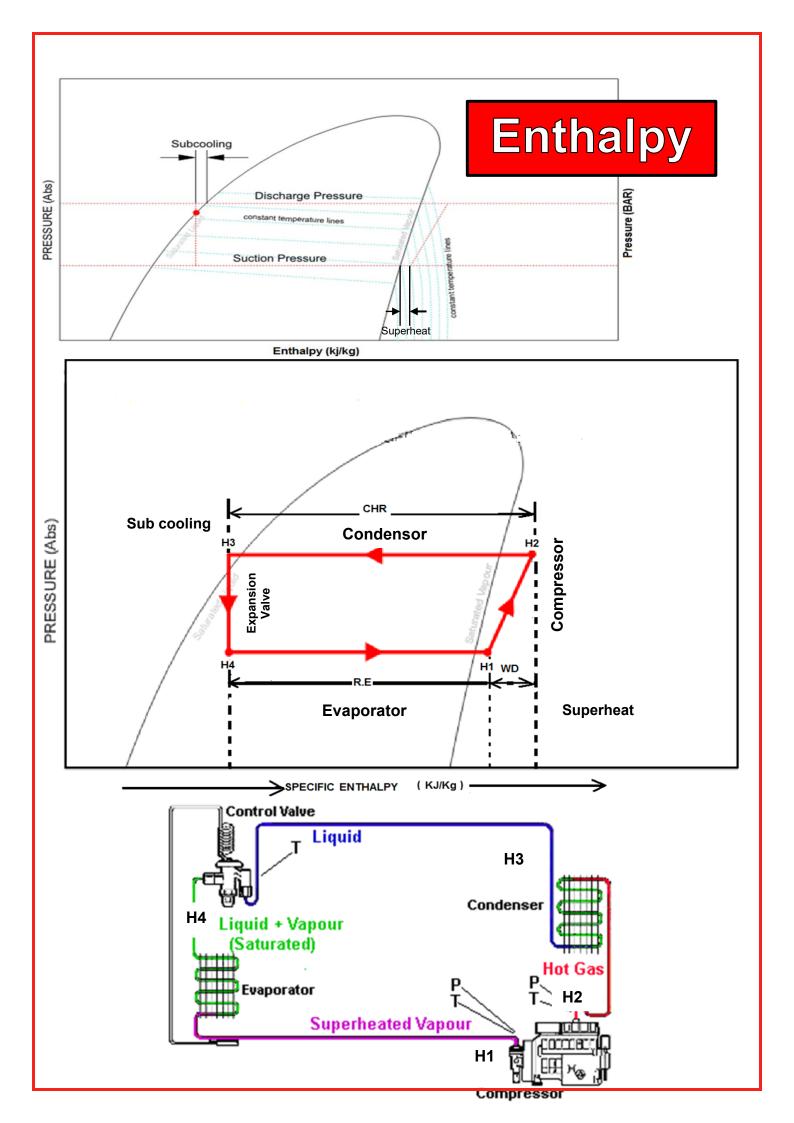
^{*}A2L and B2L are lower flammability refrigerants with a maximum burning velocity of ≤ 10 cm/s

Refrigerants Safety Data

Products and equipment	Minimum Frequency
Hermetic System with GWP< 10 of CO2	Not Required
System with GWP = 5 TONES of CO2	Once every 12 months
System with GWP = 50 TONES of CO2	Twice every 12 month
System with GWP = 500 TONES of CO2	Four Times every 12 month
∘ Leak Testing	


System Below 3 kg Semi Hermetic and 6 kg Hermetic (If labelled correctly) do not require leakage testing under this article until 1/1/2017


Products and equipment	Minimum Frequency
System with GWP = 5 TONES of CO2	Once every 24 months
System with GWP = 50 TONES of CO2	Once every 12 months
System with GWP = 500 TONES of CO2	Once every 6 months


Leak Testing with leak detection system installed

Operators of the equipment containing fluorinated greenhouse gases in quantities of 500 tonnes of CO2 equivalent or more, shall ensure that the equipment is provided with a leakage detection system which alerts the operator or a service company of any leakage. Leak Check Minimum Mass of Refrigerant

A REFRIGERATION CIRCUIT

Enthalpy

Mass Flow Rate of Refrigerant (m) = Cooling duty / (H1 – H4)
Measured in kg/s

Work Done by Compressor = $(H2 - H1) \times m$

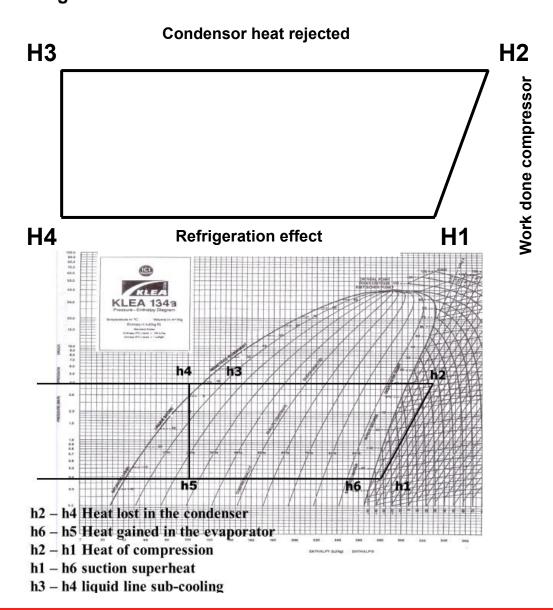
Measured In kw

Condenser capacity measured = $(H2 - H3) \times m$

In kw

Refrigeration Effect measured = $(H1 - H4) \times m$

In kw


Volume Flow Rate (v) measured = Specific volume x m

In m³/s

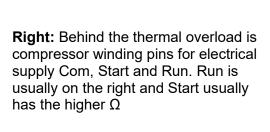
Coefficient of Performance (COP) = Refrigeration effect No units(simply a ratio) (H1 – H4) / work done (H2 – H1)

Refrigerant flow rates

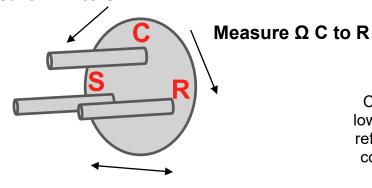
Kw = 10Kw = 0.05Kg/s HRE 200kg

Compressor testing

Above: Remove compressor casing

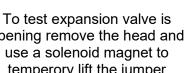

Left: Pull off wiring harness

Right: Thermal overload, reset may need pressing instances of overheating, the ohms reading should be lower than 0.3Ω

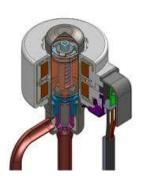


Left: Relay, soft compressor start, Resistance should be lower than 0.3Ω

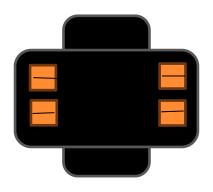
Measure Ω C to S

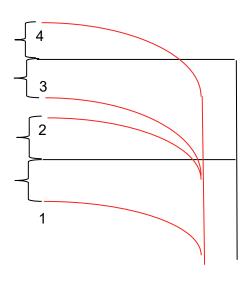

Measure Ω S to R which should be equal to CS + CR

Compressors can fail due to low oil levels, overheating from refrigeration pressures, lack of cooling water from condense and fan failure



opening remove the head and use a solenoid magnet to temperory lift the jumper





Expansion valves are usually supplied by 5vdc and moves around 500 steps per activation, the coil has 2 copper coils which in two sections

The motor has 6 wires sharing the common neutral, across the motor comm and neutral should read 46Ω

Tc = condensing temperature
Ta = ambient temperature
te= evaporating temperature
tei = air inlet to the evaporator

TDc = Tc - Ta TDe = tei - te

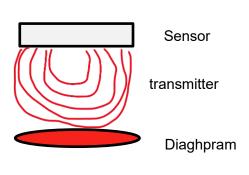
For air cooled condensers:

Hot climates ----- TDc = 6 to 8°C Normal climates ----- TDc = 8 to 10 °C cold climates ----- TDc = 12 to 15 °C

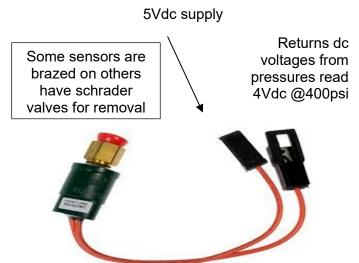
TEV sizing formula

Ta 32

Te -35


39.4k

JEHS-1400-B4-L-3 EVI


Amount of Sub-cooling (K)					
Ta\Te	-40	-35	-30	-25	-20
27	38.8	37.3	35.8	34.3	32.8
32	41.3	39.4	37.6	35.8	34.0
35	42.7	40.7	38.7	36.7	34.6
38	44.2	42.0	39.7	37.5	35.3
43	46.6	44.1	41.5	39.0	36.5

Pressure sensors

Pressure sensors are usually 5Vdc and mostly incorporate capacitive sensors.

Glossary

Building Regs approved document J: Combustion appliances & fuel storage systems

Building Regs approved document F: Ventilation

The Water Supply (Water Fittings) Regulations 1999

The Gas Safety (Installation and Use) Regulations 1998

The IET 18th Edition Wiring Regulations BS 7671.

British Standards for designing central heating systems include:

BS EN 12828: Heating systems in buildings. Design water-based heating systems

BS EN 12831: Heating systems in buildings Method for calculation of design load.

BS EN 442: Radiators and convectors. Technical specifications and requirements. IGE/UP/1B

Other correction factors for radiators

Radiator connection factor	f2
Top and bottom same end (TBSE)	1.00
Top and bottom opposite end (TBOE)	1.05
Bottom opposite end (BOE)	0.96

Enclosure factor	F3
Fixed on plain surface	1.00
Shelf over radiator	0.95
Fixed in open recess	0.90
Encased in cabinet with front or top grille	0.70 or 0.80

Paint finish factor	F4
Oil or water based paint	1.00
Metallic based paint	0.85

Desired room temperatures

Room	Room Temperature ºC
Living Room	21
Dining Room	21
Bedsitting room	21
Bedroom	21
Hall and Landing	21
Kitchen	21
Bathroom	22
Toilet	21
Unheated (including floor)	10

calculating ventilation heat loss:

Category A

Air change rates for older existing buildings (pre 2000)

Category B

Air change rates for modern buildings (2000 or later) with double glazing and regulatory minimum insulation

Category C
New buildings (constructed after 2006) complying with all current Building Regulations

Room	Category A	Category B	Category C
Lounge/living room	1.5	1	0.5
Dining/breakfast room	1.5	1	0.5
Kitchen	2	1.5	1.5
Hall	2	1	0.5
Cloaks/WC	2	1.5	1.5
Utility room	3	2	0.5
Study	1.5	1.5	0.5
Bedroom	1	1	0.5
Bedroom with ensuite bath	2	1.5	1
Internal room or corridor	0	0	0
Landing	2	1	0.5
Bathroom/shower room	3	1.5	1.5
Storeroom	1	0.5	0.5

Softline temperature table

TEMPERATURES

Factors for differences between mean water temperature and room temperature in °C and °F other than 50°C (90°F)

0	C	0	F
5	0.050	10	0.057
10	0.123	20	0.142
15	0.209	30	0.240
20	0.304	40	0.348
25	0.406	50	0.466
30	0.515	60	0.590
35	0.629	70	0.721
40	0.748	80	0.858
45	0.872	90	1.000
50	1.000	100	1.147
55	1.132	110	1.298
60	1.267	120	1.454
65	1.406	130	1.613
70	1.549	140	1.776
75	1.694	-	

Other correction factors for radiators

Radiator connection factor	f2
Top and bottom same end (TBSE)	1.00
Top and bottom opposite end (TBOE)	1.05
Bottom opposite end (BOE)	0.96

Enclosure factor	F3
Fixed on plain surface	1.00
Shelf over radiator	0.95
Fixed in open recess	0.90
Encased in cabinet with front or top grille	0.70 or 0.80

Paint finish factor	F4
Oil or <u>water based</u> paint	1.00
Metallic based paint	0.85

Heating pipe resistances

Fitting description	Equivalent length of straight pipe in metres				
Pipe diameter (copper)	10mm	15mm	22mm	28mm	35mm
Straight valves	0.5	0.5	0.6	0.6	0.8
Angle valves	2.0	2.0	4.5	6.0	N/A
Press fit/ capillary elbow	1.7	1.4	1.3	1.3	1.2
Tee branch (press fit)	1.7	1.5	1.5	1.7	2.0
Tee branch (capillary)	0.6	0.7	1.0	1.3	1.5
Radiator heat emitter	Assume 1 metre pipe per metre of radiator length				

Cylinder heat loss

Norminal Capacity (litres)	Standing heatloss			
	Per day (kwh/24hr)	Per year (kwh/365d)		
120	1.24	453		
150	1.43	522		
170	1.54	562		
210	1.89	690		
250	2.07	756		
300	2.36	961		
Tested to BS	EN 12897 : 2016 stored 20	heated to 60		

Gas rating chart

Time taken for 1 complete revolution of meter test dial (1ft ²)		te Gas flow rate		Calculated heat input		
min	sec	ft³/hr	m³/hr	kW/hr	BTUs/hr	
10	0	6.000	0.168	1.80	6146.15	
9	55	6.050	0.169	1.82	6197.80	
9	50	6.102	0.171	1.83	6250.32	
9	45	6,154	0.172	1.85	6303.74	
9	40	6.207	0.174	1.86	6358.09	
9	35	6.261	0.175	1.88	6413.37	
9	30	6.316	0.177	1.90	6469.63	
9	25	6.372	0.178	1.91	6526.8B	
9	20	6.429	0.180	1.93	6585.16	
9	15	6.486	0.182	1.95	6644.49	
9	10	6.545	0.183	1.97	6704.89	
9	5	6.606	0.185	1.98	6766.40	
9	0	6.667	0.187	2.00	6829.05	
8	55	6.729	0.188	2.02	6892.88	
8	50	6.792	0.190	2.04	6957.90	
8	45	6.857	0,192	2.06	7024.17	
8	40	6.923	0.194	2.08	7091.71	
8	35	6.990	0.196	2.10	7160.56	
8	30	7.059	0.198	2.12	7230.76	
8	25	7.129	0.200	2.14	7302.36	
8	20	7.200	0.202	2.16	7375.38 7449.88	
8	15	7.273	0.204	2.18		
8	10	7.347	0.206	2.21	7525.90 7603.48	
8	5	7.423	0.208	2.23	7682.69	
8	0	7.500	0.210	2.25	7763.56	
7	55	7.579	0.212	2.30	7846.15	
7	50	7.660	0.214	2.32	7930.52	
7	45	7.742	0.217	2.35	8016.72	
7	40	7.826	0.222	2.38	8104.81	
7	35	7.912 8.000	0.224	2.40	8194.87	
7	30 25	8.090	0.227	2.43	8286.94	
7	20	8.182	0.229	2.46	8381.11	
7	15	8.276	0.232	2.48	8477.45	
7	10	8.372	0.234	2.51	8576.02	
7	5	8.471	0.237	2.54	8676.92	
7	0	8.571	0.240	2.57	8780.21	
6	55	8.675	0.243	2.60	8886.00	
6	50	8.780	0.246	2.64	8994.36	
6	45	8.889	0.249	2.67	9105.41	
6	40	9.000	0.252	2.70	9219.22	
6	35	9.114	0.255	2.74	9335.92	
6	30	9.231	0.258	2.77	9455.61	
6	25	9.351	0.262	2.81	9578.4	
6	20	9.474	0.265	2.84	9704.45	
6	15	9.600	0.269	2.88	9833.84	
6	10	9.730	0.272	2.92	9966.73	
6	5	9.863	0.276	2.96	10103.2	
6	0	10.000	0.280	3.00	10243.5	
5	55	10.141	0.284	3.04	10387.8	
5	50	10.286	0.288	3.09	10536.2	
5	45	10.435	0.292	3.13	10688.9	
5	40	10.588	0.296	3.18	10846.1	
5	35	10.746	0.301	3.23	11008.0	
5	30	10.909	0.305	3.28	11174.8	
5	25	11.077	0.310	3.33	11346.7	
5	20	11.250	0.315	3.38	11524.0	
5	15	11.429	0.320	3.43	11706.9	
5	10	11.613	0.325	3.49	11895.7	
5	5	11.803	0.330	3.54	12090.7	
5	0	12.000	0.336	3.60	12292.3	
4	55	12.203	0.342	3.66	12500.6	
4	50	12.414	0.348	3.73	12716.1	
4	45	12.632	0.354	3.79	12939.2	
4	40	12.857	0.360	3.86	13170.3	
4	35	13.091	0.367	3.93	13409.7	
4	30	13.333	0.373	4.00	13658.1	

Time taken for 1 complete revolution of meter test dial (1ft ³)		Gas flow	rate	Calculated heat input	
	-	ft³/hr	m³/hr	kW/hr	BTUs/hr
min 4	sec 25	13.585	0.380	4.08	13915.81
4	20	13.846	0.388	4.16	14183.42
4	15	14.118	0.395	4.24	14461.53
4	10	14.400	0.403	4.32	14750.76
	5	14.694	0.411	4.41	15051.79
4	-	15.000	0.420	4.50	15365.37
4	0		0.429	4.60	15692.30
3	55	15.319	0.429	4.70	16033.43
3	50	15.652	-	4.80	16389.73
3	45	16.000	0.448	4.91	16762.23
3	40	16.364	0.458		17152.04
3	35	16.744	0.469	5.03	17560.43
3	30	17.143	0.480	5.15	
3	25	17.561	0.492	5.27	17988.73
3	20	18.000	0.504	5.40	18438.45
3	15	18.462	0.517	5.54	18911.23
3	10	18.947	0.531	5.69	19408.89
3	5	19.459	0.545	5.84	19933.46
3	0	20.000	0.560	6.00	20487.16
2	55	20.571	0.576	6.18	21072.51
2	50	21.176	0.593	6.36	21692.29
2	45	21.818	0.611	6.55	22349.63
2	40	22.500	0.630	6.76	23048.06
2	35	23.226	0.650	6.97	23791.55
2	30	24.000	0.672	7.21	24584.60
2	25	24.828	0.695	7.45	25432.34
2	20	25.714	0.720	7.72	26340.64
2	15	26.667	0.747	8.01	27316.22
2	10	27.692	0.775	8.31	28366.84
2	5	28.800	0.806	8.65	29501.52
2	0	30.000	0.840	9.01	30730.75
1	55	31.304	0.877	9.40	32066.87
1	50	32.727	0.916	9.83	33524.45
1	45	34.286	0.960	10.29	35120.85
1	40	36.000	1.008	10.81	36876.90
-	-	37.895	1.061	11.38	38817.79
1	35	The second second second second	1.120	12.01	40974.33
1	30	40.000	1.186	12.72	43384.58
1	25	42.353		13.51	46096.12
1	20	45.000	1.260	14.41	49169.19
1	15	48.000	1.344	15.44	52681.28
1	10	51.429	1.440		
1	5	55.385	1,551	16.63	56733.69
1	0	60.000	1.680	18.01	61461.49
0	58	62.069	1.738	18.63	63580.86
0	56	64.286	1.800	19.30	65851.60
0	54	66.667	1.867	20.01	68290.55
0	52	69.231	1.938	20.78	70917.11
0	50	72.000	2.016	21.62	73753.79
0	48	75.000	2,100	22.52	76826.87
0	46	78.261	2,191	23.50	80167.17
0	44	81.818	2.291	24.56	83811.13
0	42	85.714	2,400	25.73	87802.13
0	40	90.000	2.520	27.02	92192.24
0	38	94.737	2.653	28.44	97044.46
0	36	100.000	2.800	30.02	102435.82
0	34	105.882	2.965	31.79	108461.46
0	32	112.500	3.150	33.78	115240.30
0	30	120,000	3.360	36.03	122922.99
0	28	128.571	3.600	38.60	131703.20
0	26	138.462	3.877	41.57	141834.22
0	24	150.000	4.200	45.03	153653.73
0	22	163.636	4.582	49.13	167622.25
0	20	180.000	5.040	54.04	184384.48
0	18	200.000	5.600	60.04	204871.64
0	16	225.000	6.300	67.55	230480.60
0	14	257.143	7.200	77.20	263406.40
	12	300.000	8.400	-	307307.47
0	+	and the second second second	10.080	_	368768.96
0	10	360.000	10.000	100,00	000100.00

Gas Pipe sizing chart

Based on straight actual length with 1mb droppage from both ends use 0.5m for a bend & 0.3m for a machine bend

	Length of pipe (m)								
	3	6	9	12	15	20	25	30	
mm (OD)	Discharge (m ³ /hr)								
8	00.29	00.14	00.49	00.07	00.05	-	-	-	
10	00.86	00.57	00.50	00.37	00.30	00.22	00.18	00.15	
12	01.50	01.00	00.85	00.82	00.69	00.52	00.41	00.34	
15	02.90	01.90	01.50	01.30	01.10	00.95	00.92	00.88	
22	08.70	05.80	04.60	03.90	03.40	02.90	02.50	02.30	
28	18.00	12.00	09.40	08.00	07.00	05.90	05.20	04.70	
35	32.00	22.00	17.00	15.00	13.00	11.00	09.50	08.50	