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Chapter 1

Linear Equations and Matrices

Section 1.1, p. 8

2. x = 1, y = 2, z = −2. 4. No solution.

6. x = 13 + 10z, y = −8 − 8z, z = any real number.

8. No solution.

10. x = 2, y = −1.

12. No solution.

14. x = −1, y = 2, z = −2.

16. (c) Yes. (d) Yes.

18. x = 2, y = 1, z = 0.

20. There is no such value of r.

22. Zero, infinitely many, zero.

24. 1.5 tons of regular and 2.5 tons of special plastic.

26. 20 tons of 2-minute developer and a total of 40 tons of 6-minute and 9-minute developer.

28. $7000, $14,000, $3000.

T.1. The same numbers sj satisfy the system when the pth equation is written in place of the qth equation
and vice versa.

T.2. If s1, s2, . . . , sn is a solution to (2), then the ith equation of (2) is satisfied: ai1s1+ai2s2+· · ·+ainsn =
bi. Then for any r �= 0, rai1s1 + rai2s2 + · · ·+ rainsn = rbi. Hence s1, s2, . . . , sn is a solution to the
new system. Conversely, for any solution s′1, s

′
2, . . . , s

′
n to the new system, rai1s

′
1+· · ·+rains′n = rbi,

and dividing both sides by nonzero r we see that s′1, . . . , s
′
n must be a solution to the original linear

system.

T.3. If s1, s2, . . . , sn is a solution to (2), then the pth and qth equations are satisfied:

ap1s1 + · · · apn = bp

aq1s1 + · · · aqn = bq.
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Thus, for any real number r,

(ap1 + raq1)s1 + · · · + (apn + raqn)sn = bp + rbq

and so s1, . . . , sn is a solution to the new system. Conversely, any solution to the new system is also
a solution to the original system (2).

T.4. Yes; x = 0, y = 0 is a solution for any values of a, b, c, and d.

Section 1.2, p. 19

2. a = 3, b = 1, c = 8, d = −2.

4. (a) C + E = E + C =

⎡⎣5 −5 8
4 2 9
5 3 4

⎤⎦. (b) Impossible. (c)
[
7 −7
0 1

]
.

(d)

⎡⎣ −9 3 −9
−12 −3 −15
−6 −3 −9

⎤⎦. (e)

⎡⎣ 0 10 −9
8 −1 −2

−5 −4 3

⎤⎦. (f) Impossible.

6. (a) AT =

⎡⎣1 2
2 1
3 4

⎤⎦, (AT )T =
[
1 2 3
2 1 4

]
. (b)

⎡⎣ 5 4 5
−5 2 3

8 9 4

⎤⎦. (c)
[
−6 10
11 17

]
.

(d)
[
0 −4
4 0

]
. (e)

⎡⎣3 4
6 3
9 10

⎤⎦. (f)
[

17 2
−16 6

]
.

8. Yes: 2
[
1 0
0 1

]
+ 1

[
1 0
0 0

]
=

[
3 0
0 2

]
.

10.

⎡⎣λ − 1 −2 −3
−6 λ + 2 −3
−5 −2 λ − 4

⎤⎦.

12. (a)
[
0 0
1 1

]
. (b)

[
1 1
1 0

]
. (c)

[
1 1
0 1

]
. (d)

[
0 1
0 1

]
. (e)

[
1 1
0 1

]
.

14. v =
[
0 0 0 0

]
.

T.1. Let A and B each be diagonal n×n matrices. Let C = A + B, cij = aij + bij . For i �= j, aij and bij

are each 0, so cij = 0. Thus C is diagonal. If D = A − B, dij = aij − bij , then dij = 0. Therefore
D is diagonal.

T.2. Following the notation in the solution of T.1 above, let A and B be scalar matrices, so that aij = 0
and bij = 0 for i �= j, and aii = a, bii = b. If C = A + B and D = A − B, then by Exercise T.1, C
and D are diagonal matrices. Moreover, cii = aii + bii = a + b and dii = aii − bii = a − b, so C and
D are scalar matrices.

T.3. (a)

⎡⎣ 0 b − c c − e
c − b 0 0
e − c 0 0

⎤⎦. (b)

⎡⎣ 2a c + b e + c
b + c 2d 2e
c + e 2e 2f

⎤⎦. (c) Same as (b).

T.4. Let A =
[
aij

]
and C =

[
cij

]
, so cij = kaij . If kaij = 0, then either k = 0 or aij = 0 for all i, j.

T.5. (a) Let A =
[
aij

]
and B =

[
bij

]
be upper triangular matrices, and let C = A + B. Then for i > j,

cij = aij + bij = 0 + 0 = 0, and thus C is upper triangular. Similarly, if D = A − B, then for
i > j, dij = aij − bij = 0 − 0 = 0, so D is upper triangular.



Section 1.2 3

(b) Proof is similar to that for (a).

(c) Let A =
[
aij

]
be both upper and lower triangular. Then aij = 0 for i > j and for i < j. Thus,

A is a diagonal matrix.

T.6. (a) Let A =
[
aij

]
be upper triangular, so that aij = 0 for i > j. Since AT =

[
aT

ij

]
, where aT

ij = aji,
we have aT

ij = 0 for j > i, or aT
ij = 0 for i < j. Hence AT is lower triangular.

(b) Proof is similar to that for (a).

T.7. To justify this answer, let A =
[
aij

]
be an n × n matrix. Then AT =

[
aji

]
. Thus, the (i, i)th entry

of A − AT is aii − aii = 0. Therefore, all entries on the main diagonal of A − AT are 0.

T.8. Let x =

⎡⎢⎢⎢⎣
x1

x2

...
xn

⎤⎥⎥⎥⎦ be an n-vector. Then

x + 0 =

⎡⎢⎢⎢⎣
x1

x2

...
xn

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
0
0
...
0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
x1 + 0
x2 + 0

...
xn + 0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
x1

x2

...
xn

⎤⎥⎥⎥⎦ = x.

T.9.
[
0
0

]
,
[
1
0

]
,
[
0
1

]
,
[
1
1

]
; four.

T.10.

⎡⎣0
0
0

⎤⎦,

⎡⎣0
0
1

⎤⎦,

⎡⎣0
1
0

⎤⎦,

⎡⎣0
1
1

⎤⎦,

⎡⎣1
0
0

⎤⎦,

⎡⎣1
0
1

⎤⎦,

⎡⎣1
1
0

⎤⎦,

⎡⎣1
1
1

⎤⎦; eight

T.11.

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦,

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦,

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦,

⎡⎢⎢⎣
0
0
1
1

⎤⎥⎥⎦,

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦,

⎡⎢⎢⎣
0
1
0
1

⎤⎥⎥⎦,

⎡⎢⎢⎣
0
1
1
0

⎤⎥⎥⎦,

⎡⎢⎢⎣
0
1
1
1

⎤⎥⎥⎦,

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦,

⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦,

⎡⎢⎢⎣
1
0
1
0

⎤⎥⎥⎦,

⎡⎢⎢⎣
1
0
1
1

⎤⎥⎥⎦,

⎡⎢⎢⎣
1
1
0
0

⎤⎥⎥⎦,

⎡⎢⎢⎣
1
1
0
1

⎤⎥⎥⎦,

⎡⎢⎢⎣
1
1
1
0

⎤⎥⎥⎦,

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦; sixteen

T.12. Thirty two; 2n.

T.13.
[
0 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
0 0

]
,

[
0 1
0 1

]
,

[
0 0
1 0

]
,

[
0 0
1 1

]
,

[
0 1
1 0

]
,

[
0 1
1 1

]
,

[
1 0
0 0

]
,

[
1 0
0 1

]
,

[
1 1
0 0

]
,

[
1 1
0 1

]
,[

1 0
1 0

]
,
[
1 0
1 1

]
,
[
1 1
1 0

]
,
[
1 1
1 1

]
; sixteen

T.14. 29 = 512.

T.15. 2n2
.

T.16. A =

⎡⎣1 1 0
0 1 0
0 1 1

⎤⎦ so B = A is such that A + B =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦.

T.17. A =

⎡⎣1 1 0
0 1 0
0 1 1

⎤⎦; if B =

⎡⎣0 0 1
1 0 1
1 0 0

⎤⎦, then A + B =

⎡⎣1 1 1
1 1 1
1 1 1

⎤⎦.

T.18. (a) B =

⎡⎣1 1
1 1
1 1

⎤⎦ since A + B =

⎡⎣0 1
1 0
0 0

⎤⎦.
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(b) Yes; C + B =

⎡⎣0 0
1 1
0 1

⎤⎦.

(c) Let B be a bit matrix of all 1s. A + B will be a matrix that reverses each state of A.

ML.1. Once you have entered matrices A and B you can use the commands given below to see the items
requested in parts (a) and (b).

(a) Commands: A(2,3), B(3,2), B(1,2)

(b) For row1(A) use command A(1,:)

For col3(A) use command A(:,3)

For row2(B) use command B(2,:)

(In this context the colon means ‘all.’)

(c) Matrix B in format long is

8.00000000000000 0.66666666666667
0.00497512437811 −3.20000000000000
0.00000100000000 4.33333333333333

ML.2. (a) Use command size(H)

(b) Just type H

(c) Type format rat, then H. (To return to decimal format display type format.)

(d) Type H(:,1:3)

(e) Type H(4:5,:)

Section 1.3, p. 34

2. (a) 4. (b) 0. (c) 1. (d) 1.

4. 1

6. x = 6
5 , y = 12

5 .

8. (a)
[
26 42
34 54

]
. (b) Same as (a). (c)

[
−7 −12 18

4 6 −8

]
.

(d) Same as (c). (e)
[

4 8 −12
−1 6 −7

]
.

10. DI2 = I2D = D.

12.
[
0 0
0 0

]
.

14. (a)

⎡⎢⎢⎣
1

14
0

13

⎤⎥⎥⎦. (b)

⎡⎢⎢⎣
0

18
3

13

⎤⎥⎥⎦.

16. col1(AB) = 1

⎡⎣1
2
3

⎤⎦ + 3

⎡⎣−2
4
0

⎤⎦ + 2

⎡⎣−1
3

−2

⎤⎦; col2(AB) = −1

⎡⎣1
2
3

⎤⎦ + 2

⎡⎣−2
4
0

⎤⎦ + 4

⎡⎣−1
3

−2

⎤⎦.



Section 1.3 5

18.
[
−2 2 3

3 5 −1

]⎡⎣3
4
2

⎤⎦.

20. −2x − y + 4w = 5
−3x + 2y + 7z + 8w = 3

x + 2w = 4
3x + z + 3w = 6.

22. (a)

⎡⎢⎢⎣
3 −1 2
2 1 0
0 1 3
4 0 −1

⎤⎥⎥⎦. (b)

⎡⎢⎢⎣
3 −1 2
2 1 0
0 1 3
4 0 −1

⎤⎥⎥⎦
⎡⎣x

y
z

⎤⎦ =

⎡⎢⎢⎣
4
2
7
4

⎤⎥⎥⎦. (c)

⎡⎢⎢⎣
3 −1 2 4
2 1 0 2
0 1 3 7
4 0 −1 4

⎤⎥⎥⎦.

24. (a)
[
1 2 0
2 5 3

]⎡⎣x
y
z

⎤⎦ =
[
1
1

]
. (b)

⎡⎣1 2 1
1 1 2
2 0 2

⎤⎦⎡⎣x
y
z

⎤⎦ =

⎡⎣0
0
0

⎤⎦.

26. (a) Can say nothing. (b) Can say nothing.

28. There are infinitely many choices. For example, r = 1, s = 0; or r = 0, s = 2; or r = 10, s = −18.

30. A =

⎡⎢⎢⎢⎢⎣
2 × 2 2 × 2 2 × 1

2 × 2 2 × 2 2 × 1

2 × 2 2 × 2 2 × 1

⎤⎥⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎣
2 × 2 2 × 3

2 × 2 2 × 3

1 × 2 1 × 3

⎤⎥⎥⎥⎦.

A =

⎡⎣3 × 3 3 × 2

3 × 3 3 × 2

⎤⎦ and B =

⎡⎣3 × 3 3 × 2

2 × 3 2 × 2

⎤⎦.

AB =

⎡⎢⎢⎢⎢⎢⎢⎣
21 48 41 48 40
18 26 34 33 5
24 26 42 47 16
28 38 54 70 35
33 33 56 74 42
34 37 58 79 54

⎤⎥⎥⎥⎥⎥⎥⎦
32. For each product P or Q, the daily cost of pollution control at plant X or at plant Y .

34. (a) $103,400. (b) $16,050.

36. (a) 1. (b) 0.

38. x = 0 or x = 1.

40. AB =

⎡⎣1 0 0
1 1 0
1 0 1

⎤⎦, BA =

⎡⎣0 1 0
1 0 0
1 1 1

⎤⎦.

T.1. (a) No. If x = (x1, x2, . . . , xn), then x ·x = x2
1 + x2

2 + · · · + x2
n ≥ 0.

(b) x = 0.

T.2. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), and c = (c1, c2, . . . , cn). Then

(a) a ·b =
n∑

i=1

aibi and b ·a =
n∑

i=1

biai, so a ·b = b ·a.
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(b) (a + b) · c =
n∑

i=1

(ai + bi)ci =
n∑

i=1

aici +
n∑

i=1

bici = a · c + b · c.

(c) (ka) ·b =
n∑

i=1

(kai)bi = k

n∑
i=1

aibi = k(a ·b).

T.3. Let A =
[
aij

]
be m × p and B =

[
bij

]
be p × n.

(a) Let the ith row of A consist entirely of zeros, so aik = 0 for k = 1, 2, . . . , p. Then the (i, j)
entry in AB is

p∑
k=1

aikbkj = 0 for j = 1, 2, . . . , n.

(b) Let the jth column of B consist entirely of zeros, so bkj = 0 for k = 1, 2, . . . , p. Then again the
(i, j) entry of AB is 0 for i = 1, 2, . . . , m.

T.4. Let A and B be diagonal matrices, so aij = 0 and bij = 0 for i �= j. Let C = AB. Then, if C =
[
cij

]
,

we have

cij =
n∑

k=1

aikbkj . (1.1)

For i �= j and any value of k, either k �= i and so aik = 0, or k �= j and so bkj = 0. Thus each term
in the summation (1.1) equals 0, and so also cij = 0. This holds for every i, j such that i �= j, so C
is a diagonal matrix.

T.5. Let A and B be scalar matrices, so that aij = a and bij = b for all i = j. If C = AB, then by
Exercise T.4, cij = 0 for i �= j, and cii = a · b = aii · bii = c, so C is a scalar matrix.

T.6. Let A =
[
aij

]
and B =

[
bij

]
be upper triangular matrices.

(a) Let C = AB, cij =
∑

aikbkj . If i > j, then for each k, either k > j (and so bkj = 0), or else
k ≤ j < i (and so aik = 0). Thus cij = 0.

(b) Proof similar to that for (a).

T.7. Yes. If A =
[
aij

]
and B =

[
bij

]
are diagonal matrices, then C =

[
cij

]
is diagonal by Exercise T.4.

Moreover, cii = aiibii. Similarly, if D = BA, then dii = biiaii. Thus, C = D.

T.8. (a) Let a =
[
a1 a2 · · · an

]
and B =

[
bij

]
. Then

aB =
[

a1b11 + a2b21 + · · · + anbn1 a1b12 + a2b22 + · · · + anbn2 · · ·
a1b1p + a2b2p + · · · + anbnp

]
= a1

[
b11 b12 · · · b1p

]
+ a2

[
b21 b22 · · · b2p

]
+ · · · + an

[
bn1 bn2 · · · bnp

]
.

(b) 1
[
2 1 −4

]
− 2

[
−3 −2 3

]
+ 3

[
4 5 −2

]
.

T.9. (a) The jth column of AB is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
k

a1kbkj∑
k

a2kbkj

...∑
k

amkbkj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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(b) The ith row of AB is [∑
k

aikbk1

∑
k

aikbk2 · · ·
∑

k

aikbkn

]
.

T.10. The i, ith element of the matrix AAT is
n∑

k=1

aikaT
ki =

n∑
k=1

aikaik =
n∑

k=1

(aik)2.

Thus if AAT = O, then each sum of squares
n∑

k=1

(aik)2 equals zero, which implies aik = 0 for each i

and k. Thus A = O.

T.11. (a)
n∑

i=1

(ri + si)ai = (r1 + s1)a1 + (r2 + s2)a2 + · · · + (rn + sn)an

= r1a1 + s1a1 + r2a2 + s2a2 + · · · + rnan + snan

= (r1a1 + r2a2 + · · · + rnan) + (s1a1 + s2a2 + · · · + snan) =
n∑

i=1

riai +
n∑

i=1

siai

(b)
n∑

i=1

c(riai) = cr1a1 + cr2a2 + · · · + crnan = c(r1a1 + r2a2 + · · · + rnan) = c

n∑
i=1

riai.

T.12.
n∑

i=1

m∑
j=1

aij = (a11 + a12 + · · · + a1m) + (a21 + a22 + · · · + a2m) + · · · + (an1 + an2 + · · · + anm)

= (a11 + a21 + · · · + an1) + (a12 + a22 + · · · + an2) + · · · + (a1m + a2m + · · · + anm)

=
m∑

j=1

n∑
i=1

aij .

T.13. (a) True.
n∑

i=1

(ai + 1) =
n∑

i=1

ai +
n∑

i=1

1 =
n∑

i=1

ai + n.

(b) True.
n∑

i=1

m∑
j=1

1 =
n∑

i=1

⎛⎝ m∑
j=1

1

⎞⎠ =
n∑

i=1

m = mn.

(c) True.

⎡⎣ n∑
i=1

ai

⎤⎦⎡⎣ m∑
j=1

bj

⎤⎦ = a1

m∑
j=1

bj + a2

m∑
j=1

bj + · · · + an

m∑
j=1

bj

= (a1 + a2 + · · · + an)
m∑

j=1

bj

=
n∑

i=1

ai

m∑
j=1

bj =
m∑

j=1

n∑
i=1

aibj

T.14. (a) If u =

⎡⎢⎢⎢⎣
u1

u2

...
un

⎤⎥⎥⎥⎦ and v =

⎡⎢⎢⎢⎣
v1

v2

...
vn

⎤⎥⎥⎥⎦, then

u ·v =
n∑

i=1

uivi =
[
u1 u2 · · · un

]
⎡⎢⎢⎢⎣

v1

v2

...
vn

⎤⎥⎥⎥⎦ = uT v.
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(b) If u =
[
u1 u2 · · · un

]
and v =

[
v1 v2 · · · vn

]
, then

u ·v =
n∑

i=1

uivi =
[
u1 u2 · · · un

]
⎡⎢⎢⎢⎣

v1

v2

...
vn

⎤⎥⎥⎥⎦ = uvT .

(c) If u =
[
u1 u2 · · · un

]
and v =

⎡⎢⎢⎢⎣
v1

v2

...
vn

⎤⎥⎥⎥⎦, then

u ·v =
n∑

i=1

uivi = uv.

ML1.1 (a) A ∗∗∗ C
ans =

4.5000 2.2500 3.7500

1.5833 0.9167 1.5000

0.9667 0.5833 0.9500

(b) A ∗∗∗ B
??? Error using ===> ∗
Inner matrix dimensions must agree.

(c) A+++ C′′′

ans =
5.0000 1.5000

1.5833 2.2500

2.4500 3.1667

(d) B ∗∗∗ A−−− C′′′ ∗∗∗ A
??? Error using ===> ∗
Inner matrix dimensions must agree.

(e) (((2 ∗∗∗ C−−− 6 ∗∗∗ A′′′) ∗∗∗ B′′′

??? Error using ===> ∗
Inner matrix dimensions must agree.

(f) A ∗∗∗ C−−− C ∗∗∗ A
??? Error using ===> −−−
Inner matrix dimensions must agree.

(g) A ∗∗∗ A′′′ +++ A′′′ ∗∗∗ C
ans =

18.2500 7.4583 12.2833

7.4583 5.7361 8.9208

12.2833 8.9208 14.1303

ML.2. aug =
2 4 6 −12
2 −3 −4 15

3 4 5 −8
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ML.3. aug =
4 −3 2 −1 −5
2 1 −3 0 7

−1 4 1 2 8

ML.4. (a) R === A(2,:)
R =

3 2 4

C === B(:,3)
C =

−1
−3
5

V === R ∗∗∗ C
V =

11
V is the (2,3)-entry of the product A ∗∗∗ B.

(b) C === B(:,2)
C =

0

3

2

V === A ∗∗∗ C
V =

1

14

0

13
V is column 2 of the product A ∗∗∗ B.

(c) R === A(3,:)
R =

4 −2 3

V === R ∗∗∗ B
V =

10 0 17 3
V is row 3 of the product A ∗∗∗ B.

ML.5. (a) diag([1 2 3 4])
ans =

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

(b) diag([0 1 1/2 1/3 1/4])
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ans =
0 0 0 0 0

0 1.0000 0 0 0

0 0 0.5000 0 0

0 0 0 0.3333 0

0 0 0 0 0.2500

(c) diag([5 5 5 5 5 5])
ans =

5 0 0 0 0 0

0 5 0 0 0 0

0 0 5 0 0 0

0 0 0 5 0 0

0 0 0 0 5 0

0 0 0 0 0 5

ML.6. (a) (i) dot(v,w) = 15. (ii) dot(v,w) = 0. (b) k = − 2
3 .

(b) (i) dot(v,v) = 29. (ii) dot(v,v) = 127. (iii) dot(v,v) = 39.
The sign of each of these dot products is positive since it is a sum of squares. This is not true
for the zero vector.

ML.8. 0.

ML.9. (a) bingen(0,7,3) =

⎡⎣0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤⎦.

(b) AB =

⎡⎣0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1

⎤⎦.

(c) The columns of B which contain an odd number of 1s are dotted with a vector of all 1s (a row
of A) hence the result is 1.

ML.10. Here

AB =

⎡⎢⎢⎣
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

⎤⎥⎥⎦ .

The columns of B which contain an odd number of 1s are dotted with a vector of all 1s (a row of
A) hence the result is 1.

ML.11.

n = 2 BB =
[
0 0
0 0

]
n = 4, BB = O

n = 3, BB =

⎡⎣1 1 1
1 1 1
1 1 1

⎤⎦ n = 5, BB = matrix of all 1s.

BB =

{
zero matrix if n is even
matrix of 1s if n is odd.
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Section 1.4, p. 49

2. A(BC) =
[
−2 34
24 −9

]
.

4. r(sA) =
[
−48 −24
−12 36

]
, (r + s)A =

[
16 8
4 −12

]
, r(A + B) =

[
24 24

−18 0

]
.

6. (A + B)T =

⎡⎣5 0
5 2
1 2

⎤⎦, (rA)T =

⎡⎣ −4 −8
−12 −4
−8 12

⎤⎦.

8. (a)
[
5 17
6 −5

]
. (b) Same as (a).

(c)

⎡⎣ 1 18 −4
0 11 −3

−9 14 −12

⎤⎦. (d)

⎡⎣5 2 4
2 25 −5
4 −5 5

⎤⎦. (e)
[
14 8
8 21

]
.

14. (a)
[
−3 −2

4 1

]
. (b)

[
−24 −30

60 36

]
.

16. k = ±
√

1
6

18. (a)

⎡⎣ 16
45

29
45

⎤⎦. (b)

⎡⎣ 3
8

5
8

⎤⎦.

20. (a) After one year:

⎡⎢⎢⎢⎣
13
36

17
36

1
6

⎤⎥⎥⎥⎦ ≈

⎡⎣0.3611
0.4722
0.1667

⎤⎦.

After 2 years:

⎡⎢⎢⎢⎣
43
108

191
432

23
144

⎤⎥⎥⎥⎦ ≈

⎡⎣0.3981
0.4421
0.1597

⎤⎦.

(c) S. It will gain approximately 11.95% of the market.

24. (a)
[
0 0
0 0

]
. (b)

[
0 1
0 1

]
.

T.1. (b) The (i, j) entry of A+(B +C) is aij +(bij + cij), that of (A+B)+C is (aij + bij)+ cij . These
two entries are equal because of the associative law for addition of real numbers.

(d) For each (i, j) let dij = −aij , D =
[
dij

]
. Then A + D = D + A = O.

T.2.
3∑

p=1

aip

(
4∑

q=1

bpqcqj

)
=

3∑
p=1

4∑
q=1

aipbpqcqj =
4∑

q=1

3∑
p=1

aipbpqcqj =
4∑

q=1

(
3∑

p=1

aipbpq

)
cqj .

T.3. (b)
p∑

k=1

aik(bkj + ckj) =
p∑

k=1

(aikbkj + aikckj) =
p∑

k=1

aikbkj +
p∑

k=1

aikckj

(c)
p∑

k=1

(aik + bik)ckj =
p∑

k=1

(aikckj + bikckj) =
p∑

k=1

aikckj +
p∑

k=1

bikckj .
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T.4. Denote the entries of the identity matrix by dij , so that

dij =

{
1 if i = 1
0 if i �= j.

Then for C = AIn, cij =
p∑

k=1

aikdkj = aijdjj(all other dkj are zero) = aij , and thus C = A.

A similar argument shows that ImA = A.

T.5. ApAq = (A · A · · ·A)︸ ︷︷ ︸
p factors

· (A · A · · ·A)︸ ︷︷ ︸
q factors

= Ap+q, (Ap)q = Ap · Ap · Ap · · ·Ap︸ ︷︷ ︸
q factors

= A

q summands︷ ︸︸ ︷
p + p + · · · + p = Apq.

T.6. We are given that AB = BA. For p = 0, (AB)0 = In = A0B0; for p = 1, (AB)1 = AB = A1B1; and
for p = 2, (AB)(AB) = A(BA)B = A(AB)B = A2B2. Now assume that for p = k, (AB) = AkBk.
Then

(AB)k+1 = (AB)k(AB) = AkBk · A · B = Ak(Bk−1AB)B = Ak(Bk−2AB2)B = · · · = Ak+1Bk+1.

Thus the result is true also for p = k + 1. Hence it is true for all positive integers p.

T.7. From Exercise T.2 in Section 1.2 we know that the product of two diagonal matrices is a diagonal
matrix. Let A =

[
aij

]
, B =

[
bij

]
, AB = C =

[
cij

]
and BA = D =

[
dij

]
. Then

cii =
n∑

k=1

aikbki = aiibii ; dii =
n∑

k=1

bikaki = biiaii

so cii = dii for i = 1, 2, . . . , n. Hence, C = D.

T.8. B =
[
1 3
3 1

]
is such that AB = BA. There are infinitely many such matrices B.

T.9. Possible answers:
[
a b
0 a

]
. Infinitely many.

T.10. (a)
[

cos 2θ sin 2θ
− sin 2θ cos 2θ

]
. (b)

[
cos 3θ sin 3θ

− sin 3θ cos 3θ

]
. (c)

[
cos kθ sin kθ

− sin kθ cos kθ

]
.

(d) The result is true for p = 2 and 3 as shown in parts (a) and (b). Assume that it is true for
p = k. Then

Ak+1 = AkA =
[

cos kθ sin kθ
− sin kθ cos kθ

] [
cos θ sin θ

− sin θ cos θ

]
=

[
cos kθ cos θ − sin kθ sin θ cos kθ sin θ + sin kθ cos θ

− sin kθ cos θ − cos kθ sin θ cos kθ cos θ − sin kθ sin θ

]
=

[
cos(k + 1)θ sin(k + 1)θ

− sin(k + 1)θ cos(k + 1)θ

]
.

Hence, it is true for all positive integers k.

T.11. For p = 0, (cA)0 = In = 1 · In = c0 · A0. For p = 1, cA = cA. Assume the result true for p = k:
(cA)k = ckAk. Then for p = k + 1, we have

(cA)k+1 = (cA)k(cA) = ckAk · cA = ck(Akc)A = ck(cAk)A = (ckc)(AkA) = ck+1Ak+1.

Therefore the result is true for all positive integers p.
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T.12. (a) For A =
[
aij

]
, the (i, j) element of r(sA) is r(saij), that of (rs)A is (rs)aij , and these are equal

by the associative law for multiplication of real numbers.

(b) The (i, j) element of (r + s)A is (r + s)aij , that of rA + sA is raij + saij , and these are equal
by the distributive law of real numbers.

(c) r(aij + bij) = raij + rbij .

(d)
p∑

k=1

aik(rbkj) = r

p∑
k=1

aikbkj =
p∑

k=1

(raik)bkj .

T.13. (−1)aij = −aij (see Exercise T.1.).

T.14. (a) The i, jth element of (AT )T is the j, ith element of AT , which is the i, jth element of A.

(b) The i, jth element of (A + B)T is cji, where cij = aij + bij . Thus cji = aji + bji. Hence
(A + B)T = AT + BT .

(c) The i, jth element of (rA)T is the j, ith element of rA, that is, raji. Thus (rA)T = rAT .

T.15. Let A =
[
aij

]
and B =

[
bij

]
. Then A−B =

[
cij

]
, where cij = aij − bij . Then (A−B)T =

[
cT
ij

]
, so

cT
ij = cji = aji − bji = aT

ij − bT
ij = the i, jth entry in AT − BT .

T.16. (a) We have A2 = AA, so (A2)T = (AA)T = AT AT = (AT )2.

(b) From part (a), (A3)T = (A2A)T = AT (A2)T = AT (AT )2 = (AT )3.

(c) The result is true for p = 2 and 3 as shown in parts (a) and (b). Assume that it is true for
p = k. Then

(Ak+1)T = (AAk)T = (Ak)T AT = (AT )kAT = (AT )k+1.

Hence, it is true for k = 4, 5, . . . .

T.17. If A is symmetric, then AT = A. Thus aji = aij for all i and j. Conversely, if aji = aij for all i and
j, then AT = A and A is symmetric.

T.18. Both “A is symmetric” and “AT is symmetric” are logically equivalent to “aji = aij for all i and j.”

T.19. If Ax = 0 for all n × 1 matrices x, then Aej = 0, j = 1, 2, . . . , n, where ej = column j of In. But
then

Aej =

⎡⎢⎢⎢⎣
a1j

a2j

...
anj

⎤⎥⎥⎥⎦ = 0.

Hence column j of A is equal to 0 for each j and it follows that A = O.

T.20. If Ax = x for all n × 1 matrices x, then Aej = ej , where ej = column j of In. Since

Aej =

⎡⎢⎢⎢⎣
a1j

a2j

...
anj

⎤⎥⎥⎥⎦ = ej ,

it follows that aij = 1 if i = j and 0 otherwise. Hence A = In.
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T.21. Given that AAT = O, we have that each entry of AAT is zero. In particular then, each diagonal
entry of AAT is zero. Hence

0 = rowi(A) · coli(AT ) =
[
ai1 ai2 · · · ain

]
⎡⎢⎢⎢⎣

ai1

ai2

...
ain

⎤⎥⎥⎥⎦ =
n∑

j=1

(aij)2.

(Recall that coli(AT ) is rowi(A) written in column form.) A sum of squares is zero only if each
member of the sum is zero, hence ai1 = ai2 = · · · = ain = 0, which means that rowi(A) consists of
all zeros. The previous argument holds for each diagonal entry, hence each row of A contains all
zeros. Thus it follows that A = O.

T.22. Suppose that A is a symmetric matrix. By Exercise T.16(c) we have (Ak)T = (AT )k = Ak so Ak is
symmetric for k = 2, 3, . . . .

T.23. (a) (A + B)T = AT + BT = A + B, so A + B is symmetric.

(b) Suppose that AB is symmetric. Then

(AB)T = AB

BT AT = AB [Thm. 1.4(c)]
BA = AB (A and B are each symmetric)

Thus A and B commute. Conversely, if A and B commute, then (AB)T = AB and AB is
symmetric.

T.24. Suppose A is skew symmetric. Then the j, ith element of A equals −aij . That is, aij = −aji.

T.25. Let A = rIn. Then (rIn)T = −rIn so rIn = −rIn. Hence, r = −r, which implies that r = 0. That
is, A = O.

T.26. (AAT )T = (AT )T AT [Thm. 1.4(c)]
= AAT [Thm. 1.4(a)]

Thus AAT is symmetric. A similar argument applies to AT A.

T.27. (a) (A + AT )T = AT + (AT )T = AT + A = A + AT .

(b) (A − AT )T = AT − (AT )T = AT − A = −(A − AT ).

T.28. Let

S = 1
2 (A + AT ) and K = 1

2 (A − AT ).

Then S is symmetric and K is skew symmetric, by Exercise T.15, and S+K = 1
2 (A+AT +A−AT ) =

1
2 (2A) = A. Conversely, suppose A = S + K is any decomposition of A into the sum of a symmetric
and skew symmetric matrix. Then

AT = (S + K)T = ST + KT = S − K,

A + AT = (S + K) + (S − K) = 2S, =⇒ S = 1
2 (A + AT ),

A − AT = (S + K) − (S − K) = 2K, =⇒ K = 1
2 (A − AT ).

T.29. If the diagonal entries of A are r, then since r = r · 1, A = rIn.

T.30. In =
[
dij

]
, where dij =

{
1 if i = j

0 if i �= j.
Then dji =

{
1 if i = j

0 if i �= j.
Thus IT

n = I.
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T.31. Suppose r �= 0. The i, jth entry of rA is raij . Since r �= 0, aij = 0 for all i and j. Thus A = O.

T.32. Let u and v be two (distinct) solutions to the linear system Ax = b, and consider w = ru + sv for
r + s = 1. Then w is a solution to the system since

Aw = A(ru + sv) = r(Au) + s(Av) = rb + sb = (r + s)b = b.

If b = 0, then at least one of u, v must be nonzero, say u, and then the infinitely many matrices
ru, r a real number, constitute solutions.

If b �= 0, then u and v cannot be nontrivial multiples of each other. (If v = tu, t �= 1, then
Av = tb �= b = Au, a contradiction.) Thus if ru + sv = r′u + s′v for some r, s, r′, s′, then

(r − r′)u = (s′ − s)v,

whence r = r′ and s = s′. Therefore the matrices w = ru + sv are distinct as r ranges over real
numbers and s = 1 − r.

T.33. Suppose A =
[
a b
c d

]
satisfies AB = BA for any 2 × 2 matrix B. Choosing B =

[
1 0
0 0

]
we get

[
a b
c d

] [
1 0
0 0

]
=

[
1 0
0 0

] [
a b
c d

]
and

[
a 0
c 0

]
=

[
a b
0 0

]

which implies b = c = 0. Thus A =
[
a 0
0 d

]
is diagonal. Next choosing B =

[
0 1
0 0

]
we get

[
0 a
0 0

]
=

[
0 d
0 0

]
,

or a = d. Thus A =
[
a 0
0 a

]
is a scalar matrix.

T.34. Skew symmetric. To show this, let A be a skew symmetric matrix. Then AT = −A. Therefore
(AT )T = A = −AT . Hence AT is skew symmetric.

T.35. A symmetric matrix. To show this, let A1, . . . , An be symmetric matrices and let c1, . . . , cn be
scalars. Then AT

1 = A1, . . . , A
T
n = An. Therefore

(c1A1 + · · · + cnAn)T = (c1A1)T + · · · + (cnAn)T

= c1A
T
1 + · · · + cnAT

n

= c1A1 + · · · + cnAn.

Hence the linear combination c1A1 + · · · + cnAn is symmetric.

T.36. A scalar matrix. To show this, let A1, . . . , An be scalar matrices and let r1, . . . , rn be scalars. Then
Ai = ciIn for scalars c1, . . . , cn. Therefore

r1A1 + · · · + rnAn = r1(c1I1) + · · · + rn(cnIn) = (r1c1 + · · · + rncn)In

which is the scalar matrix whose diagonal entries are all equal to r1c1 + · · · + rncn.

T.37. Let A =
[
aij

]
, B =

[
bij

]
, and C = AB. Then

cij =
p∑

k=1
i �=k

aikbkj + aiibij = rbij .
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T.38. For any m × n bit matrix A + A =
[
entij(A) + entij(A)

]
. Since entij(A) = 0 or 1 and 0 + 0 = 0,

1 + 1 = 0, we have A + A = O; hence −A = A.

T.39. Let A =
[
a b
c d

]
be a bit matrix. Then

A2 = O provided
[
a2 + bc ab + bd
ac + dc bc + d2

]
=

[
0 0
0 0

]
.

Hence (a + d)b = 0 and (a + d)c = 0.

Case b = 0. Then a2 = 0 =⇒ a = 0 and d2 = 0 =⇒ d = 0. Hence c = 0 or 1. So

A =
[
0 0
0 0

]
or A =

[
0 0
1 0

]
.

Case c = 0. Then a2 = 0 =⇒ a = 0 and d2 = 0 =⇒ d = 0. Hence b = 0 or 1. So

A =
[
0 0
0 0

]
or A =

[
0 1
0 0

]
.

Case a + d = 0

(i) a = d = 0 =⇒ bc = 0 so b = 0, c = 0 or 1, or b = 1, c = 0. So

A =
[
0 0
0 0

]
,

[
0 0
1 0

]
,

[
0 1
0 0

]
.

(ii) a = d = 1 =⇒ bc + 1 = 0 =⇒ bc = 1 =⇒ b = c = 1. So

A =
[
1 1
1 1

]
.

T.40. Let A =
[
a b
c d

]
be a bit matrix. Then

A2 = I2 provided
[
a2 + bc ab + bd
ac + dc bc + d2

]
=

[
1 0
0 1

]
.

Hence (a + d)b = 0 and (a + d)c = 0.

Case b = 0 =⇒ a2 = 0 =⇒ a = 0 and d2 = 0 =⇒ d = 0. Hence c = 0 or 1. But we also must
have bc = 1 =⇒ c = 1 and b = 1. So

A =
[
0 1
1 0

]
.

Case c = 0 =⇒ a2 = 0 =⇒ a = 0 and d2 = 0 =⇒ d = 0. Hence b = 0 or 1. But we also must
have bc = 1 =⇒ b = 1 and c = 1. So

A =
[
0 1
1 0

]
.

Case a + d = 0

(i) a = d = 0 =⇒ bc = 1 =⇒ b = c = 1. So

A =
[
0 1
1 0

]
.
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(ii) a = d = 1 =⇒ bc + 1 = 1 =⇒ bc = 0. Thus if b = 0, c = 0 or 1 and if c = 0, b = 0 or 1. So

A =
[
1 0
0 1

]
,

[
1 0
1 1

]
,

[
1 0
0 1

]
,

[
1 1
0 1

]
.

ML.1. (a) A∧∧∧2
ans =

0 1 0

0 0 1

1 0 0

A∧∧∧3
ans =

1 0 0

0 1 0

0 0 1
Thus k = 3.

(b) A∧∧∧2
ans =

−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

A∧∧∧3
ans =

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

A∧∧∧4
ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
Thus k = 4.

ML.2. (a) A === tril(ones(5),−−− 1)
A
ans =

0 0 0 0 0

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

A∧∧∧2
ans =

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

2 1 0 0 0

3 2 1 0 0

A∧∧∧3
ans =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

3 1 0 0 0

A∧∧∧4
ans =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

A∧∧∧5
ans =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
Thus k = 5.

(b) This exercise uses the random number generator rand. The matrix A and the value of k may
vary.
A === tril(fix(10 ∗∗∗ rand(7)),2)
A =

0 0 0 0 0 2 8

0 0 0 6 7 9 2

0 0 0 0 3 7 4

0 0 0 0 0 7 7

0 0 0 0 0 0 4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Here A∧∧∧3 is all zeros, so k = 5.
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ML.3. (a) Define the vector of coefficients
v === [1 −−− 1 1 0 2];
then we have
polyvalm(v,A)
ans =

0 −2 4

4 0 −2
−2 4 0

(b) Define the vector of coefficients
v === [1 −−− 3 3 0];
then we have
polyvalm(v,A)
ans =

0 0 0

0 0 0

0 0 0

ML.4. (a) (A∧∧∧2−−− 7 ∗∗∗ A) ∗∗∗ (A+++ 3 ∗∗∗ eye(A))
ans =

−2.8770 −7.1070 −14.0160
−4.9360 −5.0480 −14.0160
−6.9090 −7.1070 −9.9840

(b) (A−−− eye(A))∧∧∧2+++ (A∧∧∧3+++ A)
ans =

1.3730 0.2430 0.3840

0.2640 1.3520 0.3840

0.1410 0.2430 1.6160

(c) Computing the powers of A as A2,A3, . . . soon gives the impression that the sequence is
converging to

0.2273 0.2727 0.5000

0.2273 0.2727 0.5000

0.2273 0.2727 0.5000

Typing format rat, and displaying the preceding matrix gives

ans =
5/22 3/11 1/2

5/22 3/11 1/2

5/22 3/11 1/2

ML.5. The sequence seems to be converging to
1.0000 0.7500

0 0

ML.6. The sequence is converging to the zero matrix.
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ML.7. (a) A′′′ ∗∗∗ A
ans =

2 −3 −1
−3 9 2

−1 2 6

A ∗∗∗ A′′′

ans =
6 −1 −3

−1 6 4

−3 4 5

AT A and AAT are not equal.

(b) B === A+++ A′′′

B =
2 −3 1

−3 2 4

1 4 2

C === A−−− A′′′

C =
0 −1 1

1 0 0

−1 0 0

Just observe that B = BT and that CT = −C.

(c) B+++ C
ans =

2 −4 2

−2 2 4

0 4 2
We see that B + C = 2A.

ML.8. (a) Use command B = binrand(3,3). The results will vary.

(b) B + B = O, B + B + B = B.

(c) If n is even, the result is O; otherwise it is B.

ML.9. k = 4.

ML.10. k = 4.

ML.11. k = 8.

Section 1.5, p. 61

2. y

x

(1,     )

3

1

−1−3

(3, 0)

31

−2u = 

f(u) = 

O
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4. y

x

3

1

−1−2 21

u = 

f(u) 

(   2,   3)− −

= (6.19, −0.23)

O

6. y

x

2

4

6

−2−4−6 1

u = 

f(u) 

(   3, 3)−

= − u2
(   6, 6)−

O

8.

y

x

1

1

u = 

f(u) = 

z

(0, −2, 4)

(4, −2, 4)

1
O

10. Yes.

12. Yes.

14. Yes.

16. (a) Reflection about the line y = x.

(b) Reflection about the line y = −x.

18. (a) Possible answers:

⎡⎣ 2
−1

0

⎤⎦,

⎡⎣0
0
1

⎤⎦.
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(b) Possible answers:

⎡⎣0
4
4

⎤⎦,

⎡⎣1
2
0

⎤⎦.

T.1. (a) f(u + v) = A(u + v) = Au + Av = f(u) + f(v).

(b) f(cu) = A(cu) = c(Au) = cf(u).

(c) f(cu + dv) = A(cu + dv) = A(cu) + A(cv) = c(Au) + d(Av) = cf(u) + df(v).

T.2. For any real numbers c and d, we have

f(cu+dv) = A(cu+dv) = A(cu)+A(dv) = c(Au)+d(Av) = cf(u)+df(v) = c0+d0 = 0+0 = 0.

T.3. (a) O(u) =

⎡⎢⎣0 · · · 0
...

0 · · · 0

⎤⎥⎦
⎡⎢⎣u1

...
un

⎤⎥⎦ =

⎡⎢⎣0
...
0

⎤⎥⎦ = 0.

(b) I(u) =

⎡⎢⎣1 0 · · · 0
...

0 0 · · · 1

⎤⎥⎦
⎡⎢⎣u1

...
un

⎤⎥⎦ =

⎡⎢⎣u1

...
un

⎤⎥⎦ = u.

Section 1.6, p. 85

2. Neither.

4. Neither.

6. Neither.

8. Neither.

10. (a)

⎡⎣ 2 0 4 2
−1 3 1 1

3 −2 5 6

⎤⎦.

(b)

⎡⎣ 2 0 4 2
−12 8 −20 −24
−1 3 1 1

⎤⎦.

(c)

⎡⎣ 0 6 6 4
3 −2 5 6

−1 3 1 1

⎤⎦.

12. Possible answers:

(a)

⎡⎣ 4 3 7 5
2 0 1 4

−2 4 −2 6

⎤⎦.

(b)

⎡⎣ 3 5 6 8
−4 8 −4 12

2 0 1 4

⎤⎦.

(c)

⎡⎣ 4 3 7 5
−1 2 −1 3

0 4 −1 10

⎤⎦.
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14.

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 0 2
0 1 −1 1
0 0 1 − 2

7

0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦.

16.

⎡⎢⎢⎢⎢⎣
1 −2 1 4 −3
0 1 − 2

3 − 7
3

10
3

0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦.

18. (a) No. (b) Yes. (c) Yes. (d) No.

20. (a) x = 1, y = 2, z = −2. (b) No solution. (c) x = 1, y = 1, z = 0.

(d) x = 0, y = 0, z = 0.

22. (a) x = 1 − 2
5r, y = −1 + 1

5r, z = r. (b) x = 1 − r, y = 3 + r, z = 2 − r, w = r. (c) No
solution.

(d) x = 0, y = 0, z = 0.

24. (a) a = ±
√

3. (b) a �= ±
√

3. (c) None.

26. (a) a = −3. (b) a �= ±3. (c) a = 3.

28. (a) x = r, y = −2r, z = r, r = any real number. (b) x = 1, y = 2, z = 2.

30. (a) No solution. (b) x = 1 − r, y = 2 + r, z = −1 + r, r = any real number.

32. x = −2 + r, y = 2 − 2r, z = r, where r is any real number.

34. c − b − a = 0

36.

⎡⎣ 1
−1

2

⎤⎦,

⎡⎣ 0
2

−2

⎤⎦.

38. x = 5r, y = 6r, z = r, r = any nonzero real number.

40. −a + b − c = 0.

42. x =
[
r
r

]
, r �= 0.

44. x =

⎡⎢⎢⎢⎣
− 1

2r

1
2r

r

⎤⎥⎥⎥⎦, r �= 0.

46. x =

⎡⎢⎢⎢⎢⎢⎢⎣
19
6

− 59
30

17
30

0

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
− 1

3r

2
15r

19
15r

r

⎤⎥⎥⎥⎥⎥⎥⎦.

48. y = 25
2 x2 − 61

2 x + 23.
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50. y = 2
3x3 + 4

3x2 − 2
3x + 2

3 .

52. 60 in deluxe binding. If r is the number in bookclub binding, then r is an integer which must satisfy
0 ≤ r ≤ 90 and then the number of paperbacks is 180 − 2r.

54. 3
2x2 − x + 1

2 .

56. (a)

⎡⎣1
0
1

⎤⎦. (b)

⎡⎣0
1
0

⎤⎦.

58. (a) Inconsistent.

(b)

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦,

⎡⎢⎢⎣
0
1
1
0

⎤⎥⎥⎦,

⎡⎢⎢⎣
1
1
0
1

⎤⎥⎥⎦,

⎡⎢⎢⎣
1
0
1
1

⎤⎥⎥⎦.

T.1. Suppose the leading one of the ith row occurs in the jth column. Since leading ones of rows
i + 1, i + 2, . . . are to the right of that of the ith row, and in any nonzero row, the leading one is the
first nonzero element, all entries in the jth column below the ith row must be zero.

T.2. (a) A is row equivalent to itself: the sequence of operations is the empty sequence.

(b) Each elementary row operation of types (a), (b) or (c) has a corresponding inverse operation of
the same type which “undoes” the effect of the original operation. For example, the inverse of
the operations “add d times row r of A to row s of A” is “add −d times row r of A to row s of
A.” Since B is assumed row equivalent to A, there is a sequence of elementary row operations
which gets from A to B. Take those operations in the reverse order, and for each operation do
its inverse, and that takes B to A. Thus A is row equivalent to B.

(c) Follow the operations which take A to B with those which take B to C.

T.3. The sequence of elementary row operations which takes A to B, when applied to the augmented
matrix

[
A 0

]
, yields the augmented matrix

[
B 0

]
. Thus both systems have the same solutions,

by Theorem 1.7.

T.4. A linear system whose augmented matrix has the row[
0 0 0 · · · 0 1

]
(1.2)

can have no solution: that row corresponds to the unsolvable equation 0x1 + 0x2 + · · · + 0xn = 1.
If the augmented matrix of Ax = b is row equivalent to a matrix with the row (1.2) above, then by
Theorem 1.7, Ax = b can have no solution.

Conversely, assume Ax = b has no solution. Its augmented matrix is row equivalent to some matrix[
C D

]
in reduced row echelon form. If

[
C D

]
does not contain the row (1.2) then it has at most

m nonzero rows, and the leading entries of those nonzero rows all correspond to unknowns of the
system. After assigning values to the free variables — the variables not corresponding to leading
entries of rows — one gets a solution to the system by solving for the values of the leading entry
variables. This contradicts the assumption that the system had no solution.

T.5. If ad − bc = 0, the two rows of

A =
[
a b
c d

]
are multiples of one another:

c
[
a b

]
=

[
ac bc

]
and a

[
c d

]
=

[
ac ad

]
and bc = ad.
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Any elementary row operation applied to A will produce a matrix with rows that are multiples
of each other. In particular, elementary row operations cannot produce I2, and so I2 is not row
equivalent to A. If ad − bc �= 0, then a and c are not both 0. Suppose a �= 0.

a b 1 0 Multiply the first row by 1
a , and add (−c) times

the first row to the second row.

c d 0 1

1
b

a

1
a

0 Multiply the second row by a
ad−bc .

0 d − bc

a
− c

a
1

1
b

a

1
a

0 Add
(
− b

a

)
times the second row to the first row.

0 1
−c

ad − bc

1
ad − bc

1 0
d

ad − bc

−b

ad − bc

0 1
−c

ad − bc

a

ad − bc

T.6. (a) Since a(kb) − b(ka) = 0, it follows from Exercise T.5 that A is not row equivalent to I2.

(b) Suppose that A =
[
0 0
a b

]
. Since 0 · b − 0 · c = 0, it follows from Exercise T.5 that A is not

row equivalent to I2.

T.7. For any angle θ, cos θ and sin θ are not both zero. Assume that cos θ �= 0 and proceed as follows.
The row operation 1

cos θ times row 1 gives⎡⎢⎢⎣ 1
sin θ

cos θ

− sin θ cos θ

⎤⎥⎥⎦ .

Applying row operation sin θ times row 1 added to row 2 we obtain⎡⎢⎢⎢⎢⎣
1

sin θ

cos θ

0 cos θ +
sin2 θ

cos θ

⎤⎥⎥⎥⎥⎦ .

Simplifying the (2, 2)-entry we have

cos θ +
sin2 θ

cos θ
=

cos2 θ + sin2 θ

cos θ
=

1
cos θ
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and hence our matrix is ⎡⎢⎢⎢⎢⎣
1

sin θ

cos θ

0
1

cos θ

⎤⎥⎥⎥⎥⎦ .

Applying row operations cos θ times row 2 followed by
(
− sin θ

cos θ

)
times row 2 added to row 1 gives us

I2. Hence the reduced row echelon form is the 2× 2 identity matrix. (If cos θ = 0, then interchange
rows and proceed in a similar manner.)

T.8. By Corollary 1.1, A is row equivalent to a matrix B in reduced row echelon form which determines
the same solutions as A. The possibilities for the 2 × 2 matrix B are I2 and{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 0

]}
. (1.3)

The homogeneous system I2x = 0 has only the trivial solution. The other three forms (1.3) clearly
have nontrivial solutions. Thus Ax = 0 has only the trivial solution if and only if ad − bc �= 0.

T.9. Let A be in reduced row echelon form and assume A �= In. Thus there is at least one row of A
without a leading 1. From the definition of reduced row echelon form, this row must be a zero row.

T.10. By Exercise T.8.

T.11. (a) A(u + v) = Au + Av = 0 + 0 = 0.
(b) A(u − v) = Au − Av = 0 − 0 = 0.
(c) A(ru) = r(Au) = r0 = 0.
(d) A(ru + sv) = r(Au) + s(Av) = r0 + s0 = 0.

T.12. If Au = b and Av = b, then A(u − v) = Au − Av = b − b = 0.

T.13. (a) A(xp + xh) = Axp + Axh = b + 0 = b.
(b) Let xp be a solution to Ax = b and let xh = x − xp. Then x = xp + (x − xp) = xp + xh and

Axh = A(x − xp) = Ax − Axp = b − b = 0.

T.14. Suppose at some point in the process of reducing the augmented matrix to reduced row echelon form
we encounter a row whose first n entries are zero but whose (n + 1)st entry is some number c �= 0.
The corresponding linear equation is

0 · x1 + · · · + 0 · xn = c or 0 = c.

This equation has no solution, thus the linear system is inconsistent.

ML.1. Enter A into Matlab and use the following Matlab commands.

(a) A(1,:) === (1/4) ∗∗∗ A(1,:)
A =

1.0000 0.5000 0.5000
−3.0000 1.0000 4.0000
1.0000 0 3.0000
5.0000 −1.0000 5.0000

(b) A(2,:) === 3 ∗∗∗ A(1,:) +++ A(2,:)
A =

1.0000 0.5000 0.5000
0 2.5000 5.5000

1.0000 0 3.0000
5.0000 −1.0000 5.0000
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(c) A(3,:) === −−−1 ∗∗∗ A(1,:) +++ A(3,:)
A =

1.0000 0.5000 0.5000
0 2.5000 5.5000
0 −0.5000 2.5000

5.0000 −1.0000 5.0000

(d) A(4,:) === −−−5 ∗∗∗ A(1,:) +++ A(4,:)
A =

1.0000 0.5000 0.5000
0 2.5000 5.5000
0 −0.5000 2.5000
0 −3.5000 2.5000

(e) temp === A(2,:)
temp =

0 2.5000 5.5000
A(2,:) === A(4,:)
A =

1.0000 0.5000 0.5000
0 −3.5000 2.5000
0 −0.5000 2.5000
0 −3.5000 2.5000

A(4,:) === temp
A =

1.0000 0.5000 0.5000
0 −3.5000 2.5000
0 −0.5000 2.5000
0 2.5000 5.5000

ML.2. Enter the matrix A into Matlab and use the following Matlab commands. We use the format
rat command to display the matrix A in rational form at each stage.
A === [1/2 1/3 1/4 1/5;1/3 1/4 1/5 1/6;1 1/2 1/3 1/4]
A =

0.5000 0.3333 0.2500 0.2000

0.3333 0.2500 0.2000 0.1667

1.0000 0.5000 0.3333 0.2500
format rat, A
A =

1/2 1/3 1/4 1/5

1/3 1/4 1/5 1/6

1 1/2 1/3 1/4

format

(a) A(1,:) === 2 ∗∗∗ A(1,:)
A =

1.0000 0.6667 0.5000 0.4000

0.3333 0.2500 0.2000 0.1667

1.0000 0.5000 0.3333 0.2500
format rat, A
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A =
1 2/3 1/2 2/5

1/3 1/4 1/5 1/6

1 1/2 1/3 1/4

format
(b) A(2,:) === (−−− 1/3) ∗∗∗ A(1,:) +++ A(2,:)

A =
1.0000 0.6667 0.5000 0.4000

0 0.0278 0.0333 0.0333

1.0000 0.5000 0.3333 0.2500
format rat, A
A =

1 2/3 1/2 2/5

0 1/36 1/30 1/30

1 1/2 1/3 1/4

format
(c) A(3,:) === −−−1 ∗∗∗ A(1,:) +++ A(3,:)

A =
1.0000 0.6667 0.5000 0.4000

0 0.0278 0.0333 0.0333

0 −0.1667 −0.1667 −0.1500
format rat, A
A =

1 2/3 1/2 2/5

0 1/36 1/30 1/30

0 −1/6 −1/6 −3/20
format

(d) temp === A(2,:)
temp =

0 0.0278 0.0333 0.0333
A(2,:) === A(3,:)
A =

1.0000 0.6667 0.5000 0.4000

0 −0.1667 −0.1667 −0.1500
0 −0.1667 −0.1667 −0.1500

A(3,:) === temp
A =

1.0000 0.6667 0.5000 0.4000

0 −0.1667 −0.1667 −0.1500
0 0.0278 0.0333 0.0333

format rat, A
A =

1 2/3 1/2 2/5

0 −1/6 −1/6 −3/20
0 1/36 1/30 1/30

format
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ML.3. Enter A into Matlab, then type reduce(A). Use the menu to select row operations. There are
many different sequences of row operations that can be used to obtain the reduced row echelon form.
However, the reduced row echelon form is unique and is
ans =

1 0 0

0 1 0

0 0 1

0 0 0

ML.4. Enter A into Matlab, then type reduce(A). Use the menu to select row operations. There are
many different sequences of row operations that can be used to obtain the reduced row echelon form.
However, the reduced row echelon form is unique and is
ans =

1.0000 0 0 0.0500

0 1.0000 0 −0.6000
0 0 1.0000 1.5000

format rat, ans
ans =

1 0 0 1/20

0 1 0 −3/5
0 0 1 3/2

format

ML.5. Enter the augmented matrix aug into Matlab. Then use command reduce(aug) to construct row
operations to obtain the reduced row echelon form. We obtain
ans =

1 0 0 −1 −2
0 1 0 0 −2
0 0 1 2 8

We write the equations equivalent to rows of the reduced row echelon form and use back substitution
to determine the solution. The last row corresponds to the equation z − 2w = 8. Hence we can
choose w arbitrarily, w = r, r any real number. Then z = 8+2r. The second row corresponds to the
equation y = −1. The first row corresponds to the equation x−w = −2 hence x = −2+w = −2+r.
Thus the solution is given by

x = −2 + r
y = −1
z = 8 + 2r
w = r.

ML.6. Enter the augmented matrix aug into Matlab. Then use command reduce(aug) to construct row
operations to obtain the reduced row echelon form. We obtain
ans =

1 0 1 0 0

0 1 2 0 0

0 0 0 0 1
The last row is equivalent to the equation 0x + 0y + 0z + 0w = 1, which is clearly impossible. Thus
the system is inconsistent.

ML.7. Enter the augmented matrix aug into Matlab. Then use command reduce(aug) to construct row
operations to obtain the reduced row echelon form. We obtain
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ans =
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0
It follows that this system has only the trivial solution.

ML.8. Enter the augmented matrix aug into Matlab. Then use command reduce(aug) to construct row
operations to obtain the reduced row echelon form. We obtain
ans =

1 0 −1 0

0 1 2 0

0 0 0 0
The second row corresponds to the equation y + 2z = 0. Hence we can choose z arbitrarily. Set
z = r, any real real number. Then y = −2r. The first row corresponds to the equation x − z = 0
which is the same as x = z = r. Hence the solution to this system is

x = r

z = −2r

z = r

ML.9. After entering A into Matlab, use command reduce(5 ∗∗∗ eye(size(A))−−− A). Selecting row oper-
ations, we can show that the reduced row echelon form of 5I2 − A is[

1 − 1
2

0 0

]
.

Thus the solution to the homogeneous system is

x =
[
.5r

r

]
.

Hence for any real number r, not zero, we obtain a nontrivial solution.

ML.10. After entering A into Matlab, use command reduce( −−− 4 ∗∗∗ eye(size(A)) −−− A). Selecting row
operations, we can show that the reduced row echelon form of −4I2 − A is[

1 1
0 0

]
.

Thus the solution to the homogeneous system is

x =
[
−r

r

]
.

Hence for any real number r, not zero, we obtain a nontrivial solution.

ML.11. For a linear system enter the augmented matrix aug and use the command rref. Then write out
the solution

For 27(a):
rref(aug)
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ans =
1 0 0 −1
0 1 0 4

0 0 1 −3
It follows that there is a unique solution x = −1, y = 4, z = −3.

For 27(b):
rref(aug)
ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
It follows that the only solution is the trivial solution.

For 28(a):
rref(aug)
ans =

1 0 −1 0

0 1 2 0

0 0 0 0
It follows that x = r, y = −2r, z = r, where r is any real number.

For 28(b):
rref(aug)
ans =

1 0 0 1

0 1 0 2

0 0 1 2

0 0 0 0

0 0 0 0
It follows that there is a unique solution x = 1, y = 2, z = 2.

ML.12. (a) A === [1 1 1;1 1 0;0 1 1];
b === [0 3 1]′′′;
x === A\\\b
x =

−1
4

−3
(b) A === [1 1 1;1 1 −−− 2;2 1 1];

b === [1 3 2]′′′;
x === A\\\b
x =

1.0000

0.6667

−0.0667

ML.13. A === [1 2 3;4 5 6;7 8 9];
b === [1 0 0]′′′;
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x === A\\\b
x =

1 0 −1 0

0 1 2 0

0 0 0 1
This augmented matrix implies that the system is inconsistent. We can also infer that the coefficient
matrix is singular.
x = A\b
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate.
RCOND=2.937385e-018.
x =

1.0e + 015∗

3.1522

−6.3044
3.1522

Each element of the solution displayed using \\\ is huge. This, together with the warning, suggests
that errors due to using computer arithmetic were magnified in the solution process. Matlab uses
an LU-factorization procedure when \\\ is used to solve linear systems (see Section 1.7), while rref
actually rounds values before displaying them.

ML.16.

⎡⎣1 1 0 0 1 1
1 0 1 0 0 1
1 1 1 1 1 0

⎤⎦ −→

⎡⎣1 1 0 0 1 1
0 1 1 0 1 0
0 0 1 1 0 1

⎤⎦

−→

⎡⎣1 1 0 0 1 1
0 1 0 1 1 1
0 0 1 1 0 1

⎤⎦ −→

⎡⎣1 0 0 1 0 0
0 1 0 1 1 1
0 0 1 1 0 1

⎤⎦

=⇒
x1 x2 x3 + x4 = 0

x2 x3 + x4 + x5 = 1
x3 + x4 = 1

=⇒

x1 = x4

x2 = 1 + x4 + x5

x3 = 1 + x4

x4 = x4

x5 = x5

=⇒ x =

⎡⎢⎢⎢⎢⎣
0
1
1
0
0

⎤⎥⎥⎥⎥⎦ + x4

⎡⎢⎢⎢⎢⎣
1
1
1
1
0

⎤⎥⎥⎥⎥⎦ + x5

⎡⎢⎢⎢⎢⎣
0
1
0
0
1

⎤⎥⎥⎥⎥⎦ .

Section 1.7, p. 105

2. Adding twice the first row to the second row produces a row of zeros.

4. Singular.

6. (a) Singular. (b)

⎡⎢⎢⎢⎣
1 −1 0
3
2

1
2 − 3

2

−1 0 1

⎤⎥⎥⎥⎦. (c)

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1 0 −1

0 − 1
2 0 0

− 1
5 1 1

5
3
5

2
5 − 1

2 − 2
5 − 1

5

⎤⎥⎥⎥⎥⎥⎥⎦.

8. (a)

⎡⎣ 1 0 −1
1 −1 2

−1 1 −1

⎤⎦. (b)

⎡⎣ 3 2 −4
−1 0 1

0 −1 1

⎤⎦. (c) Singular.
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10. (a)

⎡⎢⎢⎢⎣
3
5 − 3

5 − 2
5

2
5

3
5 − 4

5

− 1
5

2
5

2
5

⎤⎥⎥⎥⎦. (b) Singular. (c) Singular.

12. (b) and (c).

14.
[
−1 −4

1 3

]
.

15. If the jth column Aj of A consists entirely of zeros, then so does the jth column BAj of BA (Exercise
T.9(a), Sec. 1.3), so A is singular. If the ith row Ai of A consists entirely of zeros, then for any B,
the ith row AiB of AB is zero, so again A is singular.

16. a �= 0, A−1 =

⎡⎢⎢⎢⎣
0 1 0

1 −1 0

− 2
a

1
a

1
a

⎤⎥⎥⎥⎦.

18. (a) A−1 =
[

7 −3
−2 1

]
. (b) (AT )−1 =

[
7 −2

−3 1

]
= (A−1)T .

19. Yes. (A−1)T A = (A−1)T AT = (AA−1)T = IT
n = In. By Theorem 1.9, (A−1)T = A−1. That is, A−1

is symmetric.

20. (a) No. Let

A =
[
1 0
0 0

]
and B =

[
0 0
0 1

]
.

Then (A + B)−1 exists but A−1 and B−1 do not. Even supposing they all exist, equality need
not hold. For example, let A =

[
1
]
, B =

[
2
]
. Then (A+B)−1 =

[
1
3

]
�=

[
1
]
+

[
1
2

]
= A−1+B−1.

(b) Yes for A nonsingular and c �= 0.

(cA)
(

1
c
A−1

)
= c

(
1
c

)
A · A−1 = 1 · In = In.

22. A + B may be singular: let A = In and B = −In.
A − B may be singular: let A = B = In.
−A is nonsingular: (−A)−1 = −(A−1).

24.
[
11 19
7 0

]
.

26. Singular. Since the given homogeneous system has a nontrivial solution, Theorem 1.12 implies that
A is singular.

28.

⎡⎢⎢⎣
3 −1 0 0

−2 1 0 0
0 0 −1 7
0 0 1 −6

⎤⎥⎥⎦.

30. (a) Singular. (b)

⎡⎣1 0 0
0 1 1
1 0 1

⎤⎦. (c) Singular.
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32. (a) No. (b) Yes.

T.1. B is nonsingular, so B−1 exists, and

A = AIn = A(BB−1) = (AB)B−1 = OB−1 = O.

T.2. The case r = 2 of Corollary 1.2 is Theorem 1.10(b). In general, if r > 2,

(A1A2 · · ·Ar)−1 = [(A1A2 · · ·Ar−1)Ar]
−1

= A−1
r (A1A2 · · ·Ar−1)−1

= A−1
r [(A1A2 · · ·Ar−2)Ar−1]

−1

= A−1
r A−1

r−1(A1A2 · · ·Ar−2)−1

= · · · = A−1
r A−1

r−1 · · ·A−1
1 .

T.3. A is row equivalent to a matrix B in reduced row echelon form which, by Theorem 1.11 is not In.
Thus B has fewer than n nonzero rows, and fewer than n unknowns corresponding to pivotal columns
of B. Choose one of the free unknowns — unknowns not corresponding to pivotal columns of B.
Assign any nonzero value to that unknown. This leads to a nontrivial solution to the homogeneous
system Ax = 0.

T.4. The result follows from Theorem 1.12 and Exercise T.8 of Section 1.5.

T.5. For any angle θ, cos θ and sin θ are never simultaneously zero. Thus at least one element in column
1 is not zero. Assume cos θ �= 0. (If cos θ = 0, then interchange rows 1 and 2 and proceed in a
similar manner to that described below.) To show that the matrix is nonsingular and determine its
inverse, we put [

cos θ sin θ 1 0
− sin θ cos θ 0 1

]
into reduced row echelon form. Apply row operations 1

cos θ times row 1 and sin θ times row 1 added
to row 2 to obtain ⎡⎢⎢⎢⎢⎢⎣

1
sin θ

cos θ

1
cos θ

0

0
sin2 θ

cos θ
+ cos θ

sin θ

cos θ
1

⎤⎥⎥⎥⎥⎥⎦ .

Since

sin2 θ

cos θ
+ cos θ =

sin2 θ + cos2 θ

cos θ
=

1
cos θ

,

the (2, 2)-element is not zero. Applying row operations cos θ times row 2 and
(
− sin θ

cos θ

)
times row 2

added to row 1 we obtain [
1 0 cos θ − sin θ

0 1 sin θ cos θ

]
.

It follows that the matrix is nonsingular and its inverse is[
cos θ − sin θ
sin θ cos θ

]
.
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T.6. Let A =
[
aij

]
be a nonsingular upper triangular matrix, where aij = 0 for i > j. We seek a

matrix B =
[
bij

]
such that AB = In and BA = In. Using the equation BA = In, we find that

n∑
k=1

bikaki = 1, and since aki = 0 for k > i, this equation reduces to biiaii = 1. Thus, we must have

aii �= 0 and bii = 1/aii. The equation
n∑

k=1

bikakj = 0 for i �= j implies that bij = 0 for i > j. Hence,

B = A−1 is upper triangular.

T.7. Let u be one solution to Ax = b. Since A is singular, the homogeneous system Ax = 0 has a
nontrivial solution u0. Then for any real number r, v = ru0 is also a solution to the homogeneous
system. Finally, by Exercise T.13(a), Sec. 1.5, for each of the infinitely many matrices v, the matrix
w = u + v is a solution to the nonhomogeneous system Ax = b.

T.8. Let A be nonsingular and symmetric. We have (A−1)T = (AT )−1 = A−1, so A−1 is symmetric.

T.9. Let A =
[
aij

]
be a diagonal matrix with nonzero diagonal entries a11, a22, . . . , ann. That is, aij �= 0

if i = j and 0 otherwise. We seek an n× n matrix B =
[
bij

]
such that AB = In. The (i, j) entry in

AB is
n∑

k=1

aikbkj , so
n∑

k=1

aikbkj = 1 if i = j and 0 otherwise. This implies that bii = 1/aii and bij = 0

if i �= j. Hence, A is nonsingular and A−1 = B.

T.10. Bk = PAkP−1.

T.11.
[
0 1
1 0

]
,
[
1 0
0 1

]
,
[
1 1
0 1

]
,
[
0 1
1 1

]
,
[
1 0
1 1

]
,
[
1 1
1 0

]
.

T.12. No, because if AB = O, then A−1AB = B = A−1O = O, which contradicts that B is nonsingular.

T.13. Let A =
[
a b
c d

]
, then

A2 =
[
a b
c d

] [
a b
c d

]
=

[
a2 + bc ab + bd
ac + cd bc + d2

]
.

Thus A2 = O provided

ab + bd = b(a + d) = 0
ac + cd = c(a + d) = 0

a2 + bc = 0

d2 + bc = 0

Case b = 0. Then a2 = 0 =⇒ a = 0 and d2 = 0 =⇒ d = 0. But bc = 0. Hence b could be either
1 or 0. So

A =
[
0 0
0 0

]
or A =

[
0 1
0 0

]
.

Case c = 0. Similarly a = d = 0 and c = 1 or 0. So

A =
[
0 0
0 0

]
or A =

[
0 0
1 0

]
.

Case a + d = 0 =⇒ a = d = 0 or a = d = 1

(i) a = d = 0 =⇒ bc = 0 so we have c = b = 0 or c = 0, b = 1 or c = 1, b = 0. Thus

A =
[
0 0
0 0

]
or

[
0 1
0 0

]
or

[
0 0
1 0

]
.
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(ii) a = d = 1 =⇒ 1 + bc = 0 thus bc = 1 so b = c = 1. Then

A =
[
1 1
1 1

]
.

Hence A2 = O provided

A =
[
0 0
0 0

]
or

[
1 1
1 1

]
or

[
0 1
0 0

]
or

[
0 0
1 0

]
.

ML.1. We use the fact that A is nonsingular if rref(A) is the identity matrix.

(a) A === [1 2;−−− 2 1];
rref(A)
ans =

1 0
0 1

Thus A is nonsingular.
(b) A === [1 2 3;4 5 6;7 8 9];

rref(A)
ans =

1 0 −1
0 1 2
0 0 0

Thus A is singular.
(c) A === [1 2 3;4 5 6;7 8 0];

rref(A)
ans =

1 0 0
0 1 0
0 0 1

Thus A is nonsingular.

ML.2. We use the fact that A is nonsingular if rref(A) is the identity matrix.

(a) A === [1 2;2 4];
rref(A)
ans =

1 2
0 0

Thus A is singular.
(b) A === [1 0 0;0 1 0;1 1 1];

rref(A)
ans =

1 0 0
0 1 0
0 0 1

Thus A is nonsingular.
(c) A === [1 2 1;0 1 2;1 0 0];

rref(A)
ans =

1 0 0
0 1 0
0 0 1

Thus A is nonsingular.
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ML.3. (a) A === [1 3;1 2];
rref([A eye(size(A))])
ans =

1 0 −2 3
0 1 1 −3

(b) A === [1 1 2;2 1 1;1 2 1];
rref(A eye(size(A)))
ans =

1.0000 0 0 −0.2500 0.7500 −0.2500
0 1.0000 0 −0.2500 −0.2500 0.7500
0 0 1.0000 0.7500 −0.2500 −0.2500

format rat, ans
ans =

1 0 0 −1/4 3/4 −1/4
0 1 0 −1/4 −1/4 3/4
0 0 1 3/4 −1/4 −1/4

format

ML.4. (a) A === [2 1;2 3];
rref(A eye(size(A)))
ans =

1.0000 0 0.7500 −0.2500
0 1.0000 −0.5000 0.5000

format rat, ans
ans =

1 0 3/4 −1/4
0 1 −1/2 1/2

format
(b) A === [1 −−− 1 2;0 2 1;1 0 0];

rref(A eye(size(A)))
ans =

1.0000 0 0 0 0 1.0000
0 1.0000 0 −0.2000 0.4000 0.2000
0 0 1.0000 0.4000 0.2000 −0.4000

format rat, ans
ans =

1 0 0 0 0 1
0 1 0 −1/5 2/5 1/5
0 0 1 2/5 1/5 −2/5

format

ML.5. We experiment choosing successive values of t then computing the rref of

(t ∗∗∗ eye(size(A))−−− A).

(a) A === [1 3;3 1];
t === 1; rref(t ∗∗∗ eye(size(A))−−− A)
(Use the up arrow key to recall and then revise it for use below.)
ans =

1 0
0 1

t === 2;rref(t ∗∗∗ eye(size(A))−−− A)
ans =

1 0
0 1
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t === 3;rref(t ∗∗∗ eye(size(A))−−− A)
ans =

1 0
0 1

t === 4;rref(t ∗∗∗ eye(size(A))−−− A)
ans =

1 −1
0 0

Thus t = 4.

(b) A === [4 1 2;1 4 1;0 0 −−− 4];
t === 1;rref(t ∗∗∗ eye(size(A))−−− A)
ans =

1 0 0
0 1 0
0 0 1

t === 2;rref(t ∗∗∗ eye(size(A))−−− A)
ans =

1 0 0
0 1 0
0 0 1

t === 3;rref(t ∗∗∗ eye(size(A))−−− A)
ans =

1 1 0
0 0 1
0 0 0

Thus t = 3.

ML.8. (a) Nonsingular. (b) Singular.

ML.9.

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ and

⎡⎣1 1 1
0 1 1
0 0 1

⎤⎦ have inverses, but there are others.

⎡⎣1 0 1
0 1 1
0 1 1

⎤⎦ and

⎡⎣0 0 0
0 1 1
1 0 1

⎤⎦ do not have inverses, but there are others.
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2. x =

⎡⎣ 0
−2

3

⎤⎦. 4. x =

⎡⎢⎢⎣
2

−1
0
5

⎤⎥⎥⎦.

6. L =

⎡⎣ 1 0 0
4 1 0

−5 3 1

⎤⎦, U =

⎡⎣−3 1 −2
0 6 2
0 0 −4

⎤⎦, x =

⎡⎣−3
4

−1

⎤⎦.

8. L =

⎡⎢⎢⎣
1 0 0 0
6 1 0 0

−1 2 1 0
−2 3 2 1

⎤⎥⎥⎦, U =

⎡⎢⎢⎣
−5 4 0 1

0 3 2 1
0 0 −4 1
0 0 0 −2

⎤⎥⎥⎦, x =

⎡⎢⎢⎣
1

−2
5

−4

⎤⎥⎥⎦.
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10. L =

⎡⎢⎢⎣
1 0 0 0

0.2 1 0 0
−0.4 0.8 1 0

2 −1.2 −0.4 1

⎤⎥⎥⎦, U =

⎡⎢⎢⎣
4 1 0.25 − 0.5
0 0.4 1.2 −2.5
0 0 − 0.85 2
0 0 0 −2.5

⎤⎥⎥⎦, x =

⎡⎢⎢⎣
−1.5

4.2
2.6
−2

⎤⎥⎥⎦.

ML.1. We show the first few steps of the LU-factorization using routine lupr and then display the matrices
L and U .

[L,U] === lupr(A)

++++++++++++++++++++++++++++++++++++++++++++++++++++++

∗ ∗ ∗ ∗ ∗ Find an LU-FACTORIZATION by Row Reduction ∗ ∗ ∗ ∗ ∗
L =

1 0 0

0 1 0

0 0 1

U =
2 8 0

2 2 −3
1 2 7

OPTIONS
<1> Insert element into L. <-1> Undo previous operation. <0> Quit.
ENTER your choice ===> 1

Enter multiplier. -1
Enter first row number. 1
Enter number of row that changes. 2

++++++++++++++++++++++++++++++++++++++++++++++++++++++

Replacement by Linear Combination Complete

L =
1 0 0

0 1 0

0 0 1

U =
2 8 0

0 −6 −3
1 2 7

You just performed operation −1 ∗ Row(1) + Row(2).

OPTIONS
<1> Insert element into L. <-1> Undo previous operation. <0> Quit.
ENTER your choice ===> 1

++++++++++++++++++++++++++++++++++++++++++++++++++++++

Replacement by Linear Combination Complete

L =
1 0 0

0 1 0

0 0 1

U =
2 8 0

0 −6 −3
1 2 7

You just performed operation −1 ∗ Row(1) + Row(2).

Insert a value in L in the position you just eliminated in U . Let the multiplier you just used be
called num. It has the value −1.

Enter row number of L to change. 2
Enter column number of L to change. 1
Value of L(2,1) = -num
Correct: L(2,1)=1
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++++++++++++++++++++++++++++++++++++++++++++++++++++++

Continuing the factorization gives

L =
1 0 0

1 1 0

0.5 0.3333 1

U =
2 8 0

0 −6 −3
0 0 8

ML.2. We show the first few steps of the LU-factorization using routine lupr and then display the matrices
L and U .

[L,U] === lupr(A)

++++++++++++++++++++++++++++++++++++++++++++++++++++++

∗ ∗ ∗ ∗ ∗ Find an LU-FACTORIZATION by Row Reduction ∗ ∗ ∗ ∗ ∗
L =

1 0 0

0 1 0

0 0 1

U =
8 −1 2

3 7 2

1 1 5

OPTIONS
<1> Insert element into L. <-1> Undo previous operation. <0> Quit.
ENTER your choice ===> 1

Enter multiplier. -3/8
Enter first row number. 1
Enter number of row that changes. 2

++++++++++++++++++++++++++++++++++++++++++++++++++++++

Replacement by Linear Combination Complete

L =
1 0 0

0 1 0

0 0 1

U =
8 −1 2

0 7.375 1.25

1 1 5

You just performed operation −0.375 ∗ Row(1) + Row(2)

OPTIONS
<1> Insert element into L. <-1> Undo previous operation. <0> Quit.
ENTER your choice ===> 1

++++++++++++++++++++++++++++++++++++++++++++++++++++++

Replacement by Linear Combination Complete

L =
1 0 0

0 1 0

0 0 1

U =
8 −1 2

0 7.375 1.25

1 1 5

You just performed operation −0.375 ∗ Row(1) + Row(2)

Insert a value in L in the position you just eliminated in U . Let the multiplier you just used be
called num. It has the value −0.375.
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Enter row number of L to change. 2
Enter column number of L to change. 1
Value of L(2,1) = -num
Correct: L(2,1) = 0.375

++++++++++++++++++++++++++++++++++++++++++++++++++++++

Continuing the factorization process we obtain

L =
1 0 0

0.375 1 0

0.125 0.1525 1

U =
8 −1 2

0 7.375 1.25

0 0 4.559

Warning: It is recommended that the row multipliers be written in terms of the entries of matrix
U when entries are decimal expressions. For example, −U(3, 2)/U(2, 2). This assures that the
exact numerical values are used rather than the decimal approximations shown on the screen. The
preceding display of L and U appears in the routine lupr, but the following displays which are
shown upon exit from the routine more accurately show the decimal values in the entries.

L =
1.0000 0 0

0.3750 1.0000 0

0.1250 0.1525 1.0000

U =
8.0000 −1.0000 2.0000

0 7.3750 1.2500

0 0 4.5593

ML.3. We first use lupr to find an LU-factorization of A. The matrices L and U that we find are different
from those stated in Example 2. There can be many LU-factorizations for a matrix. We omit the
details from lupr. It is assumed that A and b have been entered.

L =
1.0000 0 0 0

0.5000 1.0000 0 0

−2.0000 −2.0000 1.0000 0

−1.0000 1.0000 −2.0000 1.0000

U =
6 −2 −4 4

0 −2 −4 −1
0 0 5 −2
0 0 0 8

z === forsub(L,b)

z =
2

−5
2

−32

x === bksub(U,z)

x =
4.5000

6.9000

−1.2000
−4.0000

ML.4. The detailed steps of the solution of Exercises 7 and 8 are omitted. The solution to Exercise 7 is[
2 −2 −1

]T and the solution to Exercise 8 is
[
1 −2 5 −4

]T .
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Supplementary Exercises, p. 114

2.
[

8 −6
−9 17

]
.

4. (a) When AB = BA, since (A + B)(A − B) = A2 − AB + BA − B2.

(b) (AB)C = A(BC) = A(CB) = (AC)B = (CA)B = C(AB).

6. k = 1.

8.

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 11

5 0

0 1 − 7
5 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦.

10. x = 7
3 + 2

3r − s, y = 2
3 + 1

3r, z = r, w = s, r and s any real numbers.

12. 2b1 + b2 − b3 = 0.

14. a = 1, 2.

16.

⎡⎢⎢⎢⎣
1
4

1
2 − 1

4

3
4 0 − 1

4

− 1
4

1
2

1
4

⎤⎥⎥⎥⎦.

18.

⎡⎣3 5 0
1 3 −3
7 10 4

⎤⎦.

20. 0, 4.

22.
1
c
A−1.

24. (a) a = 2, −4. (b) Any real number a.

26. (a) 3. (b) 6. (c) 10. (d)
n

2
(n + 1).

28. A can be any of the following:[
1 0
0 1

]
,

[
−1 0

0 −1

]
,

[
1 b
0 −1

]
,

[
−1 b

0 1

]
.

30. (a) 4. (b) 1. (c) 3.

31. By inspecting the sequence A2, A3, A4, A5 and higher powers if need be, it appears that

An =

⎡⎢⎢⎣1 2n−1
2n

0 1
2n

⎤⎥⎥⎦ .

32. (a) The results must be identical, since an inverse is unique.

(b) The instructor computes AA1 and AA2. If the result is I10, then the answer submitted by the
student is correct.
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34. L =

⎡⎣ 1 0 0
3 1 0

−3 2 1

⎤⎦, U =

⎡⎣2 2 3
0 −1 −2
0 0 3

⎤⎦, x =

⎡⎣ 1
−1
−2

⎤⎦.

T.1. (a) Tr(cA) =
n∑

i=1

caii = c

n∑
i=1

aii = cTr(A).

(b) Tr(A + B) =
n∑

i=1

(aii + bii) =
n∑

i=1

aii +
n∑

i=1

bii = Tr(A) + Tr(B).

(c) Let AB = C =
[
cij

]
. Then

Tr(AB) = Tr(C) =
n∑

i=1

cii =
n∑

i=1

n∑
k=1

aikbki =
n∑

k=1

n∑
i=1

bkiaik = Tr(BA).

(d) Tr(AT ) =
n∑

i=1

aii = Tr(A).

(e) Tr(AT A) is the sum of the diagonal entries of AT A. The ith diagonal entry of AT A is
n∑

j=1

a2
ji,

so

Tr(AT A) =
n∑

i=1

⎡⎣ n∑
j=1

a2
ji

⎤⎦ = sum of the squares of all entries of A.

Hence, Tr(AT A) ≥ 0.

T.2. From part (e) of Exercise T.1.,

Tr(AT A) =
n∑

i=1

⎡⎣ n∑
j=1

a2
ji

⎤⎦ .

Thus, if Tr(AT A) = 0, then aji = 0 for all i, j, that is, A = O.

T.3. If Ax = Bx for all n × 1 matrices x, then Aej = Bej , j = 1, 2, . . . , n, where ej = column j of In.
But then

Aej =

⎡⎢⎢⎢⎣
a1j

a2j

...
anj

⎤⎥⎥⎥⎦ = Bej =

⎡⎢⎢⎢⎣
b1j

b2j

...
bnj

⎤⎥⎥⎥⎦ .

Hence column j of A = column j of B for each j and it follows that A = B.

T.4. We have Tr(AB − BA) = Tr(AB) − Tr(BA) = 0, while

Tr
([

1 0
0 1

])
= 2.

T.5. Suppose that A is skew symmetric, so AT = −A. Then (Ak)T = (AT )k = (−A)k = −Ak if k is a
positive odd integer, so Ak is skew symmetric.
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T.6. If A is skew symmetric then AT = −A. Note that xT Ax is a scalar, thus (xT Ax)T = xT Ax. That
is,

xT Ax = (xT Ax)T = xT AT x = −(xT Ax).

The only scalar equal to its negative is zero. Hence xT Ax = 0 for all x.

T.7. If A is symmetric and upper (lower) triangular, then aij = aji and aij = 0 for j > i (j < i). Thus,
aij = 0, i �= j, so A is diagonal.

T.8. Assume that A is upper triangular. If A is nonsingular then A is row equivalent to In. Since A is
upper triangular this can occur only if aii �= 0 because in the reduction process we must perform
the row operations (1/aii) · (ith row of A). The steps are reversible.

T.9. Suppose that A �= O but row equivalent to O. Then in the reduction process some row operation
must have transformed a nonzero matrix into the zero matrix. However, considering the types of
row operations this is impossible. Thus A = O. The converse follows immediately.

T.10. Let A and B be row equivalent n× n matrices. Then there exists a finite number of row operations
which when applied to A yield B and vice versa. If B is nonsingular, then B is row equivalent to
In. Thus A is also row equivalent to In, hence A is nonsingular. We repeat the argument with A
and B interchanged to prove the converse.

T.11. Assume that B is singular. Then by Theorem 1.13 there exists x �= 0 such that Bx = 0. Then
(AB)x = A0 = 0, which means that the homogeneous system (AB)x = 0 has a nontrivial solution.
Theorem 1.13 implies that AB is singular, but this is a contradiction. Suppose now that A is singular
and B is nonsingular. Then there exists a y �= 0 such that Ay = 0. Since B is nonsingular we can
find x �= 0 such that y = Bx (x = B−1y). Then 0 = Ay = (AB)x, which again implies that AB is
singular, a contradiction.

T.12. If A is skew symmetric, AT = −A. Thus aii = −aii, so aii = 0.

T.13. If AT = −A and A−1 exists, then

(A−1)T = (AT )−1 = (−A)−1 = −A−1.

Hence A−1 is skew symmetric.

T.14. (a) I2
n = In and O2 = O.

(b) One such matrix is
[
0 0
0 1

]
.

(c) If A2 = A and A−1 exists, then A−1(A2) = A−1A. Simplifying gives A = In.

T.15. (a) Let A be nilpotent. If A were nonsingular, then products of A with itself are also nonsingular.
But Ak = O, hence Ak is singular. Thus A must be singular.

(b) A2 =

⎡⎣0 0 1
0 0 0
0 0 0

⎤⎦, A3 = O.

(c) k = 1, A = O; In − A = In; (In − A)−1 = In.
k = 2, A2 = O; (In − A)(In + A) = In − A2 = In; (In − A)−1 = In + A.
k = 3, A3 = O; (In − A)(In + A + A2) = In − A3 = In; (In − A)−1 = In + A + A2, etc.

T.16. We have that A2 = A and B2 = B.

(a) (AB)2 = ABAB = A(BA)B = A(AB)B (since AB = BA)
= A2B2 = AB (since A and B are idempotent)
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(b) (AT )2 = AT AT = (AA)T (by the properties of the transpose)
= (A2)T = AT (since A is idempotent)

(c) If A and B are n × n and idempotent, then A + B need not be idempotent., For example, let

A =
[
1 1
0 0

]
and B =

[
0 0
1 1

]
.

Both A and B are idempotent and C = A + B =
[
1 1
1 1

]
. However, C2 =

[
2 2
2 2

]
�= C.

T.17. Let

A =
[

0 a
−a 0

]
and B =

[
0 b

−b 0

]
.

Then A and B are skew symmetric and

AB =
[
−ab 0
0 −ab

]
which is diagonal. The result is not true for n > 2. For example, let

A =

⎡⎣ 0 1 2
−1 0 3
−2 −3 0

⎤⎦ .

Then

A2 =

⎡⎣ 5 6 −3
6 10 2

−3 2 13

⎤⎦ .

T.18. Assume that A is nonsingular. Then A−1 exists. Hence we can multiply Ax = b by A−1 on the left
on both sides obtaining

A−1(Ax) = A−1b or Inx = x = A−1b.

Thus Ax = b has a unique solution. Assume that Ax = b has a unique solution for every b. Since
Ax = 0 has solution x = 0, Theorem 1.13 implies that A is nonsingular.

T.19. (a) xyT =

⎡⎣ 4 5 6
8 10 12

12 15 18

⎤⎦. (b) xyT =

⎡⎢⎢⎣
−1 0 3 5
−2 0 6 10
−1 0 3 5
−2 0 6 10

⎤⎥⎥⎦.

T.20. It is not true that xyT must be equal to yxT . For example, let

x =
[
1
2

]
and y =

[
4
5

]
.

Then

xyT =
[
4 5
8 10

]
and yxT =

[
4 8
5 10

]
.

T.21. Tr(xyT ) = x1y1 + x2y2 + · · · + xnyn = xT y. (See discussion preceding Exercises T.19–T.22.)
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T.22. The outer product of x and y can be written in the form

xyT =

⎡⎢⎢⎢⎢⎢⎢⎣
x1

[
y1 y2 · · · yn

]
x2

[
y1 y2 · · · yn

]
...

xn

[
y1 y2 · · · yn

]

⎤⎥⎥⎥⎥⎥⎥⎦
If either x = 0 or y = 0, then xyT = On. Thus assume that there is at least one nonzero component
in x, say xi, and at least one nonzero component in y, say yj . Then 1

xi
Rowi(xyT ) makes the ith row

exactly yT . Since all the other rows are multiples of yT , row operations of the form (−xk)Ri + Rp,
for p �= i can be performed to zero out everything but the ith row. It follows that either xyT is row
equivalent to On or to a matrix with n − 1 zero rows.

T.23. (a) HT = (In − 2wwT )T = IT
n − 2(wwT )T = In − 2(wT )T wT = In − 2wwT = H.

(b) HHT = HH = (In − 2wwT )(In − 2wwT )
= In − 4wwT + 4wwT wwT

= In − 4wwT + 4w(wT w)wT

= In − 4wwT + 4w(In)wT = In

Thus, HT = H−1.

T.24. Let B =
[
a b
c d

]
. Then

[
2 0

−1 1

] [
a b
c d

]
=

[
a b
c d

] [
2 0

−1 1

]
=⇒

[
2a 2b

−a + c −b + d

]
=

[
2a − b b
2c − d d

]

which yields a = r, b = 0, d = s, c = d − a = s − r. Thus, B =
[

r 0
s − r s

]
.
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Applications of Linear Equations and
Matrices (Optional)

Section 2.1, p. 123

2. (a) No. (b) A =

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎦.

4. (a) Yes. (b) No such matrix A can be constructed.

6. (a) 2. (b) 3. (c) 2. (d) 1.

8. (a) Odd. (b) Even. (c) Odd. (d) Odd.

10. (a) Yes. (b) No. (c) No. (d) No.

T.1. 1 word with weight zero; 2 words with weight one; 1 word with weight two.

T.2. 1 word with weight zero; 3 words with weight one; 3 words with weight two; 1 word with weight
three.

T.3. n words with weight one;
n

(n − 1)
2 words with weight two.

T.4. (a) There are only two code words 000 and 111. Since 000 + 000 = 000, 000 + 111 = 111, and
111 + 111 = 000, it is linear.

(b) The code words are 000, 011, 101, and 110. 000+any code word = same code word, 011+011 =
000, 011 + 101 = 110, 011 + 110 = 101, 101 + 110 = 011, so it is linear.

T.5. (a) The code words are 0000, 0101, 1010, 1111.

(b) Yes.

(c) No. If the received word was 11000, no error would be detected, but 1100 is not a code word.

ML.1. (a) M = bingen(0,15,4)
A =

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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(b) s = sum(M)
s =

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

(c) w = [0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0]
w =

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

(d) C = [M;w]
A =

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

Section 2.2, p. 134

2. (a) ⎡⎢⎢⎢⎢⎣

P1 P2 P3 P4 P5

P1 0 1 0 0 0
P2 1 0 1 0 1
P3 1 0 0 1 0
P4 0 1 0 0 0
P5 0 0 0 1 0

⎤⎥⎥⎥⎥⎦.

(b) ⎡⎢⎢⎢⎢⎢⎢⎣

P1 P2 P3 P4 P5 P6

P1 0 1 1 0 0 0
P2 1 0 0 1 0 0
P3 0 1 0 0 0 0
P4 0 0 1 0 1 1
P5 0 0 1 1 0 1
P6 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦.

4. (b).

6. (a) One way: P2 → P5 → P1.
(b) Two ways: P2 → P5 → P1 → P2.

P2 → P5 → P3 → P2.

8. P2, P3, and P4.

10. There is no clique.

12. (a) Strongly connected.

(b) Not strongly connected.

14. P1, P2, or P3.

T.1. In a dominance digraph, for each i and j, it is not the case that both Pi dominates Pj and Pj

dominates Pi.

T.2. Let r = 2. For each i and j, b
(2)
ij , the number of ways Pi has two-stage access to Pj , is the number

of indices k, 1 ≤ k ≤ n, such that Pi has direct access to Pk and Pk has direct access to Pj . This in
turn is the number of k such that aik = 1 and akj = 1 where A(G) =

[
aij

]
, which is

n∑
k=1

aikakj = i, j entry of [A(G)]2.
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For r > 2, assume that the theorem has been proved for values up to r − 1. Then

b
(r)
ij = the number of k such that Pi has r − 1 stage access to Pk

and Pk has direct access to Pj

=
n∑

k=1

b
(r−1)
ik · akj

=
n∑

k=1

(i, k entry of [A(G)]r−1) · (k, j entry of A(G))

= i, j entry of [A(G)]r.

T.3. The implication in one direction is proved in the discussion following the theorem. Next suppose
Pi belongs to the clique {Pi, Pj , Pk, . . . , Pm}. According to the definition of clique, it contains at
least three vertices so we may assume Pi, Pj and Pk all exist in the clique. Then sij = sji = sjk =
skj = sik = ski = 1 and s

(3)
ii is a sum of nonnegative integer terms including the positive term which

represents three stage access from Pi to Pj to Pk to Pi. Thus s
(3)
ii is positive.

ML.1. A === [0 0 0 0 0;1 0 1 1 1;0 1 0 1 0;1 1 1 0 0;0 0 1 1 0];

S === zeros(size(A)); [k,m] === size(A); for i === 1:k, for j === 1:k,

if A(i,j) ====== 1&&&A(j,i) ====== 1&&&j ∼∼∼=== i,S(i,j) === 1;S(j,i) === 1;end,end,end,S

S =
0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 0

0 0 0 0 0

Next we compute S3 as follows.

S∧∧∧3
ans =

0 0 0 0 0

0 2 3 3 0

0 3 2 3 0

0 3 3 2 0

0 0 0 0 0

It follows that P2, P3, and P4 form a clique.

ML.2. A === [0 1 1 0 1;1 0 0 1 0;0 1 0 0 1;0 1 1 0 1;1 0 0 1 0];

Using the up-arrow, recall the following lines.

S === zeros(size(A));[k,m] === size(A); for i === 1:k, for j === 1:k,

if A(i,j) ====== 1&&&A(j,i) ====== 1&&&j ∼∼∼=== i,S(i,j) === 1; S(j,i) === 1;end,end,end,S

S =
0 1 0 0 1

1 0 0 1 0

0 0 0 0 0

0 1 0 0 1

1 0 0 1 0
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Next we compute S∧∧∧3.

S∧∧∧3

ans =
0 4 0 0 4

4 0 0 4 0

0 0 0 0 0

0 4 0 0 4

4 0 0 4 0

Since no diagonal entry is different than zero, there are no cliques.

ML.3. We use Theorem 2.3.

(a) A === [0 0 1 1 1;1 0 1 1 0;0 1 0 0 0;0 1 0 0 1;1 1 0 0 0];

Here n = 5, so we form

E === A+++ A∧∧∧2+++ A∧∧∧3+++ A∧∧∧4

E =
7 13 10 10 11

10 11 12 12 9

5 7 4 4 3

8 13 7 7 8

11 11 9 9 6

Since E has no zero entries the digraph represented by A is strongly connected.

(b) A === [0 0 0 0 1;0 0 1 1 0;0 1 0 0 1;1 0 0 0 0;0 0 0 1 0];

Here n = 5, so we form

E === A+++ A∧∧∧2+++ A∧∧∧3+++ A∧∧∧4

E =
1 0 0 1 2

3 2 2 4 3

2 2 2 4 4

2 0 0 1 1

1 0 0 2 1

Since E has zero entries the digraph represented by A is not strongly connected.

Section 2.3, p. 141

2.

x

y

x

y

2 4 6 8 10 12 14 16

2

4

O



Section 2.3 51

4. (a) y

x

3

4

8

12

1

3 4 8 121

(12, 16)

(4, 4) (12, 4)

(4, 16)
16

O

(b) y

x

2

1

21
1
4

3
4

1
4

O

6. y

x

1

1

1
2

O

8. (1,−2), (−3, 6), (11,−10).
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10. We find that

(f1 ◦ f2)(e1) = e2

(f2 ◦ f1)(e1) = −e2.

Therefore f1 ◦ f2 �= f2 ◦ f1.

12. Here f(u) =
[
2 0
0 3

]
u. The new vertices are (0, 0), (2, 0), (2, 3), and (0, 3).

y

x
2

3
(2, 3)

O

14. (a) Possible answer: First perform f1 (45◦ counterclockwise rotation), then f2.

(b) Possible answer: First perform f3, then f2.

ML.1. (a) Part (a) resulted in an ellipse. Part (b) generated another ellipse within that generated in part
(a). The two ellipses are nested.

(b) Inside the ellip[se generated in part (b).

ML.2. (a) The area of the image is 8 square units.

(b) The area of the composite image is 1 square unit.

(c) BA = I2, so the composition gave the image of the unit square as the unit square.

ML.3. (a) The area of the house is 5 square units. The area of the image is 5 square units. The areas of
the original figure and the image are the same.

(b) The area of the image is 5 square units. The areas of the original figure and the image are the
same.

(c) The area of the image is 5 square units. The areas of the original figure and the image are the
same.

ML.4. (a) A =
[
−1 0

0 1

]
. (b) A =

[
− 1

2 0
0 1

2

]
.

(b) The tangent of the angle is 1. Thus the angle is π/4.

ML.5. (a) Composite transformation

0
y axis reduction performed

Current Figure

1 2 3

0

1

2

3

−1

−2
−3

−1−2−3
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(b)

0

Current Figure

1 2 3

0

1

2

3

Rotation of 45   performed

−�
−�
−�

−�−�−�

A ∗B �= B ∗A because the images of the composite transformations represented by the matrix
products are not equal.

ML.6. The parallelogram in Figure 16 may be obtaqined by reflecting the parallelogram about the line
y = −x.

ML.7. (a) The projection is longer than w and is in the same direction.

(b) The projection is shorter than w and is in the opposite direction.

(c) The projection is shorter than w and is in the same direction.

(d) The projection is shorter than w and is in the same direction.

Section 2.4, p. 148

2. I1 = 1A from b to a, I2 = 5A from c to b, I3 = 4A from b to f ,

I4 = 10A from d to c, I5 = 5A from c to f .

4. I1 = 50A from b to a, I2 = 60A from b to e, I3 = 110A from e to d,

I4 = 75A from b to c, I5 = 185A from d to b.

6. I1 = 2A from a to h, I2 = 5A from c to b, I3 = 15A from f to c,

E2 = 20V, E3 = 30V, R = 3Ω.

8. I1 = 21A from b to a, I2 = 40A from d to c, I3 = 10A from e to f ,

I4 = 29A from f to g, E1 = 185V, E2 = 370V.

T.1. We choose the following directions for the currents:

I : a to b

I1 : b to e

I2 : b to c.

Then we have the following linear equations

I − I1 − I2 = 0 (node b)
− R1I1 + R2I2 = 0 (loop bcdeb)

which leads to the linear system [
1 1

R1 −R2

] [
I1

I2

]
=

[
I
0

]
whose solution is

I1 =
(

R2

R1 + R2

)
I =

R

R1
I and I2 =

(
R1

R1 + R2

)
I =

R

R2
I,
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where

R =
R1 + R2

R1R2
,

so

1
R

=
1

R1
+

1
R2

.

T.2. We choose the following directions for the currents:

I : a to b

I ′ : b to c

I1 : b to g

I2 : c to f

I3 : d to e

Then we have the following linear equations:

I − I ′ − I1 = 0 (node b)
I ′ − I2 − I3 = 0 (node c)

−I1R1 + I2R2 = 0 (loop bgfcb)
−I2R2 + I3R3 = 0 (loop cfed)

which can be written in matrix form as⎡⎣ 1 1 1
−R1 R2 0

0 −R2 R3

⎤⎦⎡⎣I1

I2

I3

⎤⎦ =

⎡⎣I
0
0

⎤⎦
whose solution leads to the final result.

Section 2.5, p. 157

2. (b) and (c).

4.

⎡⎣0.5 0.4 0.3
0.3 0.4 0.5
0.2 0.2 0.2

⎤⎦.

6. (a) x(1) =

⎡⎣0.2
0.3
0.5

⎤⎦, x(2) =

⎡⎣0.06
0.24
0.70

⎤⎦, x(3) =

⎡⎣0.048
0.282
0.670

⎤⎦, x(4) =

⎡⎣0.056
0.286
0.658

⎤⎦.

(b) Let ∗ stand for any positive matrix entry. Then

T 2 =

⎡⎣0 ∗ 0
0 ∗ ∗
∗ ∗ ∗

⎤⎦ ·

⎡⎣0 ∗ 0
0 ∗ ∗
∗ ∗ ∗

⎤⎦ =

⎡⎣0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎦ ,

T 3 = T 2 · T =

⎡⎣0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎦ ·

⎡⎣0 ∗ 0
0 ∗ ∗
∗ ∗ ∗

⎤⎦ =

⎡⎣∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎦ > 0,

hence T is regular; u =

⎡⎣0.057
0.283
0.660

⎤⎦.
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8. In general, each matrix is regular, so Tn converges to a state of equilibrium. Specifically, Tn →
a matrix all of whose columns are u, where

(a) u =

⎡⎣ 2
3

1
3

⎤⎦, (b) u =

⎡⎣ 1
4

3
4

⎤⎦, (c) u =

⎡⎢⎢⎢⎣
9
17

4
17

4
17

⎤⎥⎥⎥⎦, (d) u =

⎡⎢⎢⎢⎣
0.333

0.111

0.555

⎤⎥⎥⎥⎦.

10. (a)

⎡⎣ 3
7

4
7

⎤⎦ (b)

⎡⎣ 1
8

7
8

⎤⎦ (c)

⎡⎢⎢⎢⎣
4
11

4
11

3
11

⎤⎥⎥⎥⎦ (d)

⎡⎢⎢⎢⎣
1
11

4
11

6
11

⎤⎥⎥⎥⎦.

12. (a) T =
[
0.6 0.25
0.4 0.75

]
. (b) T

[
0.4
0.6

]
=

[
0.39
0.61

]
; 39% will order a subscription.

14. red, 25%; pink, 50%; white, 25%.

T.1. No. If the sum of the entries of each column is 1, it does not follow that the sum of the entries in
each column of AT will also be 1.

ML.2. Enter the matrix T and initial state vector x(0) into Matlab.

T === [.5 .6 .4;.25 .3 .3;.25 .1 .3];

x0 === [.1 .3 .6];

State vector x(5) is given by

x5 === T∧∧∧5 ∗∗∗ x0

x5 =
0.5055

0.2747

0.2198

ML.3. The command sum operating on a matrix computes the sum of the entries in each column and
displays these totals as a row vector. If the output from the sum command is a row of ones, then
the matrix is a Markov matrix.

(a) A === [2/3 1/3 1/2;1/3 1/3 1/4;0 1/3 1/4];sum(A)

ans =
1 1 1

Hence A is a Markov matrix.

(b) A === [.5 .6 .7;.3 .2 .3;.1 .2 0];sum(A)

ans =
0.9000 1.0000 1.0000

A is not a Markov matrix.

(c) A === [.66 .25 .125;.33 .25 .625;0 .5 .25];sum(A)

ans =
0.9900 1.0000 1.0000

A is not a Markov matrix.
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Section 2.6, p. 165

2.

⎡⎣3
3
8

⎤⎦. 4.

⎡⎣15
3

14

⎤⎦.

6. C1’s income is 24; C2’s income is 25; C3’s income is 16.

8. Productive 10. Productive.

12. $2.805 million of copper, $2.125 million of transportation, $4.158 million of electric power.

T.1. We must show that for an exchange matrix A and vector p, Ap ≤ p implies Ap = p. Let A =
[
aij

]
,

p =
[
pj

]
, and Ap = y =

[
yj

]
. Then

n∑
j=1

yj =
n∑

j=1

n∑
k=1

ajkpk =
n∑

k=1

⎛⎝ n∑
j=1

ajk

⎞⎠ pk =
n∑

k=1

pk

since the sum of the entries in the kth column of A is 1.

Since yj ≤ pj for j = 1, . . . , n and
∑

yj =
∑

pj , the respective entries must be equal: yj = pj for
j = 1, . . . , n. Thus Ap = p.

Section 2.7, p. 178

2. Final average: 14.75;
Detail coefficients: 8.25, 4, −1.5
Compressed data: 14.75, 8.25, 4, 0
Wavelet y-coordinates: 27, 19, 6.5, 8.5.

4. Final average: −0.875
Detail coefficients: 0.625, −2.25, 0.5, 3.5, −3.0, 3.0, 1.0
Compressed data: −0.875, 0, −2.25, 0, 3.5, −3.0, 3.0, 0
Wavelet y-coordinates: 0.375, −6.625, −1.625, 4.375, 2.125, −3.875, −0.875, −0.875.

6. Computing the reduced row echelon for of A1 and A2, we find that in each case we obtain I4.

Supplementary Exercises, p. 179

2. Let A =
[
1 2
a b

]
. The rectangle has vertices (0, 0), (4, 0), (4, 2), and (0, 2). We must have

[
1 2
a b

] [
0 4 4 0
0 0 2 2

]
=

[
0 r s t
0 r s t

]
.

Then [
1 2
a b

] [
4
0

]
=

[
r
r

]
,

so r = 4 and 4a = 4. Hence, a = 1. Also,[
1 2
a b

] [
4
2

]
=

[
s
s

]
,

so 8 = s and 4a + 2b = s = 8, which implies that b = 2.
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4. I1 = 4A from e to b, I2 = 1.5A from d to e, I3 = 2.5A from f to e.

6. p1 = 12r, p2 = 8r, p3 = 9r, r = any real number.

T.1. Let u, v be vectors in R2. Then

(f1 ◦ f2)(u + v) = f1(f2(u + v)) = f1(f2(u) + f2(v)) since f2 is a linear operator
= f1(f2(u)) + f1(f2(v)) since f1 is a linear operator
= (f1 ◦ f2)(u) + (f1 ◦ f2)(v).

Moreover, for any scalar c,

(f1 ◦ f2)(cu) = f1(f2(cu)) = f1(cf2(u)) = cf1(f2(u)) = c(f1 ◦ f2)(u).

Therefore, f1 ◦ f2 is a linear operator.
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Determinants

Section 3.1, p. 192

2. (a) even. (b) odd. (c) even. (d) odd. (e) even. (f) even.

4. The number of inversions are: (a) 9, 6. (b) 8, 7. (c) 5, 6. (d) 2, 7.

6. (a) 2. (b) 24. (c) −30. (d) 2.

8. |B| = 4; |C| = −8; |D| = −4.

10. det(A) = det(AT ) = 14.

12. (a) (λ − 1)(λ − 2)(λ − 3) = λ3 − 6λ2 + 11λ − 6. (b) λ3 − λ.

14. (a) 1, 2, 3. (b) −1, 0, 1.

16. (a) −144. (b) −168. (c) 72.

18. (a) −120. (b) 29. (c) 9.

20. (a) −1 (b) −120. (c) −22.

22. (a) 16. (b) 256. (c) − 1
4 .

24. (a) 1. (b) 1. (c) 1.

26. (a) 1. (b) 1.

T.1. If ji and ji+1 are interchanged, all inversions between numbers distinct from ji and ji+1 remain
unchanged, and all inversions between one of ji, ji+1 and some other number also remain unchanged.
If originally ji < ji+1, then after interchange there is one additional inversion due to ji+1ji. If
originally ji > ji+1, then after interchange there is one fewer inversion.

Suppose jpand jq are separated by k intervening numbers. Then k interchanges of adjacent numbers
will move jp next to jq. One interchange switches jp and jq. Finally, k interchanges of adjacent
numbers takes jq back to jp’s original position. The total number of interchanges is the odd number
2k + 1.

T.2. Parallel to proof for the upper triangular case.

T.3. cA =
[
caij

]
. By n applications of Theorem 3.5, the result follows.
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T.4. If A is nonsingular, then AA−1 = In. Therefore det(A) · det(A−1) = det(AA−1) = det(In) = 1.
Thus det(A) �= 0 and

det(A−1) =
1

det(A)
.

T.5. det(AB) = det(A) det(B). Thus if det(AB) = 0, then detA · det B = 0, and either detA = 0 or
det B = 0.

T.6. det(AB) = det(A) · det(B) = det(B) · det(A) = det(BA).

T.7. In the summation

det(A) =
∑

(±)a1j1a2j2 · · · anjn

for the definition of det(A) there is exactly one nonzero term. Thus det(A) �= 0.

T.8. det(A) det(B) = det(AB) = det(In) = 1. Thus det(A) �= 0 and det(B) �= 0.

T.9. (a) [det(A)]2 = det(A) det(A) = det(A) det(A−1) = det(AA−1) = 1.

(b) [det(A)]2 = det(A) det(A) = det(A) det(AT ) = det(A) det(A−1) = det(AA−1) = 1.

T.10. det(A2) = [det(A)]2 = det(A), so det(A) is a nonzero root of the equation x2 − x = 0.

T.11. det(AT BT ) = det(AT ) det(BT ) = det(A) det(BT ) = det(AT ) det(B).

T.12.

∣∣∣∣∣∣
a2 a 1
b2 b 1
c2 c 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a2 a 1

b2 − a2 b − a 0
c2 − a2 c − a 0

∣∣∣∣∣∣ =
∣∣∣∣ (b − a)(b + a) b − a

(c − a)(c + a) c − a

∣∣∣∣
= (b − a)(c − a)

∣∣∣∣ b + a 1
c + a 1

∣∣∣∣ = (b − a)(c − a)(b − c).

T.13. If A is nonsingular, by Corollary 3.2, det(A) �= 0 and aii �= 0 for i = 1, 2, . . . , n. Conversely, if aii �= 0
for i = 1, . . . , n, then clearly A is row equivalent to In, and thus is nonsingular.

T.14. det(AB) = det(A) det(B) = 0 · det(B) = 0.

T.15. If det(A) �= 0, then since

0 = det(O) = det(An) = det(A) det(An−1),

by Exercise T.5 above, det(An−1) = 0. Working downward, det(An−2) = 0, . . . , det(A2) = 0,
det(A) = 0, which is a contradiction.

T.16. det(A) = det(AT ) = det(−A) = (−1)n det(A) = det(A), which implies det(A) = 0.

T.17. Follows immediately from Theorem 3.7.

T.18. When all the entries on its main diagonal are nonzero.

T.19. Ten have determinant 0 and six have determinant 1.

ML.1. There are many sequences of row operations that can be used. Here we record the value of the
determinant so you may check your result.

(a) det(A) = −18. (b) det(A) = 5.

ML.2. There are many sequences of row operations that can be used. Here we record the value of the
determinant so you may check your result.
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(a) det(A) = −9. (b) det(A) = 5.

ML.3. (a) A === [1 −−− 1 1;1 1−−− 1;−−− 1 1 1];

det(A)
ans =

4

(b) A === [1 2 3 4;2 3 4 5;3 4 5 6;4 5 6 7];

det(A)
ans =

0

ML.4. (a) A === [2 3 0;4 1 0;0 0 5];

det(5 ∗∗∗ eye(size(A))−−− A)
ans =

0

(b) A === [1 1;5 2];

det(3 ∗∗∗ eye(size(A))−−− A)∧∧∧2
ans =

9

(c) A === [1 1 0;0 1 0;1 0 1];

det(inverse(A) ∗∗∗ A)
ans =

1

ML.5. A === [5 2;−−− 1 2];
t === 1;

det(t ∗∗∗ eye(size(A))−−− A)

ans =
6

t === 2;

det(t ∗∗∗ eye(size(A))−−− A)

ans =
2

t === 3;

det(t ∗∗∗ eye(size(A))−−− A)

ans =
0

Section 3.2, p. 207

2. A21 = 0, A22 = 0, A23 = 0, A24 = 13, A13 = −9, A23 = 0, A33 = 3, A43 = −2.

4. (a) 9. (b) 13. (c) −26.

6. (a) −135. (b) −20. (c) −20.
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8. (a)

⎡⎣ 2 −7 −6
1 −7 −3

−4 7 5

⎤⎦. (b) −7.

10. (a)

⎡⎣ 2
9 − 1

9

1
6

1
6

⎤⎦. (b)

⎡⎢⎢⎢⎣
3
14 − 3

7
1
7

1
7

5
7 − 4

7

− 1
14

1
7

2
7

⎤⎥⎥⎥⎦. (c) Singular.

12. (a)

⎡⎢⎢⎢⎣
1 0 −1

−2 1
2

5
2

−1 0 2

⎤⎥⎥⎥⎦. (b)

⎡⎣ 1
3 − 1

3

− 2
3 − 5

3

⎤⎦. (c)

⎡⎢⎢⎢⎣
− 1

21 − 2
21

8
21

4
21 − 5

42 − 1
42

7
42

7
84 − 7

84

⎤⎥⎥⎥⎦.

14. (a), (b) and (d) are nonsingular.

16. (a) 0, 5. (b) −1, 0, 1.

18. (a) Has nontrivial solutions. (b) Has only the trivial solution.

20. x = −2, y = 0, z = 1.

22. x = 22
5 , y = − 26

5 , z = 12
5 .

24. (a) is nonsingular.

T.1. Let A be upper triangular. Then

det(A) =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

0 a22 · · · a2n

...
...

...
0 0 · · · ann

∣∣∣∣∣∣∣∣∣ = a11A11 = a11

∣∣∣∣∣∣
a22 · · · a2n

0 · · ·
0 · · · ann

∣∣∣∣∣∣
= a11a22

∣∣∣∣∣∣∣
a33 · · · a3n

. . .
0 · · · ann

∣∣∣∣∣∣∣ = · · · = a11a22 · · · ann.

T.2. (a) det(A) = −a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a22

∣∣∣∣ a11 a13

a31 a33

∣∣∣∣ − a32

∣∣∣∣ a11 a13

a21 a23

∣∣∣∣
= −a12(a21a33 − a23a31) + a22(a11a33 − a13a31) − a32(a11a23 − a13a21)
= −a12a21a33 + a12a23a31 + a11a22a33 − a13a22a31 − a11a23a32 + a13a21a32.

T.3. The i, j entry of adjA is Aji = (−1)j+i det(Mji), where Mji is the submatrix of A obtained by
deleting from A the jth row and ith column. Since A is symmetric, that submatrix is the transpose
of Mij . Thus

Aji = (−1)j+i det(Mji) = (−1)i+j det(Mij) = j, i entry of adjA.

Thus adjA is symmetric.

T.4. The adjoint matrix is upper triangular if A is upper triangular, since Aij = 0 if i > j.

T.5. If det(A) = ad − bc �= 0, then by Corollary 3.3,

A−1 =
1

det(A)
(adjA) =

1
ad − bc

∣∣∣∣ d −b
−c a

∣∣∣∣ .
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T.6.
1

(b − a)(c − a)(c − b)

⎡⎢⎢⎢⎣
bc(c − b) ac(a − c) ab(b − a)

b2 − c2 c2 − a2 a2 − b2

c − b a − c b − a

⎤⎥⎥⎥⎦.

T.7. If A = O, then adjA = O and is singular. Suppose A �= O but is singular. By Theorem 3.11,
A(adjA) = det(A)In = O. Were adjA nonsingular, it should have an inverse, and

A = A(adjA)(adjA)−1 = O(adjA)−1 = O.

Contradiction.

T.8. For the case that A is nonsingular, we have adjA = det(A)A−1. Hence

det(adjA) = det(det(A)A−1) = [det(A)]n det(A−1) = [det(A)]n
1

det(A)
= [det(A)]n−1

.

If A is singular, then the result is true by Exercise T.7 above.

T.9.
∣∣∣∣ a − λ b

c d − λ

∣∣∣∣ = (a − λ)(d − λ) − bc.

T.10. If det(A) �= 0, then A is nonsingular, and B = A−1AB = A−1AC = C.

T.11. Since the entries of A are integers, the cofactors of entries of A are integers and adjA is a matrix of
integer entries. Since det(A) = ±1, A−1 is also a matrix of integers.

T.12.
(

1
det(A)

A

)
adjA =

det(A)
det(A)

In = In. Thus
1

det(A)
A = (adjA)−1.

By Corollary 3.3, for any nonsingular matrix B, adjB = det(B)B−1. Thus for B = A−1,

adj(A−1) = det(A−1)(A−1)−1 =
1

det(A)
A.

T.13.
[
0 1
1 0

]
,
[
1 0
0 1

]
,
[
1 1
0 1

]
,
[
0 1
1 1

]
,
[
1 0
1 1

]
,
[
1 1
1 0

]
.

ML.1. We present a sample of the cofactors.
A === [1 0 −−− 2;3 1 4;5 2 −−− 3];
cofactor(1,1,A) cofactor(2,3,A) cofactor(3,1,A)
ans =

−11
ans =

−2
ans =

2

ML.2. A === [1 5 0;2 −−− 1 3;3 2 1];
cofactor(2,1,A) cofactor(2,2,A) cofactor(2,3,A)
ans =

−5
ans =

1
ans =

13

ML.3. A === [4 0 −−− 1;−−− 2 2 −−− 1;0 4 −−− 3];
detA === 4 ∗∗∗ cofactor(1,1,A) +++ (−−− 1) ∗∗∗ cofactor(1,3,A)
detA =

0

We can check this using the det command.
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ML.4. A === [−−− 1 2 0 0;2 −−− 1 2 0; 0 2 −−− 1 2;0 0 2 −−− 1];
(Use expansion about the first column.)
detA === −−−1 ∗∗∗ cofactor(1,1,A) +++ 2 ∗∗∗ cofactor(2,1,A)
detA =

5

ML.5. Before using the expression for the inverse in Corollary 3.3, check the value of the determinant to
avoid division by zero.

(a) A === [1 2 −−− 3;−−− 4 −−− 5 2;−−− 1 1 −−− 7];
det(A)
ans =

0
The matrix is singular.

(b) A === [2 3;−−− 1 2];
det(A)
ans =

7
invA === (1/det(A)) ∗∗∗ adjoint(A)
invA =

0.2857 −0.4286
0.1429 0.2857

To see the inverse with rational entries proceed as follows.
format rat, ans
ans =

2/7 −3/7
1/7 2/7

format

(c) A === [4 0 2;0 3 4;0 1 −−− 2];
det(A)
ans =

−40
invA === (1/det(A)) ∗∗∗ adjoint(A)
invA =

0.2500 −0.0500 0.1500
0 0.2000 0.4000
0 0.1000 −0.3000

format rat, ans
ans =

1/4 −1/20 3/20
0 1/5 2/5
0 1/10 −3/10

format

Supplementary Exercises, p. 212

2. (a) 5
2 . (b) 30.

4. (a) 12. (b) 36. (c) 3.

6. −2.

8. A11 = 44, A12 = −21, A13 = 8; A21 = −6, A22 = 21, A23 = 11; A31 = −17, A32 = −7, A33 = 9.
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10. (a)

⎡⎣−7 8 −13
5 4 −15

−4 −10 12

⎤⎦. (b) −34.

12. −2, 0.

14. x = −2, y = 1, z = −3.

16. (a) a �= 2 and a �= −2. (b) a = 2 or a = −2.

18. a = −1.

T.1. If rows i and j are proportional with taik = ajk, k = 1, 2, . . . , n, then

det(A) = det(A)−tri+rj→rj
= 0

since this row operation makes row j all zeros.

T.2. det(AAT ) = det(A) det(AT ) = det(A) det(A) = [det(A)]2 ≥ 0.

T.3. det(Q − nIn) =

∣∣∣∣∣∣∣∣∣
1 − n 1 · · · 1

1 1 − n · · · 1
...

...
...

1 1 · · · 1 − n

∣∣∣∣∣∣∣∣∣ri + r1 → r1
i = 2, 3, . . . , n

=

∣∣∣∣∣∣∣∣∣
0 0 · · · 0
1 1 − n · · · 1
...

...
...

1 1 · · · 1 − n

∣∣∣∣∣∣∣∣∣ = 0.

T.4. det(B) = det(PAP−1) = det(P ) det(A) det(P−1) = det(P ) det(A)
1

det(P )
= det(A).

T.5. From Theorem 3.11, A(adjA) = det(A)In. Since A is singular, det(A) = 0. Therefore A(adjA) = O.

T.6. det(AB) = det(A) det(B) = 0 det(B) = 0. Thus AB is singular.

T.7. Compute ∣∣∣∣ A O
O B

∣∣∣∣
by expanding about the first column and expand the resulting (n− 1)× (n− 1) determinants about
the first column, etc.

T.8. Compute ∣∣∣∣ A B
C O

∣∣∣∣
by expanding about the first column of B and continue expanding the resulting determinants about
the first column with zeros toward the bottom, etc.

T.9. Since det(A) �= 0, A is nonsingular. Hence the solution to Ax = b is x = A−1b. By Exercise T.11 in
Section 3.2 matrix A−1 has only integer entries. It follows that the product A−1b has only integer
entries.
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Vectors in Rn

Section 4.1, p. 227

2.

x

y

O 3

4

u1

u2

u3

u4

4. (−1,−3)

x

y

O

(1, 2)

(−1,−3)

6. (a) u + v = (1, 7); u − v = (−3,−1); 2u = (−2, 6); 3u − 2v = (−7, 1).

(b) u + v = (1,−1); u − v = (−9,−5); 2u = (−8,−6); 3u − 2v = (−22,−13).

(c) u + v = (1, 2); u − v = (5, 2); 2u = (6, 4); 3u − 2v = (13, 6).

8. (a) x = −2, y = −9. (b) x = −6, y = 8. (c) x = 5, y = − 25
2 .

10. (a)
√

13. (b) 3. (c)
√

41. (d)
√

13.

12. (a) 3. (b)
√

20. (c)
√

18. (d)
√

5.

14. Impossible

16. 6.

18. 41
2 .

20. (a)
(

1√
5
, 2√

5

)
. (b) (0,−1). (c)

(
− 1√

10
,− 3√

10

)
.

22. (a) 0. (b) −1√
2
√

41
. (c) −4√

5
√

13
. (d) − 1√

2
.

24. (a) u1 and u4, u1 and u6, u3 and u4, u3 and u6, u4 and u5, u5 and u6.

(b) u1 and u5, u4 and u6.

(c) u1 and u3, u3 and u5.
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26. a = ±2.

28. (a)
[

3
−2

]
. (b)

[
2
0

]
. (c)

[
−2
−3

]
.

30.

x

y

W

R

100 km/hr

Plane heading 260 km/hr

Resultant speed: 240 km/hr.

T.1. Locate the point A on the x-axis which is x units from the origin. Construct a perpendicular to
the x-axis through A. Locate B on the y-axis y units from the origin. Construct a perpendicular
through B. The intersection of those two perpendiculars is the desired point in the plane.

T.2. (x, y) + (0, 0) = (x + 0, y + 0) = (x, y).

T.3. (x, y) + (−1)(x, y) = (x, y) + (−x,−y) = (x − x, y − y) = (0, 0).

T.4. ‖cu‖ =
√

(cx)2 + (cy)2 =
√

c2
√

x2 + y2 = |c| ‖u‖.

T.5. ‖u‖ =
∥∥∥∥ 1
‖x‖ x

∥∥∥∥ =
1

‖x‖ ‖x‖ = 1.

T.6. (a) 1u = 1 · (x, y) = (1 · x, 1 · y) = (x, y) = u.

(b) (rs)u = (rs)(x, y) = (rsx, rsy) = r(sx, sy) = r(su).

T.7. (a) u ·u = ‖u‖2 = x2 + y2 ≥ 0; u ·u = 0 if and only if x = 0 and y = 0, that is, u = 0.

(b) (x1, y1) · (x2, y2) = x1x2 + y1y2 = x2x1 + y2y1 = (x2, y2) · (x1, y1).

(c) [(x1, y1) + (x2, y2)] · (x3, y3) = (x1 + x2)x3 + (y1 + y2)y3 = x1x3 + y1y3 + x2x3 + y2y3 =
(x1, y1) · (x3, y3) + (x2, y2) · (x3, y3).

(d) (cx1, cy1) · (x2, y2) = cx1x2+cy1y2 = (x1, y1) · (cx2, cy2) = c(x1x2+y1y2) = c[(x1, y1) · (x2, y2)].

T.8. If w ·u = 0 = w ·v, then w · (ru + sv) = r(w ·u) + s(w ·v) = 0 + 0 = 0.

T.9. If u and v are parallel, then there exists a nonzero scalar k such that v = ku. Thus

cos θ =
u ·v

‖u‖ ‖v‖ =
u · (ku)
‖u‖ ‖ku‖ =

k(u ·u)
‖u‖

√
(ku) · (ku)

=
k‖u‖2

‖u‖
√

k2 ‖u‖
=

k√
k2

=
k

±k
= ±1.
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Section 4.2, p. 244

2. (a) u + v =

⎡⎣ 5
2

−3

⎤⎦, u − v =

⎡⎣−1
−2
−5

⎤⎦, 2u =

⎡⎣ 4
0

−8

⎤⎦, 3u − 2v =

⎡⎣ 0
−4
−14

⎤⎦.

(b) u + v =

⎡⎢⎢⎣
−1

6
2

−2

⎤⎥⎥⎦, u − v =

⎡⎢⎢⎣
−5

4
−8

2

⎤⎥⎥⎦, 2u =

⎡⎢⎢⎣
−6
10
−6

0

⎤⎥⎥⎦, 3u − 2v =

⎡⎢⎢⎣
−13

13
−19

4

⎤⎥⎥⎦.

4. (a) a = 12, b = 9. (b) a = 2, b = −1, c = 2, d = 4. (c) a = 7, b = 4.

6. z

x

y

(3,−1, 2)

(1, 0, 2)

(1, 0, 0)

(0, 0,−4)

(0,−2, 0)

8. (a)

⎡⎣−2
−3

3

⎤⎦. (b)

⎡⎣−1
0
1

⎤⎦. (c)

⎡⎣4
6
8

⎤⎦. (d)

⎡⎣−1
−1
−2

⎤⎦.

10. (a)
√

14. (b)
√

30. (c)
√

10. (d) 5.

12. (a)
√

5. (b)
√

6. (c)
√

13. (d)
√

30.

14. Impossible.

16. a = ±
√

11.

18. (a) u ·u = 12 + 22 + 321 = 1 + 4 + 9 = 14 ≥ 0.

(b) u ·v = −7 = v ·u
(c) (u + v) ·w = (2, 4,−1) · (1, 0, 2) = 0;

u ·w + v ·w = (1, 2, 3) · (1, 0, 2) + (1, 2,−4) · (1, 0, 2) = 7 − 7 = 0.

(d) (3, 6, 9) · (1, 2,−4) = (1, 2, 3) · (3, 6,−12) = −21 = 3(−7).

20. (a) 19√
14

√
57

. (b) − 2
7 . (c) 0. (d) −11√

14
√

39
.

24. 5
2 .

26. ‖u + v‖ = ‖(2, 2, 1, 2)‖ =
√

4 + 4 + 1 + 4 =
√

13 ≤
√

15 +
√

14 = ‖(1, 2, 3,−1)‖ + ‖(1, 0,−2, 3)‖.

28. (a)
(

1√
6
, 2√

6
,− 1√

6

)
. (b) (0, 0, 1, 0). (c)

(
− 1√

5
, 0,− 2√

5

)
. (d)

(
0, 0, 3

5 , 4
5

)
.

30. (a)

⎡⎣ 2
3

−4

⎤⎦. (b)

⎡⎣1
2
0

⎤⎦. (c)

⎡⎣−3
0
0

⎤⎦. (d)

⎡⎣ 3
0

−2

⎤⎦.

34. The value of the inventory of the four types of items.

36.
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38.

T.1. (a) u + v =

⎡⎢⎣u1 + v1

...
un + vn

⎤⎥⎦ =

⎡⎢⎣v1 + u1

...
vn + un

⎤⎥⎦ = v + u.

(b) u + (v + w) =

⎡⎢⎣u1 + (v1 + w1)
...

un + (vn + wn)

⎤⎥⎦ =

⎡⎢⎣ (u1 + v1) + w1

...
(un + vn) + wn

⎤⎥⎦ = (u + v) + w.

(c) u + 0 =

⎡⎢⎣u1 + 0
...

un + 0

⎤⎥⎦ =

⎡⎢⎣u1

...
un

⎤⎥⎦ = u.

(d) u + (−u) =

⎡⎢⎣u1 + (−u1)
...

un + (−un)

⎤⎥⎦ =

⎡⎢⎣0
...
0

⎤⎥⎦ = 0.

(e) c(u + v) =

⎡⎢⎣c(u1 + v1)
...

c(un + vn)

⎤⎥⎦ =

⎡⎢⎣cu1 + cv1

...
cun + cvn

⎤⎥⎦ = cu + cv.

(f) c(du) =

⎡⎢⎣c(du1)
...

c(dun)

⎤⎥⎦ =

⎡⎢⎣(cd)u1

...
(cd)un

⎤⎥⎦ = (cd)u.

(g) 1u =

⎡⎢⎣1u1

...
1un

⎤⎥⎦ = u.

T.2. u + (−1)u) = (1 + (−1))u = 0u = 0. Thus, (−1)u = −u.

T.3. The origin O and the head of the vector u = (x1, y1, z1), call it P , are opposite vertices of a
parallelepiped with faces parallel to the coordinate planes (see Figure).

z

x

yO
u

A

P (x1, y1, z1)

The face diagonal OA has length
√

x2
1 + y2

1 by one application of the Pythagorean Theorem. By a
second application, the body diagonal has length

‖u‖ = ‖OP‖ =

√(√
x2

1 + y2
1

)2

+ z2
1 =

√
x2

1 + y2
1 + z2

1 .
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T.4. (a) u2
1 + u2

2 + · · · + u2
n ≥ 0 and u2

1 + u2
2 + · · · + u2

n = 0 if and only if all ui = 0.

(b)
n∑

i=1

uivi =
n∑

i=1

viui.

(c)
n∑

i=1

(ui + vi)wi =
n∑

i=1

uiwi +
n∑

i=1

viwi.

(d)
n∑

i=1

(cui)vi =
n∑

i=1

ui(cvi) = c

n∑
i=1

uivi.

T.5. See solution to Exercise T.8 of Section 4.1.

T.6. If u ·v = 0 for all v, then in particular, for v = u, 0 = u ·u = ‖u‖2. By (a) of Theorem 4.3, u = 0.

T.7.
n∑

i=1

ui(vi + wi) =
n∑

i=1

uivi +
n∑

i=1

uiwi.

T.8. If u ·v = u ·w for all u, then u · (v − w) = 0 for all u. The result follows by Exercise T.6.

T.9. ‖cu‖ =

[
n∑

i=1

(cui)2
] 1

2

=

[
c2

n∑
i=1

u2
i

] 1
2

= |c| ‖u‖.

T.10. ‖u + v‖2 = (u + v) · (u + v) = u · (u + v) + v · (u + v)
= u ·u + u ·v + v ·u + v ·v = ‖u‖2 + ‖v‖2 + 2(u ·v)

Thus ‖u + v‖2 = ‖u‖2 + ‖v‖2 if and only if u ·v = 0.

T.11. By the remark following Example 10 in Section 1.3, we have

(Ax) ·y = (Ax)T y = xT (AT y) = x · (AT y).

T.12. (a) and (b) follow from Theorem 4.3(a). For (c): ‖u−v‖ = ‖−(u − v)‖ = ‖v−u‖. (d) follows from
the Triangle Inequality, Theorem 4.5.

T.13. As in the solution to Exercise T.10 above,

‖u + v‖2 = ‖u‖2 + ‖v‖2 + 2(u ·v).

Substitute −v for v to obtain

‖u − v‖2 = ‖u‖2 + ‖v‖2 − 2(u ·v).

Adding these two equations, we find that

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2.

T.14. u = cx for c =
1

‖x‖ > 0. Thus u is a vector in the direction of x and

‖u‖ = |c| ‖x‖ =
‖x‖
‖x‖ = 1.

T.15. As in the solution to Exercise T.13 above,

1
4‖u + v‖ − 1

4‖u − v‖ = 1
4

[
‖u‖2 + ‖v‖2 + 2(u ·v)

]
− 1

4

[
‖u‖2 + ‖v‖2 − 2(u ·v)

]
= u ·v.
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T.16. We have z ·v = 0. Moreover, since |z ·u| �= ‖z‖‖u‖ and |z ·w| �= ‖z‖‖w‖, we conclude that z is not
parallel to u or w.

T.17. The negative of each vector in B3 is itself.

T.18 Let v = (b1, b2, b3). Then we require that

v ·v = b1b1 + b2b2 + b3b3 = 0.

This result will be true provided we choose the bits as follows:

b1 = b2 = b3 = 0

or any two of b1, b2 and b3 as 1.

T.19. The negative of each vector in B4 is iteself.

T.20. (a) Let v = (b1, b2, b3). Then we require that u ·v = b1 + b2 + b3 = 0. So we can have b1 = b2 =
b3 = 0 or that any two of the bits b1, b2, b3 be 1.

Vu = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

(b) Ṽu is any vector of B3 not in Vu, hence

Ṽu = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}.

(c) Yes. Just inspect the sets, they include every vector in B3.

T.21. (a) Let v = (b1, b2, b3, b4). Then we require that u ·v = b1 + b2 + b3 + b4 = 0. So we can have
b1 = b2 = b3 = b4 = 0, b1 = b2 = b3 = b4 = 1, or any two of the bits be ones.

Vu = {(0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0)}.

(b) Ṽu is any vector in B3 with an odd number of 1 bits.

Ṽu = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)}.

(c) Yes. Just inspect the sets, they include every vector in B4.

ML.2. (a) u === [2 2 −−− 1]′′′;norm(u)
ans =

3

(b) v === [0 4 −−− 3 0]′′′;norm(v)
ans =

5

(c) w === [1 0 1 0 3]′′′;norm(w)
ans =

3.3166

ML.3. (a) u === [2 0 3]′′′;v === [2 −−− 1 1]′′′;norm(u−−− v)
ans =

2.2361

(b) u === [2 0 0 1];v === [2 5 −−− 1 3];norm(u−−− v)
ans =

5.4772
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(c) u === [1 0 4 3];v === [−−− 1 1 2 2];norm(u−−− v)
ans =

3.1623

ML.4. Enter A, B, and C as points and construct vectors vAB, vBC, and vCA. Then determine the
lengths of the vectors.

A === [1 3 −−− 2];B === [4 −−− 1 0];C === [1 1 2];
vAB === B−−− C
vAB =

3 −2 −2
norm(vAB)
ans =

4.1231

vBC === C−−− B
vBC =

−3 2 2
norm(vBC)
ans =

4.1231

vCA === A−−− C
vCA =

0 2 −4
norm(vCA)
ans =

4.4721

ML.5. (a) u === [5 4 −−− 4];v === [3 2 1];
dot(u,v)
ans =

19

(b) u === [3 −−− 1 0 2];v === [−−− 1 2 −−− 5 −−− 3];
dot(u,v)
ans =

−11
(c) u === [1 2 3 4 5];

dot(u,−−− u)
ans =

−55

ML.8. (a) u === [3 2 4 0];v === [0 2 −−− 1 0];
ang === dot(u,v)/((norm(u) ∗∗∗ norm(v))
ang =

0

(b) u === [2 2 −−− 1];v === [2 0 1];
ang === dot(u,v)/((norm(u) ∗∗∗ norm(v))
ang =

0.4472

degrees === ang ∗∗∗ (180/pi)
degrees =

25.6235

(c) u === [1 0 0 2];v === [0 3 −−− 4 0];
ang === dot(u,v)/((norm(u) ∗∗∗ norm(v))
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ang =
0

ML.9. (a) u === [2 2 −−− 1]′′′;
unit === u/norm(u)
unit =

0.6667
0.6667

−0.3333
format rat, unit
unit =

2/3
2/3

−1/3

format

(b) v === [0 4 −−− 3 0]′′′;
unit === v/norm(v)
unit =

0
0.8000

−0.6000
0

format rat, unit
unit =

0
4/5

−3/5
0

format

(c) w === [1 0 1 0 3]′′′;
unit === w/norm(w)
unit =

0.3015
0

0.3015
0

0.9045

format

Section 4.3, p. 255

2. (b). 4. (b) and (c).
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6.

x

y

u

(1,−2)

L(u)

(3, 0)

8.

x

y

(−2,−3)
(6.19,−0.23)u L(u)

2

4

2 4 6 8

−4

10.

x

y

u
2

4

2 4

L(u) = 2u

(−3, 3)

(−6, 6)

−2−4

12. z

x

y

u

L(u)

(4,−2, 4)

(0,−2, 4)

22

14. (a) No. (b) Yes.

16. c − b − a = 0. 18.

⎡⎣4
7
5

⎤⎦. 20.

⎡⎣0
0
0

⎤⎦.

22. (a) Reflection with respect to the line x = y.

(b) Reflection about the line y = −x.

(c) Dilation by a factor of 2.

24. No. L(u + v) is not always equal to L(u) + L(v) and L(cu) is not always equal to cL(u).

26.
[
1 −1
1 1

]
. 28.

⎡⎣√
3

2 − 1
2

1
2

√
3

2

⎤⎦. 30.

⎡⎣−2 0 0
0 −2 0
0 0 −2

⎤⎦.

32. (a) 160 61 123 47 43 17 102 40.

(b) OF COURSE.

T.1. Using properties (a) and (b) in the definition of a linear transformation, we have

L(c1u1 + c2u2 + · · · + cnun) = L((c1u1 + c2u2 + · · · + cn−1un−1) + cnun)
= L(c1u1 + c2u2 + · · · + cn−1un−1) + L(cnun) [by property (a)]
= L(c1u1 + c2u2 + · · · + cn−1un−1) + cnL(un) [by property (b)]

Repeat with L(c1u1 + c2u2 + · · · + cn−1un−1).
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T.2. (a) We have 0Rn = 0Rn + 0Rn so

L(0Rn) = L(0Rn + 0Rn) = L(0Rn) + L(0Rn).

Hence L(0Rn) = 0Rm .

(b) We have

L(u − v) = L(u + (−1)v) = L(u) + L((−1)v) = L(u) + (−1)L(v) = L(u) − L(v).

T.3. We have

L(u + v) = r(u + v) = ru + rv = L(u) + L(v)

and

L(cu) = r(cu) = c(ru) = cL(u).

T.4. We have

L(u + v) = (u + v) + (u0) = u + v + u0

and

L(u) + L(v) = (u + u0) + (v + u0) = u + v + 2u0.

Since u0 �= 0, L(u + v) �= L(u) + L(v), so L is not a linear transformation.

T.5. a = any real number, b = 0.

T.6. We have

O(u + v) = 0W = 0W + 0W = O(u) + O(v)

and

(cu) = 0W = c0W = cO(u).

T.7. We have I(u + v) = u + v = I(u) + I(v) and I(cu) = cu = cI(u).

T.8. We have, by Exercise T.1, L(au + bv) = aL(u) + bL(v) = a0 + b0 = 0.

T.9. (a) Counterclockwise rotation by 60◦.

(b) Clockwise rotation by 30◦.

(c) k = 12.

T.10. Let {e1, . . . , en} be the natural basis for Rn. Then O(ei) = 0 for i = 1, . . . , n. Hence the standard
matrix representing O is the n × n zero matrix O.

T.11. Let {e1, . . . , en} be the natural basis for Rn. Then I(ei) = 0 for i = 1, . . . , n. Hence the standard
matrix representing I is the n × n identity matrix In.

ML.1. (a) u === [1 2]′′′;v === [0 3]′′′;
norm(u+++ v)
ans =

5.0990
norm(u)+++ norm(v)
ans =

5.2361
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(b) u === [1 2 3]′′′;v === [6 0 1]′′′;
norm(u+++ v)
ans =

8.3066
norm(u)+++ norm(v)
ans =

9.8244

Supplementary Exercises, p. 257

2.

x

y

u

v

u + v v + w

w

(u + v) + w = u + (v + w)

4. x = (4,−3, 3).

6. (1, 2) = 3(−2, 3) + 7(1,−1).

8. (x, y) · (−y, x) = −xy + xy = 0.

10. a = 1.

12. L(u + v) = (u + v) ·u0 = u ·u0 + v ·u0 = L(u) + L(v) and L(cu) = (cu) ·u0 = c(u ·u0) = cL(u).

14. Let the vertices of a parallelogram be denoted by A, B, C, and D, as shown in the figure, and let
u =

−→
AD and v =

−→
AB.

u

v

A

B

C

D

Suppose that ABCD is a rhombus. Then |
−→
AD| = |

−→
AB|. Therefore ‖u‖ = ‖v‖ and hence

(u − v) · (u + v) = ‖u‖2 − ‖v‖2 = 0.

Thus u−v and u+v are perpendicular and it follows that the diagonals
−→
BD and

−→
AC are orthogonal.

Conversely, if
−→
BD and

−→
AC are orthogonal, then (u−v) · (u+v) = 0 and hence, since (u−v) · (u+v) =

‖u‖2 − ‖v‖2, it follows that ‖u‖ = ‖v‖. Therefore the sides of ABCD have equal length and hence
ABCD is a rhombus.
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16. Possible answer:
(
− 2√

5
, 1√

5

)
.

18. a = 3, a = 2.

20.
[
1 2

]
.

22.

x

y

8 miles/hr

2 miles/hr

resultant velocity√
68 ≈ 8.246 miles/hr

24. Yes.

T.1. If u ·v = 0, then

‖u + v‖ =
√

(u + v) · (u + v) =
√

u ·u + 2(u ·v) + v ·v =
√

u ·u + v ·v

and

‖u − v‖ =
√

(u − v) · (u − v) =
√

u ·u − 2(u ·v) + v ·v =
√

u ·u + v ·v.

Hence ‖u + v‖ = ‖u − v‖. On the other hand, if ‖u + v‖ = ‖u − v‖, then

‖u + v‖2 = u ·u + 2(u ·v) + v ·v = u ·u − 2(u ·v) + v ·v = ‖u − v‖2.

Simplifying, we have 2(u ·v) = −2(u ·v), hence u ·v = 0.

T.2. (a) (u + cv) ·w = u ·w + (cv) ·w = u ·w + c(v ·w).
(b) u · (cv) = cv ·u = c(v ·u) = c(u ·v).
(c) (u + v) · cw = u · (cw) + v · (cw) = c(u ·w) + c(v ·w).

T.3. Let v = (a, b, c) be a vector in R3 that is orthogonal to every vector in R3. Then v · i = 0 so
(a, b, c) · (1, 0, 0) = a = 0. Similarly, v · j = 0 and v ·k = 0 imply that b = c = 0. Therefore v = 0.

T.4. Suppose that L : Rn → Rm is a linear transformation. Then by properties (a) and (b) of the
definition of a linear transformation, we have

L(au + bv) = L(au) + L(bv) = aL(u) + bL(v).

Conversely, if this property holds, then if a = b = 1, we have

L(u + v) = L(u) + L(v)

and if a = 1 and b = 0, then

L(au) = aL(u).

Hence, L is a linear transformation.

T.5. If ‖u‖ = 0, then ‖u‖ =
√

u ·u = 0, so u ·u = 0. Part (a) of Theorem 4.3 implies that u = 0.

T.6. Let u = (2, 0,−1, 0), v = (1,−1, 2, 3), and w = (−5, 2, 2, 1).
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Applications of Vectors in R2 and R3

(Optional)

Section 5.1, p. 263

2. (a) −4i + j + 4k. (b) 3i − 8j − k. (c) 0i + 0j + 0k. (d) 4i + 4j + 8k.

10. 1
2

√
90. 12. 1.

T.1. (a) Interchange of the second and third rows of the determinant in (2) changes the sign of the
determinant.

(b)

∣∣∣∣∣∣
i j k

u1 u2 u3

v1 + w1 v2 + w2 v3 + w3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ +

∣∣∣∣∣∣
i j k

u1 u2 u3

w1 w2 w3

∣∣∣∣∣∣.
(c) Similar to proof for (b).

(d) Follows from the homogeneity property for determinants: Theorem 3.5.

(e) Follows from Theorem 3.3.

(f) Follows from Theorem 3.4.

(g) First let u = i and verify that the result holds. Similarly, let u = j and then u = k. Finally,
let u = u1i + u2j + u3k.

(h) First let w = i. Then

(u×v)× i = (u1v2 − u2v1)j − (u3v1 − u1v3)k
= u1(v1i + v2j + v3k) − v1(u1i + u2j + u3k)
= u1v − v1u = (i ·u)v − (i ·v)u.

Thus equality holds when w = i. Similarly it holds when w = j, when w = k, and (adding
scalar multiples of the three equations), when w = w1i + w2j + w3k.

T.2. (u×v) ·w =

∣∣∣∣∣∣
w1 w2 w3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ = u · (v ×w)
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T.3. We have

j× i =

∣∣∣∣∣∣
i j k
0 1 0
1 0 0

∣∣∣∣∣∣ = k
∣∣∣∣ 0 1

1 0

∣∣∣∣ = −k

k× j =

∣∣∣∣∣∣
i j k
0 0 1
0 1 0

∣∣∣∣∣∣ = i
∣∣∣∣ 0 1

1 0

∣∣∣∣ = −i

i×k =

∣∣∣∣∣∣
i j k
1 0 0
0 0 1

∣∣∣∣∣∣ = −j
∣∣∣∣ 1 0

0 1

∣∣∣∣ = −j.

T.4. (u×v) ·w = (u2v3 − u3v2)w1 + (u3v1 − u1v3)w2 + (u1v2 − u2v1)w3

=

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ (expand the determinant along the third row).

T.5. If v = cu for some c, then u×v = c(u×u) = 0. Conversely, if u×v = 0, the area of the
parallelogram with adjacent sides u and v is 0, and hence that parallelogram is degenerate: u and
v are parallel.

T.6. ‖u×v‖2 + (u ·v)2 = ‖u‖2 ‖v‖2 (sin2 θ + cos2 θ) = ‖u‖2 ‖v‖2.

T.7. Using Theorem 5.1(h),

(u×v)×w + (v ×w) ×u + (w ×u)×v =[(w ·u)v − (w ·v)u] + [(u ·v)w − (u ·w)v]
+ [(v ·w)u − (v ·u)w] = 0.

ML.1. (a) u === [1 −−− 2 3];v === [1 3 1];cross(u,v)
ans =

−11 2 5

(b) u === [1 0 3];v === [1 −−− 1 2];cross(u,v)
ans =

3 1 −1
(c) u === [1 2 −−− 3];v === [2 −−− 1 2];cross(u,v)

ans =
1 −8 −5

ML.2. (a) u === [2 3 −−− 1];v === [2 3 1];cross(u,v)
ans =

6 −4 0

(b) u === [3 −−− 1 1];v === 2 ∗∗∗ u;cross(u,v)
ans =

0 0 0

(c) u === [1 −−− 2 1];v === [3 1 −−− 1];cross(u,v)
ans =

1 4 7

ML.5. Following Example 6 we proceed as follows in Matlab.

u === [3 −−− 2 1];v === [1 2 3];w === [2 −−− 1 2];
vol === abs(dot(u,cross(v,w)))
vol =

8
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ML.6. We find the angle between the perpendicular perxy to plane P1 and the perpendicular pervw to
plane P2.

x === [2 −−− 1 2];y === [3 −−− 2 1];v === [1 3 1];w === [0 2 −−− 1];
perxy === cross(x,y)
perxy =

3 4 −1
pervw === cross(v,w)
pervw =

−5 1 2
angle === dot(perxy,pervw)/(norm(perxy) ∗∗∗ norm(pervw))
angle =

−0.4655
angdeg === (180/pi) ∗∗∗ angle
angdeg =

−26.6697

Section 5.2, p. 269

2. (a) −x + y = 0. (b) −x + 1 = 0. (c) y + 4 = 0. (d) −x + y + 5 = 0.

4. (a), (c).

6. (a) x = 2 + 2t, y = −3 + 5t, z = 1 + 4t.

(b) x = −3 + 8t, y = −2 + 7t, z = −2 + 6t.

(c) x = −2 + 4t, y = 3 − 6t, z = 4 + t.

(d) x = 4t, y = 5t, z = 2t.

8. (a), (d).

10. (a) x − z + 2 = 0.

(b) 3x + y − 14z + 47 = 0.

(c) −x − 10y + 7z = 0.

(d) −4x − 19y + 14z + 9 = 0.

12. (a) −4y − z + 14 = 0 and 4x − 3z + 2 = 0.

(b) 3y − 4z − 25 = 0 and 3x + 2z + 2 = 0.

(c) 5x − 4y + 4 = 0 and x + 4z − 8 = 0.

14. No.

16. (b).

18. x = 3, y = −1 + t, z = −3 − 5t.

20.
(
− 17

5 , 38
5 ,−6

)
.

22. −2x + 4y − 5z − 27 = 0.

T.1. Since by hypothesis a, b, and c are not all zero, take a �= 0. Let P0 =
(
− d

a , 0, 0
)
. Then from

equations (8) and (9), the equation of the plane through P0 with normal vector n = (a, b, c) is

a

(
x +

d

a

)
+ b(y − 0) + c(z − 0) = 0 or ax + by + cz + d = 0.
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T.2. (a) L1 and L2 are parallel if and only if their direction vectors u and v are parallel, if and only if
u = kv for some scalar k.

(b) If L1 and L2 are identical, then they are parallel and so u and v are parallel. Also, the point
w1 lies on the line L1 (L1 and L2 are the same line), so

w1 = w0 + su

for some constant s. Thus w1 −w0 = su, and w1 −w0 is parallel to u. Conversely, if w1 −w0,
u, and v are mutually parallel, then the point w1 lies on the line L1, and so both L1 and L2

are lines through w1 with the same direction and thus are identical lines.

(c) L1 and L2 are perpendicular if and only if their direction vectors u and v are perpendicular.

(d) If L1 and L2 intersect in a point w3, then w3 = w0 + su = w1 + tv for some s and t. Then
w1−w0 = su−tv is a linear combination of u and v. Reversing these steps proves the converse.

T.3. Possible solutions:

L1 : x = s, y = z = 0 (the x-axis)
L2 : x = 0, y = 1, z = t.

T.4. By Exercise T.1, the coefficients of the first degree terms in an equation for a plane give a normal
vector for that plane. Thus, if n1 = (a1, b1, c1) and n2 = (a2, b2, c2) are two normal vectors for the
same plane, then n1 and n2 must be parallel, and so n2 = an1 for some nonzero scalar a.

T.5. Expand the determinant about the first row:

0 =

∣∣∣∣∣∣∣∣
x y z 1
a1 b1 c1 1
a2 b2 c2 1
a3 b3 c3 1

∣∣∣∣∣∣∣∣ = xA11 + yA12 + zA13 + 1 · A14 (5.1)

where A1j is the cofactor of the 1, jth element, and (since it depends upon the second, third and
fourth rows of the determinant) is a constant. Thus (5.1) is an equation of the form

ax + by + cz + d = 0

and so is the equation of some plane. The noncolinearity of the three points insures that the three
cofactors A11, A12, A13 are not all zero. Next let (x, y, z) = (ai, bi, ci). The determinant has two
equal rows, and so has the value zero. Thus the point Pi lies on the plane whose equation is (5.1).
Thus (5.1) is an equation for the plane through P1, P2, P3.

Supplementary Exercises, p. 271

2. Possible answer: u = (−1,−1, 1).

4. x = − 5
3 − 5

3 t, y = 2
3 − 1

3 t, z = t, −∞ < t < ∞.
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Real Vector Spaces

Section 6.1, p. 278

2. Closed under ⊕; closed under �.

4. Closed under ⊕; closed under �.

8. Properties (α), (a), (b), (c), (d) follow as for R3.

Regarding (β): (cx, y, z) is a triple of real numbers, so it lies in V .

Regarding (g): c � (d � (x, y, z)) = c � (dx, y, z) = (cdx, y, z) = (cd) � (x, y, z).

Regarding (h): 1 � (x, y, z) = (1 · x, y, z) = (x, y, z).

10. P is a vector space. Let p(t) be a polynomial of degree n and q(t) a polynomial of degree m,
and r = max(n, m). Then inside the vector space Pr, addition of p(t) and q(t) is defined and
multiplication of p(t) by a scalar is defined, and these operations satisfy the vector space axioms.
Pr is contained in P . Thus the additive inverse of p(t), zero polynomial, etc. all lie in P . Hence P
is a vector space.

12. Not a vector space; (e), (f), and (h) do not hold.

14. Vector space.

16. Not a vector space; (h) does not hold.

18. No. For example, (a) fails since 2u − v �= 2v − u.

20. (a) Infinitely many.

(b) The only vector space having a finite number of vectors is {0}.

T.1. cu = c(u + 0) = cu + c0 = c0 + cu by Definition 1(c), (e) and (a). Add the negative of cu to both
sides of this equation to get 0 = c0 + cu + (−cu) = c0 + 0 = c0.

T.2. −(−u) is that unique vector which when added to −u gives 0. But u added to −u gives 0. Thus
−(−u) = u.

T.3. (cancellation): If u + v = u + w, then

(−u) + (u + v) = (−u) + (u + w)
(−u + u) + v = (−u + u) + w

0 + v = 0 + w

v = w
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T.4. If u �= 0 and au = bu, then (a − b)u = au − bu = 0. By Theorem 6.1(c), a − b = 0, a = b.

T.5. Let 01 and 02 be zero vectors. Then 01 ⊕ 02 = 01 and 01 ⊕ 02 = 02. So 01 = 02.

T.6. Let u1 and u2 be negatives of u. Then u ⊕ u1 = 0 and u ⊕ u2 = 0. So u ⊕ u1 = u ⊕ u2. Then

u1 ⊕ (u ⊕ u1) = u1 ⊕ (u ⊕ u2)
(u1 ⊕ u) ⊕ u1 = (u1 ⊕ u) ⊕ u2

0 ⊕ u1 = 0 ⊕ u2

u1 = u2.

T.7. The sum of any pair of vectors from Bn is, by virtue of entry-by-entry binary addition, a vector in
Bn. Thus Bn is closed.

T.8. For v any vector if Bn, we have 0v = 0 and 1v = v. Both 0 and v are in Bn, so Bn is closed under
scalar multiplication.

T.9. Let v = (b1, b2, . . . , bn) be in Bn. Then 1v = (1b1, 1b2, . . . , 1bn) = v.

ML.2 p === [2 5 1 −−− 2],q === [1 0 3 5]

p =
2 5 1 −2

q =
1 0 3 5

(a) p+++ q
ans =

3 5 4 3

which is 3t3 + 5t2 + 4t + 3.

(b) 5 ∗∗∗ p
ans =

10 25 5 −10
which is 10t3 + 25t2 + 5t − 10.

(c) 3 ∗∗∗ p−−− 4 ∗∗∗ q
ans =

2 15 −9 −26
which is 2t3 + 15t2 − 9t − 26.

Section 6.2, p. 287

2. Yes.

4. No.

6. (a) and (b).

8. (a).

10. (a) and (b).

12. Since Pn is a subset of P and it is a vector space with respect to the operations in P , it is a subspace
of P .
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14. Let w1 = a1u + b1v and w2 = a2u + b2v be two vectors in W . Then

w1 + w2 = (a1u + b1v) + (a2u + b2v) = (a1 + a2)u + (b1 + b2)v

is in W . Also, if c is a scalar, then

cw1 = c(a1u + b1v) = (ca1)u + (cb1)v

is in W . Hence, W is a subspace of R3.

16. (a) and (c). 14. (a) and (c). 16. (b), (c), and (e).

22. Let f1 and f2 be solutions to the differential equation y′′ − y′ + 2y = 0, so that f ′′
1 − f ′

1 + 2f1 = 0
and f ′′

2 − f ′
2 + 2f1 = 0. Then

(f1 + f2)′′ − (f1 + f2)′ + 2(f1 + f2) = (f ′′
1 − f ′

1 + 2f1) + (f ′′
2 − f ′

2 + 2f2) = 0 + 0 = 0.

Thus, f1 + f2 is in V . Also, if c is a scalar, then

(cf1)′′ − (cf1)′ + 2cf1 = c(f ′′
1 − f ′

1 + 2f1) = c(0) = 0

so cf ′
1 is in V . Hence, V is a subspace of the vector space of all real-valued functions defined on R1.

24. Neither. 26. (a) and (b).

28. No since 0

⎡⎣0
1
1

⎤⎦ =

⎡⎣0
0
0

⎤⎦, which is not in W .

30. Since the sum of any two vectors in W has first entry zero and for w in W , 0w and 1w have first
entry zero, we have that W is closed under addition and scalar multiplication. So W is a subspace.

32. Yes. Observe that

⎡⎣1
0
0

⎤⎦ +

⎡⎣1
1
0

⎤⎦ +

⎡⎣1
1
1

⎤⎦ =

⎡⎣1
0
1

⎤⎦.

T.1. If W is a subspace, then for u, v ∈ W , u+v and cu lie in W by properties (α) and (β) of Definition
1. Conversely, assume (α) and (β) of Theorem 6.2 hold. We must show that properties (a)–(h) in
Definition 1 hold.

Property (a) holds since, if u, v are in W they are a fortiori in V , and therefore u + v = v + u
by property (a) for V . Similarly for (b). By (β), for c = 0, 0 = 0u lies in W . Again by (β), for
c = −1, −u = (−1)u lies in W . Thus (d) holds. Finally, (e), (f), (g), (h) follow for W because those
properties hold for any vectors in V and any scalars.

T.2. Let W be a subspace of V , let u and v be vectors in W , and let a and b be scalars. Then au ∈ W ,
bv ∈ W , and au + bv ∈ W . Conversely, if au + bv ∈ W for any u, v in W and any scalars a, b,
then in particular for a = b = 1, u + v ∈ W and for a = c, b = 0, cu ∈ W . Thus W is a subspace
by Theorem 6.2.

T.3. Since b �= 0, A �= O. If Ax = b has no solutions, then that empty set of solutions is not a vector
space. Otherwise, let x0 be a solution. Then A(2x0) = 2(Ax0) = 2b �= b since b �= 0. Thus
x0 + x0 = 2x0 is not a solution. Hence, the set of all solutions fails to be closed under either vector
addition or scalar multiplication.

T.4. We assume S is nonempty. Let

v =
k∑

i=1

aivi and w =
k∑

i=1

bivi
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be two vectors in span S. Then

v + w =
k∑

i=1

(ai + bi)vi

and, for any c,

cv =
k∑

i=1

(cai)vi

are vectors in span S. Thus span S is a subspace of V .

T.5. W must be closed under vector addition and under multiplication of a vector by an arbitrary scalar.

Thus, along with v1,v2, . . . ,vk, W must contain
k∑

i=1

aivi for any set of coefficients a1, . . . , ak. Thus

W contains span S.

T.6. {0}. By Theorem 1.13, if A is nonsingular, then the homogeneous system Ax = 0 has only the
trivial solution.

T.7. We have cx0 + dx0 = (c + d)x0 is in W , and if r is a scalar then r(cx0) = (rc)x0 is in W .

T.8. No, it is not a subspace. Let x be in W so Ax �= 0. Letting y = −x, we have y is also in W and
Ay �= 0. However, A(x + y) = 0, so x + y does not belong to W .

T.9. Let V be a subspace of R1 which is not the zero subspace and let v �= 0 be any vector in V . If u is
any nonzero vector in R1, then u =

[
u
v

]
v, so R1 is a subset of V . Hence, V = R1.

T.10. Let u = w1 + w2 and v = w′
1 + w′

2, where w1 and w′
1 are in W1 and w2 and w′

2 are in W2. Then

u + v = w1 + w2 + w′
1 + w′

2 = (w1 + w′
1) + (w2 + w′

2).

Since w1 +w′
1 is in W1 and w2 +w′

2 is in W2, we conclude that u+v is in W . Also, if c is a scalar,
then cu = cw1 + cw2, and since cw1 is in W1, and cw2 is in W2, we conclude that cu is in W .

T.11. Since V = W1 + W2, every vector v in W can be written as w1 + w2, w1 in W1 and w2 in W2.
Suppose now that v = w1 + w2 and v = w′

1 + w′
2. Then w1 + w2 = w′

1 + w′
2, so

w1 − w′
1 = w′

2 − w2. (6.1)

Since w1 − w′
1 is in W1 and w′

2 − w2 is in W2, w1 − w′
1 is in W1 ∩ W2 = {0}. Hence w1 = w′

1.
Similarly, or from (6.1), we conclude that w2 = w′

2.

T.12 Let x1 = (x1, y1, z1) and x2 = (x2, y2, z2) be points on the plane ax + by + cz = 0. Then

a(x1 + x2) + b(y1 + y2) + c(z1 + z2) = ax1 + by1 + cz1 + ax2 + by2 + cz2 = 0 + 0 = 0

and so x1 + x2 lies on the plane. Also, for any scalar r,

a(rx1) + b(ry1) + c(rz1) = r(ax1 + by1 + cz1) = r(0) = 0

and so rx1 lies on the plane.

T.13. Let w be any vector in W . Then 0w = 0. But, since 0 is not in W , this implies that W is not
closed under scalar multiplication, so W cannot be a subspace of V .

T.14. If w1 = 0, then {w1} is a subspace; otherwise, no. For example, if w1 = (1, 1, 1), w1+w1 = (0, 0, 0),
which is not in W = {w1}.
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T.15. No; one of the vectors in a subspace of B3 must be

⎡⎣0
0
0

⎤⎦. Then any two different nonzero vectors

will have a 1 in different entries, hence their sum will not be one of these two vectors.

T.16.

⎧⎨⎩
⎡⎣0

0
0

⎤⎦ ,

⎡⎣0
1
1

⎤⎦ ,

⎡⎣1
0
1

⎤⎦ ,

⎡⎣1
1
0

⎤⎦⎫⎬⎭ ,

⎧⎨⎩
⎡⎣0

0
0

⎤⎦ ,

⎡⎣0
0
1

⎤⎦ ,

⎡⎣1
0
0

⎤⎦ ,

⎡⎣1
0
1

⎤⎦⎫⎬⎭ ,

⎧⎨⎩
⎡⎣0

0
0

⎤⎦ ,

⎡⎣0
0
1

⎤⎦ ,

⎡⎣0
1
0

⎤⎦ ,

⎡⎣0
1
1

⎤⎦⎫⎬⎭ ,

⎧⎨⎩
⎡⎣0

0
0

⎤⎦ ,

⎡⎣0
0
1

⎤⎦ ,

⎡⎣1
1
0

⎤⎦ ,

⎡⎣1
1
1

⎤⎦⎫⎬⎭ ,

⎧⎨⎩
⎡⎣0

0
0

⎤⎦ ,

⎡⎣1
0
1

⎤⎦ ,

⎡⎣0
1
0

⎤⎦ ,

⎡⎣1
1
1

⎤⎦⎫⎬⎭ ,

⎧⎨⎩
⎡⎣0

0
0

⎤⎦ ,

⎡⎣1
0
0

⎤⎦ ,

⎡⎣0
1
1

⎤⎦ ,

⎡⎣1
1
1

⎤⎦⎫⎬⎭
T.17. B3 itself,⎧⎨⎩

⎡⎣0
0
0

⎤⎦ ,

⎡⎣1
1
1

⎤⎦⎫⎬⎭,

⎧⎨⎩
⎡⎣0

0
0

⎤⎦ ,

⎡⎣0
0
1

⎤⎦ ,

⎡⎣1
1
0

⎤⎦ ,

⎡⎣1
1
1

⎤⎦⎫⎬⎭,

⎧⎨⎩
⎡⎣0

0
0

⎤⎦ ,

⎡⎣0
1
0

⎤⎦ ,

⎡⎣1
0
1

⎤⎦ ,

⎡⎣1
1
1

⎤⎦⎫⎬⎭,

⎧⎨⎩
⎡⎣0

0
0

⎤⎦ ,

⎡⎣1
0
0

⎤⎦ ,

⎡⎣0
1
1

⎤⎦ ,

⎡⎣1
1
1

⎤⎦⎫⎬⎭.

ML.3. (a) Following Example 1, we construct the augmented matrix that results from the expression
c1v1 + c2v2 + c3v3 = v. Note that since the vectors are rows we need to convert them to
columns to form this matrix. Next we obtain the reduced row echelon form of the associated
linear system.
v1 === [1 0 0 1];v2 === [0 1 1 0];v3 === [1 1 1 1];v === [0 1 1 1];
rref([v1′′′ v2′′′ v3′′′ v′′′])

ans =
1 0 1 0

0 1 1 0

0 0 0 1

0 0 0 0

Since this represents an augmented matrix, the system is inconsistent and hence has no solution.
Thus v is not a linear combination of {v1,v2,v3}.

(b) Here the strategy is similar to that in part (a) except that the vectors are already columns. We
use the transpose operator to conveniently enter the vectors.
v1 === [1 2 −−− 1]′′′;v2 === [2 −−− 1 0]′′′;v3 === [−−− 1 8 −−− 3]′′′;v === [0 5 −−− 2]′′′;
rref([v1 v2 v3 v])

ans =
1 0 3 2

0 1 −2 −1
0 0 0 0

Since this matrix represents an augmented matrix, the system is consistent. It follows that v
is a linear combination of {v1,v2,v3}.

ML.4. (a) Apply the procedure in ML.3(a).
v1 === [1 2 1];v2 === [3 0 1];v3 === [1 8 3];v === [−−− 2 14 4];
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rref([v1′′′ v2′′′ v3′′′ v′′′])

ans =
1 0 4 7

0 1 −1 −3
0 0 0 0

This system is consistent so v is a linear combination of {v1,v2,v3}. In the general solution
if we set c3 = 0, then c1 = 7 and c2 = 3. Hence 7v1 − 3v2 = v. There are many other linear
combinations that work.

(b) After entering the 2×2 matrices into Matlab we associate a column with each one by ‘reshap-
ing’ it into a 4× 1 matrix. The linear system obtained from the linear combination of reshaped
vectors is the same as that obtained using the 2 × 2 matrices in c1v1 + c2v2 + c3v3 = v.
v1 === [1 2;1 0];v2 === [2 −−− 1;1 2];v3 === [−−− 3 1;0 1];v === eye(2);
rref([reshape(v1,4,1) reshape(v2,4,1) reshape(v3,4,1) reshape(v,4,1)])

ans =
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

The system is inconsistent, hence v is not a linear combination of {v1,v2,v3}.

ML.5. (a) Follow the procedure in ML.3(b).
v1 === [1 2 1 0 1]′′′;v2 === [0 1 2 −−− 1 1]′′′;
v3 === [2 1 0 0 −−− 1]′′′;v4 === [−−− 2 1 1 1 1]′′′;
v === [0 −−− 1 1 −−− 2 1]′′′;
rref([v1 v2 v3 v4 v])

ans =
1 0 0 0 0

0 1 0 0 1

0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 0

The system is consistent and it follows that 0v1 + v2 − v3 − v4 = v.

(b) Associate a column vector of coefficients with each polynomial, then follow the method
in part (a).
v1 === [2 −−− 1 1]′′′;v2 === [1 0 −−− 2]′′′;v3 === [0 1 −−− 1]′′′;v === [4 1 −−− 5]′′′;
rref([v1 v2 v3 v])

ans =
1 0 0 1

0 1 0 2

0 0 1 2

Since the system is consistent, we have that p1(t) + 2p2(t) + 2p3(t) = p(t).

ML.6. Follow the method in ML.4(a).

v1 === [1 1 0 1]; v2 === [1 −−− 1 0 1]; v3 === [0 1 2 1];

(a) v === [2 3 2 3];
rref([v1′′′ v2′′′ v3′′′ v′′′])
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ans =
1 0 0 2

0 1 0 0

0 0 1 1

0 0 0 0

Since the system is consistent, v is in span S. In fact, v = 2v1 + v3.
(b) v === [2 −−− 3 −−− 2 3];

rref([v1′′′ v2′′′ v3′′′ v′′′])
ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

The system is inconsistent, hence v is not in span S.
(c) v === [0 1 2 3];

rref([v1′′′ v2′′′ v3′′′ v′′′])
ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

The system is inconsistent, hence v is not in span S.

ML.7. Associate a column vector with each polynomial as in ML.5(b).

v1 === [0 1 −−− 1]′′′;v2 === [0 1 1]′′′;v3 === [1 1 1]′′′;

(a) v === [1 2 4]′′′;
rref([v1′′′ v2′′′ v3′′′ v′′′])
ans =

1 0 0 −1
0 1 0 2

0 0 1 1

Since the system is consistent, p(t) is in span S.
(b) v === [2 1 −−− 1];

rref([v1′′′ v2′′′ v3′′′ v′′′])
ans =

1 0 0 1

0 1 0 −2
0 0 1 2

Since the system is consistent, p(t) is in span S.
(c) v === [−−− 2 0 1];

rref([v1′′′ v2′′′ v3′′′ v′′′])
ans =

1.0000 0 0 −0.5000
0 1.0000 0 2.5000

0 0 1.0000 −2.0000
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Since the system is consistent, p(t) is in span S.

Section 6.3, p. 301

2. (c) and (d).

4. (a) and (c).

6.

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
−1
−1

1
0

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭.

8. No.

10. (b) (2, 6,−5) = (4, 2, 1) − 2(1,−2, 3).

(c) (3, 6, 6) = 2(1, 1, 0) + (0, 2, 3) + (1, 2, 3).

12. (c) 3t + 1 = 3(2t2 + t + 1) − 2(3t2 + 1).

(d) 5t2 − 5t − 6 = 2(t2 − 4) + (3t2 − 5t + 2).

14. Only (d) is linearly dependent: cos 2t = cos2 t − sin2 t.

16. λ �= ±2.

18. Yes.

20. Yes.

22. v1 + v2 = v3.

T.1. If c1e1 + c2e2 + · · · + cnen = (c1, c2, . . . , cn) = (0, 0, . . . , 0) = 0 in Rn, then c1 = c2 = · · · = cn = 0.

T.2. (a) Since S1 is linearly dependent, there are vectors v1,v2, . . . ,vk in S1 and constants c1, c2, . . . , ck

not all zero such that c1v1 +c2v2 + · · ·+ckvk = 0. Those vi’s also lie in S2, hence S2 is linearly
dependent.

(b) Suppose S1 were linearly dependent, then by part (a), S2 would be linearly dependent. Con-
tradiction.

T.3. Assume that S = {v1,v2, . . . ,vk} is linearly dependent. Then there are constants ci, not all zero,
such that

c1v1 + c2v2 + · · · + ckvk = 0.

Let cj be a nonzero coefficient. Then, solving the equation for vj , we find that

vj = −c1

cj
v1 −

c2

cj
v2 − · · · − cj−1

cj
vj−1 −

cj+1

cj
vj+1 − · · · − ck

cj
vk.

Conversely, if

vj = d1v1 + d2v2 + · · · + dj−1vj−1 + dj+1vj+1 + · · · + dkvk

for some coefficients di, then

d1v1 + d2v2 + · · · + (−1)vj + · · · + dkvk = 0

and the set S is linearly dependent.
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T.4. Suppose

c1w1 + c2w2 + c3w3 = c1(v1 + v2 + v3) + c2(v2 + v3) + c3v3

= c1v1 + (c1 + c2)v2 + (c1 + c2 + c3)v3 = 0.

Since {v1,v2,v3} is linearly independent, c1 = 0, c1 +c2 = 0 (and hence c2 = 0), and c1 +c2 +c3 = 0
(and hence c3 = 0). Thus the set {w1,w2,w3} is linearly independent.

T.5. Form the linear combination

c1w1 + c2w2 + c3w3 = 0

which gives

c1(v1 + v2) + c2(v1 + v3) + c3(v2 + v3) = (c1 + c2)v1 + (c1 + c3)v2 + (c2 + c3)v3 = 0.

Since S is linearly independent, we have

c1 + c2 = 0
c1 + c3 = 0

c2 + c3 = 0

a linear system whose augmented matrix is⎡⎣1 1 0 0
1 0 1 0
0 1 1 0

⎤⎦ .

The reduced row echelon form is ⎡⎣1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦
thus c1 = c2 = c3 = 0 which implies that {w1,w2,w3} is linearly independent.

T.6. Form the linear combination

c1w1 + c2w2 + c3w3 = 0

which gives

c1v1 + c2(v1 + v2) + c3(v1 + v2 + v3) = (c1 + c2 + c3)v1 + (c2 + c3)v2 + c3v3 = 0.

Since S is linearly dependent, this last equation is satisfied with c1 + c2 + c3, c2 + c3, and c3 not
all being zero. This implies that c1, c2, and c3 are not all zero. Hence, {w1,w2,w3} is linearly
dependent.

T.7. Suppose {v1,v2,v3} is linearly dependent. Then one of the vj ’s is a linear combination of the
preceding vectors in the list. It must be v3 since {v1,v2} is linearly independent. Thus v3 belongs
to span {v1,v2}. Contradiction.

T.8. Let a1, . . . ,ar be the nonzero rows of the reduced row echelon form matrix A, and suppose

c1a1 + c2a2 + · · · + crar = 0. (6.2)

For each j, 1 ≤ j ≤ r, aj is the only row with a nonzero entry in the column which holds the
leading entry of that row. Thus, in the summation (6.2), cj must be zero. Hence (6.2) is the trivial
dependence relation, and the ai are linearly independent.
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T.9. Let vi =
k∑

j=1

aijuj for i = 1, 2, . . . , m. Then

w =
m∑

i=1

bivi =
m∑

i=1

bi

k∑
j=1

aijuj =
k∑

j=1

(
m∑

i=1

biaij

)
uj

is a linear combination of the vectors uj in S.

T.10. Form the linear combination

c1Av1 + c2Av2 + · · · + cnAvn = A(c1v1 + c2v2 + · · · + cnvn) = 0.

Since A is nonsingular, Theorem 1.13 implies that

c1v1 + c2v2 + · · · + cnvn = 0.

Since {v1,v2, . . . ,vn} is linearly independent, we have

c1 = c2 = · · · = cn = 0.

Hence, {Av1, Av2, . . . , Avn} is linearly independent.

T.11. Let V = R2 and S2 = {(0, 0), (1, 0), (0, 1)}. Since S2 contains the zero vector for R2 it is linearly
dependent. If S1 = {(0, 0), (1, 0)}, it is linearly dependent for the same reason. If S1 = {(1, 0), (0, 1)},
then

c1(1, 0) + c2(0, 1) = (0, 0)

only if c1 = c2 = 0. Thus in this case S1 is linearly independent.

T.12. Let V = R2 and S1 = {(1, 0)}, which is linearly independent. If S2 = {(1, 0), (0, 1)}, then S2 is
linearly independent. If S2 = {(1, 0), (0, 1), (1, 1)}, then S2 is linearly dependent.

T.13. If {u,v} is linearly dependent, then there exist scalars c1 and c2, not both zero, such that c1u+c2v =
0. In fact, since neither u nor v is the zero vector, it follows that both c1 and c2 must be nonzero
for c1u + c2v = 0. Hence we have v = −c1

c2
u.

Alternatively, if v = ku, then k �= 0 since v �= 0. Hence we have v − ku = 0 which implies that
{u,v} is linearly dependent.

T.14. Form the linear combination

c1u + c2v + c3(u × v) = 0. (6.3)

Take the dot product of both sides with u × v, obtaining

c1(u × v) · u + c2(u × v) · v + c3(u × v) · (u × v) = 0.

Since u × v is orthogonal to u and v, this equation becomes

c3(u × v) · (u × v) = 0.

If u × v = 0, then u and v are parallel, so they are linearly dependent, which contradicts the
hypothesis. Hence, u × v �= 0, so c3 = 0. Now equation (6.3) becomes

c1u + c2v = 0.

Since u and v are linearly independent, we have c1 = c2 = 0. Therefore, u, v, and u×v are linearly
independent.
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T.15. If span {w1,w2, . . . ,wk,v} = W = span {w1,w2, . . . ,wk}, then v must be in W . Hence, v is a
linear combination of w1,w2, . . . ,wk. Thus, the set of all such vectors v is W .

ML.1. In each case we form a linear combination of the vectors in A, set it equal to the zero vector, derive
the associated linear system and find its reduced row echelon form.

(a) v1 === [1 0 0 1];v2 === [0 1 1 0];v3 === [1 1 1 1];

rref([v1′′′ v2′′′ v3′′′ zeros(4,1)])

ans =
1 0 1 0

0 1 1 0

0 0 0 0

0 0 0 0

This represents a homogeneous system with 2 equations in 3 unknowns, hence there is a non-
trivial solution. Thus S is linearly dependent.

(b) v1 === [1 2;1 0];v2 === [2 −−− 1;1 2];v3 === [−−− 3 1;0 1];

rref([reshape(v1,4,1) reshape(v2,4,1) reshape(v3,4,1) zeros(4,1)])

ans =
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

The homogeneous system has only the trivial solution, hence S is linearly independent.

(c) v1 === [0 1 −−− 1]′′′;v2 === [0 1 1]′′′;v3 === [1 1 1]′′′;

rref([v1 v2 v3 zeros(3,1)])

ans =
1 0 0 0

0 1 0 0

0 0 1 0

The homogeneous system has only the trivial solution, hence S is linearly independent.

ML.2. Form the augmented matrix
[
A 0

]
and row reduce it.

A === [1 2 0 1;1 1 1 2;2 −−− 1 5 7;0 2 −−− 2 −−− 2];

rref([A zeros(4,1)])

ans =
1 0 2 3 0

0 1 −1 −1 0

0 0 0 0 0

0 0 0 0 0

The general solution is x4 = s, x3 = t, x2 = t + s, x1 = −2t − 3s. Hence

x =
[
−2t − 3s t + s t s

]′ = t
[
−2 1 1 0

]′ + s
[
−3 1 0 1

]′
and it follows that

[
−2 1 1 0

]′ and
[
−3 1 0 1

]′ span the solution space.
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Section 6.4, p. 314

2. (c).

4. (d).

6. If

c1

[
1 1
0 0

]
+ c2

[
0 0
1 1

]
+ c3

[
1 0
0 1

]
+ c4

[
0 1
1 1

]
=

[
0 0
0 0

]
,

then [
c1 + c3 c1 + c4

c2 + c4 c2 + c3 + c4

]
=

[
0 0
0 0

]
.

The first three entries imply that c3 = −c1 = c4 = −c2. The fourth entry gives c2−c2−c2 = −c2 = 0.
Thus ci = 0 for i = 1, 2, 3, 4. Hence the set of four matrices is linearly independent. By Theorem
6.9, it is a basis.

8. (b); (2, 1, 3) = 1(1, 1, 2) + 2(2, 2, 0) − 1(3, 4,−1).

10. (a) forms a basis: 5t2 − 3t + 8 = −3(t2 + t) + 0t2 + 8(t2 + 1).

12. Possible answer: {v1,v2,v3}; dimW = 3.

14. Possible answer:
{[

1 0
0 1

]
,

[
0 1
1 0

]}
.

16. Possible answer:
{
cos2 t, sin2 t

}
; dimW = 2.

18. (a) {(0, 1, 0), (0, 0, 1)}. (b) {(1, 0, 1, 0), (0, 1,−1,−1)}. (c) {(1, 1, 0), (−5, 0, 1)}.

20. (a) 3. (b) 2.

22.
{
t3 + t2, t + 1

}
.

24. (a) 2. (b) 3. (c) 3. (d) 3.

26. 2.

28. (a) Possible answer: {(1, 0, 2), (1, 0, 0), (0, 1, 0)}.
(b) Possible answer: {(1, 0, 2), (0, 1, 3), (1, 0, 0)}.

30. For a �= −1, 0, 1.

32. S =

⎧⎨⎩
⎡⎣1 0 0

0 0 0
0 0 0

⎤⎦ ,

⎡⎣0 0 0
0 1 0
0 0 0

⎤⎦ ,

⎡⎣0 0 0
0 0 0
0 0 1

⎤⎦⎫⎬⎭.

34. The set of all polynomials of the form at3 + bt2 + (b − a), where a and b are any real numbers.

36. Possible answer: {(−1, 1, 0), (3, 0, 1)}.

38. Yes.

40. No.

T.1. Since the largest number of vectors in any linearly independent set is m, dimV = m. The result
follows from Theorem 6.9.
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T.2. Let dimV = n. First note that any set of vectors in W that is linearly independent in W is linearly
independent in V . If W = {0}, then dimW = 0 and we are done. Suppose now that W is a nonzero
subspace of V . Then W contains a nonzero vector v1, so {v1} is linearly independent in W (and in
V ). If span {v1} = W , then dimW = 1 and we are done. If span {v1} �= W , then there exists a
vector v2 in W which is not in span {v1}. Then {v1,v2} is linearly independent in W (and in V ).
Since dimV = n, no linearly independent set in W can have more than n vectors. Continuing the
above process we find a basis for W containing at most n vectors. Hence W is finite dimensional
and dimW ≤ dimV .

T.3. By Theorem 6.7, any linearly independent set T of vectors in V has at most n elements. Thus a set
of n + 1 vectors must be linearly dependent.

T.4. Suppose a set S of n− 1 vectors in V spans V . By Theorem 6.6, some subset of S would be a basis
for V . Thus dim V ≤ n − 1. Contradiction.

T.5. Let S = {w1,w2, . . . ,wk} be a linearly independent set of vectors in V and let {v1, . . . ,vn} be
a basis for V (V is finite-dimensional). Let S1 = {w1,w2, . . . ,wk,v1,v2, . . . ,vn}. S1 spans V
(since the subset {v1,v2, . . . ,vn} does). If S1 is linearly independent, then it is a basis for V which
contains S. Otherwise some vector in S1 is a linear combination of the preceding vectors (Theorem
6.4). That vector cannot be one of the wi’s since S is linearly independent. So it is one of the vj ’s.
Delete it to form a new set S2 with one fewer element than S1 which also spans V . Either S2 is a
basis or else another vj can be deleted. After a finite number of steps we arrive at a set Sp which
is a basis for V and which contains the given set S.

T.6. (a) By Theorem 6.8, there is a basis T for V which contains S = {v1,v2, . . . ,vn}. Since dim V = n,
T cannot have more vectors than S. Thus T = S.

(b) By Theorem 6.6, some subset T of S is a basis for V . Since dimV = n, T has n elements. Thus
T = S.

T.7. Let S = {v1,v2, . . . ,vm} be a basis for W . By Theorem 6.8, there is a basis T for V which contains
the linearly independent set S. Since dimW = m = dimV , T must have m elements. Thus T = S
and V = W .

T.8. Let V = R3. Since every vector space has the subspaces {0} and V , then {0} and R3 are subspaces
of R3. A line �0 passing through the origin in R3 parallel to vector

v =

⎡⎣a
b
c

⎤⎦
is the set of all points P (x, y, z) whose associated vector

u =

⎡⎣x
y
z

⎤⎦
is of the form u = tv, where t is any real scalar. Let u1 = rv and u2 = sv be the associated vectors
for two points on line �0. Then u1 + u2 = (r + s)v and hence is an associated vector for a point on
�0. Similarly, cu1 = (cr)v is an associated vector for a point on �0. Thus �0 is a subspace of R3.

Any plane π in R3 through the origin has an equation of the form

ax + by + cz = 0.

Sums and scalar multiples of any point on π will also satisfy this equation, hence π is a subspace
of R3.
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To show that {0}, V , lines, and planes are the only subspace of R3, we argue as follows. Let W be
any subspace of R3. Hence W contains the zero vector 0. If W �= {0}, then it contains a nonzero
vector u =

[
a b c

]T , where at least one of a, b, or c is not zero. Since W is a subspace it contains
span {u}. If W = span {u}, then W is a line in R3 through the origin. Otherwise, there exists a
vector v in W which is not in span {u}. Hence {v,u} is a linearly independent set. But then W
contains span {v,u}. If W = span {v,u}, then W is a plane through the origin. Otherwise there is
a vector w in W that is not in span {v,u}. Hence {v,u,w} is a linearly independent set in W and
W contains span {v,u,w}. But {v,u,w} is a linearly independent set in R3, hence a basis for R3.
It follows in this case that W = R3.

T.9. If v is a linear combination of {v1,v2, . . . ,vn}, then

v = d1v1 + d2v2 + · · · + dnvn

and hence

v =
d1

c
(cv1) + d2v2 + · · · + dnvn.

Therefore v is a linear combination of {cv1,v2, . . . ,vn}. Similarly any vector which is a linear
combination of the second set

v = d1(cv1) + d2v2 + · · · + dnvn,

is a linear combination of the first set:

v = (d1c)v1 + · · · + dnvn.

Thus the two sets span V . Since the second set has n elements, it is also a basis for V .

T.10. The set T = {w1,w2,w3} is a set of three vectors in the three-dimensional vector space V . One can
solve for the v’s in terms of the w’s:

v3 = w3

v2 = w2 − v3 = w2 − w3

v1 = w1 − v2 − v3 = w1 − (w2 − w3) − w3 = w1 − w2.

Thus S = {v1,v2,v3} is contained in span T and so V = span S is contained in span T . Hence T
is a basis for V .

T.11. Let S = {v1,v2, . . . ,vn}. Since every vector in V can be written as a linear combination of the
vectors in S, it follows that S spans V . Suppose now that

c1v1 + c2v2 + · · · + cnvn = 0.

We also have

0v1 + 0v2 + · · · + 0vn = 0.

From the hypothesis it then follows that c1 = 0, c2 = 0, . . . , cn = 0. Hence, S is a basis for V .

T.12. If A is nonsingular then the linear system Ax = 0 has only the trivial solution x = 0. Let

c1Av1 + c2Av2 + · · · + cnAvn = 0.

Then A[c1v1 + · · · + cnvn] = 0 and by the opening remark it must be that

c1v1 + c2v2 + · · · + cnvn = 0.

However, since {v1,v2, . . . ,vn} is linearly independent it follows that c1 = c2 = · · · = cn = 0. Hence
{Av1, Av2, . . . , Avn} is linearly independent.
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T.13. Since A is singular, Theorem 1.13 implies that the homogeneous system Ax = 0 has a nontrivial
solution w. Since {v1,v2, . . . ,vn} is a linearly independent set of vectors in Rn, it is a basis for Rn,
so

w = c1v1 + c2v2 + · · · + cnvn.

Observe that w �= 0, so c1, c2, . . . , cn are not all zero. Then

0 = Aw = A(c1v1 + c2v2 + · · · + cnvn) = c1(Av1) + c2(Av2) + · · · + cn(Avn).

Hence, {Av1, Av2, . . . , Avn} is linearly dependent.

T.14. Let d = max{d1, d2, . . . , dk}. The polynomial td+1 + td + · · · + t + 1 cannot be written as a linear
combination of polynomials of degrees ≤ d.

T.15. Form the equation
a1t

n + a2t
n−1 + · · · + ant + an+1 = 0,

where the right side is the zero polynomial in Pn:

0tn + 0tn−1 + · · · + 0t + 0.

Since these two polynomials agree for all values of t, it follows that corresponding coefficients of like
powers of t must agree. Thus

a1 = a2 = · · · = an = an+1 = 0.

Hence, {tn, tn−1, . . . , t, 1} is a linearly independent set of vectors in Pn.

T.16. If v1 + v2 + · · · + vn = 0 and any one vector, say vk �= 0, then adding vk to both sides we have

v1 + v2 + · · · + vn + vk = v1 + · · · + vk−1 + vk+1 + · · · + vn = vk.

Hence v1,v2, . . . ,vn are linearly dependent. If vj = 0 for j = 1, 2, . . . , n, then they cannot be a
basis.

T.17. (a) (1, 0, 0) + (0, 1, 0) + (0, 0, 1) = (1, 1, 1).
(b) (1, 1, 0) + (1, 1, 0) + (1, 1, 1) = (1, 1, 1).

ML.1. Follow the procedure in Exercise ML.3 in Section 6.2.

v1 === [1 2 1]′′′;v2 === [2 1 1]′′′;v3 === [2 2 1]′′′;

rref([v1 v2 v3 zeros(size(v1))])

ans =
1 0 0 0

0 1 0 0

0 0 1 0

It follows that the only solution is the trivial solution so S is linearly independent.

ML.2. Follow the procedure in Exercise ML.5(b) in Section 6.2.

v1 === [0 2 −−− 2]′′′;v2 === [1 −−− 3 1]′′′;v3 === [2 −−− 8 4]′′′;

rref([v1 v2 v3 zeros(size(v1))])

ans =
1 0 −1 0

0 1 2 0

0 0 0 0

It follows that there is a nontrivial solution so S is linearly dependent and cannot be a basis for V .
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ML.3. Proceed as in ML.1.

v1 === [1 1 0 1]′′′;v2 === [2 1 1 −−− 1]′′′;v3 === [0 0 1 1]′′′;v4 === [1 2 1 2]′′′;

rref([v1 v2 v3 v4 zeros(size(v1))])

ans =
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

It follows that S is linearly independent and since dimV = 4, S is a basis for V .

ML.4. Here we do not know dim(span S), but dim(span S) = the number of linearly independent vectors
in S. We proceed as we did in ML.1.

v1 === [1 2 1 0]′′′;v2 === [2 1 3 1]′′′;v3 === [2 −−− 2 4 2]′′′;

rref([v1 v2 v3 zeros(size(v1))])

ans =
1 0 −2 0

0 1 2 0

0 0 0 0

0 0 0 0

The leading 1’s imply that v1 and v2 are a linearly independent subset of S, hence dim(span S) = 2
and S is not a basis for V .

ML.5. Here we do not know dim(span S), but dim(span S) = the number of linearly independent vectors
in S. We proceed as we did in ML.1.

v1 === [1 2 1 0]′′′;v2 === [2 1 3 1]′′′;v3 === [2 2 1 2]′′′;

rref([v1 v2 v3 zeros(size(v1))])

ans =
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

The leading 1’s imply that S is a linearly independent set hence dim(span S) = 3 and S is a basis
for V .

ML.6. Any vector in V has the form

(a, b, c) = (a, 2a − c, c) = a(1, 2, 0) + c(0,−1, 1).

It follows that T = {(1, 2, 0), (0,−1, 1)} spans V and since the members of T are not multiples of
one another, T is a linearly independent subset of V . Thus dimV = 2. We need only determine if
S is a linearly independent subset of V . Let

v1 === [0 1 −−− 1]′′′;v2 === [1 1 1]′′′;

then

rref([v1 v2 zeros(size(v1))])
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ans =
1 0 0

0 1 0

0 0 0

It follows that S is linearly independent and so Theorem 6.9 implies that S is a basis for V .

In Exercises ML.7 through ML.9 we use the technique involving leading 1’s as in Example 5.

ML.7. v1 === [1 1 0 0]′′′;v2 === [−−−2 −−−2 0 0]′′′;v3 === [1 0 2 1]′′′;v4 === [2 1 2 1]′′′;v5 === [0 1 1 1]′′′;

rref([v1 v2 v3 v4 v5 zeros(size(v1))])

ans =
1 −2 0 1 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

The leading 1’s point to vectors v1, v3 and v5 and hence these vectors are a linearly independent
set which also spans S. Thus T = {v1,v3,v5} is a basis for span S. We have dim(span S) = 3 and
span S �= R4.

ML.8. Associate a column with each 2 × 2 matrix as in Exercise ML.4(b) in Section 6.2.

v1 === [1 2;1 2]′′′;v2 === [1 0;1 1]′′′;v3 === [0 2;0 1]′′′;v4 === [2 4;2 4]′′′;v5 === [1 0;0 1]′′′;

rref([reshape(v1,4,1) reshape(v2,4,1) reshape(v3,4,1) reshape(v4,4,1) reshape(v5,4,1)
zeros(4,1)])

ans =
1 0 1 2 0 0

0 1 −1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

The leading 1’s point to v1, v2, and v5 which are a basis for span S. We have dim(span S) = 3 and
span S �= M22.

ML.9. Proceed as in ML.2.

v1 === [0 1 −−− 2]′′′;v2 === [0 2 1]′′′;v3 === [0 4 −−− 2]′′′;v4 === [1 −−− 1 1]′′′;v5 === [1 2 1]′′′;

rref([v1 v2 v3 v4 v5 zeros(size(v1))])

ans =
1.0000 0 1.6000 0 0.6000 0

0 1.0000 1.2000 0 1.2000 0

0 0 0 1.0000 1.0000 0

It follows that T = {v1,v2,v4} is a basis for span S. We have dim(span S) = 3 and it follows that
span S = P2.

ML.10. v1 === [1 1 0 0]′′′;v2 === [1 0 1 0]′′′;

rref([v1 v2 eye(4) zeros(size(v1))])
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ans =
1 0 0 1 0 0 0

0 1 0 0 1 0 0

0 0 1 −1 −1 0 0

0 0 0 0 0 1 0

It follows that
{
v1,v2, e1 =

[
1 0 0 0

]′
, e4 =

[
0 0 0 1

]′} is a basis for V which contains S.

ML.11. v1 === [1 0 −−− 1 1]′′′;v2 === [1 0 0 2]′′′;

rref([v1 v2 eye(4) zeros(size(v1))])

ans =
1.0000 0 0 0 −1.0000 0 0

0 1.0000 0 0 0.5000 0.5000 0

0 0 1.0000 0 0.5000 −0.5000 0

0 0 0 1.0000 0 0 0

It follows that
{
v1,v2, e3 =

[
0 0 1 0

]′
, e4 =

[
0 0 0 1

]′} is a basis for R4. Hence, a basis for

P3 is {t3 − t + 1, t3 + 2, t, 1}.

ML.12. Any vector in V has the form (a, 2d + e, a, d, e). It follows that

(a, 2d + e, a, d, e) = a(1, 0, 1, 0, 0) + d(0, 2, 0, 1, 0) + e(0, 1, 0, 0, 1)

and T = {(1, 0, 1, 0, 0), (0, 2, 0, 1, 0), (0, 1, 0, 0, 1)} is a basis for V . Hence let

v1 === [0 3 0 2 −−− 1]′′′;w1 === [1 0 1 0 0]′′′;w2 === [0 2 0 1 0]′′′;w3 === [0 1 0 0 1]′′′;

then

rref([v1 w1 w2 w3 eye(4) zeros(size(v1))])

ans =
1 0 0 −1 0

0 1 0 0 0

0 0 1 2 0

0 0 0 0 0

0 0 0 0 0

Thus {v1,w1,w2} is a basis for V containing S.

Section 6.5, p. 327

2. (a) x = −r + 2s, y = r, z = s, where r, s are any real numbers.

(b) Let x1 =

⎡⎣−1
1
0

⎤⎦, x2 =

⎡⎣2
0
1

⎤⎦. Then

⎡⎣−r + 2s
r
s

⎤⎦ = r

⎡⎣−1
1
0

⎤⎦ + s

⎡⎣2
0
1

⎤⎦ = rx1 + sx2.
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(c)

x

y

z

x1

x2

4.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
1
1
0
0
0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
−4

0
6
1
0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
0
0

−1
0
1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭; dimension = 3.

6.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
4
3

−2
1
0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
1
1

−2
0
1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭; dimension = 2.

8. No basis; dimension = 0.

10.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
−2

1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣
17
0
5
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
; dimension = 2.

12.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
0
3
1
1
0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
0

−6
−3

0
1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭.

14.
{[

−3
1

]}
.

16. No basis.

18. λ = 3,−2.

20. λ = 1, 2,−2.

22. xp =

⎡⎢⎢⎢⎢⎢⎢⎣
32
23

13
23

2
23

0

⎤⎥⎥⎥⎥⎥⎥⎦, xh = r

⎡⎢⎢⎢⎢⎢⎢⎣
2
23

8
23

− 20
23

1

⎤⎥⎥⎥⎥⎥⎥⎦.
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24.

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

0
1
0
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
0
1
1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ is a basis. Dimension of solution space = 2.

26.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
1
1
0
1
1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ is a basis. Dimension of solution space = 1.

28. xp =

⎡⎢⎢⎢⎢⎣
1
0
0
0
0

⎤⎥⎥⎥⎥⎦, xh = b1

⎡⎢⎢⎢⎢⎣
1
1
1
0
1

⎤⎥⎥⎥⎥⎦ + b2

⎡⎢⎢⎢⎢⎣
0
0
0
1
0

⎤⎥⎥⎥⎥⎦.

T.1. Since each vector in S is a solution to Ax = 0, we have Axi = 0 for i = 1, 2, . . . , n. The span of S
consists of all possible linear combinations of the vectors in S, hence

y = c1x1 + c2x2 + · · · + ckxk

represents an arbitrary member of span S. We have

Ay = c1Ax1 + c2Ax2 + · · · + ckAxk = c10 + c20 + · · · + ck0 = 0.

Thus y is a solution to Ax = 0 and it follows that every member of span S is a solution to Ax = 0.

T.2. If A has a row or a column of zeros, then det(A) = 0 and it follows that matrix A is singular.
Theorem 1.12 then implies that the homogeneous system Ax = 0 has a nontrivial solution.

T.3. (a) Set A =
[
aij

]
. Since the dimension of the null space of A is 3, the null space of A is R3. Then

the natural basis {e1, e2, e3} is a basis for the null space of A. Forming Ae1 = 0, Ae2 = 0,
Ae3 = 0, we find that all the columns of A must be zero. Hence, A = O.

(b) Since Ax = 0 has a nontrivial solution, the null space of A contains a nonzero vector, so the
dimension of the null space of A is not zero. If this dimension is 3, then by part (a), A = O, a
contradiction. Hence, the dimension is either 1 or 2.

T.4. Since the reduced row echelon forms of matrices A and B are the same it follows that the solutions
to the linear systems Ax = 0 and Bx = 0 are the same set of vectors. Hence the null spaces of A
and B are the same.

ML.1. Enter A into Matlab and we find that

rref(A)

ans =
1 0 2 1 2

0 1 0 1 −1
0 0 0 0 0

Write out the solution to the linear system Ax = 0 as

x = r

⎡⎢⎢⎢⎢⎣
−2

0
1
0
0

⎤⎥⎥⎥⎥⎦ + s

⎡⎢⎢⎢⎢⎣
−1
−1

0
1
0

⎤⎥⎥⎥⎥⎦ + t

⎡⎢⎢⎢⎢⎣
−2

1
0
0
1

⎤⎥⎥⎥⎥⎦ .
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A basis for the null space of A consists of the three vectors above. We can compute such a basis
directly using the command homsoln as shown next.

homsoln(A)

ans =
−2 −1 −2
0 −1 1

1 0 0

0 1 0

0 0 1

ML.2. Enter A into Matlab and we find that

rref(A)

ans =
1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

The homogeneous system Ax = 0 has only the trivial solution.

ML.3. Enter A into Matlab and we find that

rref(A)

ans =
1.0000 0 −1.0000 −1.3333

0 1.0000 2.0000 0.3333

0 0 0 0

format rat, ans

ans =
1 0 −1 −4/3
0 1 2 1/3

0 0 0 0

format

Write out the solution to the linear system Ax = 0 as

x = r

⎡⎢⎢⎢⎢⎢⎢⎣
1

−2

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ + s

⎡⎢⎢⎢⎢⎢⎢⎣
4
3

− 1
3

0

1

⎤⎥⎥⎥⎥⎥⎥⎦ .

A basis for the null space of A consists of the two vectors above. We can compute such a basis
directly using command homsoln as shown next.

homsoln(A)
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ans =
1.0000 1.3333

−2.0000 −0.3333
1.0000 0

0 1.0000

format rat, ans

ans =
1 4/3

−2 −1/3
1 0

0 1

format

ML.4. Form the matrix 3I2 − A in Matlab as follows.

C === 3 ∗∗∗ eye(2)−−− [1 2;2 1]

C =
2 −2

−2 2

rref(C)

ans =
1 −1
0 0

The solution is x =
[
t
t

]
, for t any real number. Just choose t �= 0 to obtain a nontrivial solution.

ML.5. Form the matrix 6I3 − A in Matlab as follows.

C === 6 ∗∗∗ eye(3)−−− [1 2 3;3 2 1;2 1 3]

C =
5 −2 −3

−3 4 −1
−2 −1 3

rref(C)

ans =
1 0 −1
0 1 −1
0 0 0

The solution is x =

⎡⎣t
t
t

⎤⎦, for t any nonzero real number. Just choose t �= 0 to obtain a nontrivial

solution.

Section 6.6, p. 337

2. {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.
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4.

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

1
0
0
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭.

6. (a)
{(

1, 0, 0,− 33
7

)
,
(
0, 1, 0, 23

7

)
,
(
0, 0, 1,− 8

7

)}
. (b) {(1, 2,−1, 3), (3, 5, 2, 0), (0, 1, 2, 1)}.

8. (a)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
1

0

4

0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

− 5
2

0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (b)

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
−2
−2
−3

4

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
2
2
3

−2

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
3
4
2
1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭.

10. Basis for row space of A:
{[

1 0 −2 4
]
,
[
0 1 1 −1

]}
Basis for column space of A:

⎧⎨⎩
⎡⎣ 1

0
−1

⎤⎦ ,

⎡⎣0
1
1

⎤⎦⎫⎬⎭
Basis for row space of AT :

{[
1 0 −1

]
,
[
0 1 1

]}
Basis for column space of AT :

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

1
0

−2
4

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1
1

−1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

A basis for the column space of AT consists of the transposes of a corresponding basis for the row
space of A. Similarly, a basis for the row space of AT consists of the transposes of a corresponding
basis for the column space of A.

12. 5.

14. rank = 4, nullity = 0.

16. 2.

18. 3.

20. The five rows of A span a row space of dimension rankA, which is at most 3. Thus the five rows
are linearly dependent.

22. Linearly independent. Since rankA = 3, dim(column space A) = 3. The three column vectors of
A span the column space of A and are then a basis for the column space. Hence, they are linearly
independent.

24. Nonsingular.

26. No.

28. Yes, linearly independent.

30. Only the trivial solution.

32. Only the trivial solution.

34. Has a solution.

36. Has no solution.

38. 3.
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40. 3.

T.1. Rank A = n if and only if A is nonsingular if and only if detA �= 0.

T.2. Let rankA = n. Then Theorem 6.13 implies that A is nonsingular, so x = A−1b is a solution. If
x1 and x2 are solutions, then Ax1 = Ax2 and multiplying both sides on the left by A−1, we have
x1 = x2. Thus, Ax = b has a unique solution. Conversely, suppose that Ax = b has a unique
solution for every n× 1 matrix b. Then the n linear systems Ax = e1, Ax = e2, . . . , Ax = en, where
e1, e2, . . . , en are the columns of In, have solutions x1,x2, . . . ,xn. Let B be the matrix whose jth
column is xj . Then the n linear systems above can be written as AB = In. Hence, B = A−1, so A
is nonsingular and Theorem 6.13 implies that rankA = n.

T.3. S = {v1,v2, . . . ,vn} is linearly independent if and only if A has rank n if and only if det(A) �= 0.

T.4. If Ax = 0 has a nontrivial solution, then by Corollary 6.5 rankA < n. Hence column rank A < n and
it follows that the columns of A are linearly dependent. If the columns of A are linearly dependent,
then by Corollary 6.4, det(A) = 0. It follows by Corollary 6.2 that rankA < n and then Corollary
6.5 implies that the homogeneous system Ax = 0 has a nontrivial solution.

T.5. Let rankA = n. Then n = rankA = column rank A implies that the n columns of A are lin-
early independent. Conversely, suppose the columns of A are linearly independent. Then n =
column rank A = rankA.

T.6. If the rows of A are linearly independent, n = rankA = column rank A and the n columns of A
span the entire space Rn. Conversely, if the n columns of A span Rn then by Theorem 6.9(n)
they are a basis for Rn. Hence the columns of A are linearly independent which implies that
n = column rank A = row rank A. Thus the rows of A are linearly independent.

T.7. Let Ax = b have a solution for every m× 1 matrix b. Then the columns of A span Rm. Thus there
is a subset of m columns of A that is a basis for Rm and rankA = m. Conversely, if rankA = m,
then column rank A = m. Thus m columns of A are a basis for Rm and hence all the columns of A
span Rm. Since b is in Rm, it is a linear combination of the columns of A; that is, Ax = b has a
solution for every m × 1 matrix b.

T.8. Suppose that the columns of A are linearly independent. Then rankA = n, so by Theorem 6.12,
nullity A = 0. Hence, the homogeneous system Ax = 0 has only the trivial solution. Conversely,
if Ax = 0 has only the trivial solution, then nullity A = 0, so by Theorem 6.12, rank A = n. This
means that

column rank A = dim(column space A) = n.

Since A has n columns which span its column space, it follows that they are linearly independent.

T.9. Suppose that the linear system Ax = b has at most one solution for every m × 1 matrix b. Since
Ax = 0 always has the trivial solution, then Ax = 0 has only the trivial solution. Conversely,
suppose that Ax = 0 has only the trivial solution. Then nullity A = 0, so by Theorem 6.12,
rankA = n. Thus, dim(column space A) = n, so the n columns of A, which span its column space,
form a basis for the column space. If b is an m × 1 matrix then b is a vector in Rm. If b is in the
column space of A, then B can be written as a linear combination of the columns of A in one and
only one way. That is, Ax = b has exactly one solution. If b is not in the column space of A, then
Ax = b has no solution. Thus, Ax = b has at most one solution.

T.10. Since the rank of a matrix is the same as its row rank and column rank, the number of linearly
independent rows of a matrix is the same as the number of linearly independent columns. It follows
that the largest the rank can be is min{m, n}. Since m �= n, it must be that either the rows or
columns are linearly independent.
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T.11. Suppose that Ax = b is consistent. Assume that there are at least two different solutions x1 and
x2. Then Ax1 = b and Ax2 = b, so

A(x1 − x2) = Ax1 − Ax2 = b − b = 0.

That is, Ax = 0 has a nontrivial solution so nullity A > 0. By Theorem 6.12, rankA < n. Conversely,
if rankA < n, then by Corollary 6.5, Ax = 0 has a nontrivial solution y. Suppose that x0 is a solution
to Ax = b. Thus, Ay = 0 and Ax = b. Then x0 + y is a solution to Ax = b, since

A(x0 + y) = Ax0 + Ay = b + 0 = b.

Since y �= 0, x0 + y �= x0, so Ax = b has more than one solution.

T.12. We must show that the rows v1,v2, . . . ,vm of AAT are linearly independent. Consider

a1v1 + a2v2 + · · · + amvm = 0

which can be written in matrix form as xA = 0, where x = (a1, a2, . . . , am). Multiplying this
equation by AT we have xAAT = 0. Since AAT is nonsingular, Theorem 1.13 implies that x = 0,
so a1 = a2 = · · · = am = 0. Hence rank A = m.

ML.2. (a) One basis for the row space of A consists of the nonzero rows of rref(A).
A === [1 3 1;2 5 0;4 11 2;6 9 1];
rref(A)

ans =
1 0 0

0 1 0

0 0 1

0 0 0

Another basis is found using the leading 1’s of rref(AT ) to point to rows of A that form a basis
for the row space of A.
rref(A′′′)

ans =
1 0 2 0

0 1 1 0

0 0 0 1

It follows that rows 1, 2, and 4 of A are a basis for the row space of A.

(b) Follow the same procedure as in part (a).
A === [2 1 2 0;0 0 0 0;1 2 2 1;4 5 6 2;3 3 4 1];

ans =
1.0000 0 0.6667 −0.3333

0 1.0000 0.6667 0.6667

0 0 0 0

0 0 0 0

format rat, ans
ans =

1 0 2/3 −1/3
0 1 2/3 2/3

0 0 0 0

0 0 0 0
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format
rref(A′′′)

ans =
1 0 0 1 1

0 0 1 2 1

0 0 0 0 0

0 0 0 0 0

It follows that rows 1 and 2 of A are a basis for the row space of A.

ML.3. (a) The transposes of the nonzero rows of rref(AT ) give us one basis for the column space of A.
A === [1 3 1;2 5 0;4 11 2;6 9 1];
rref(A′′′)

ans =
1 0 2 0

0 1 1 0

0 0 0 1

The leading ones of rref(A) point to the columns of A that form a basis for the column space
of A.
rref(A)

ans =
1 0 0

0 1 0

0 0 1

0 0 0

Thus columns 1, 2, and 3 of A are a basis for the column space of A.

(b) Follow the same procedure as in part (a).
A === [2 1 2 0;0 0 0 0;1 2 2 1;4 5 6 2;3 3 4 1];
rref(A′′′)

ans =
1 0 0 1 1

0 0 1 2 1

0 0 0 0 0

0 0 0 0 0

rref(A)

ans =
1.0000 0 0.6667 −0.3333

0 1.0000 0.6667 0.6667

0 0 0 0

0 0 0 0

Thus columns 1 and 2 of A are a basis for the column space of A.

ML.4. (a) A === [3 2 1;1 2 −−− 1;2 1 3];
rank(A)

ans =
3

The nullity of A is 0.
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(b) A === [1 2 1 2 1;2 1 0 0 2;1 −−− 1 −−− 1 −−− 2 1;3 0 −−− 1 −−− 2 3];
rank(A)

ans =
2

The nullity of A = 5 − rank(A) = 3.

ML.5. Compare the rank of the coefficient matrix with the rank of the augmented matrix as in Theorem
6.14.

(a) A === [1 2 4 −−− 1;0 1 2 0;3 1 1 −−− 2];b === [21 8 16]′′′;
rank(A),rank([A b])

ans =
3

ans =
3

The system is consistent.

(b) A === [1 2 1;1 1 0;2 1−−− 1];b === [3 3 3]′′′;
rank(A),rank([A b])

ans =
2

ans =
3

The system is inconsistent.

(c) A === [1 2;2 0;2 1;−−− 1 2];b === [3 2 3 2]′′′;
rank(A),rank([A b])

ans =
2

ans =
3

The system is inconsistent.

Section 6.7, p. 349

2.

⎡⎣ 3
2

−1

⎤⎦. 4.

⎡⎣ 1
−1

3

⎤⎦. 6.

⎡⎢⎢⎣
−1

2
−2

4

⎤⎥⎥⎦. 8. (3, 1, 3). 10. t2 − 3t + 2. 12.
[
−1 1

2 1

]
.

14. (a)
[
v
]
T

=

⎡⎣−9
−8
28

⎤⎦,
[
w

]
T

=

⎡⎣ 1
−2
13

⎤⎦. (b)

⎡⎣−2 −5 −2
−1 −6 −2

1 2 1

⎤⎦.

(c)
[
v
]
S

=

⎡⎣2
1
3

⎤⎦,
[
w

]
S

=

⎡⎣−18
−17

8

⎤⎦. (d) Same as (c).

(e)

⎡⎣−2 1 −2
−1 0 −2

4 −1 7

⎤⎦. (f) Same as (a).
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16. (a)
[
v
]
T

=

⎡⎣ 4
−2

1

⎤⎦,
[
w

]
T

=

⎡⎣ 0
8

−6

⎤⎦. (b)

⎡⎢⎢⎢⎣
0 1 0
1
2 − 1

2 0

− 1
2

1
2 1

⎤⎥⎥⎥⎦.

(c)
[
v
]
S

=

⎡⎣−2
3

−2

⎤⎦,
[
w

]
S

=

⎡⎣ 8
−4
−2

⎤⎦. (d) Same as (c).

(e)

⎡⎣1 2 0
1 0 0
0 1 1

⎤⎦. (f) Same as (a).

18. (a)
[
v
]
T

=

⎡⎢⎢⎣
−2

3
−1

2

⎤⎥⎥⎦,
[
w

]
T

=

⎡⎢⎢⎣
1

−1
−2

2

⎤⎥⎥⎦. (b)

⎡⎢⎢⎢⎢⎢⎢⎣
− 1

2 − 1
2 − 1

2
1
2

1
2 − 1

2
1
2

1
2

− 1
2

1
2

1
2 − 3

2

0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦.

(c)
[
v
]
S

=

⎡⎢⎢⎣
2

−1
−2

3

⎤⎥⎥⎦,
[
w

]
S

=

⎡⎢⎢⎣
1

−1
−2

2

⎤⎥⎥⎦. (d) Same as (c).

(e)

⎡⎢⎢⎣
−2 −1 −1 −1

0 0 0 1
1 2 1 1
1 1 0 1

⎤⎥⎥⎦. (f) Same as (a).

20.
[
1
1

]
. 22.

⎡⎣ 1
1

−1

⎤⎦. 24. S = {t + 1, 5t − 2}. 26. S = {−t + 5, t − 3}.

T.1. Let v = w. The coordinates of a vector relative to basis S are the coefficients used to express the
vector in terms of the members of S. A vector has a unique expression in terms of the vectors of a
basis, hence it follows that

[
v
]
S

must equal
[
w

]
S
. Conversely, let

[
v
]
S

=
[
w

]
S

=

⎡⎢⎢⎢⎣
a1

a2

...
an

⎤⎥⎥⎥⎦ .

Then

v = a1v1 + a2v2 + · · · + anvn and w = a1v1 + a2v2 + · · · + anvn.

Hence v = w.

T.2. Let S = {v1,v2, . . . ,vn} and

v = a1v1 + a2v2 + · · · + anvn

w = b1v1 + b2v2 + · · · + bnvn.

Then

[
v
]
S

=

⎡⎢⎢⎢⎣
a1

a2

...
an

⎤⎥⎥⎥⎦ and
[
w

]
S

=

⎡⎢⎢⎢⎣
b1

b2

...
bn

⎤⎥⎥⎥⎦ .
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We also have

v + w = (a1 + b1)v1 + (a2 + b2)v2 + · · · + (an + bn)vn

cv = (ca1)v1 + (ca2)v2 + · · · + (can)vn,

so

[
v + w

]
S

=

⎡⎢⎢⎢⎣
a1 + b1

a2 + b2

...
an + bn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
a1

a2

...
an

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
b1

b2

...
bn

⎤⎥⎥⎥⎦ =
[
v
]
S

+
[
w

]
S

[
cv

]
=

⎡⎢⎢⎢⎣
ca1

ca2

...
can

⎤⎥⎥⎥⎦ = c

⎡⎢⎢⎢⎣
a1

a2

...
an

⎤⎥⎥⎥⎦ = c
[
v
]
S

.

T.3. Suppose that
{[

w1

]
S

,
[
w2

]
S

, . . . ,
[
wk

]
S

}
is linearly dependent. Then there exist scalars ai, i =

1, 2, . . . , k, that are not all zero, such that

a1

[
w1

]
S

+ a2

[
w2

]
S

+ · · · + an

[
wk

]
S

=
[
0V

]
S

.

Using Exercise T.2 we find that the preceding equation is equivalent to[
a1w1 + a2w2 + · · · + akwk

]
S

=
[
0V

]
S

.

By Exercise T.1 we have

a1w1 + a2w2 + · · · + akwk = 0V .

Since the w’s are linearly independent, the preceding equation is only true when all ai = 0. Hence
we have a contradiction and our assumption that the

[
wi

]
S
’s are linearly dependent must be false.

It follows that
{[

w1

]
S

,
[
w2

]
S

, . . . ,
[
wk

]
S

}
is linearly independent.

T.4. From Exercise T.3 we know that T =
{[

v1

]
S

,
[
v2

]
S

, . . . ,
[
vn

]
S

}
is a linearly independent set of

vectors in Rn. By Theorem 6.9, T spans Rn and is thus a basis for Rn.

T.5. Consider the homogeneous system MSx = 0, where

x =

⎡⎢⎢⎢⎣
a1

a2

...
an

⎤⎥⎥⎥⎦ .

This system can then be written in terms of the columns of MS as

a1v1 + a2v2 + · · · + anvn = 0,

where vj is the jth column of MS . Since v1,v2, . . . ,vn are linearly independent, we have a1 = a2 =
· · · = an = 0. Thus, x = 0 is the only solution to MSx = 0, so by Theorem 1.13 we conclude that
MS is nonsingular.

T.6. Let v be a vector in V . Then v = a1v1 + a2v2 + · · · + anvn. This last equation can be written in
matrix form as

v = MS

[
v
]
S

,

where MS is the matrix whose jth column is vj . Similarly, v = MT

[
v
]
T
.
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T.7. (a) From Exercise T.6 we have

MS

[
v
]
S

= MT

[
v
]
T

.

From Exercise T.5 we know that MS is nonsingular, so[
v
]
S

= M−1
S MT

[
v
]
T

.

Equation (2) is [
v
]
S

= PS←T

[
v
]
T

,

so

PS←T = M−1
S MT .

(b) Since MS and MT are nonsingular, M−1
S is nonsingular, so PS←T , as the product of two

nonsingular matrices, is nonsingular.

(c) MS =

⎡⎣2 1 1
0 2 1
1 0 1

⎤⎦, MT =

⎡⎣6 4 5
3 −1 5
3 3 2

⎤⎦, M−1
S =

⎡⎢⎢⎢⎣
2
3 − 1

3 − 1
3

1
3

1
3 − 2

3

− 2
3

1
3

4
3

⎤⎥⎥⎥⎦, PS←T =

⎡⎣2 2 1
1 −1 2
1 1 1

⎤⎦ .

ML.1. Since S is a set consisting of three vectors in a 3-dimensional vector space, we can show that S is a
basis by verifying that the vectors in S are linearly independent. It follows that if the reduced row
echelon form of the three columns is I3, they are linearly independent.

A === [1 2 1;2 1 0;1 0 2];

rref(A)

ans =
1 0 0

0 1 0

0 0 1

To find the coordinates of v we solve the system Ac = v. We can do all three parts simultaneously
as follows. Put the three columns whose coordinates we want to find into a matrix B.

B === [8 2 4;4 0 3;7−−− 3 3];

rref([A B])

ans =
1 0 0 1 −1 1

0 1 0 2 2 1

0 0 1 3 −1 1

The coordinates appear in the last three columns of the matrix above.

ML.2. Proceed as in ML.1 by making each of the vectors in S a column in matrix A.

A === [1 0 1 1;1 2 1 3;0 2 1 1;0 1 0 0]′′′;

rref(A)

ans =
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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To find the coordinates of v we solve a linear system. We can do all three parts simultaneously as
follows. Associate with each vector v a column. Form a matrix B from these columns.

B === [4 12 8 14;1/2 0 0 0;1 1 1 7/3]′′′;

rref([A B])

ans =
1.0000 0 0 0 1.0000 0.5000 0.3333

0 1.0000 0 0 3.0000 0 0.6667

0 0 1.0000 0 4.0000 −0.5000 0

0 0 0 1.0000 −2.0000 1.0000 −0.3333
The coordinates are the last three columns of the preceding matrix.

ML.3. Associate a column with each matrix and proceed as in ML.2.

A === [1 1 2 2;0 1 2 0;3 −−− 1 1 0;−1−1−1 0 0 0]′′′;

rref(A)

ans =
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

B === [1 0 0 1;2 7/6 10/3 2;1 1 1 1]′′′;

rref([A B])

ans =
1.0000 0 0 0 0.5000 1.0000 0.5000

0 1.0000 0 0 −0.5000 0.5000 0.1667

0 0 1.0000 0 0 0.3333 −0.3333
0 0 0 1.0000 −0.5000 0 −1.5000

The coordinates are the last three columns of the preceding matrix.

ML.4. A === [1 0 1;1 1 0;0 1 1];

B === [2 1 1;1 2 1;1 1 2];

rref([A B])

ans =
1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

The transition matrix from the T -basis to the S-basis is P = ans(:,4:6).

P =
1 1 0

0 1 1

1 0 1

ML.5. A === [0 0 1 −−− 1;0 0 1 1;0 1 1 0;1 0 −−− 1 0]′′′;

B === [0 1 0 0;0 0 −−− 1 1;0 −−− 1 0 2;1 1 0 0]′′′;

rref([A B])
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ans =
1.0000 0 0 0 −0.5000 −1.0000 −0.5000 0

0 1.0000 0 0 −0.5000 0 1.5000 0

0 0 1.0000 0 1.0000 0 −1.0000 1.0000

0 0 0 1.0000 0 0 0 1.0000

The transition matrix P is found in columns 5 through 8 of the preceding matrix.

ML.6. A === [1 2 3 0;0 1 2 3;3 0 1 2;2 3 0 1]′′′;

B === eye(4);

rref([A B])

ans =
1.0000 0 0 0 0.0417 0.0417 0.2917 −0.2083

0 1.0000 0 0 −0.2083 0.0417 0.0417 0.2917

0 0 1.0000 0 0.2917 −0.2083 0.0417 0.0417

0 0 0 1.0000 0.0417 0.2917 −0.2083 0.0417

The transition matrix P is found in columns 5 through 8 of the preceding matrix.

ML.7. We put basis S into matrix A, T into B, and U into C.

A === [1 1 0;1 2 1;1 1 1];
B === [1 1 0;0 1 1;1 0 2];
C === [2 −−− 1 1;1 2 −−− 2 1;1 1 1];

(a) The transition matrix from U to T will be the last 3 columns of rref([B C]).
rref([B C])

ans =
1.0000 0 0 1.0000 −1.6667 2.3333

0 1.0000 0 1.0000 0.6667 −1.3333
0 0 1.0000 0 1.3333 −0.6667

P === ans(:,4:6)

P =
1.0000 −1.6667 2.3333

1.0000 0.6667 −1.3333
0 1.3333 −0.6667

(b) The transition matrix from T to S will be the last 3 columns of rref([A B]).
rref([A B])

ans =
1 0 0 2 0 1

0 1 0 −1 1 −1
0 0 1 0 −1 2

Q === ans(:,4:6)

Q =
2 0 1

−1 1 −1
0 −1 2
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(c) The transition matrix from U to S will be the last 3 columns of rref([A C]).
rref([A C])

ans =
1 0 0 2 −2 4

0 1 0 0 1 −3
0 0 1 −1 2 0

Z === ans(:,4:6)

Z =
2 −2 4

0 1 −3
−1 2 0

(d) Q ∗∗∗ P gives Z.

Section 6.8, p. 359

2. (a).

4. a = b = 1
2 or a = b = − 1

2 .

6.
{(

1√
5
, 0, 2√

5

)
,
(
− 4

3
√

5
, 5

3
√

5
, 2

3
√

5

)}
.

8.
{(

1√
3
, 1√

3
,− 1√

3
, 0

)
,
(
− 2√

33
, 4√

33
, 2√

33
, 3√

33

)
,
(

4√
110

, 3√
110

, 7√
110

,− 6√
110

)}
.

10. (a)
{(

1√
3
, 1√

3
, 1√

3

)
,
(
− 2√

6
, 1√

6
, 1√

6

)
,
(
0,− 1√

2
, 1√

2

)}
.

(b) (2, 3, 1) = 6√
3

(
1√
3
, 1√

3
, 1√

3

)
− 2√

2

(
0,− 1√

2
, 1√

2

)
.

12. Possible answer:
{

(0, 0, 1),
(

1√
2
, 1√

2
, 0

)
,
(
− 1√

2
, 1√

2
, 0

)}
.

14.
{(

1√
2
, 1√

2
, 0

)
,
(
− 1√

6
, 1√

6
, 2√

6

)}
.

16.
{(

1√
2
, 0,− 1√

2

)
,
(
− 1√

6
, 2√

6
,− 1√

6

)}
.

18.

⎧⎨⎩ 1√
26

⎡⎣−3
4
1

⎤⎦⎫⎬⎭.

20. 5√
2

(
1√
2
, 1√

2

)
+ 1√

2

(
− 1√

2
, 1√

2

)
= (2, 3).

T.1. ei · ej = 0 for i �= j and 1 for i = j.

T.2. An orthonormal set in Rn is an orthogonal set of nonzero vectors. The result follows from Theorem
6.16.

T.3. Since an orthonormal set of vectors is an orthogonal set, the result follows by Theorem 6.16.

T.4. (a) Let v = c1v1 + · · · + cnvn be the expression for v in terms of the basis S. Then

v ·vi =

⎛⎝ n∑
j=1

cjvj

⎞⎠ ·vi =
n∑

j=1

cj(vj ·vi) = ci

for 1 ≤ i ≤ n.
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(b) If
v = c1u1 + c2u2 + · · · + cnun,

taking the dot product of both sides of the equation with ui, 1 ≤ i ≤ n, we have

ui · v = c1(ui · u1) + c2(ui · u2) + · · · + ci(ui · ui) + · · · + cn(ui · un) = ci(ui · ui).

Since ui �= 0, we conclude that
ci =

v · ui

ui · ui
.

T.5. If u is orthogonal to S = {v1,v2, . . . ,vn}, then u ·vj = 0 for j = 1, . . . , n. Let w be in span S.
Then w is a linear combination of the vectors in S:

w =
n∑

j=1

cjvj .

Thus

u ·w =
n∑

j=1

cj(u ·vj) =
n∑

j=1

cj0 = 0.

Hence u is orthogonal to every vector in span S.

T.6. Let u be a fixed vector in Rn and let W be the set of all vectors in Rn that are orthogonal to u.
We show W is closed under addition of vectors and under scalar multiplication. Let v and w be in
W . Then u ·v = u ·w = 0. Hence

u · (v + w) = u ·v + u ·w = 0 + 0 = 0

and it follows that v + w is in W . Also, for any real number k,

u · (kv) = k(u ·v) = k0 = 0.

It follows that kv is in W . Thus W is a subspace of Rn.

T.7. If u ·v = 0, then u1v1 + u2v2 + · · · + unvn = 0. We have

u · (cv) = u1(cv1) + u2(cv2) + · · · + un(cvn) = c(u1v1 + u2v2 + · · · + unvn) = c(0) = 0.

T.8. Since {v1,v2, . . . ,vn} is an orthonormal set, by Theorem 6.16 it is linearly independent. Hence, A
is nonsingular. Since S is orthonormal,

vi ·vj =

{
1 if i = j

0 if i �= j.

This can be written in terms of matrices as

vivT
j =

{
1 if i = j

0 if i �= j

or as AAT = In. Then A−1 = AT . Examples of such matrices:

A =

⎡⎢⎣ 1√
2

1√
2

− 1√
2

1√
2

⎤⎥⎦ , A =

⎡⎢⎢⎢⎣
1 0 0

0 − 1√
2

1√
2

0 1√
2

1√
2

⎤⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎣
1√
3

− 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

1
3 0 2√

6

⎤⎥⎥⎥⎦ .
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T.9. Since some of the vectors vj can be zero, A can be singular.

T.10. Let T = {v1,v2, . . . ,vn} be a basis for Rn. Form the set Q = {u1, . . . ,uk,v1, . . . ,vn}. None of the
vectors in A is the zero vector. Since A contains more than n vectors, Q is a linearly dependent set.
Thus one of the vectors is not orthogonal to the preceding ones. (See Theorem 6.16). It cannot be
one of the u’s, so at least one of the v’s is not orthogonal to the u’s. Check v1 ·uj , j = 1, . . . , k.
If all these dot products are zero, then {u1, . . . ,uk,v1} is an orthonormal set, otherwise delete v1.
Proceed in a similar fashion with vi, i = 2, . . . , n using the largest subset of A that has been found to
be orthogonal so far. What remains will be a set of n orthogonal vectors since A originally contained
a basis for V . In fact, the set will be orthonormal since each of the u’s and v’s originally had length
1.

T.11 Let x be in S. Then we can write x =
k∑

j=1

cjuj . Similarly if y is in T , we have y =
n∑

i=k+1

ciui. Then

x ·y =

⎛⎝ k∑
j=1

cjuj

⎞⎠ ·y =
k∑

j=1

cj(uj ·y) =
k∑

j=1

cj

(
uj ·

n∑
i=k+1

ciui

)
=

k∑
j=1

cj

(
n∑

i=k+1

ci(uj ·ui)

)
.

Since j �= i, uj ·ui = 0, hence x ·y = 0.

ML.1. Use the following Matlab commands.

A === [1 1 0;1 0 1;0 0 1];

gschmidt(A)

ans =
0.7071 0.7071 0

0.7071 −0.7071 0

0 0 1.0000

Write the columns in terms of
√

2. Note that
√

2
2 ≈ 0.7071.

ML.2. Use the following Matlab commands.

A === [1 0 1 1;1 2 1 3;0 2 1 1;0 1 0 0]′′′;

gschmidt(A)

ans =
0.5774 −0.2582 −0.1690 0.7559

0 0.7746 0.5071 0.3780

0.5774 −0.2582 0.6761 −0.3780
0.5774 0.5164 −0.5071 −0.3780

ML.3. To find the orthonormal basis we proceed as follows in Matlab.

A === [0 −−− 1 1;0 1 1;1 1 1]′′′;

G === gschmidt(A)

G =
0 0 1.0000

−0.7071 0.7071 0

0.7071 0.7071 0

To find the coordinates of each vector with respect to the orthonormal basis T which consists of the
columns of matrix G we express each vector as a linear combination of the columns of G. It follows
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that
[
v
]
T

is the solution to the linear system Gx = v. We find the solution to all three systems at
the same time as follows.

coord === rref([G [1 2 0;1 1 1;−−− 1 0 1]′′′])

coord =
1.0000 0 0 −1.4142 0 0.7071

0 1.0000 0 1.4142 1.4142 0.7071

0 0 1.0000 1.0000 1.0000 −1.0000
Columns 4, 5, and 6 are the solutions to parts (a), (b), and (c), respectively.

ML.4. We have that all vectors of the form (a, 0, a + b, b + c) can be expressed as follows:

(a, 0, a + b, b + c) = a(1, 0, 1, 0) + b(0, 0, 1, 1) + c(0, 0, 0, 1).

By the same type of argument used in Exercises 16–19 we show that

S = {v1,v2,v3} = {(1, 0, 1, 0), (0, 0, 1, 1), (0, 0, 0, 1)}

is a basis for the subspace. Apply routine gschmidt to the vectors of S.

A === [1 0 1 0;0 0 1 1;0 0 0 1]′′′;

gschmidt(A,1)

ans =
1.0000 −0.5000 0.3333

0 0 0

1.0000 0.5000 −0.3333
0 1.0000 0.3333

The columns are an orthogonal basis for the subspace.

Section 6.9, p. 369

2. v = (1, 1, 0, 0 = (1, 1
2 , 1

2 , 0) + (0, 1
2 ,− 1

2 , 0), where w = (1, 1
2 , 1

2 , 0) is in W and u = (0, 1
2 ,− 1

2 , 0) is in
W⊥.

4. (a)
{(

7
5 ,− 1

5 , 1
)}

. (b) W⊥ is the normal to the plane represented by W .

6. Null space of A has basis

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

2
−1

1
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
3

−2
0
1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭.

Basis for row space of A is {(1, 0,−2,−3), (0, 1, 1, 2)}.

Null space of AT has basis

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

− 7
5

− 13
10

1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭. Basis for column space of AT is

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

1

0
7
5

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
0

1
13
10

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭.

8. (a) (3, 0,−1). (b) (2, 0, 3). (c) (5, 0, 1).

10. w =
(
− 1

5 , 2,− 2
5

)
, u =

(
6
5 , 0,− 3

5

)
.

12. 3
5

√
5. 14. 1

√
14.

T.1. The zero vector is orthogonal to every vector in W .
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T.2. If v is in V ⊥, then v ·v = 0. By Theorem 4.3, v must be the zero vector. If W = {0}, then every
vector v in V is in W⊥ because v ·0 = 0. Thus W⊥ = V .

T.3. Let W = span S, where S = {v1,v2, . . . ,vm}. If u is in W⊥, then u ·w = 0 for any w in W . Hence
u ·vi = 0 for i = 1, 2, . . . , m. Conversely, suppose that u ·vi = 0 for i = 1, 2, . . . , m. Let

w =
m∑

i=1

civi

be any vector in W . Then

u ·w =
m∑

i=1

ci(u ·vi) = 0.

Hence u is in W⊥.

T.4. Let v be a vector in Rn. By Theorem 6.22(a), the column space of AT is the orthogonal complement
of the null space of A. This means that

Rn = null space of A ⊕ column space of AT .

Hence, there exist unique vectors w in the null space of A and u in the column space of AT such
that v = w + u.

T.5. Let W be a subspace of Rn. By Theorem 6.20, we have Rn = W ⊕ W⊥. Let {w1,w2, . . . ,wr} be
a basis for W , so dim W = r, and let {u1,u2, . . . ,us} be a basis for W⊥, so dim W⊥ = s. If v is in
V , then v = w + u, where w is in W and u is in W⊥. Moreover, w and u are unique. Then

v =
r∑

i=1

aiwi +
s∑

j=1

bjuj

so S = {w1,w2, . . . ,wr,v1,v2, . . . ,vs} spans V . We now show that S is linearly independent.
Suppose that

r∑
i=1

aiwi +
s∑

j=1

bjuj = 0.

Then
r∑

i=1

aiwi = −
s∑

j=1

bjuj ,

so
r∑

i=1

aiwi lies in W ∩ W⊥ = {0}. Hence

r∑
i=1

aiwi = 0,

and since w1,w2, . . . ,wr are linearly independent, a1 = a2 = · · · = ar = 0. Similarly, b1 = b2 =
· · · = bs = 0. Thus, S is also linearly independent and is then a basis for Rn. This means that

n = dimRn = r + s = dimW + dimW⊥,

and w1,w2, . . . ,wr,u1,u2, . . . ,us is a basis for Rn.
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T.6. If {w1,w2, . . . ,wn} is an orthogonal basis for W , then{
1

‖w1‖
w1,

1
‖w2‖

w2, . . . ,
1

‖wm‖ wm

}
is an orthonormal basis for W , so

projW v =
[
v ·

(
1

‖w1‖
w1

)]
1

‖w1‖
w1 +

[
v ·

(
1

‖w2‖
w2

)]
1

‖w2‖
w2 + · · ·

+
[
v ·

(
1

‖wm‖ wm

)]
1

‖wm‖ wm

=
v ·w1

w1 ·w1
w1 +

v ·w2

w2 ·w2
w2 + · · · + v ·wm

wm ·wm
wm.

T.7. Let a1,a2, . . . ,am be the new vectors of A. If Ax = 0, then aix = 0, so aT
i ·x = 0. Hence x

is orthgonal to every row vector of A, so x is orthogonal to every vector in the row space of A.
Therefore x is in W⊥.

ML.1. (a) v === [1 5 −−− 1 1]′′′,w === [0 1 2 1]′′′

v =
1

5

−1
2

w =
0

1

2

1

proj === dot(v,w)/norm(w)∧∧∧2 ∗∗∗ w

proj =
0

0.8333

1.6667

0.8333

format rat

proj

proj =
0

5/6

5/3

5/6

format

(b) v === [1 −−− 2 3 0 1]′′′,w === [1 1 1 1 1]′′′
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v =
1

−2
3

0

1

w =
1

1

1

1

1

proj === dot(v,w)/norm(w)∧∧∧2 ∗∗∗ w

proj =
0.6000

0.6000

0.6000

0.6000

0.6000

format rat
proj

proj =
3/5

3/5

3/5

3/5

3/5

format

ML.2. w1 === [1 0 1 1]′′′,w2 === [1 1 −−− 1 0]′′′

w1 =
1

0

1

1

w2 =
1

1

−1
0

(a) We show the dot product of w1 and w2 is zero and since nonzero orthogonal vectors are linearly
independent they form a basis for W .
dot(w1,w2)
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ans =
0

(b) v === [2 1 2 1]′′′

v =
2

1

2

1

proj === dot(v,w1)/norm(w1)∧∧∧2 ∗∗∗ w1

proj =
1.6667

0

1.6667

1.6667

format rat

proj

proj =
5/3

0

5/3

5/3

format

(c) proj === dot(v,w1)/norm(w1)∧∧∧2 ∗∗∗ w1+++ dot(v,w2)/norm(w2)∧∧∧2 ∗∗∗ w2

proj =
2.0000

0.3333

1.3333

1.6667

format rat

proj

proj =
2

1/3

4/3

5/3

format

ML.3. w1 === [1 2 3]′′′,w2 === [0−−− 3 2]′′′

w1 =
1

2

3
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w2 =
0

−3
2

(a) First note that w1 and w2 form an orthogonal basis for plane P .
v === [2 4 8]′′′

v =
2

4

8

proj === dot(v,w1)/norm(w1)∧∧∧2 ∗∗∗ w1+++ dot(v,w2)/norm(w2)∧∧∧2 ∗∗∗ w2

proj =
2.4286

3.9341

7.9011

(b) The distance from v to P is the length of the vector −proj + v.
norm(−−− proj+++ v)

ans =
0.4447

ML.4. Note that the vectors in S are not an orthogonal basis for W = span S. We first use the Gram–
Schmidt process to find an orthonormal basis.

x === [[1 1 0 1]′′′ [2 −−− 1 0 0]′′′ [0 1 0 1]′′′]

x =
1 2 0

1 −1 1

0 0 0

1 0 1

b === gschmidt(x)

x =
0.5774 0.7715 −0.2673
0.5774 −0.6172 −0.5345

0 0 0

0.5774 −0.1543 0.8018

Name these columns w1, w2, w3, respectively.

w1 === b(:,1);w2 === b(:,2);w3 === b(:,3);

Then w1, w2, w3 is an orthonormal basis for W .

v === [0 0 1 1]′′′

v =
0

0

1

1
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(a) proj === dot(v,w1) ∗∗∗ w1+++ dot(v,w2) ∗∗∗ w2+++ dot(v,w3) ∗∗∗ w3

proj =
0.0000

0

0

1.0000

(b) The distance from v to P is the length of vector −proj + v.
norm(−−− proj+++ v)

ans =
1

ML.5. T === [1 0;0 1;1 1;1 0;1 0]

T =
1 0

0 1

1 1

1 0

1 0

b === [1 1 1 1 1]′′′

b =
1

1

1

1

1

(a) rref([T b])

ans =
1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

Note that row [0 0 1] implies that the system is inconsistent.

(b) Note that the columns of T are not orthogonal, so we use the Gram–Schmidt process to find
an orthonormal basis for the column space.
q === gschmidt(T)

q =
0.5000 −0.1890

0 0.7559

0.5000 0.5669

0.5000 −0.1890
0.5000 −0.1890

Define the columns of q to be w1 and w2 which is an orthonormal basis for the column space.
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w1 === q(:,1);w2 === q(:,2);
proj === dot(b,w1) ∗∗∗ w1+++ dot(b,w2) ∗∗∗ w2

proj =
0.8571

0.5714

1.4286

0.8571

0.8571

Supplementary Exercises, p. 372

2. No. 4. Yes. 6. Yes. 8. 2.

10. Possible answer: {(1, 2,−1, 2), (0,−1, 3,−6), (1,−1, 0,−2)}.

12. λ �= −1, 0, 1.

14. a = 1 or a = 2.

16. k �= 1 and k �= −1.

18. Yes.

20. (a) Yes. (b) W = column space of A.

22. S = {v1,v2, e1} where e1 = (1, 0, 0).

24. 5.

25. The solution space is a vector space of dimension d, 2 ≤ d ≤ 7.

26. No. If all the nontrivial solutions of the homogeneous system are multiples of each other, then the
dimension of the solution space is 1. The rank of the coefficient matrix is ≤ 5. Since nullity = 7−rank,
nullity ≥ 7 − 5 = 2.

28. T = {7t + 4, t − 3}.

30. {(2, 1, 0), (−1, 0, 1)}

32. (1, 2, 3) = −
√

2
(

1√
2
, 0,− 1√

2

)
+ 2(0, 1, 0) + 2

√
2

(
1√
2
, 0, 1√

2

)
34.

{(
1
2 ,− 5

4 , 1, 0
)
,
(
− 3

2 , 13
4 , 0, 1

)}
.

36.
√

8 ≈ 2.828.

T.1. If A is nonsingular then Ax = 0 has only the trivial solution. Thus the dimension of the solution
space is zero. Conversely, if Ax = 0 has a solution space of dimension zero, then x = 0 is the only
solution. Thus A is nonsingular.

T.2. Let c1Av1 + c2Av2 + · · · + cnAvn = 0. Then we have

A(c1v1 + c2v2 + · · · + cnvn) = 0.

Since A is nonsingular A−1 exists. Multiplying both sides on the left by A−1 gives

c1v1 + c2v2 + · · · + cnvn = 0.

However, {v1,v2, . . . ,vn} is linearly independent so c1 = c2 = · · · = cn = 0. It follows that
{Av1, Av2, . . . , Avn} is linearly independent.
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T.3. Let u = (u1, u2, . . . , un) and ej , j = 1, 2, . . . , n, be the natural basis for Rn. Then vj ·u = 0 for

j = 1, 2, . . . , n. Since {v1, . . . ,vn} is a basis, there exist scalars c1, c2, . . . , cn such that ej =
n∑

k=1

ckvk.

Then

u · ej = uj = u ·
n∑

k=1

ckvk =
n∑

k=1

ck(u ·vk) =
n∑

k=1

ck(0) = 0

for each j = 1, 2, . . . , n. Thus u = 0.

T.4. rank A = row rank A = column rank AT = rank AT . (See Theorem 6.11.)

T.5. (a) Theorem 6.10 implies that row space of A = row space of B. Thus rank A = row rank A =
row rank B = rank B.

(b) Since A and B are row equivalent they have the same reduced row echelon form. It follows
that the solutions of Ax = 0 and Bx = 0 are the same. Hence Ax = 0 if and only if Bx = 0.

T.6. (a) From the definition of a matrix product, the rows of AB are linear combinations of the rows of B.
Hence, the row space of AB is a subspace of the row space of B and it follows that rank(AB) ≤
rankB. From Exercise T.4 above, rank(AB) ≤ rank((AB)T ) = rank(BT AT ). A similar argu-
ment shows rank(AB) ≤ rankAT = rankA. It follows that rank(AB) ≤ min{rankA, rankB}.

(b) One such pair of matrices is A =
[
1 0
0 0

]
and B =

[
0 0
0 1

]
.

(c) Since A = (AB)B−1, by (a), rankA ≤ rank(AB). But (a) also implies that rank(AB) ≤ rankA,
so rank(AB) = rankA.

(d) Since B = A−1(AB), by (a), rankB ≤ rank(AB). But (a) implies that rank(AB) ≤ rankB,
thus rank(AB) = rankB.

(e) rank(PAQ) = rankA.

T.7. S = {v1,v2, . . . ,vk} is an orthonormal basis for Rn. Hence dim V = k and

vi ·vj =

{
0 if i �= j

1 if i = j.

Let T = {a1v1, a2v2, . . . , akvk}, where aj �= 0. To show that T is a basis we need only show
that it spans Rn and then use Theorem 6.9(b). Let v belong to Rn. Then there exist scalars ci,
i = 1, 2, . . . , k such that

v = c1v1 + c2v2 + · · · + ckvk.

Since aj �= 0, we have

v =
c1

a1
a1v1 +

c2

a2
a2v2 + · · · + ck

ak
akvk

so span T = Rn. Next we show that the members of T are orthogonal. Since S is orthogonal, we
have

(aivi) · (ajvj) = aiaj(vi ·vj) =

{
0 if i �= j

aiaj if i = j.

Hence T is an orthogonal set. In order for T to be an orthonormal set we must have aiaj = 1 for all
i and j. This is only possible if all ai = 1.
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T.8. (a) The columns bj are in Rm. Since the columns are orthonormal they are linearly independent.
There can be at most m linearly independent vectors in Rm. Thus m ≥ n.

(b) We have

bT
i bj =

{
0 if i �= j

1 if i = j.

It follows that BT B = In, since the (i, j) element of BT B is computed by taking row i of BT

times column j of B. But row i of BT is just bT
i and column j of B is bj .
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Applications of Real Vector Spaces
(Optional)

Section 7.1, p. 378

2. Q =

⎡⎢⎢⎢⎢⎢⎢⎣

√
3

3
1√
6

−
√

3
3 − 1√

6

√
3

3 − 2√
6

⎤⎥⎥⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎢⎢⎢⎣
0.5774 0.4082

−0.5774 −0.4082

0.5774 −0.8165

⎤⎥⎥⎥⎥⎥⎥⎦, R =

⎡⎢⎢⎣
√

3 5
√

3
3

0 2√
6

⎤⎥⎥⎦ ≈

⎡⎢⎢⎣1.7321 2.8868

0 0.8165

⎤⎥⎥⎦.

4. Q =

⎡⎢⎢⎢⎢⎢⎢⎣
2√
5

1√
6

− 1√
5

2√
6

0 1√
6

⎤⎥⎥⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎢⎢⎢⎣
0.8944 0.4082

0.4472 0.8165

0 0.4082

⎤⎥⎥⎥⎥⎥⎥⎦, R =

⎡⎢⎢⎣ 5√
5

− 5√
5

0 6√
6

⎤⎥⎥⎦ ≈

⎡⎢⎢⎣2.2361 −2.2361

0 2.4495

⎤⎥⎥⎦.

6. Q =

⎡⎢⎢⎢⎢⎢⎢⎣
2√
5

− 1√
6

− 1√
30

1√
5

2√
6

2√
30

0 1√
6

− 5√
30

⎤⎥⎥⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎢⎢⎢⎣
0.8944 −0.4082 −0.1826

0.4472 0.8165 0.3651

0 0.4082 −0.9129

⎤⎥⎥⎥⎥⎥⎥⎦

R =

⎡⎢⎢⎢⎢⎢⎢⎣
√

5 0 0

0
√

6 − 7√
6

0 0 − 5√
30

⎤⎥⎥⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎢⎢⎢⎣
2.2361 0 0

0 2.4495 −2.8577

0 0 −0.9129

⎤⎥⎥⎥⎥⎥⎥⎦.

T.1. We have

ui = vi +
ui ·v1

v1 ·v1
v1 +

ui ·v2

v2 ·v2
v2 + · · · + ui ·vi−1

vi−1 ·vi−1
vi−1.
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Then

rii = ui ·wi = vi ·wi +
ui ·v1

v1 ·v1
(v1 ·wi) +

ui ·v2

v2 ·v2
(v2 ·wi) + · · · + ui ·vi−1

vi−1 ·vi−1
(vi−1 ·wi)

= vi ·wi

because vi ·wj = 0 for i �= j. Moreover,

wi =
1

‖vi‖
vi,

so vi ·wi =
1

‖vi‖
(vi ·vi) = ‖vi‖.

T.2. If A is an n×n nonsingular matrix, then the columns of A are linearly independent, so by Theorem
7.1, A has a QR-factorization.

Section 7.2, p. 388

2. x̂ =

⎡⎣ 56
257

6
257

⎤⎦ ≈

⎡⎣0.2179

0.0233

⎤⎦.

4. x̂ =

⎡⎢⎢⎢⎢⎢⎢⎣
25
49

85
196

17
49

− 3
49

⎤⎥⎥⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎢⎢⎢⎣
0.5102

0.4337

0.3469

−0.0612

⎤⎥⎥⎥⎥⎥⎥⎦.

8. y = 0.3x + 1.3

10. y = 0.321x + 2.786.

12. y = −0.3818x2 + 2.6345x − 2.3600

14. (a) y = 0.697x + 1.457. (b) 7.73.

16. (a) x = 0.2129t2 + 2.3962t − 2.1833. (b) −4.0865 million dollars.

T.1. We have

A =

⎡⎢⎢⎢⎣
x1 1
x2 1
...

...
xn 1

⎤⎥⎥⎥⎦ .

If at least two x-coordinates are unequal, then rankA = 2. Theorem 7.2 implies that AT A is
nonsingular.

T.2. From Equation (1), the normal system of equations is AT Ax̂ = AT b. Since A is nonsingular so is AT

and hence so is AT A. It follows from matrix algebra that (AT A)−1 = A−1(AT )−1 and multiplying
both sides of the preceding equation by (AT A)−1 on the left gives

x̂ = (AT A)−1AT b = A−1(AT )−1AT b = A−1b.
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ML.1. Enter the data into Matlab.

x === [2 3 4 5 6 7];y === [3 4 3 4 3 4];

c === lsqline(x,y)

We find that the least squares model is:

y = 0.08571 ∗ x + 3.114.

ML.2. Enter the data into Matlab.

x === [1 2 3 4 5 6];y === [.8 2.1 2.6 2.0 3.1 3.3];

c === lsqline(x,y)

We find that the least squares model is:

y = 0.4257 ∗ x + 0.8267.

Using the option to evaluate the model, we find that x = 7 gives 3.8067, x = 8 gives 4.2324, and
x = 9 gives 4.6581.

ML.3. Enter the data into Matlab.

x === [0 2 3 5 9];y === [185 170 166 152 110];

(a) Using command c === lsqline(x,y) we find that the least squares model is:

y = −8.278 ∗ x + 188.1.

(b) Using the option to evaluate the model, we find that x = 1 gives 179.7778, x = 6 gives 138.3889,
and x = 8 gives 121.8333.

(c) In the equation for the least squares line set y = 160 and solve for x. We find x = 3.3893 min.

ML.4. Data for quadratic least squares: (Sample of cos on [0, 1.5 ∗ pi].)

t yy
0 1.0000
0.5000 0.8800
1.0000 0.5400
1.5000 0.0700
2.0000 −0.4200
2.5000 −0.8000
3.0000 −0.9900
3.5000 −0.9400
4.0000 −0.6500
4.5000 −0.2100

v === polyfit(t,yy,2)

v =
0.2006 −1.2974 1.3378

Thus y = 0.2006t2 − 1.2974t + 1.3378.

ML.5. Data for quadratic least squares:
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x yy
−3.0000 0.5000
−2.5000 0
−2.0000 −1.1250
−1.5000 −1.1875
−1.0000 −1.0000

0 0.9375
0.5000 2.8750
1.0000 4.7500
1.5000 8.2500
2.0000 11.5000

v === polyfit(x,yy,2)

v =
1.0204 3.1238 1.0507

Thus y = 1.0204x2 + 3.1238x + 1.0507.

Section 7.3, p. 404

2. The parity (m, m + 1) code has code words generated by the function e given by

e(b) = e(b1, b2, . . . , bm) = b1b2 . . . bmbm+1,

where

bm+1 =

{
0, if weight of b is even
1, if weight of b is odd.

But the weight of b, |b|, using binary addition is the sum of its bits. If |b| is even b1+b2+· · ·+bm = 0
(using binary bits); otherwise, the sum is 1. Hence we have

e(b) =
[
Im

u

]
b =

⎡⎢⎢⎢⎢⎢⎣
b1

b2

...
bm

bm+1

⎤⎥⎥⎥⎥⎥⎦ .

4. GC =
[
1 1 0 1 0
1 0 1 0 1

]⎡⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1

⎤⎥⎥⎥⎥⎦ =
[
0 0 0
0 0 0

]
.

5. Determine the solution to the linear system Gx = 0. The augmented matrix is[
1 1 0 1 0 0
1 0 1 0 1 0

]
and its reduced row echelon form is [

1 0 1 0 1 0
0 1 1 1 1 0

]
.

It follows that

x1 = x3 + x5

x2 = x3 + x4 + x5
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and that

x =

⎡⎢⎢⎢⎢⎣
x1

x2

x3

x4

x5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
x3 + x5

x3 + x4 + x5

x3

x4

x5

⎤⎥⎥⎥⎥⎦ = x3

⎡⎢⎢⎢⎢⎣
1
1
1
0
0

⎤⎥⎥⎥⎥⎦ + x4

⎡⎢⎢⎢⎢⎣
0
1
0
1
0

⎤⎥⎥⎥⎥⎦ + x5

⎡⎢⎢⎢⎢⎣
1
1
0
0
1

⎤⎥⎥⎥⎥⎦ .

Since x3, x4, and x5 are arbitrary bits, the set

S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
1
1
1
0
0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
0
1
0
1
0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
1
1
0
0
1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

is a basis for the null space of G.

6. The check matrix is G =
[
0 1 1 1 0
1 1 0 0 1

]
.

8. S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
1
1
1
0
0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
0
1
0
1
0

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
1
0
0
0
1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ is a basis for the null space of G.

10. 2.

12. (a) No. Not all columns are distinct.

(b) Yes.

14. (a) Gxt =

⎡⎣0
0
0

⎤⎦ so no single error was detected.

(b) Gxt =

⎡⎣0
0
1

⎤⎦ so a single error was detected in the 6th bit. The corrected vector is

xt =

⎡⎢⎢⎢⎢⎢⎢⎣
1
0
1
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎦ .

(c) Gxt =

⎡⎣0
0
0

⎤⎦ so no single error was detected.

16. H(4) =

⎡⎣0 0 0 1
0 1 1 0
1 0 1 0

⎤⎦.

18. C =

⎡⎢⎢⎣
1
1
1
0

⎤⎥⎥⎦.
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20. (a) H(5)xt =

⎡⎣0
1
1

⎤⎦ so a single error was detected in the 3rd bit. The corrected vector is

xt =

⎡⎢⎢⎢⎢⎣
1
1
1
0
0

⎤⎥⎥⎥⎥⎦ .

(b) H(5)xt =

⎡⎣0
1
0

⎤⎦ so a single error was detected in the 2nd bit. The corrected vector is

xt =

⎡⎢⎢⎢⎢⎣
1
0
0
1
1

⎤⎥⎥⎥⎥⎦ .

(c) H(5)xt =

⎡⎣0
0
0

⎤⎦ so no single error was detected.

22. (a) H(7)xt =

⎡⎣0
0
0

⎤⎦, so no single error was detected.

(b) H(7)xt =

⎡⎣0
0
0

⎤⎦, so no single error was detected.

(c) H(7)xt =

⎡⎣0
0
0

⎤⎦, so no single error was detected.

T.1. We compute GC:

GC =
[
D In−m

] [
Im

D

]
= O + O = O.

Thus, the column space of C is in the null space of G.

T.2. The binary representations of the integers from 1 to n are all different and none is all zeros. Hence,
G satisfies Theorem 7.5.

T.3. If Qp is a rearrangement of the columns of Q, then there exists a matrix R, which is a rearrangement
of the columns of the identity matrix, so that Qp = QR. The matrix R is an orthogonal matrix,
so R−1 = RT . It follows that if y is a column vector then RT y is a column vector with its entries
rearranged in the same order as the columns of Q when Qp is formed. Let x be in the null space of
Q so Qx = 0. Then Qx = QpR

T x = 0, hence RT x is in the null space of Qp. Thus the null space of
Qp consists of the vectors in the null space of Q with their entries rearranged in the same manner
as the columns of A when Qp was formed.

T.4. (a) H(v,w) = 2. (b) H(v,w) = 3. (c) H(v,w) = 4.

T.5. If uj = vj , then uj + vj = uj − vj = 0.

If uj �= vj , then uj + vj = uj − vj = 1.

Hence the number of 1s in u− v or u + v is exactly the number of positions in which u and v vary.
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T.6. We form the binary representation of the integers from 1 to 15 using four bits and represent these
as the columns of the matrix B:

B =

⎡⎢⎢⎣
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

⎤⎥⎥⎦ .

Next we compute CB = W (using binary arithmetic) to obtain

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The columns of W are the code words. Adding the entries using base 10 arithmetic we get the
weights

w =
[
4 3 3 3 3 4 4 3 3 4 4 4 4 3 7

]
.

Hence all the code words have weight greater than or equal to 3.

T.7. We form the binary representations of the integers from 1 to 3 using two bits and represent these as
the columns of the matrix B:

B =
[
0 1 1
1 1 1

]
.

Next, we compute CB = W (using binary arithmetic) to obtain

W =

⎡⎢⎢⎢⎢⎣
1 1 0
1 0 1
1 0 1
0 1 1
0 1 1

⎤⎥⎥⎥⎥⎦ .

The columns of W are the code words. Their respective weights are 3, 3, and 4.

T.8. (a) H(u,v) = |u + v| = |v + u| = H(v,u).

(b) H(u,v) = |u + v| ≥ 0.

(c) H(u,v) = |u + v| = 0 if and only if u + v = 0, that is, if and only if u = −v = v.

(d) |u + v| ≤ |u| + |v|, since at any position where u and v differ one of them must contain a 1.
Then

H(u,v) = |u+v| = |u+w−w+v| = |(u+w)+(w+v)| ≤ |u+w|+|w+v| = H(u,w)+H(w,v).

T.9. (a) Let wd = colj(w) in Exercise T.6. We must compute the Hamming distances H(wj ,wk)
for j �= k. There are 15 code words, hence there are 105 pairs of vectors. Using the following
Matlab commands we can determine the minimum Hamming distance as the smallest nonzero
entry in d. We get the minimum Hamming distance to be 3.



136 Chapter 7

d=[]
for jj=1:15
Wtemp=W;
for kk=1:15
Wtemp(:,kk)=binadd(Wtemp(:,kk),W(:,jj));

end
dd=sum(Wtemp);
d=[d dd];

end
d=sort(d)

(b) From Exercise T.7., there are only three code words. Let

u =

⎡⎢⎢⎢⎢⎣
1
1
1
0
0

⎤⎥⎥⎥⎥⎦ , v =

⎡⎢⎢⎢⎢⎣
1
0
0
1
1

⎤⎥⎥⎥⎥⎦ , and w =

⎡⎢⎢⎢⎢⎣
0
1
1
1
1

⎤⎥⎥⎥⎥⎦ .

Compute the following Hamming distances.

H(u,v) = 4
H(u,w) = 3
H(v,w) = 3

Thus the minimum distances of the (5, 2) Hamming code is 3.

T.10. Both codes have Hamming distance 3 so each can detect two or fewer errors.

ML.1. (a) Routine bingen gives
H8=bingen(1,8,4)
H8=

0 0 0 0 0 0 0 1
0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0

(b) Using binreduce on the homogeneous linear system H(8)x = 0, gives
1 0 1 0 1 0 1 0 0
0 1 1 0 0 1 1 0 0
0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 1 0

The corresponding homogeneous linear system is

x1 + x3 + x5 + x7 = 0
x2 + x3 + x6 + x7 = 0

x4 + x5 + x6 + x7 = 0
x8 = 0

and we have
x1 = x3 + x5 + x7

x2 = x3 + x6 + x7

x4 = x5 + x6 + x7

x8 = 0
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The general solution is

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ x5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ x6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ x7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
1
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and a code matrix is

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(c) binprod(H8,C)
ans=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ML.2. Use bingen to generate all the binary representations of integers 0 through 8 using 4 bits and then
multiply by the code matrix C using binprod.
B4=bingen(0,8,4)

ans=
0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 0
0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0

binprod(C,B4)

B4=
0 1 0 1 1 0 1 0 1
0 1 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 1
0 1 1 0 1 0 0 1 0
0 0 0 0 1 1 1 1 0
0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0

ML.3. (a) Routine bingen gives
H15=bingen(1,15,4)
H15=

Columns 1 through 15
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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(b) Using binreduce on the homogeneous linear system H(15)x = 0, gives

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

Solving this homogeneous linear system for the unknowns corresponding to leading 1s we get

x1 = x3 + x5 x7 + x9 x11 + x13 + x15

x2 = x3 + x6 + x7 + x10 + x11 + x14 + x15

x4 = + x5 + x6 + x7 + x12 + x13 + x14 + x15

x8 = + x9 + x10 + x11 + x12 + x13 + x14 + x15

and it follows that the general solution is

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= x3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ x5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
1
0
0
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ x6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
0
1
0
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ x7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
1
0
0
1
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ x9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
1
1
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ x10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0
0
1
0
1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ x11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
0
0
0
1
0
0
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ x12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0
0
1
0
0
0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ x13

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
0
0
1
0
0
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ x14

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
0
0
0
1
0
0
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ x15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
1
0
0
0
1
0
0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and a code matrix is
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C=
1 1 0 1 1 0 1 0 1 0 1
1 0 1 1 0 1 1 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

(c) binprod(H15,C15)

ans=
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

ML.4. Use bingen to generate all the binary representations of integers 0 through 15 using 11 bits and
then multiply by the code matrix C using binprod.

B15=bingen(0,15,11)

B15=
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

binprod(C,B15)
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ans=
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Supplementary Exercises, p. 407

2. Q =

⎡⎢⎢⎢⎣
1√
6

− 1√
14

4√
21

− 1√
6

3√
14

2√
21

2√
6

2√
14

− 1√
21

⎤⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎣
0.4082 −0.2673 0.8729

−0.4082 0.8018 0.4364

0.8165 0.5345 −0.2182

⎤⎥⎥⎥⎦.

R =

⎡⎢⎢⎢⎣
6√
6

3√
6

− 3√
6

0 7√
14

3√
14

0 0 − 9√
21

⎤⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎣
2.4495 1.2247 −1.2247

0 1.8708 0.8018

0 0 1.9640

⎤⎥⎥⎥⎦.

4. y = −0.2413x2 + 0.8118x + 2.6627.
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Eigenvectors, Eigenvalues, and
Diagonalization

Section 8.1, p. 420

2. (a) Ax1 = λ1x1.

(b) Ax2 = λ2x2.

(c) Ax3 = λ3x3.

4. λ2 − 5λ + 7.

6. p(λ) = λ2 − 7λ + 6.

8. f(λ) = λ3; λ1 = λ2 = λ3 = 0; x1 =

⎡⎣1
0
0

⎤⎦, x2 =

⎡⎣2
0
0

⎤⎦, x3 =

⎡⎣3
0
0

⎤⎦.

10. f(λ) = λ2 − 2λ = λ(λ − 2); λ1 = 0, λ2 = 2; x1 =
[

1
−1

]
, x2 =

[
1
1

]
.

12. f(λ) = λ3 − 7λ2 + 14λ − 8; λ1 = 1, λ2 = 2, λ3 = 4; x1 =

⎡⎣−1
1
1

⎤⎦, x2 =

⎡⎣1
0
0

⎤⎦, x3 =

⎡⎣ 7
−4

2

⎤⎦.

14. f(λ) = (λ − 2)(λ + 1)(λ − 3); λ1 = 2, λ2 = −1, λ3 = 3; x1 =

⎡⎣ 1
1

−4

⎤⎦, x2 =

⎡⎣ 0
1

−1

⎤⎦, x3 =

⎡⎣0
0
1

⎤⎦.

16. (a) p(λ) = λ2 + 1. The eigenvalues are λ1 = i and λ2 = −i. Associated eigenvectors are

x1 =
[
1
i

]
and x2 =

[
1

−i

]
.

(b) p(λ) = λ3 + 2λ2 + 4λ + 8. The eigenvalues are λ1 = −2, λ2 = 2i, and λ3 = −2i. Associated
eigenvectors are

x1 =

⎡⎣ 4
−2

1

⎤⎦ , x2 =

⎡⎣−4
2i
1

⎤⎦ , andx3 =

⎡⎣−4
−2i
1

⎤⎦ .
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(c) p(λ) = λ3 + (−2 + i)λ2 − 2iλ. The eigenvalues are λ1 = 0, λ2 = −i, and λ3 = 2. Associated
eigenvectors are

x1 =

⎡⎣0
0
1

⎤⎦ , x2 =

⎡⎣−1
−i
1

⎤⎦ , and x3 =

⎡⎣4
2
1

⎤⎦ .

(d) p(λ) = λ2 − 8λ + 17. The eigenvalues are λ1 = 4 + i and λ2 = 4 − i. Associated eigenvectors
are

x1 =
[

2
−1 + i

]
and x2 =

[
2

−1 − i

]
.

18. Basis for eigenspace associated with λ1 = λ2 = 2 is

⎧⎨⎩
⎡⎣1

0
0

⎤⎦ ,

⎡⎣0
0
1

⎤⎦⎫⎬⎭.

Basis for eigenspace associated with λ3 = 1 is

⎧⎨⎩
⎡⎣ 3
−1

0

⎤⎦⎫⎬⎭.

20.

⎧⎨⎩
⎡⎣1

0
1

⎤⎦ ,

⎡⎣0
1
0

⎤⎦⎫⎬⎭.

22.

⎧⎨⎩
⎡⎣−1

0
1

⎤⎦ ,

⎡⎣0
1
0

⎤⎦⎫⎬⎭.

24. (a)

⎧⎨⎩
⎡⎣−4

2i
1

⎤⎦⎫⎬⎭. (b)

⎧⎨⎩
⎡⎣ −4
−2i

1

⎤⎦⎫⎬⎭.

26. The eigenvalues of A with associated eigenvectors are

λ1 = 1, x1 =
[
1
2

]
; λ2 = 4, x2 =

[
−1

1

]
.

The eigenvalues and associated eigenvectors of

A2 =
[

11 −5
−10 6

]
are

λ1 = 1, x1 =
[
1
2

]
; λ2 = 16, x2 =

[
−1

1

]
.

28.

⎡⎣8
2
1

⎤⎦.

T.1. Let u and v be in S, so that Au = λju and Av = λjv. Then

A(u + v) = Au + Av = λju + λjv = λj(u + v),

so u + v is in S. Moreover, if c is any real number, then

A(cu) = c(Au) = c(λju) = λj(cu),

so cu is in S.
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T.2. An eigenvector must be a nonzero vector, so the zero vector must be included in S.

T.3. (λIn −A) is a triangular matrix whose determinant is the product of its diagonal elements, thus the
characteristic polynomial of A is

f(λ) = (λ − a11)(λ − a22) · · · (λ − ann).

It follows that the eigenvalues of A are the diagonal elements of A.

T.4.
∣∣λIn − AT

∣∣ =
∣∣(λIn − A)T

∣∣ = |λIn − A|. Associated eigenvectors need not be the same. (But the
dimensions of the eigenspace associated with λ, for A and AT , are equal.)

T.5. Akx = Ak−1(Ax) = Ak−1(λx) = λAk−1x = · · · = λkx.

T.6. If A is nilpotent and Ak = O, and if λ is an eigenvalue for A with associated eigenvector x, then
0 = Akx = λkx implies λk = 0 (since x �= 0), so λ = 0.

T.7. (a) Let λ1, λ2, . . . , λn be the roots of the characteristic polynomial of A. Then

f(λ) = det(λIn − A) = (λ − λ1) · · · (λ − λn).

Hence
f(0) = det(−A) = (−λ1)(−λ2) · · · (−λn) = (−1)nλ1λ2 · · ·λn.

Since det(−A) = (−1)n det(A) we have det(A) = λ1 · · ·λn.

(b) A is singular if and only if for some nonzero vector x, Ax = 0, if and only if 0 is an eigenvalue
of A. Alternatively, A is singular if and only if det(A) = 0, if and only if [by (a)] 0 is a real
root of the characteristic polynomial of A.

T.8. If Ax = λx, λ �= 0, then λ−1x = λ−1A−1Ax = λ−1A−1(λx) = λ−1λA−1x = A−1x, and thus λ−1 is
an eigenvalue of A−1 with associated eigenvector x.

T.9. (a) The characteristic polynomial of A is

det(λIn − A) =

∣∣∣∣∣∣∣∣∣
λ − a11 −a12 · · · −a1n

−a12 λ − a22 · · · −a2n

...
...

. . .
...

−an1 · · · −an n−1 λ − ann

∣∣∣∣∣∣∣∣∣ .

Any product in det(λIn − A), other than the product of the diagonal entries, can contain at
most n − 2 of the diagonal entries of λIn − A. This follows because at least two of the column
indices must be out of natural order in every other product appearing in det(λIn − A). This
implies that the coefficient of λn−1 is formed by the expansion of the product of the diagonal
entries. The coefficient of λn−1 is the sum of the coefficients of λn−1 from each of the products

−aii(λ − a11) · · · (λ − ai−1 i−1)(λ − ai+1 i+1) · · · (λ − ann)

i = 1, 2, . . . , n. The coefficient of λn−1 in each such term is −aii, so the coefficient of λn−1 in
the characteristic polynomial is

−a11 − a22 − · · · − ann = −Tr(A).

(b) If λ1, λ2, . . . , λn are the eigenvalues of A then λ − λi, i = 1, 2, . . . , n are factors of the charac-
teristic polynomial det(λIn − A). It follows that

det(λIn − A) = (λ − λ1)(λ − λ2) · · · (λ − λn).
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Proceeding as in (a), the coefficient of λn−1 is the sum of the coefficients of λn−1 from each of
the products

−λi(λ − λ1) · · · (λ − λi−1)(λ − λi+1) · · · (λ − λn)

for i = 1, 2, . . . , n. The coefficient of λn−1 in each such term is −λi, so the coefficient of λn−1

in the characteristic polynomial is −λ1 − λ2 − · · · − λn = −Tr(A) by (a). Thus, Tr(A) is the
sum of the eigenvalues of A.

(c) We have
det(λIn − A) = (λ − λ1)(λ − λ2) · · · (λ − λn)

so the constant term is ±λ1λ2 · · ·λn.

(d) If f(λ) = det(λIn−A) is the characteristic polynomial of A, then f(0) = det(−A) = (−1)n det(A).
Since f(0) = an, the constant term of f(λ), an = (−1)n det(A). The result follows from part
(c).

T.10. Suppose there is a vector x �= 0 in both S1 and S2. Then Ax = λ1x and Ax = λ2x. So (λ2−λ1)x = 0.
Hence λ1 = λ2 since x �= 0, a contradiction. Thus the zero vector is the only vector in both S1 and
S2.

T.11. If Ax = λx, then, for any scalar r,

(A + rIn)x = Ax + rx = λx + rx = (λ + r)x.

Thus λ + r is an eigenvalue of A + rIn with associated eigenvector x.

T.12. (a) Since Au = 0 = 00, it follows that 0 is an eigenvalue of A with associated eigenvector u.

(b) Since Av = 0v = 0, it follows that Ax = 0 has a nontrivial solution, namely x = v.

T.13. We have

(a) (A + B)x = Ax + Bx = λx + µx = (λ + µ)x.

(b) (AB)x = A(Bx) = A(µx) = µ(Ax) = (µλ)x = (λµ)x.

T.14. Let

x =

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ .

The product

AT x =

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ = x = 1x

so λ = 1 is an eigenvalue of AT . By Exercise T.4, λ = 1 is also an eigenvalue of A.

T.15. Let W be the eigenspace of A with associated eigenvalue λ. Let w be in W . Then L(w) = Aw = λw.
Therefore L(w) is in W since W is closed under scalar multiplication.

ML.1. Enter each matrix A into Matlab and use command poly(A).
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(a) A === [1 2;2 −−− 1];
v === poly(A)

v =
1.0000 0 −5.0000

The characteristic polynomial is λ2 − 5.

(b) A === [2 4 0;1 2 1;0 4 2];
v === poly(A)

v =
1.0000 −6.0000 4.0000 8.0000

The characteristic polynomial is λ3 − 6λ2 + 4λ + 8.

(c) A === [1 0 0 0;2 −−− 2 0 0;0 0 2 −−− 1;0 0 −−− 1 2];
v === poly(A)

v =
1 −3 −3 11 −6

The characteristic polynomial is λ4 − 3λ3 − 3λ2 + 11λ − 6.

ML.2. The eigenvalues of matrix A will be computed using Matlab command roots(poly(A)).

(a) A === [1 −−− 3;3 −−− 5];
r === roots(poly(A))

r =
−2
−2

(b) A === [3 −−− 1 4; −−− 1 0 1;4 1 2];
r === roots(poly(A))

r =
6.5324

−2.3715
0.8392

(c) A === [2 −−− 2 0;1 −−− 1 0;1 −−− 1 0];
r === roots(poly(A))

r =
0

0

1

(d) A === [2 4;3 6];
r === roots(poly(A))

r =
0

8

ML.3. We solve the homogeneous system (λI2 − A)x = 0 by finding the reduced row echelon form of the
corresponding augmented matrix and then writing out the general solution.
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(a) A === [1 2;−−− 1 4];
M === (3 ∗∗∗ eye(size(A))−−− A)
rref([M [0 0]′′′])

ans =
1 −1 0

0 0 0

The general solution is x1 = x2, x2 = r . Let r = 1 and we have that
[
1 1

]′ is an eigenvector.

(b) A === [4 0 0;1 3 0;2 1 −−− 1];
M === (−−− 1 ∗∗∗ eye(size(A))−−− A)
rref([M [0 0 0]′′′])

ans =
1 0 0 0

0 1 0 0

0 0 0 0

The general solution is x3 = r, x2 = 0, x1 = 0. Let r = 1 and we have that
[
0 0 1

]′ is an
eigenvector.

(c) A === [2 1 2;2 2 −−− 2;3 1 1];
M === (2 ∗∗∗ eye(size(A))−−− A)
rref([M [0 0 0]′′′])

ans =
1 0 −1 0

0 1 2 0

0 0 0 0

The general solution is x3 = r, x2 = −2x3 = −2r, x1 = x3 = r. Let r = 1 and we have that[
1 −2 1

]′ is an eigenvector.

ML.4. Approximately

⎡⎣1.0536
−0.47
−0.37

⎤⎦.

Section 8.2, p. 431

2. Not diagonalizable. The eigenvalues of A are λ1 = λ2 = 1. Associated eigenvectors are x1 = x2 =

r

[
0
1

]
, where r is any nonzero real number.

4. Diagonalizable. The eigenvalues of A are λ1 = 1, λ2 = −1, and λ3 = 2. The result follows by
Theorem 8.5.

6. Diagonalizable. The eigenvalues of A are λ1 = −4 and λ2 = 3. Associated eigenvectors are,
respectively,

x1 =
[
−1

1

]
and x2 =

[
2
5

]
.

8. Not diagonalizable. The eigenvalues of A are λ1 = 5, λ2 = 2, λ3 = 2, λ4 = 5. An eigenvector
associated with λ1 is

x1 =

⎡⎢⎢⎣
1

−1
0
0

⎤⎥⎥⎦ .
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eigenvectors associated with λ2 = λ3 are

r

⎡⎢⎢⎣
−2
−3

3
0

⎤⎥⎥⎦ .

Since we cannot find two linearly independent eigenvectors associated with λ2 = λ3 we conclude
that A is not diagonalizable.

10.

⎡⎣3 5 −5
5 3 −5
5 5 −7

⎤⎦.

12. P =

⎡⎣1 0 1
0 −2 0
0 1 1

⎤⎦. The eigenvalues of A are λ1 = 1, λ2 = 1, and λ3 = 3. Associated eigenvectors

are the columns of P . (P is not unique.)

14. P =
[

1 1
−1 −2

]
. The eigenvalues of A are λ1 = 1, λ2 = 2. Associated eigenvectors are the columns

of P . (P is not unique.)

16. Not possible.

18. P =

⎡⎣−1 −1 1
1 0 1
0 1 1

⎤⎦. The eigenvalues of A are λ1 = 0, λ2 = 0, λ3 = 6. Associated eigenvectors are

the columns of P . (P is not unique.)

20. Not possible.

22. Not possible.

24. D =

⎡⎣−3 0 0
0 4 0
0 0 4

⎤⎦, P =

⎡⎣−1 0 0
0 0 1
1 1 1

⎤⎦.

26.
[
3 0
0 −2

]
and

[
−2 0

0 3

]
.

28.

⎡⎣1 0 0
0 2 0
0 0 3

⎤⎦ and

⎡⎣2 0 0
0 1 0
0 0 3

⎤⎦. Other answers are possible.

30. No.

32. No.

34. The eigenvalues of the given matrix are λ1 = 0 and λ2 = 7. By Theorem 8.5, the given matrix is

diagonalizable. D =
[
0 0
0 7

]
is similar to the given matrix.

36. The eigenvalues of the given matrix are λ1 = 1, λ2 = 1, λ3 = 2. Associated eigenvectors are,
respectively,

x1 =

⎡⎣−2
1
0

⎤⎦ , x2 =

⎡⎣1
0
1

⎤⎦ , x3 =

⎡⎣−1
1
0

⎤⎦ .

By Theorem 8.4, the given matrix is diagonalizable. D =

⎡⎣1 0 0
0 1 0
0 0 2

⎤⎦ is similar to the given matrix.
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38. A is upper triangular with multiple eigenvalue λ1 = λ2 = 2 and associated eigenvector

⎡⎣0
1
0

⎤⎦.

40. A has the multiple eigenvalue λ1 = λ2 = 2 with associated eigenvector

⎡⎢⎢⎣
−3
−7

8
0

⎤⎥⎥⎦.

42. Not defective.

44. Not defective.

46.
[
768 −1280
256 −768

]
.

T.1. (a) A = P−1AP for P = In.

(b) If B = P−1AP , then A = PBP−1 and so A is similar to B.

(c) If B = P−1AP and C = Q−1BQ then C = Q−1P−1APQ = (PQ)−1A(PQ) with PQ nonsin-
gular.

T.2. If A is diagonalizable, then there is a nonsingular matrix P so that P−1AP = D, a diagonal matrix.
Then A−1 = PD−1P−1 = (P−1)−1D−1P−1. Since D−1 is a diagonal matrix, we conclude that A−1

is diagonalizable.

T.3. Necessary and sufficient conditions are: (a − d)2 + 4bc > 0 for b = c = 0.

For the characteristic polynomial of

A =
[
a b
c d

]
is f(λ) =

∣∣∣∣ λ − a − b
−c λ − d

∣∣∣∣ = λ2 + λ(−a − d) + ad − bc.

Then f(λ) has real roots if and only if (a+d)2−4(ad−bc) = (a−d)2 +4bc ≥ 0. If (a−d)2 +4bc > 0,
then the eigenvalues are distinct and we can diagonalize. On the other hand, if (a − d)2 + 4bc = 0,
then the two eigenvalues λ1 and λ2 are equal and we have λ1 = λ2 = a+d

2 . To find associated
eigenvectors we solve the homogeneous system⎡⎣d−a

2 −b

−c a−d
2

⎤⎦⎡⎣x1

x2

⎤⎦ =

⎡⎣0

0

⎤⎦ .

In this case A is diagonalizable if and only if the solution space has dimension = 2; that is, if and
only if the rank of the coefficient matrix = 0, thus, if and only if b = c = 0 so that A is already
diagonal.

T.4. We show that the characteristic polynomials of AB−1 and B−1A are the same. The characteristic
polynomial of AB−1 is

f(λ) = |λIn − AB−1| = |λBB−1 − AB−1|
= |(λB − A)B−1| = |λB − A| |B−1| = |B−1| |λB − A|
= |B−1(λB − A)| = |λB−1B − B−1A| = |λIn − B−1A|,

which is the charcteristic polynomial of B−1A.

T.5. A =
[
−3 2
−2 1

]
has eigenvalues λ1 = −1, λ2 = −1, but all the eigenvectors are of the form r

[
1
1

]
.

Clearly A has only one linearly independent eigenvector and is not diagonalizable. However, det(A) �=
0, so A is nonsingular. (See also Example 6 in Section 8.2.)
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T.6. We have BA = A−1(AB)A, so AB and BA are similar. By Theorem 8.3, AB and BA have the
same eigenvalues.

T.7. (a) If P−1AP = D, a diagonal matrix, then PT AT (P−1)T = (P−1AP )T = DT is diagonal, and
PT = ((P−1)T )−1, so A is similar to a diagonal matrix.

(b) P−1AkP = (P−1AP )k = Dk is diagonal.

T.8. Suppose that A and B are similar, so that B = P−1AP . Then it follows that Bk = P−1AkP , for
any nonnegative integer k. Hence, Ak and Bk are similar.

T.9. Suppose that A and B are similar, so that B = P−1AP . Then

det(B) = det(P−1AP ) = det(P−1) det(A) det(P ) =
1

det(P )
det(A) det(P ) = det(A).

T.10. We have B = P−1AP and Ax = λx. Therefore BP−1 = P−1APP−1 = P−1A and hence

B(P−1x) = (BP−1)x = P−1Ax = P−1(λx) = λ(P−1x)

which shows that P−1x is an eigenvector of B associated with the eigenvalue λ.

T.11. The proof proceeds as in the proof of Theorem 8.5, with k = n.

T.12. The result follows at once from Theorems 8.2 and 8.3.

ML.1. (a) A === [0 2;−−− 1 3];
r === roots(poly(A))

r =
2

1

The eigenvalues are distinct so A is diagonalizable. We find the corresponding eigenvectors.
M === ( 2 ∗∗∗ eye(size(A))−−− A)
rref([M [0 0]′′′])

ans =
1 −1 0

0 0 0

The general solution is x1 = x2, x2 = r. Let r = 1 and we have that
[
1 1

]′ is an eigenvector.
M === (1 ∗∗∗ eye(size(A))−−− A)
rref([M [0 0]′′′])

ans =
1 −2 0

0 0 0

The general solution is x1 = 2x2, x2 = r. Let r = 1 and we have that
[
2 1

]′ is an eigenvector.
P === [1 1;2 1]′′′

P =
1 2

1 1

invert(P) ∗∗∗ A ∗∗∗ P

ans =
2 0

0 1
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(b) A === [1 −−− 3;3 −−− 5];
r === roots(poly(A))

r =
−2
−2

Next we determine eigenvectors corresponding to the eigenvalue −2.
M === (−−− 2 ∗∗∗ eye(size(A))−−− A)
rref([M [0 0]′′′])

ans =
1 −1 0

0 0 0

The general solution is x1 = x2, x2 = r. Let r = 1 and it follows that
[
1 1

]′ is an eigenvector,
but there is only one linearly independent eigenvector. Hence A is not diagonalizable.

(c) A === [0 0 4;5 3 6;6 0 5];
r === roots(poly(A))

r =
8.0000

3.0000

−3.0000
The eigenvalues are distinct, thus A is diagonalizable. We find corresponding eigenvectors.
M === (8 ∗∗∗ eye(size(A))−−− A)
rref([M [0 0 0]′′′])

ans =
1.0000 0 −0.5000 0

0 1.0000 −1.7000 0

0 0 0 0

The general solution is x1 = 0.5x3, x2 = 1.7x3, x3 = r. Let r = 10 and we have that
[
2 17 10

]′
is an eigenvector.
M === (3 ∗∗∗ eye(size(A))−−− A)
rref([M [0 0 0]′′′])

ans =
1 0 0 0

0 0 1 0

0 0 0 0

The general solution is x1 = 0, x3 = 0, x2 = r. Let r = 1 and we have that
[
0 1 0

]′ is an
eigenvector.
M === (−−− 3 ∗∗∗ eye(size(A))−−− A)
rref([M [0 0 0]′′′])

ans =
1.0000 0 1.3333 0

0 1.0000 −0.1111 0

0 0 0 0

The general solution is x1 = − 4
3x3, x2 = 1

9x3, x3 = r. Let r = 9 and we have that
[
−12 1 9

]′
is an eigenvector. Thus P is
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P =

⎡⎣ 2 0 −12
17 1 1
10 0 9

⎤⎦ .

invert(P) ∗∗∗ A ∗∗∗ P

ans =
8 0 0

0 3 0

0 0 −3

ML.2. We find the eigenvalues and corresponding eigenvectors.

A === [−−− 1 1 −−− 1;−−− 2 2 −−− 1;−−− 2 2 −−− 1];

r === roots(poly(A))

r =
0

−1.0000
1.0000

The eigenvalues are distinct, hence A is diagonalizable.

M === (0 ∗∗∗ eye(size(A))−−− A)

rref([M [0 0 0]′′′])

ans =
1 −1 0 0

0 0 1 0

0 0 0 0

The general solution is x1 = x2, x3 = 0, x2 = r. Let r = 1 and we have that
[
1 1 0

]′ is an
eigenvector.

M === (−−− 1 ∗∗∗ eye(size(A))−−− A)

rref([M [0 0 0]′′′])

ans =
1 0 −1 0

0 1 −1 0

0 0 0 0

The general solution is x1 = x2, x2 = x3, x3 = r. Let r = 1 and we have that
[
1 1 1

]′ is an
eigenvector.

M === (−−− 1 ∗∗∗ eye(size(A))−−− A)

rref([M [0 0 0]′′′])

ans =
1 0 0 0

0 1 −1 0

0 0 0 0

The general solution is x1 = 0, x2 = x3, x3 = r. Let r = 1 and we have that
[
0 1 1

]′ is an
eigenvector.

P === [1 1 0;1 1 1;0 1 1]′′′
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P =
1 1 0

1 1 1

0 1 1

A30 === P ∗∗∗ diag([0−−− 1 1]) ∗∗∗ invert(P)

A30 =
1 −1 1

0 0 1

0 0 1

ML.3. A === [−−− 1 1.5 −−− 1.5;−−− 2 2.5 −−− 1.5;−−− 2 2 −−− 1]′′′

r === roots(poly(A))

r =
1.0000

−1.0000
0.5000

The eigenvalues are distinct, hence A is diagonalizable.

M === (1 ∗∗∗ eye(size(A))−−− A)

rref([M [0 0 0]′′′)

ans =
1 0 0 0

0 1 −1 0

0 0 0 0

The general solution is x1 = 0, x2 = x3, x3 = r. Let r = 1 and we have that
[
0 1 1

]′ is an
eigenvector.

M === (−−− 1 ∗∗∗ eye(size(A))−−− A)

rref([M [0 0 0]′′′)

ans =
1 0 −1 0

0 1 −1 0

0 0 0 0

The general solution is x1 = x3, x2 = x3, x3 = r. Let r = 1 and we have that
[
1 1 1

]′ is an
eigenvector.

M === (.5 ∗∗∗ eye(size(A))−−− A)

rref([M [0 0 0]′′′)

ans =
1 −1 0 0

0 0 1 0

0 0 0 0

The general solution is x1 = x3, x3 = 0, x2 = r. Let r = 1 and we have that
[
1 1 0

]′ is an
eigenvector. Hence let

P === [0 1 1;1 1 1;1 1 0]′′′
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P =
0 1 1

1 1 1

1 1 0

then we have

A30 === P ∗∗∗ (diag([1−−− 1 .5])∧∧∧30 ∗∗∗ invert(P)

A30 =
1.0000 −1.0000 1.0000

0 0.0000 1.0000

0 0 1.0000

Since all the entries are not displayed as integers we set the format to long and redisplay the matrix
to view its contents for more detail.

format long

A30

A30 =
1.0000000000000 −0.99999999906868 0.99999999906868

0 0.00000000093132 0.99999999906868

0 0 1.00000000000000

ML.4. A === [−−− 1 1 −−− 1;−−− 2 2 −−− 1;−−− 2 2 −−− 1];

A,A∧∧∧3,A∧∧∧5

A =
−1 1 −1
−2 2 −1
−2 2 −1

ans =
−1 1 −1
−2 2 −1
−2 2 −1

ans =
−1 1 −1
−2 2 −1
−2 2 −1

Further computation shows that A raised to an odd power gives A, hence sequence A, A∧3, A∧5, . . .
converges to A.

A∧∧∧2,A∧∧∧4,A∧∧∧6

A =
1 −1 1

0 0 1

0 0 1
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ans =
1 −1 1

0 0 1

0 0 1

ans =
1 −1 1

0 0 1

0 0 1

Further investigation shows that A raised to an even power gives the same matrix as displayed above.
Hence the sequence A∧2, A∧4, A∧6 . . . converges to this matrix.

Section 8.3, p. 443

2. (a) A−1 = AT =

⎡⎣1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤⎦. (b) B−1 = B.

6.

⎡⎣0 0 0
0 1 0
0 0 −1

⎤⎦; P =

⎡⎢⎢⎢⎣
0 1√

2
1√
2

1 0 0

0 1√
2

− 1√
2

⎤⎥⎥⎥⎦.

8.

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎦; P =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1√
2

1√
2

0 0 1√
2

− 1√
2

⎤⎥⎥⎥⎥⎥⎥⎦.

10.

⎡⎣−3 0 0
0 −3 0
0 0 3

⎤⎦; P =

⎡⎢⎢⎢⎣
− 1√

2
− 1√

6
1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3

⎤⎥⎥⎥⎦.

12.

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 4 0
0 0 0 4

⎤⎥⎥⎦. 14.

⎡⎣1 0 0
0 1 0
0 0 5

⎤⎦

16.

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎦. 18.

⎡⎣−2 0 0
0 −2 0
0 0 −4

⎤⎦.

T.1. In Exercise T.14 in Section 1.3, we showed that if u and v are vectors in Rn, then u ·v = uT v. We
now have

(Ax) ·y = (Ax)T y = xT AT y = x · (AT y).
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T.2. By Exercise T.1, we have

(Ax) · (Ay) = x · (AT Ay) = x · (Iny) = x ·y

since AT A = In for the orthogonal matrix A.

T.3. The i, j entry of the matrix product AT A represents the ith row of AT times the jth column of A.
That is, the dot product of the ith and jth columns of A. If AT A = In, then the dot product of the
ith and jth columns of A is 1 if i = j and 0 if i �= j. Thus the columns of A form an orthonormal
set in Rn. The converse is proved by reversing the steps in this argument.

T.4. If AT A = In,

[det(A)]2 = det(AT ) · det(A) = det(AT A) = det(In) = 1.

Thus det(A) = ±1.

T.5. Let

A =
[
a b
b d

]
be a 2 × 2 symmetric matrix. Then its characteristic polynomial is λ2 − (a + d)λ + (ad − b2). The
roots of this polynomial are

λ =
a + d ±

√
(a + d)2 − 4(ad − b2)

2
=

a + d ±
√

(a − d)2 + 4b2

2
.

If b = 0, A is already diagonal. If b �= 0, the discriminant (a − d)2 + 4b2 is positive and there are
two distinct real eigenvalues. Thus A is diagonalizable. By Theorem 8.4, there is a diagonalizing
matrix P whose columns are linearly independent eigenvectors of A. We may assume further that
those columns are unit vectors in R2. By Theorem 8.7, the two columns are orthogonal. Thus P is
an orthogonal matrix.

T.6. (AB)T (AB) = BT AT AB = BT InB = In.

T.7. (A−1)T A−1 = (AT )−1A−1 = (AAT )−1 = I−1
n = In.

T.8. (a)
[

cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
= I2.

(b) Let

A =
[
a b
c d

]
be orthogonal. Then

AT =
[
a c
b d

]
is orthogonal and its first column is a unit vector: a2 + b2 = 1. Let a = cos θ and b = − sin θ
for some θ. Then 0 = ac + bd = c cos θ + d sin θ implies c = µ sin θ, d = µ cos θ for some real
number µ. But 1 = c2 + d2 = µ2(sin2 θ + cos2 θ) = µ2 implies µ = ±1.

T.9. For an n × n matrix A, if AT Ay = y = Iny for all y in Rn, then (AT A − In)y = 0 for all y in Rn.
Thus AT A − In is the zero matrix, so AT A = In.

T.10. If A is nonsingular and diagonalizable, then there is an orthogonal matrix P so that P−1AP = D,
a diagonal matrix. We now have A−1 = (P−1)−1D−1P−1 (as in Exercise T.2 in Section 8.2). Since
D−1 is diagonal and P−1 is orthogonal by Exercise T.7, we conclude that A−1 is orthogonally
diagonalizable.
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ML.1. (a) A === [6 6;6 6];

[V,D] === eig(A)

V =
0.7071 0.7071

−0.7071 0.7071

D =
0 0

0 12

Let P = V , then

P === V;P′′′ ∗∗∗ A ∗∗∗ P

ans =
0 0

0 12.0000

(b) A === [1 2 2;2 1 2;2 2 1];

[V,D] === eig(A)

V =
0.7743 −0.2590 0.5774

−0.6115 −0.5411 0.5774

−0.1629 0.8001 0.5774

D =
−1.0000 0 0

0 −1.0000 0

0 0 5.0000

Let P = V , then

P === V;P′′′ ∗∗∗ A ∗∗∗ P
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ans =
−1.0000 0.0000 0.0000

0.0000 −1.0000 −0.0000
0.0000 −0.0000 5.0000

(c) A === [4 1 0;1 4 1;0 1 4];
[V,D] === eig(A)

V =
0.5000 −0.7071 −0.5000
0.7071 −0.0000 0.7071

0.5000 0.7071 −0.5000
D =

5.4142 0 0

0 4.0000 0

0 0 2.5858

Let P = V , then
P === V;P′′′ ∗∗∗ A ∗∗∗ P
ans =

5.4142 −0.0000 −0.0000
−0.0000 4.0000 0.0000

−0.0000 0.0000 2.5858

ML.2. (a) A === [1 2;−−− 1 4];
[V,D] === eig(A)

V =
−0.8944 −0.7071
−0.4472 −0.7071

D =
2 0

0 3

V′′′ ∗∗∗ V
ans =

1.0000 0.9487

0.9487 1.0000

Hence V is not orthogonal. However, since the eigenvalues are distinct A is diagonalizable, so
V can be replaced by an orthogonal matrix.

(b) A === [2 1 2;2 2 −−− 2;3 1 1];
[V,D] === eig(A)

V =
−0.5482 0.7071 0.4082

0.6852 −0.0000 −0.8165
0.4796 0.7071 0.4082

D =
−1.0000 0 0

0 4.0000 0

0 0 2.0000
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V′′′ ∗∗∗ V
ans =

1.0000 −0.0485 −0.5874
−0.0485 1.0000 0.5774

−0.5874 0.5774 1.0000

Hence V is not orthogonal. However, since the eigenvalues are distinct A is diagonalizable, so
V can be replaced by an orthogonal matrix.

(c) A === [1 −−− 3;3 −−− 5];
[V,D] === eig(A)

V =
0.7071 0.7071

0.7071 0.7071

D =
−2 0

0 −2
Inspecting V , we see that there is only one linearly independent eigenvector, so A is not
diagonalizable.

(d) A === [1 0 0;0 1 1;0 1 1];
[V,D] === eig(A)

V =
1.0000 0 0

0 0.7071 0.7071

0 0.7071 −0.7071

D =
1.0000 0 0

0 2.0000 0

0 0 0.0000

V′′′ ∗∗∗ V
ans =

1.0000 0 0

0 1.0000 0

0 0 1.0000

Hence V is orthogonal. We should have expected this since A is symmetric.

Supplementary Exercises, p. 445

2. Not diagonalizable.

4. P =

⎡⎣ 3 0 0
−3 1 6

2 0 1

⎤⎦, D =

⎡⎣1 0 0
0 −1 0
0 0 −2

⎤⎦.

6. Not diagonalizable.

8. No.
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10. P =

⎡⎢⎢⎢⎣
2√
5

0 − 1√
5

0 1 0
1√
5

0 2√
5

⎤⎥⎥⎥⎦, D =

⎡⎣−5 0 0
0 5 0
0 0 5

⎤⎦.

12. (a) p1(λ)p2(λ). (b) p1(λ)p2(λ).

T.1. Let P be a nonsingular matrix such that P−1AP = D. Then

Tr(D) = Tr(P−1AP ) = Tr(P−1(AP )) = Tr((AP )P−1) = Tr(APP−1) = Tr(AIn) = Tr(A).

T.2. In Exercise T.1, the diagonal entries of D are the eigenvalues of A; thus Tr(A) = Tr(D) = sum of
the eigenvalues of A.

T.3. Let P be such that P−1AP = B.

(a) BT = (P−1AP )T = PT AT (P−1)T = PT AT (PT )−1; hence AT and BT are similar.
(b) rank(B) = rank(P−1AP ) = rank(P−1A) (See Exercise T.6(c) in the Supplementary Exercises

to Chapter 6.) = rank(A) (See Exercise T.6(d) in the Supplementary Exercises to Chapter 6.)
(c) det(B) = det(P−1AP ) = det(P−1) det(A) det(P ) = (1/ det(P )) det(A) det(P ) = det(A). Thus

det(B) �= 0 if and only if det(A) �= 0.
(d) Since A and B are nonsingular and B = P−1AP , B−1 = (P−1AP )−1 = P−1A−1P . That is,

A−1 and B−1 are similar.
(e) Tr(B) = Tr(P−1AP ) = Tr((P−1A)P ) = Tr(P (P−1A)) = Tr(A). (See Supplementary Exercise

T.1 in Chapter 1.)

T.4. If A is orthogonal, then AT = A−1. Since

(AT )T = (A−1)T = (AT )−1,

we have that AT is orthogonal.

T.5. (cA)T = (cA)−1 if and only if cAT =
1
c
A−1 =

1
c
AT . That is, c =

1
c
. Hence c = ±1.

T.6. The characteristic polynomial of A is

f(λ) =
∣∣∣∣ λ − a − b

−c λ − d

∣∣∣∣ = (λ − a)(λ − d) − bc = λ2 − (a + d)λ + (ad − bc) = λ2 − Tr(A)λ + det(A).

T.7. (a) The characteristic polynomial is

f(λ) =

∣∣∣∣∣∣
1 − λ 2 3

2 − 1 − λ 5
3 2 1 − λ

∣∣∣∣∣∣ = −λ3 + λ2 + 24λ + 36.

(b) The characteristic polynomial is f(λ) = (1 − λ)(2 − λ)(−3 − λ).
(c) The characteristic polynomial is

f(λ) =
∣∣∣∣ 3 − λ 3

2 4 − λ

∣∣∣∣ = λ2 − 7λ + 6.

T.8. From the Cayley–Hamilton Theorem we have

An + a1A
n−1 + · · · + an−2A

2 + an−1A + anIn = O.

Since A is nonsingular, det(A) �= 0, so an �= 0. Multiplying the last equation by A−1 we have

An−1 + a1A
n−2 + · · · + an−2A + an−1In + anA−1 = O.

Solving for A−1 we obtain the desired result.
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Applications of Eigenvectors and
Eigenvalues (Optional)

Section 9.1, p. 450

2. Ak = (PBP−1)(PBP−1) · · · (PBP−1) = PB(P−1P )B(P−1P ) · · · (P−1P )BP−1 = PBkP−1.

4. (a) u0 = u1 = 1, un = un−1 + 2un−2 for n ≥ 2.

(b) A =
[
1 2
1 0

]
, u = An−1u0, A is similar to the diagonal matrix

D =
[
2 0
0 −1

]
un = 1

3

[
2n+1 + (−1)n

]
.

T.1. Let us define u−1 to be 0. Then for n = 0,

A1 = A =
[
1 1
1 0

]
=

[
u1 u0

u0 u−1

]
and, for n = 1,

A2 =
[
2 1
1 1

]
=

[
u2 u1

u1 u0

]
.

Suppose that the formula

An+1 =
[
un+1 un

un un−1

]
(9.1)

holds for values up to and including n, n ≥ 1. Then

An+2 = A · An+1 =
[
1 1
1 0

] [
un+1 un

un un−1

]
=

[
un+1 + un un + un−1

un+1 un

]
=

[
un+2 un+1

un+1 un

]
.

Thus the formula (9.1) also holds for n + 1, so it holds for all natural numbers n. Using (9.1), we
see that

un+1un−1 − u2
n =

∣∣∣∣ un+1 un

un un−1

∣∣∣∣ = det
(
An+1

)
= (det(A))n+1 = (−1)n+1.
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Section 9.2, p. 460

2. (a) x(t) = b1

⎡⎣1
0
0

⎤⎦ et + b2

⎡⎣0
1
0

⎤⎦ e−2t + b3

⎡⎣0
1
5

⎤⎦ e3t.

(b) x(t) = 2

⎡⎣1
0
0

⎤⎦ et + 3

⎡⎣0
1
0

⎤⎦ e−2t + 4

⎡⎣0
1
5

⎤⎦ e3t.

4. x(t) = b1

⎡⎣1
0
0

⎤⎦ e2t + b2

⎡⎣0
0
1

⎤⎦ e2t + b3

⎡⎣−3
1
0

⎤⎦ et.

6. x(t) = b1

[
1

−1

]
e5t + b2

[
1
1

]
et.

8. x(t) = b1

⎡⎣ 0
−2

1

⎤⎦ et + b2

⎡⎣1
0
0

⎤⎦ et + b3

⎡⎣1
0
1

⎤⎦ e3t.

10. The system of differential equations is⎡⎣x′(t)

y′(t)

⎤⎦ =

⎡⎣− 1
10

2
30

1
10 − 2

30

⎤⎦⎡⎣x(t)

y(t)

⎤⎦ .

The characteristic polynomial of the coefficient matrix is p(λ) = λ2+ 1
6λ. Eigenvalues and associated

eigenvectors are:

λ1 = 0, x1 =
[
−1

1

]
; λ2 = − 1

6 , x2 =

[
2
3

1

]
.

Hence the general solution is given by[
x(t)
y(t)

]
= b1

[
−1

1

]
e−

1
6 t + b2

[
2
3

1

]
.

Using the initial conditions x(0) = 10 and y(0) = 40, we find that b1 = 10 and b2 = 30. Thus, the
particular solution, which gives the amount of salt in each tank at time t, is

x(t) = −10e−
1
6 t + 20

y(t) = 10e−
1
6 t + 30.

T.1. Let x1 and x2 be solutions to the equation x′ = Ax, and let a and b be scalars. Then

d

dt
(ax1 + bx2) = ax′

1 + bx′
2 = aAx1 + bAx2 = A(ax1 + bx2).

Thus ax1 + bx2 is also a solution to the given equation.

ML.1. A === [1 1 0;0 0 1;8 −−− 14 7];

[v,d] === eig(A)

v =
−0.5774 0.2182 0.0605

−0.5774 0.4364 0.2421

−0.5774 0.8729 0.9684
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d =
1.0000 0 0

0 2.0000 0

0 0 4.0000

The general solution is given by

x(t) = b1

⎡⎣−0.5774
−0.5774
−0.5774

⎤⎦ et + b2

⎡⎣0.2182
0.4364
0.8729

⎤⎦ e2t + b3

⎡⎣0.0605
0.2421
0.9684

⎤⎦ e4t.

ML.2. A === [1 0 0;0 3 −−− 2;0 −−− 2 3];

[v,d] === eig(A)

v =
1.0000 0 0

0 −0.7071 −0.7071
0 −0.7071 0.7071

d =
1 0 0

0 1 0

0 0 5

The general solution is given by

x(t) = b1

⎡⎣1.0000
0
0

⎤⎦ et + b2

⎡⎣ 0
−0.7071
−0.7071

⎤⎦ e2t + b3

⎡⎣ 0
−0.7071

0.7071

⎤⎦ e5t.

ML.3. A === [1 2 3;0 1 0;2 1 2];

[v,d] === eig(A)

v =
−0.8321 −0.7071 −0.1374

0 0 0.8242

0.5547 −0.7071 −0.5494

d =
−1 0 0

0 4 0

0 0 1

The general solution is given by

x(t) = b1

⎡⎣−0.8321
0

0.5547

⎤⎦ e−t + b2

⎡⎣−0.7071
0

−0.7071

⎤⎦ e4t + b3

⎡⎣−0.1374
0.8242

−0.5494

⎤⎦ et.

Section 9.3, p. 474

2. The eigenvalues of the coefficient matrix are λ1 = 2 and λ2 = 1 with associated eigenvectors p1 =
[
1
0

]
and p2 =

[
0
1

]
. Thus the origin is an unstable equilibrium. The phase portrait shows all trajectories

tending away from the origin.
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4. The eigenvalues of the coefficient matrix are λ1 = 1 and λ2 = −2 with associated eigenvectors

p1 =
[
0
1

]
and p2 =

[
1

−1

]
. Thus the origin is a saddle point. The phase portrait shows trajectories

not in the direction of an eigenvector heading toward the origin, but bending away as t → ∞.

6. The eigenvalues of the coefficient matrix are λ1 = −1+i and λ2 = −1−i with associated eigenvectors

p1 =
[
−1
i

]
and p2 =

[
1
i

]
. Since the real part of the eigenvalues is negative the origin is a stable

equilibrium with trajectories spiraling in toward it.

8. The eigenvalues of the coefficient matrix are λ1 = −2+i and λ2 = −2−i with associated eigenvectors

p1 =
[
1
i

]
and p2 =

[
1
−i

]
. Since the real part of the eigenvalues is negative the origin is a stable

equilibrium with trajectories spiraling in toward it.

10. The eigenvalues of the coefficient matrix are λ1 = 1 and λ2 = 5 with associated eigenvectors

p1 =
[

1
−1

]
and p2 =

[
1
1

]
. Thus the origin is an unstable equilibrium. The phase portrait shows all

trajectories tending away from the origin.

T.1. (a) Just compute Ax(t) and note that x′
1(t) = x2(t) and x′

2(t) = − k
mx1(t)− 2rx2(t). Replace x2(t)

in the second expression by x′
1(t) and we obtain

x′′
1(t) = − k

m
x1(t) − 2rx′

1(t)

which is equivalent to Equation (12).

(b) (i) λ = − 1
2 , − 3

2 . All trajectories tend toward the equilibrium point at the origin, which is an
attractor.

(ii) λ = −1, −1. All trajectories tend to a stable equilibrium point at the origin.
(iii) λ = −1±i. The trajectories spiral inward to the origin which is a stable equilibrium point.
(iv) λ = −1 ± 3i. The trajectories spiral inward to the origin which is a stable equilibrium

point.

(c) A =
[

0 1
−k −2

]
. Its characteristic polynomial is λ2 + 2λ + k. The eigenvalues are given by

λ = −1 ±
√

1 − k and are complex for k > 1.

(d) (i) λ = ±i. Trajectories are elliptical.

(ii) λ = − 1
2 ±

√
3

2 i. The trajectories spiral inward to the origin which is a stable equilibrium
point.

(iii) λ = −1, −1. Trajectories tend to a stable equilibrium point at the origin.
(iv) λ = −

√
2 ± 1. Trajectories tend toward the origin which is an attractor.

(e) The rider would experience an oscillatory up and down motion.

(f) A =
[

0 1
−1 −2r

]
. The characteristic polynomial is λ2 + 2rλ + 1 and the eigenvalues are given

by λ = −r ±
√

r2 − 1. The eigenvalues will be real provided r ≥ 1.

Section 9.4, p. 483

2. (a)
[
x1 x2 x3

] ⎡⎣ 1 −2 0
−2 −3 3

0 3 4

⎤⎦⎡⎣x1

x2

x3

⎤⎦.
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(b)
[
x y

] [
4 −3

−3 2

] [
x
y

]
.

(c)
[
x1 x2 x3

] ⎡⎣ 0 −1 2
−1 0 3

2 3 0

⎤⎦⎡⎣x1

x2

x3

⎤⎦.

4. (a)

⎡⎣5 0 0
0 5 0
0 0 −5

⎤⎦. (b)

⎡⎣4 0 0
0 1 0
0 0 1

⎤⎦.

6. y2
1 + 2y2

2 . 8. 4y2
3 . 10. 5y2

1 − 5y2
2 . 12. y2

1 + y2
2 .

14. y2
1 + y2

2 + y2
3 . 16. y2

1 + y2
2 + y2

3 . 18. y2
1 − y2

2 − y2
3 ; rank = 3; signature = −1.

20. y2
1 = 1, which represents the two lines y1 = 1 and y1 = −1. The equation −y2

2 = 1 represents no
conic at all.

22. g1, g2, and g4 are equivalent. The eigenvalues of the matrices associated with the quadratic forms
are: for g1: 1, 1, −1; for g2: 9, 3, −1; for g3: 2, −1, −1; for g4: 5, 5, −5. The rank r and signature
s of g1, g2 and g4 are r = 3 and s = 2p − r = 1.

24. The eigenvalues of the matrices are:

(a) 1, −1. (b) 0, 2. (c) 0, 3, −1. (d) 3, 3, 15. (e) 2, 1, 3, −3.

T.1. (PT AP )T = PT AT P = PT AP since AT = A.

T.2. (a) A = PT AP for P = In.
(b) If B = PT AP with nonsingular P , then A = (P−1)T BP−1 and B is congruent to A.
(c) If B = PT AP and C = QT BA with P , Q nonsingular, then C = QT PT APQ = (PQ)T A(PQ)

with PQ nonsingular.

T.3. By Theorem 8.9, for the symmetric matrix A, there exists an orthogonal matrix P such that
P−1AP = D is diagonal. Since P is orthogonal, P−1 = PT . Thus A is congruent to D.

T.4. Let

A =
[
a b
b d

]
and let the eigenvalues of A be λ1 and λ2. The characteristic polynomial of A is

f(λ) = λ2 − (a + d)λ + ad − b2.

If A is positive definite then both λ1 and λ2 are > 0, so λ1λ2 = det(A) > 0. Also,[
1 0

] [
a b
b d

] [
1
0

]
= a > 0.

Conversely, let det(A) > 0 and a > 0. Then λ1λ2 = det(A) > 0 so λ1 and λ2 are of the same sign.
If λ1 and λ2 are both < 0 then λ1 + λ2 = a + d < 0, so d < −a. Since a > 0, we have d < 0 and
ad < 0. Now det(A) = ad− b2 > 0, which means that ad > b2 so ad > 0, a contradiction. Hence, λ1

and λ2 are both positive.

T.5. Let A be positive definite and Q(x) = xT Ax. By Theorem 9.3, Q(x) is a quadratic form which is
equivalent to

Q′(y) = y2
1 + y2

2 + · · · + y2
p − y2

p+1 − · · · − y2
r .

If Q and Q′ are equivalent then Q′(y) > 0 for each y �= 0. However, this can happen if and only
if all terms in Q′(y) are positive; that is, if and only if A is congruent to In, or if and only if
A = PT InP = PT P .
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ML.1. (a) A === [−−− 1 0 0;0 1 1;0 1 1];
eig(A)

ans =
−1.0000
2.0000

0.0000

If we set the format to long e, then the eigenvalues are displayed as
ans =

−1.000000000000000e + 000

2.000000000000000e + 000

2.220446049250313e− 016

Since the last value is extremely small, we will consider it zero. The eig command approximates
the eigenvalues, hence errors due to using machine arithmetic can occur. Thus it follows that
rank(A) = 2 and the signature of the quadratic form is 0.

(b) A === ones(3);
eig(A)

ans =
0.0000

−0.0000
3.0000

If we set the format to long e, then the eigenvalues are displayed as
ans =

2.343881062810587e− 017

−7.011704839834072e− 016

2.999999999999999e + 000

We will consider the first two eigenvalues zero. Hence rank(A) = 1 and the signature of the
quadratic form is 1.

(c) A === [2 1 0 −−− 2;1 −−− 1 1 3;0 1 2 −−− 1;−−− 2 3 −−− 1 0];
eig(A)

ans =
2.2896

1.6599

3.5596

−4.5091
It follows that rank(A) = 4 and the signature of the quadratic form is 2.

(d) A === [2 −−− 1 0 0;−−− 1 2 −−− 1 0;0 −−− 1 2 −−− 1;0 0 −−− 1 2];
eig(A)

ans =
1.3820

0.3820

2.6180

3.6180

It follows that rank(A) = 4 and the signature of the quadratic form is 4.

ML.2. By Theorem 9.4, only the matrix in part (d) is positive definite.
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Section 9.5, p. 491

2. Parabola 4. Two parallel lines. 6. Straight line 8. Hyperbola.

10. None. 12. Hyperbola;
x′2

4
− y′2

4
= 1. 14. Parabola; x′2 + 4y′2 = 0.

16. Ellipse; 4x′2 + 5y′2 = 20.

18. None; 2x′2 + y′2 = −2.

20. Possible answer: hyperbola;
x′2

2
− y′2

2
= 1.

22. Possible answer: parabola; x′2 = 4y′

24. Possible answer: ellipse;
x′2

1
2

+ y′2 = 1.

26. Possible answer: ellipse;
x′′2

4
+ y′′2 = 1.

28. Possible answer: ellipse; x′′2 +
y′′2

1
2

= 1.

30. Possible answer: parabola; y′′2 = − 1
8x′′.

Section 9.6, p. 499

2. Ellipsoid. 4. Elliptic paraboloid. 6. Hyperbolic paraboloid.

8. Hyperboloid of one sheet. 10. Hyperbolic paraboloid. 12. Hyperboloid of one sheet.

14. Ellipsoid.

16. HYperboloid of one sheet;
x′′2

8
+

y′′2

4
− z′′

2

8
= 1.

18. Ellipsoid;
x′′2

9
+

y′′2

9
+

z′′
2

9
5

= 1.

20. Hyperboloid of two sheets; x′′2 − y′′2 − z′′
2 = 1.

22. Ellipsoid;
x′′2

− 25
2

+
y′′2

25
4

+
z′′

2

25
10

= 1.

24. Hyperbolic paraboloid;
x′′2

1
2

− y′′2

1
2

= z′′.

26. Ellipsoid;
x′′2

1
2

+
y′′2

1
2

+
z′′

2

1
4

= 1.

28. Hyperboloid of one sheet;
x′′2

4
+

y′′2

2
− z′′

2

1
= 1.



168 Chapter 9

Supplementary Exercises, p. 500

2. (a) x(t) = et

[
1
1

]
. (b) x(t) =

[
1
1

]
.

4. 121,393.

6. y2
1 + y2

2 .

8. (a) One answer is k = 8.

(b) One answer is k = −2.

T.1. Proceed by showing corresponding entries of the matrices involved are equal.

(a)
[

d

dt
[c1A(t) + c2B(t)]

]
ij

=
d

dt
[c1A(t) + c2B(t)]ij

=
d

dt
[c1aij(t) + c2bij(t)] = c1

d

dt
aij + c2

d

dt
bij(t)

= c1

[
d

dt
A(t)

]
ij

+ c2

[
d

dt
B(t)

]
ij

=
[
c1

d

dt
A(t) + c2

d

dt
B(t)

]
ij

.

(b)
[∫ t

a

(c1A(s) + c2B(s)) ds

]
ij

=
∫ t

a

[c1A(s) + c2B(s)]ij ds

=
∫ t

a

[c1aij(s) + c2bij(s)] ds = c1

∫ t

a

aij ds + c2

∫ t

a

bij ds

= c1

[∫ t

a

A(s) ds

]
ij

+ c2

[∫ t

a

B(s) ds

]
ij

=
[
c1

∫ t

a

A(s) ds + c2

∫ t

a

B(s) ds

]
ij

.

(c)
[

d

dt
[A(t)B(t)]

]
ij

=
d

dt
[A(t)B(t)]ij =

d

dt

(
n∑

k=1

aik(t)bkj(t)

)

=
n∑

k=1

d

dt
[aik(t)bkj(t)] =

n∑
k=1

(
d

dt
[aik(t)]bkj(t) + aik(t)

d

dt
[bkj(t)]

)

=
n∑

k=1

(
d

dt
[aik(t)]bkj(t)

)
+

n∑
k=1

(
aik(t)

d

dt
[bkj(t)]

)
=

[
d

dt
[A(t)B(t)

]
ij

+
[
A(t)

d

dt
[B(t)]

]
ij

=
[

d

dt
[A(t)B(t) + A(t)

d

dt
[B(t)]

]
ij

.

T.2. (a) Assuming that the differentiation of the series can be carried out term by term,

d

dt
[eAt] =

d

dt

[
In + At + A2 t2

2!
+ A3 t3

3!
+ · · ·

]
= A + A2t + A3 t2

2!
+ · · ·

= A[In + At + A2 t2

2!
+ · · · ]

= AeAt
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(b) Note that Ak = Bk = O for k = 2, 3, . . . , with AB =
[
1 0
0 0

]
and BA =

[
0 0
0 1

]
, so the infinite

series terminates. Now

eAeB = [I2 + A][I2 + B] = I2 + A + B + AB =
[
2 1
1 1

]
and

eA+B =
[
I2 + (A + B) + (A + B)2

1
2!

]
= I2 + A + B +

1
2!

(AB + BA) =
[

3
2 1
1 3

2

]
.

(c) eiA = In + iA + (iA)2
1
3!

+ (iA)4
1
4!

+ (iA)5
1
5!

+ · · ·

= In + iA − A2 1
2!

− iA3 1
3!

− A4 1
4!

+ iA5 1
5!

+ · · ·

=
(

In − A2 1
2!

+ A4 1
4!

− · · ·
)

+ i

(
A − A3 1

3!
+ A5 1

5!
− · · ·

)
= cos A + i sinA

T.3. If AB = BA, then (A+B)2 = A2 +2AB +B2, (A+B)3 = A3 +3A2B +3AB2 +B3, and in general
for k = 2, 3, . . .

(A + B)k = Ak +
(

k

1

)
Ak−1B +

(
k

2

)
Ak−2B2 + · · · +

(
k

k − 1

)
ABk−1 + Bk.

Applying these results to the product of the series in the following, we see that

eAeB =
[
In + A + A2 1

2!
+ A3 1

3!
+ · · ·

] [
In + B + B2 1

2!
+ B3 1

3!
+ · · ·

]
= In + (A + B) +

1
2!

(A2 + 2AB + B2) +
1
3!

(A3 + 3A2B + 3AB2 + B3) + · · ·

= eA+B

T.4. Note that eDt is a sum of diagonal matrices since D is diagonal. We proceed by showing that[
B(t)

]
ii

=
[
eDt

]
ii
:

[
etD

]
ii

=
[
In + Dt + D2 t2

2!
+ D3 t3

3!
+ · · ·

]
= 1 + [Dt]ii +

[
D2 t2

2!

]
ii

+
[
D3 t3

3!

]
ii

+ · · ·

= 1 + diit +
(λiit)2

2!
+

(λiit)3

3!
+ · · ·

= eλiit =
[
B(t)

]
ii

.

T.5. Recall that if C is n × n and R is n × 1 then CR = r1col1(C) + r2col2(C) + · · · + rncoln(C). It
follows that

x(t) =
[
p1 p2 · · · pn

]
⎡⎢⎢⎢⎣

ec1tb1

ec2tb2

...
ecntbn

⎤⎥⎥⎥⎦ = P

⎡⎢⎢⎢⎢⎢⎢⎣

ec1t 0 · · · 0

0 ec2t · · ·
...

0 0 · ·
...

...
. . .

...
0 0 · · · ecnt

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

b1

b2

...
bn

⎤⎥⎥⎥⎦ = PeDtB.
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T.6. From Exercise T.5, x(t) = PeDtB is the general solution to the system of differential equations.
Applying the initial condition x(0) = x0 we have

x0 = x(0) = PeD·0B = PInB = PB.

Solving for B we have B = P−1x0, so the solution to the system of differential equations that
satisfies the initial condition is

x(t) = PeDtP−1x0

= P

[
In + Dt + D2 t2

2!
+ D3 t3

3!
+ · · ·

]
P−1x0

=
[
In + PDP−1t + PD2P−1 t2

2!
+ PD3P−1 t3

3!
+ · · ·

]
x0

=
[
In + PDP−1t + PDP−1PDP−1 t2

2!
+ PDP−1PDP−1PDP−1 t3

3!
+ · · ·

]
x0

=
[
In + At + A2 t2

2!
+ A3 t3

3!
+ · · ·

]
x0 = eAtx0,

where A = PDP−1.
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Linear Transformations and Matrices

Section 10.1, p. 507

2. (a).

4. (a) No.

L((a1t
2 + b1t + c1) + (a2t

2 + b2t + c2)) = L((a1 + a2)t2 + (b1 + b2)t + (c1 + c2))
= (a1 + a2)t + (b1 + b2) + 1

while

L(a1t
2 + b1t + c1) + L(a2t

2 + b2t + c2) = a1t + b1 + 1 + a2t + b2 + 1
= (a1 + a2)t + (b1 + b2) + 2.

(b) Yes.

L((a1t
2 + b1t + c1) + (a2t

2 + b2t + c2)) = L((a1 + a2)t2 + (b1 + b2)t + (c1 + c2))
= 2(a1 + a2) − (b1 + b2)
= 2a1 − b1 + 2a2 − b2

= L(a1t
2 + b1t + c1) + L(a2t

2 + b2t + c2).

Also, if k is a scalar, then

L(k(at2 + bt + c)) = L(kat2 + kbt + kc) = 2ka − kb = k(2a − b) = kL(at2 + bt + c).

(c) No.

L((a1t
2 + b1t + c1) + (a2t

2 + b2t + c2)) = L((a1 + a2)t2 + (b1 + b2)t + (c1 + c2))
= (a1 + a2 + 2)t + (b1 + b2) − (a1 + a2)

while

L(a1t
2 + b1t + c1) + L(a2t

2 + b2t + c2) = (a1 + 2)t + (b1 − a1) + (a2 + 2)t + (b2 − a2)
= (a1 + a2 + 4)t + (b1 + b2) − (a1 + a2).

6. Let A and B be elements of Mnn. Then

L(A + B) = C(A + B) = CA + CB = L(A) + L(B).

Also, if k is a scalar, then

L(kA) = C(kA) = kCA = kL(A).
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8. No. 10. No. 12. No.

14. L(f + g) =
∫ 1

0
(f(x) + g(x)) dx =

∫ 1

0
f(x) dx +

∫ 1

0
g(x) dx = L(f) + L(g),

L(cf) =
∫ 1

0
(cf(x)) dx = c

∫ 1

0
f(x) dx = cL(f).

16. Let u and v be vectors in Rn. Then

L(u + v) = PS←T (u + v) = PS←T u + PS←T v = L(u) + L(v).

Also, if c is a scalar, then

L(cu) = PS←T (cu) = c(PS←T u) = cL(u).

18. (a) 2t3 − 5t2 + 2t + 3. (b) at3 + bt2 + at + c.

T.1. L(c1v1 + c2v2 + · · · + ckvk) = L(c1v1 + +L(c2v2 + · · · + ckvk)
= c1L(v1) + L(c2v2) + L(c3v3 + · · · + ckvk)
= · · · = c1L(v1) + c2L(v2) + · · · + ckL(vk).

T.2. L(u − v) = L(u + (−1)v) = L(u) + (−1)L(v) = L(u) − L(v).

T.3. See the proof of Corollary 4.1 in Section 4.3.

T.4. If L is a linear transformation, then

L(au + bv) = aL(u) + bL(v) (10.1)

by Theorem 10.1. Conversely, if Equation (10.1) holds for any a and b and vectors u and v, then in
particular it holds for a = b = 1, which gives (a) of the definition of linear transformation, and for
a = c, b = 0, which gives (b) of that definition.

T.5. Let A and B be in Mnn. Then

Tr(A + B) =
n∑

i=1

(aii + bii) =
n∑

i=1

aii +
n∑

i=1

bii = Tr(A) + Tr(B)

and

Tr(cA) =
n∑

i=1

(caii) = c

n∑
i=1

aii = cTr(A).

Hence Tr is a linear transformation.

T.6. No. Let n = 2,

A =
[
1 0
0 0

]
, and B =

[
0 0
0 1

]
.

Then

L(A + B) = L

([
1 0
0 1

])
=

[
1 0
0 1

]
�= 0 + 0 = L(A) + L(B).

T.7. We have L(u + v) = 0W = 0W + 0W = L(u) + L(v) and L(cu) = 0W = c0W = cL(u).

T.8. We have I(u + v) = u + v = I(u) + I(v) and I(cu) = cu = cI(u).
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T.9. Let w1 and w2 be in L(V1) and let c be a scalar. Then w1 = L(v1) and w2 = L(v2), where v1 and
v2 are in V1. Then

w1 + w2 = L(v1) + L(v2) = L(v1 + v2) and cw1 = cL(v1) = L(cv1).

Since v1 + v2 and cv1 are in V1, we conclude that w1 + w2 and cw1 lie in L(V1). Hence L(V1) is a
subspace of V .

T.10. Let v be any vector in V . Then

v = c1v1 + c2v2 + · · · + cnvn.

We now have

L1(v) = L1(c1v1 + c2v2 + · · · + cnvn)
= c1L1(v1) + c2L1(v2) + · · · + cnL1(vn)
= c1L2(v1) + c2L2(v2) + · · · + cnL2(vn)
= L2(c1v1 + c2v2 + · · · + cnvn) = L2(v).

T.11. Let v1 and v2 be in L−1(W1) and let c be a scalar. Then L(v1 +v2) = L(v1)+L(v2) is in W1 since
L(v1) and L(v2) are in W1 and W1 is a subspace of V . Hence v1 + v2 is in L−1(W1). Similarly,
L(cv1) = cL(v1) is in W1 so cv1 is in L−1(W1). Hence, L−1(W1) is a subspace of V .

T.12. T is not a linear transformation because T (v1 + v2) = (v1 + v2) + b but T (v1) + T (v2) =
(v1 + b) + (v2 + b) = (v1 + v2) + 2b.

T.13. Let U be the eigenspace associated with λ. Then we have already shown in Exercise T.1 in Section 8.1
that U is a subspace of Rn. Now let x be a vector in U , so that Ax = λx. Then L(x) = Ax = λx,
which is in U , since U is a subspace of Rn and λx is a scalar multiple of x. So L(x) is also an
eigenvector of A associated with λ. Hence, U is an invariant subspace of Rn.

ML.1. (a) A === [1 0;0 0];B === [0 0;0 1];
det(A+++ B)
ans =

1

det(A)+++ det(B)
ans =

0

(b) A === eye(3);B === −−−ones(3);
det(A+++ B)
ans =

−2
det(A)+++ det(B)
ans =

1

ML.2. (a) A === eye(2);B === eye(2);
rank(A+++ B)
ans =

2

rank(A)+++ rank(B)
ans =

4

(b) Repeat the preceding with A = eye(3) and B = eye(3).
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Section 10.2, p. 519

2. (a) No. (b) Yes. (c) Yes. (d) No. (e)
{[

−2r
r

]}
, r = any real number.

(f) Possible answer:
{[

1
2

]}
.

4. (a) Possible answer: {(1,−1,−1, 1)}.
(b) Possible answer: {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
(c) dim(ker L) + dim(rangeL) = 1 + 3 = 4 = dimV .

6. (a) No. (b) 2.

8. (a) kerL = {0}; it has no basis.

(b) Possible answer: {(1, 1, 0), (−1, 2, 0), (0, 0, 1)}.

10. (a) Possible answer:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
1

− 8
3

4
3

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (b) Possible answer:

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

1
2
1
4

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
2
1
0
1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1

−1
0

−1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭.

12. (a) No. (b) No. (c) Yes. (d) No. (e) Possible answer: {t + 1, t3 + t2}.
(f) Possible answer: {t3, t}.

14. (a) {1}. (b)
{[

1 0
]
,
[
0 1

]}
.

16. (a) ker L =
{[

0 0
0 0

]}
; it has no basis.

(b)
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

18. (a) Possible answer:
{
t2 − 1

3 , t − 1
2

}
. (b) Possible answer: {1}.

20. (a) 7. (b) 5.

T.1. Let x and y be solutions to Ax = b, so L(x) = b and L(y) = b. Then

L(x − y) = L(x) − L(y) = b − b = 0.

Hence x − y = z is in ker L.

T.2. By Theorem 10.7 and the assumption that dim V = dimW ,

dim(kerL) + dim(rangeL) = dimW.

(a) If L is one-to-one, dim(range L) = dimW , so L is onto.

(b) If L is onto, dim(ker L) = 0, so L is one-to-one.

T.3. If w lies in the range of L, then w = Av for some v in Rn, and w is a linear combination of columns
of A. Thus w lies in the column space of A. Conversely, if w is in the column space of A, then w is
a linear combination of the columns of A. Hence w = Av for some v in Rn, which implies that w
is in the range of L.
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T.4. L is one-to-one if and only if ker L = {0} if and only if dim(rangeL) = n if and only if
dim(column space of A) = n if and only if rankA = n if and only if det(A) �= 0.

T.5. Let w be any vector in rangeL. Then there exists a vector v in V such that L(v) = w. Next, there
exist scalars c1, . . . , ck such that v = c1v1 + · · · + ckvk. Thus

w = L(c1v1 + · · · + ckvk) = c1L(v1) + · · · + ckL(vk).

Hence {L(v1), L(v2), . . . , L(vk)} spans range L.

T.6. (a) dim(kerL) + dim(rangeL) = dimV , dim(kerL) ≥ 0; thus dim(rangeL) ≤ dimV .
(b) If L is onto, then range L = W and the result follows from part (a).

T.7. Suppose that S is linearly dependent. Then there exist constants c1, c2, . . . , cn, not all zero, such
that

c1v1 + c2v2 + · · · + cnvn = 0.

Then

L(c1v1 + c2v2 + · · · + cnvn) = L(0) = 0

or

c1L(v1) + c2L(v2) + · · · + cnL(vn) = 0

which implies that T is linearly dependent, a contradiction.

T.8. L is one-to-one if and only if dim(kerL) = 0 if and only if dim(rangeL) = dimV .

T.9. Let L be one-to-one and let S = {v1, . . . ,vk} be a linearly independent set of vectors in V . Suppose
that {L(v1), L(v2), . . . , L(vk)} is linearly dependent. Then there exist constants c1, c2, . . . , ck, not
all zero, such that

c1L(v1) + c2L(v2) + · · · + ckL(vk) = 0 or L(c1v1 + c2v2 + · · · + ckvk) = 0 = L(0).

Since L is one-to-one, we have c1v1+c2v2+· · ·+ckvk = 0, which implies that S is linearly dependent,
a contradiction.

T.10. The “only if” portion follows from Exercise T.9. If the image of a basis for V is a basis for W , then
rangeL has dimension = dimW = dimV , and hence ker L has dimension 0, so L is one-to-one.

T.11. (a) Let v and w be vectors in V . From Equations (2) and (3) in Section 6.7, we have

L(v + w) =
[
v + w

]
S

=
[
v
]
S

+
[
w

]
S

= L(v) + L(w)

and

L(cv) =
[
cv

]
S

= c
[
v
]
S

= cL(v).

(b) Let

L(v) =

⎡⎢⎢⎢⎣
a1

a2

...
an

⎤⎥⎥⎥⎦ =
[
v
]
S

and L(w) =

⎡⎢⎢⎢⎣
b1

b2

...
bn

⎤⎥⎥⎥⎦ =
[
w

]
S

and assume that L(v) = L(w). Then ai = bi, 1 ≤ i ≤ n. This implies that

v = a1v1 + a2v2 + · · · + anvn = b1v1 + b2v2 + · · · + bnvn = w.

Hence, L is one-to-one.



176 Chapter 10

(c) Let

w =

⎡⎢⎢⎢⎣
c1

c2

...
cn

⎤⎥⎥⎥⎦
be an arbitrary vector in Rn. If we let

v = c1v1 + c2v2 + · · · + cnvn

then v is in V and L(v) =
[
v
]
S

= w. Hence, L is onto.

ML.1. A === [1 2 5 5;−−− 2 −−− 3 −−− 8 −−− 7];

rref(A)

ans =
1 0 1 −1
0 1 2 3

It follows that the general solution to Ax = 0 is obtained from

x1 + x3 − x4 = 0
x2 + 2x3 + 3x4 = 0.

Let x3 = r and x4 = s, then x2 = −2r − 3s and x1 = −r + s. Thus

x =

⎡⎢⎢⎣
−r + s

−2r − 3s
r
s

⎤⎥⎥⎦ = r

⎡⎢⎢⎣
−1
−2

1
0

⎤⎥⎥⎦ + s

⎡⎢⎢⎣
1

−3
0
1

⎤⎥⎥⎦
and ⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎣
−1
−2

1
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1

−3
0
1

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

is a basis for ker L.

To find a basis for rangeL proceed as follows.

rref(A′′′)′′′

ans =
1 0 0 0

0 1 0 0

Then
{[

1
0

]
,

[
0
1

]}
is a basis for range L.

ML.2. A === [−−− 3 2 −−− 7;2 −−− 1 4;2 −−− 2 6];

rref(A)

ans =
1 0 1

0 1 −2
0 0 0
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It follows that the general solution to Ax = 0 is obtained from

x1 + x3 = 0
x2 − 2x3 = 0.

Let x3 = r, then x2 = 2r and x1 = −r. Thus

x =

⎡⎣−r
2r
r

⎤⎦ = r

⎡⎣−1
2
1

⎤⎦

and

⎡⎣−1
2
1

⎤⎦ is a basis for ker L. To find a basis for rangeL proceed as follows.

rref(A′′′)′′′

ans =
1 0 0

0 1 0

−2 −2 0

Then

⎧⎨⎩
⎡⎣ 1

0
−2

⎤⎦ ,

⎡⎣ 0
1

−2

⎤⎦⎫⎬⎭ is a basis for range L.

ML.3. A === [3 3 −−− 3 1 11;−−− 4 −−− 4 7 −−− 2 −−− 19;2 2 −−− 3 1 9];

rref(A)

ans =
1 1 0 0 2

0 0 1 0 −1
0 0 0 1 2

It follows that the general solution to Ax = 0 is obtained from

x1 + x2 + 2x5 = 0
x3 − x5 = 0

x4 + 2x5 = 0.

Let x5 = r and x2 = s, then x4 = −2r and x3 = r, x1 = −s − 2r. Thus

x =

⎡⎢⎢⎢⎢⎣
−2r − s

s
r

−2r
r

⎤⎥⎥⎥⎥⎦ = r

⎡⎢⎢⎢⎢⎣
−2

0
1

−2
1

⎤⎥⎥⎥⎥⎦ + s

⎡⎢⎢⎢⎢⎣
−1

1
0
0
0

⎤⎥⎥⎥⎥⎦

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
−2

0
1

−2
1

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
−1

1
0
0
0

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ is a basis for ker L. To find a basis for rangeL proceed as follows.

rref(A′′′)′′′
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ans =
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

Thus the columns of I3 are a basis for range L.

Section 10.3, p. 532

2. (a)
[
1 2
2 −1

]
. (b)

⎡⎣1 − 1
2

1 3
4

⎤⎦. (c)
[

3 2
−4 4

]
. (d)

⎡⎣−2 2
1
2 2

⎤⎦. (e)
[
5
0

]
.

4. (a)

⎡⎣1 2 1
2 −1 0
0 2 1

⎤⎦. (b)

⎡⎣ 1 2 1
2 −1 0

−3 1 0

⎤⎦. (c)

⎡⎣2 3 1
2 −1 0
1 3 1

⎤⎦. (d)

⎡⎣ 2 3 1
2 −1 0

−3 1 0

⎤⎦.

(e) (1, 1, 0).

6. (a)

⎡⎣1 1
1 −1
1 2

⎤⎦. (b)

⎡⎢⎢⎢⎣
1 − 1

3

0 2
3

−1 4
3

⎤⎥⎥⎥⎦. (c)

⎡⎣−1
5

−4

⎤⎦.

8. (a)

⎡⎣1 0
0 1
0 1

⎤⎦. (b)

⎡⎢⎢⎢⎣
1 1
1
2

1
2

1
2 − 3

2

⎤⎥⎥⎥⎦. (c) −3t2 + 3t + 3.

10. (a)

⎡⎢⎢⎣
1 0 2 0
0 1 0 2
2 0 3 0
0 2 0 3

⎤⎥⎥⎦. (b)

⎡⎢⎢⎣
3 −2 5 −3

−3 3 −5 5
2 0 3 0

−2 2 −3 3

⎤⎥⎥⎦. (c)

⎡⎢⎢⎣
1 0 2 1
1 1 2 2
2 0 3 2
2 2 3 3

⎤⎥⎥⎦.

(d)

⎡⎢⎢⎣
1 −2 2 0
0 3 0 2
2 0 3 2
0 2 0 1

⎤⎥⎥⎦.

12. (a)

⎡⎢⎢⎣
0 3 −2 0
2 3 0 −2

−3 0 −3 3
0 −3 2 0

⎤⎥⎥⎦. (b)

⎡⎢⎢⎣
3 6 −4 0
2 −3 2 0

−3 0 0 0
0 −3 2 0

⎤⎥⎥⎦. (c)

⎡⎢⎢⎣
−3 6 −7 3

5 −3 7 −5
−3 0 −3 3

3 −3 5 −3

⎤⎥⎥⎦.

(d)

⎡⎢⎢⎣
3 3 −2 0
5 3 −2 0

−3 0 0 0
−3 −3 2 0

⎤⎥⎥⎦.

14. (a)
[
L(v1)

]
T

=
[

1
−1

]
,
[
L(v2

]
T

=
[
2
1

]
,
[
L(v3)

]
T

=
[
1
0

]
.

(b) L(v1) =
[
0
3

]
, L(v2) =

[
3
3

]
, L(v3) =

[
1
2

]
.

(c)
[

1
11

]
(d)

[
a + b + 2c

2a + 5b − 2c

]
.
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16. (a)

⎡⎣1 2 1
1 0 0
0 1 1

⎤⎦. (b)

⎡⎣8
1
5

⎤⎦. (c)

⎡⎣a + 2b + c
a

b + c

⎤⎦.

18.
[

3 2
−2 1

]
.

20. (a)

⎡⎣1 −1 1
1 1 0
0 1 −1

⎤⎦. (b)

⎡⎣ 2 −2 1
1 1 0

−2 5 −2

⎤⎦. (c) Same as (b).

22. (a)
[
0 −1
1 0

]
. (b)

[
0 −1
1 0

]
. (c)

⎡⎣− 1
2 − 1

2

1
2 − 1

2

⎤⎦. (d)
[
1 −1
1 1

]
.

24. Let x =
[
a1

a2

]
and y =

[
b1

b2

]
. Then

Ax =

⎡⎣ 1√
2

a1 − 1√
2

a2

− 1√
2

a1 − 1√
2

a2

⎤⎦ and Ay =

⎡⎣ 1√
2

b1 − 1√
2

b2

− 1√
2

b1 − 1√
2

b2

⎤⎦ .

We have

(Ax) · (Ay) =
(

1√
2

a1 −
1√
2

a2

) (
1√
2

b1 −
1√
2

b2

)
+

(
− 1√

2
a1 −

1√
2

a2

) (
− 1√

2
b1 −

1√
2

b2

)
= a1b1 + a2b2 = x ·y.

25. It follows from Example 10 in Section 4.3 that the matrix of L with respect to the natural basis for
R2 is ⎡⎣ 1√

2
− 1√

2

1√
2

1√
2

⎤⎦
which is orthogonal.

26. Verify that L(x) · L(y) = x ·y.

T.1. If x = a1v1 + · · · + anvn is a vector in V , then

L(x) = L

⎛⎝ n∑
j=1

ajvj

⎞⎠ =
n∑

j=1

ajL(vj).

Then

[
L(x)

]
T

=

⎡⎣L

⎛⎝ n∑
j=1

ajvj

⎞⎠⎤⎦
T

=
n∑

j=1

aj

[
L(vj)

]
T

=

⎡⎢⎢⎢⎣
c11

c21

...
cm1

⎤⎥⎥⎥⎦ a1 +

⎡⎢⎢⎢⎣
c12

c22

...
cm2

⎤⎥⎥⎥⎦ a2 + · · · +

⎡⎢⎢⎢⎣
c1n

c2n

...
cmn

⎤⎥⎥⎥⎦ an

=

⎡⎢⎢⎢⎣
c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

...
cm1 cm2 · · · cmn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a1

a2

...
an

⎤⎥⎥⎥⎦ = A
[
v
]
S

.
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We now show that A is unique. Assume that A∗ =
[
c∗ij

]
is another matrix having the same properties

as A does, with A �= A∗. Since all the elements of A and A∗ are not equal, say the kth columns of
these matrices are unequal. Now

[
vk

]
S

= ek. Then[
L(vk)

]
T

= A
[
vk

]
S

= Aek = kth column of A,

and [
L(vk)

]
T

= A∗ [
vk

]
S

= A∗ek = kth column of A∗.

Thus, L(vk) has two different coordinate vectors with respect to T , which is impossible. Hence A is
unique.

T.2. Let S = {v1, . . . ,vn}. For each j, 1 ≤ j ≤ n,

I(vj) = vj = 0 · v1 + · · · + 1 · vj + · · · + 0 · vn.

Thus the jth column of the matrix representing the identity transformation is ej . Hence the entire
matrix is In.

T.3. Let S = {v1, . . . ,vn} be a basis for V , T = {w1, . . . ,wm} a basis for W . Then O(vj) = 0W =
0 ·w1 + · · ·+ 0 ·wm. If A is the matrix of the zero transformation with respect to these bases, then
the jth column of A is 0. Thus A is the m × n zero matrix.

T.4. Let S = {v1, . . . ,vn} be a basis for V . Then L(vj) = cvj = 0 · v1 + · · · + cvj + · · · + 0 · vn. If A
is the matrix of L with respect to A, then the jth column of A is cej , where ej is the jth natural
basis vector. Thus A = cIn.

T.5. Let S = {v1,v2, . . . ,vn} and T = {w1,w2, . . . ,wn}. The matrix of I with respect to S and T is the
matrix whose jth column is

[
I(vj)

]
T

=
[
vj

]
T
. This is precisely the transition matrix PT←S from

the S-basis to the T -basis. (See Section 6.7).

T.6. Let S = {v1,v2, . . . ,vm} be a basis for U and T = {v1,v2, . . . ,vm,vm+1, . . . ,vn} a basis for V
(Theorem 6.8). Now L(vj) for j = 1, 2, . . . , m is a vector in U , so L(vj) is a linear combination of
v1,v2, . . . ,vm. Thus

L(vj) = a1v1 + a2v2 + · · · + amvm + 0vm+1 + · · · + 0vn.

Hence,

[
L(vj)

]
T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

...
am

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

T.7. Suppose that L is one-to-one and onto. Then dim(kerL) = 0. Since kerL is the solution space of
the homogeneous system Ax = 0, this homogeneous system has only the trivial solution. Theorem
1.13 implies that A is nonsingular. Conversely, if A is nonsingular, then Theorem 1.13 implies that
the only solution to Ax = 0 is the trivial one.

T.8. Equation (10) shows that L preserves the dot product: L(u) · L(v) = u ·v. We now have

‖L(u)‖ =
√

L(u) · L(u) =
√

u ·u = ‖u‖.
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For nonzero vectors u and v, the cosine of the angle between L(u) and L(v) is

L(u) · L(v)
‖L(u)‖ ‖L(v)‖ =

u ·v
‖u‖ ‖v‖ = cos θ

where θ is the angle between u and v.

T.9. Suppose that L is an isometry. Then L(vi) · L(vj) = vi ·vj so L(vi) · L(vj) = 1 if i = j and 0 if
i �= j. Hence, T = {L(v1), L(v2), . . . , L(vn)} is an orthonormal basis for Rn. Conversely, suppose
that T is an orthonormal basis for Rn. Then L(vi) · L(vj) = 1 if i = j and 0 if i �= j. Thus,
L(vi) · L(vj) = vi ·vj , so L is an isometry.

T.10. Since

‖x + y‖2 = (x + y) · (x + y) = x ·x + 2(x ·y) + y ·y = ‖x‖2 + 2(x ·y) + ‖y‖2

it follows that

x ·y = 1
2

(
‖x + y‖2 − ‖x‖2 − ‖y‖2

)
.

Then if L preserves length,

L(x) · L(y) = 1
2

(
‖L(x) + L(y)‖2 − ‖L(x)‖2 − ‖L(y)‖2

)
= 1

2

(
‖x + y‖2 − ‖x‖2 − ‖y‖2

)
= x ·y.

ML.1. From the definition of L, note that we can compute images under L using matrix multiplication:
L(v) = Cv, where

C === [2 −−− 1 0;1 1 −−− 3]

C =
2 −1 0

1 1 −3
This observation makes it easy to compute L(vi) in Matlab. Entering the vectors in set S and
computing their images, we have

v1 === [1 1 1]′′′; v2 === [1 2 1]′′′; v3 === [0 1 −−− 1]′′′;

Denote the images as Lvi:

Lv1 === C ∗∗∗ v1

Lv1 =
1

−1
Lv2 === C ∗∗∗ v2

Lv2 =
0

0

Lv3 === C ∗∗∗ v3

Lv3 =
−1
4

To find the coordinates of Lvi with respect to the T basis we solve the three systems involved all
at once using the rref command.



182 Chapter 10

rref([[1 2;2 1] Lv1 Lv2 Lv3])

ans =
1 0 −1 0 3

0 1 1 0 −2
The last 3 columns give the matrix A representing L with respect to bases S and T .

A === ans(:,3:5)

A =
−1 0 3

1 0 −2

ML.2. Enter C and the vectors from the S and T bases into Matlab. Then compute the images of vi as
L(vi) = C ∗ vi.

C === [1 2 0;2 1 −−− 1;3 1 0;−−− 1 0 2]

C =
1 2 0

2 1 −1
3 1 0

−1 0 2

v1 === [1 0 1]′′′; v2 === [2 0 1]′′′; v3 === [0 1 2]′′′;

w1 === [1 1 1 2]′′′; w2 === [1 1 1 0]′′′; w3 === [0 1 1 −−− 1]′′′; w4 === [0 0 1 0]′′′;

Lv1 === C ∗∗∗ v1; Lv2 === C ∗∗∗ v2; Lv3 === C ∗∗∗ v3;

rref([w1 w2 w3 w4 Lv1 Lv2 Lv3])

ans =
1.0000 0 0 0 0.5000 0.5000 0.5000

0 1.0000 0 0 0.5000 1.5000 1.5000

0 0 1.0000 0 0 1.0000 −3.0000
0 0 0 1.0000 2.0000 3.0000 2.0000

It follows that A consists of the last 3 columns of ans.

A === ans(:,5:7)

A =
0.5000 0.5000 0.5000

0.5000 1.5000 1.5000

0 1.0000 −3.0000
2.0000 3.0000 2.0000

ML.3. Note that images under L can be computed by matrix multiplication using the matrix

C === [−−− 1 2;3 −−− 1]

C =
−1 2

3 −1
Enter each of the basis vectors into Matlab.

v1 === [1 2′′′; v2 === [−−− 1 1]′′′;

w2 === [−−− 2 1]′′′; w2 === [1 1]′′′;
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(a) Compute the images of vi under L.
Lv1 === C ∗∗∗ v1
Lv1 =

3

1

Lv2 === C ∗∗∗ v2
Lv2 =

3

−4
To compute the matrix representing L with respect to S, compute
rref([v1 v2 Lv1 Lv2])

ans =
1.0000 0 1.3333 −0.3333

0 1.0000 −1.6667 −3.3333
A === ans(:,3:4)

A =
1.3333 −0.3333

−1.6667 −3.3333
(b) Compute the images of wi under L.

Lw1 === C ∗∗∗ w1
Lw1 =

4

−7
Lw2 === C ∗∗∗ w2
Lw2 =

1

2

To compute the matrix representing L with respect to T , compute
rref([w1 w2 Lw1 Lw2])

ans =
1.0000 0 −3.6667 0.3333

0 1.0000 −3.3333 1.6667

B === ans(:,3:4)

B =
−3.6667 0.3333

−3.3333 1.6667

(c) To find the transition matrix from T to S we find the coordinates of the T -basis vectors in
terms of S. This is done by solving two linear systems with coefficient matrix consisting of the
S-basis vectors and right hand sides the T -basis vectors. We use
rref([v1 v2 w1 w2])

ans =
1.0000 0 −0.3333 0.6667

0 1.0000 1.6667 −0.3333
Then the transition matrix P is
P === ans(:,3:4)
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P =
−0.3333 0.6667

1.6667 −0.3333

(d) We have

invert(P) ∗∗∗ A ∗∗∗ P

ans =
−3.6667 0.3333

−3.3333 1.6667

which is indeed B.

Section 10.4, p. 547

2. (a)

1 1

S0

√
2

2

√
2

√
2

2

(b) It is half of the square with side = 1 that is obtained when the isosceles triangle is reflected
about the x-axis and both the original triangle and its reflection are retained.

(c)

1 1

now omit legs

S1 k = 

√
2

2

(d)

S2 k = 
2
1

now omit legs

(e)

two sides overlap here
S3
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(f)

now omit legs we get a diamond 
(a closed portion)

4. (a) 1

3
2

3
2( )

2
=

9
4

3
2( )

3

3
2( )

4
...

(b)
(

2
3

)3 and
(

2
3

)4 respectively.

(c) 16 and 32 respectively.

(d) 210.

6. T (T (v)) = T (Av + b) = A2v + Ab + b
T (T (T (v))) = T (A2v + Ab + b) = A3v + A2b + Ab + b
T k(v) = Akv + (Ak−1 + Ak−2 + · · · + A)b + b

8. A =
[
4 −2
2 1

]
, b =

[
−3

1

]
.

10. A =
[
2 −1
2 1

]
, b =

[
0
4

]
.

12. S =
[
0 1.5 3 2.5 4 4 0
0 1.5 1 2.5 4 0 0

]
. Recall from Example 1 that to compute T (S) we compute AS, then

add the vector b to each column of AS.

(a) T (S) = AS + b =
[
−1 1
−2 1

] [
0 1.5 3 2.5 4 4 0
0 1.5 1 2.5 4 0 0

]
+

[
−2 −2 −2 −2 −2 −2 −2

1 1 1 1 1 1 1

]
=

[
−2 −2 −4 −2 −2 −6 −2

1 − 1
2 −4 − 3

2 −3 −7 1

]

0

8

8
6

−
− 4− 2−

(b) T (S) = AS + b =
[

2 0
−2 1

] [
0 1.5 3 2.5 4 4 0
0 1.5 1 2.5 4 0 0

]
+

[
−1 −1 −1 −1 −1 −1 −1

0 0 0 0 0 0 0

]
=

[
−1 2 5 4 7 7 −1

0 − 3
2 −5 − 5

2 −4 −8 0

]
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0

8
2

−
− 4 8

4−

620

(c) T (S) = AS + b =
[

1 −1
−1 1

] [
0 1.5 3 2.5 4 4 0
0 1.5 1 2.5 4 0 0

]
+

[
1 1 1 1 1 1 1

−2 −2 −2 −2 −2 −2 −2

]
=

[
1 1 3 1 1 5 1

−2 −2 −4 −2 −2 −6 −2

]
0

8
2

−
− 4 8

4−

620

14. b =
[
−4

1

]
, A =

[
1 0
0 −1

]
.

16. We have the following information:

T

([
1
2

])
=

[
p r
s t

] [
1
2

]
+

[
b1

b2

]
=

[
p + 2r + b1

s + 2t + b2

]
=

[
1
0

]
T

([
1
4

])
=

[
p r
s t

] [
1
4

]
+

[
b1

b2

]
=

[
p + 4r + b1

s + 4t + b2

]
=

[
−1

0

]
T

([
2
3

])
=

[
p r
s t

] [
2
3

]
+

[
b1

b2

]
=

[
2p + 3r + b1

2s + 3t + b2

]
=

[
1
1

]
Equating corresponding entries in the relations above leads to two linear systems of equations with
three equations in each system. We get the systems

p + 2r + b1 = 1
p + 4r + b1 = −1

2p + 3r + b1 = 1

p + 2r + b1 = 0
p + 4r + b1 = 0

2p + 3r + b1 = 1.

We form the corresponding augmented matrices and compute the RREF to solve the systems. (Note
that the coefficient matrices are identical.) We obtain p = 1, r = −1, b1 = 2 and s = 1, t = 0,
b2 = −1. Thus

A =
[
1 −1
1 0

]
and b =

[
2

−1

]
.

18. (a) (−1, 1) (1, 1)

(0, 0)

2

1

4

1

8

1

(b)
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(c) (d)

T.1. (a) A =
[
−1 0

0 1

]
, b =

[
0
2

]
. (b) A =

[
0 1

−1 0

]
, b =

[
0

−1

]
.

T.2. (a) Rφ =
[

cos φ sinφ
− sinφ cos φ

]
. (b) A =

[
0 1

−1 0

]
, b =

[
0
1

]
.

T.3. (a)

[
1
3 0
0 1

3

]
. (b) b =

[
1
1

]
, b2 =

[
0
1

]
, b3 =

[
1
2

]
, b4 =

[
2
1

]
, b5 =

[
1
0

]
.

T.4. (a) We determine when the matrix A− I2 is nonsingular because that will guarantee that the linear
system (A − I2)v = −b has a unique solution. Computing the determinant of A − I2 we get
(p − 1)(t − 1) − rs. Hence when this quantity is not zero we have a unique fixed point.

(b) We compute the solution(s) to (A − I2)v = −b in each case.

rref

⎛⎜⎝
⎡⎢⎣ − 5

6

√
3

6 − 1
2

−
√

3
6 − 5

6 −
√

3
6

⎤⎥⎦
⎞⎟⎠ =

[
1 0 0.6429
0 1 0.1237

]

hence

v =

⎡⎣ 9
14√
3

14

⎤⎦ ≈
[
0.6429
0.1237

]
.

T.5. Here we consider solutions v of the matrix equation Av = v. The equation Av = v implies that
λ = 1 is an eigenvalue of A. Using this observation we can state the following. T has a fixed point
when 1 is an eigenvalue of A. In this case there will be infinitely many fixed points since any nonzero
multiple of an eigenvector is another eigenvector.

ML.1. Command fernifs([0 0.2],30000) produces the following figure.

0 2 4
0

2

4

6

8

10

A Barnsley Fern.

Routine is over. Press ENTER twice.

− 4 − 2
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ML.2. (a) After 3000 iterations, the attractor looks like a leaf. In the simulation, the starting vector
[0.5, 0.5] was used.

0 0.5 1

0

0.5

1

The CHAOS GAME

Routine is over. Press ENTER.

−0.5

−1

−1.5
−0.5−1

More iterations give a more well-defined leaf. After 10,000 iterations, the resulting figure is
shown.

0 0.5 1

0

0.5

1

The CHAOS GAME

Routine is over. Press ENTER.

−0.5

−1

−1.5
−0.5−1

(b) The five affine transformations from Exercise T.3 produced the following figure when 25,000
iterations were used.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

The CHAOS GAME

Routine is over. Press ENTER.

Supplementary Exercises, p. 552

2. No.

4. (a) Possible answer: {2t2 + t + 1}. (b) No.
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6. 2.

8. (a)

⎡⎣ 1 0 2
2 1 0

−2 0 −1

⎤⎦. (b) 4t2 − 4t + 1.

10.

⎡⎢⎢⎣
0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0

⎤⎥⎥⎦.

12. No. Let

A =
[
1 0
0 0

]
and B =

[
0 0
0 1

]
.

Then A + B = I2. However, L(A + B) = L(I2) = 1, but L(A) + L(B) = 0.

14. Yes. We have

L(B1 + B2) = A(B1 + B2) − (B1 + B2)A = (AB1 − B1A) + (AB2 − B2A) = L(B1) + L(B2)

and

L(cB) = A(cB) − (cB)A = c(AB − BA) = cL(B).

15. (a) We have

L(f + g) = (f + g)(0) = f(0) + g(0) = L(f) + L(g)
L(cf) = (cf)(0) = cf(0) = cL(f)

(b) The kernel of L consists of any continuous function f such that L(f) = f(0) = 0. That is, f is
in kerL provided the value of f at x = 0 is zero. The following functions are in ker L:

x, x2, x cos x, sinx,
x

x2 + 1
, xex.

(c) Yes. In this case

L(f + g) = (f + g)
(

1
2

)
= f

(
1
2

)
+ g

(
1
2

)
= L(f) + L(g)

L(cf) = (cf)
(

1
2

)
= cf

(
1
2

)
= cL(f).

16. (a) A =
[
1 0
0 −1

]
, b =

[
−4
−3

]
. (b) A =

[
0 −1
1 0

]
, b =

[
2

−4

]
.

T.1. Since
[
vj

]
S

= ej =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← jth position ,

{[
v1

]
S

, . . . ,
[
vn

]
S

}
is the standard basis for Rn.
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T.2. Let

[
v
]
S

=

⎡⎢⎢⎢⎣
c1

c2

...
cn

⎤⎥⎥⎥⎦ and
[
w

]
S

=

⎡⎢⎢⎢⎣
d1

d2

...
dn

⎤⎥⎥⎥⎦ .

Then

[
v + w

]
S

=

[
n∑

i=1

civi +
n∑

i=1

divi

]
S

=

[
n∑

i=1

(ci + di)vi

]
S

=

⎡⎢⎢⎢⎣
c1 + d1

c2 + d2

...
cn + dn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
c1

c2

...
cn

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
d1

d2

...
dn

⎤⎥⎥⎥⎦ =
[
v
]
S

+
[
w

]
S

.

and, for any scalar k,

[
kv

]
S

=

[
k

n∑
i=1

civi

]
S

=

[
n∑

i=1

kcivi

]
S

=

⎡⎢⎢⎢⎣
kc1

kc2

...
kcn

⎤⎥⎥⎥⎦ = k

⎡⎢⎢⎢⎣
c1

c2

...
cn

⎤⎥⎥⎥⎦ = k
[
v
]
S

.

T.3. (a) (L1 L2)(u + v) = L1(u + v) + L2(u + v)
= L1(u) + L1(v) + L2(u) + L2(v) = (L1 L2)(u) + (L1 L2)(v)

(L1 L2)(ku) = L1(ku) + L2(ku)
= kL1(u) + kL2(u) = k(L1(u) + L2(u)) = k(L1 L2)(u)

(b) (c � L)(u + v) = cL(u + v) = cL(u) + cL(v) = (c � L)(u) + (c � L)(v)
(c � L)(ku) = cL(ku) = ckL(u) = kcL(u) = k(c � L)(u)

(c) (L1 L2)(v) = L1(v) + L2(v) = (v1 + v2, v2 + v3) + (v1 + v3, v2) = (2v1 + v2 + v3, 2v2 + v3).
(−2 � L1) (v) = −2L(v) = −2(v1 + v2, v2 + v3) = (−2v1 − 2v2,−2v2 − 2v3).

T.4. We verify Definition 1 in Section 6.1. Property (α) follows from Exercise T.3(a) and (β) follows
from T.3(b).

(a) (L1 L2)(v) = L1(v) + L2(v)
= L2(v) + L1(v) (since W is a vector space)
= (L2 L1)(v)

(b) (L1 (L2 L3))(v) = L1(v) + (L2 L3)(v)
= L1(v) + (L2(v) + L3(v))
= (L1(v) + L2(v)) + L3(v) (since W is a vector space)
= (L1 L2)(v) + L3(v)
= ((L1 L2) L3)(v)

(c) Let O : V → W be the zero linear transformation defined by O(v) = 0W , for any v in V . (See
Exercise T.6 in Section 10.1.) Then

(L1 O)(v) = L1(v) + O(v) = L1(v) + 0W = L1(v)
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and

(O L1)(v) = O(v) + L1(v) = 0W + L1(v) = L1(v).

Hence

L1 O = O L1 = L1.

(d) Let −L1 be the linear transformation from V to W defined by (−L1) (v) = −L1(v) for any v
in V . Then

(L1 −L1)(v) = L1(v) + (−L1(v)) = L1(v) − L1(v) = 0W .

Thus for any v in V , L −L1 gives the zero element in W . From (c), L1 −L1 = O.

(e) (c � (L1 L2))(v) = c(L1 L2(v))
= c(L1(v) + L2(v))
= cL1(v) + cL2(v)
= (c � L1)(v) + (c � L2)(v)
= ((c � L1) (c � L2))(v)

(f) ((c + d) � L1)(v) = (c + d)L1(v)
= cL1(v) + dL1(v) = (c � L1)(v) + (d � L1)(v) = ((c � L1) (d � L1))(v)

(g) (c � (d � L1))(v) = c(d � L1)(v) = c(dL1(v)) = cdL1(v) = (cd � L1)(v)
(h) (1 � L1)(v) = 1L1(v) = L1(v) since W is a vector space.

T.5. (a) By Theorem 10.5, L(x) = Ax is one-to-one if and only if ker(L), which is the solution space
of Ax = 0, is equal to {0V }. The solution space of Ax = 0 is {0V } if and only if the only
linear combination of the columns of A that gives the zero vector is the one in which all the
coefficients are zero. This is the case if and only if the columns of A are linearly independent,
which is equivalent to rank A = n.

(b) L(A) = Ax is onto if and only if rangeL is Rm. But rangeL is equal to the column space of A
and

m = dim(rangeL) = dim(column space of A) = column rank of A = rankA.

T.6. For v = (a1, a2, . . . , an), L(v) = a1v1 + a2v2 + · · · + anvn.

(a) Let w = (b1, b2, . . . , bn). Then

L(v + w) = (a1 + b1)v1 + (a2 + b2)v2 + · · · + (an + bn)vn

= (a1v1 + a2v2 + · · · + anvn) + (b1v1 + b2v2 + · · · + bnvn)
= L(v) + L(w)

and, for any scalar k,

L(kv) = (ka1)v1 + (ka2)v2 + · · · + (kan)vn

= k(a1v1 + a2v2 + · · · + anvn)
= kL(v).

Thus L is a linear transformation.
(b) From Theorem 10.5, L is one-to-one provided kerL = {0}. Assume that L(v) = 0. Then we

have

a1v1 + a2v2 + · · · + anvn = 0.

Since S is a basis, {v1,v2, . . . ,vn} are linearly independent so a1 = a2 = · · · = an = 0 and it
follows that v = 0. Hence ker L = {0} and L is one-to-one.

(c) That L is onto follows from part (b) and Corollary 10.2(a).
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Linear Programming (Optional)

Section 11.1, p. 572

2. Maximize z = 0.08x + 0.10y

subject to

x + y ≤ 6000
x ≥ 1500
y ≤ 4000

x ≥ 0, y ≥ 0

4. Maximize z = 30x + 60y

subject to

6x + 12y ≤ 18,000
3x + y ≥ 1800

x ≥ 0, y ≥ 0

6. Maximize z = 60x + 50y

subject to

3x + 5y ≤ 15
4x + 4y ≥ 16
x ≥ 0, y ≥ 0

8. Maximize z = 10,000,000x + 15,000,000y

subject to

40x + 60y ≥ 300
2x + 3y ≤ 12
x ≥ 0, y ≥ 0
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10. y

O
x

(0, 4)

(0, 1)

(2, 0) (4, 0)
x + y ≤ 6

12. y

O
x

5x + 4y ≥ 20

x + y ≤ 3

14. x = 18
5 , y = 2

5 , optimal value of z is 58
5 .

16. 3
2 tons of regular steel and 5

2 tons of special steel; maximum profit is $430.

18. Invest $4000 in bond A and $2000 in bond B; maximum return is $520.

20. Use 2 minutes of advertising and 28 minutes of programming; maximum number of viewer-minutes
is 1,340,000.

22. Use 4 units of A and 3 units of B; maximum amount of protein is 34 units.

24. (b).

26. Maximize z = 2x1 − 3x2 − 2x3

subject to

2x1 + x2 + 2x3 ≤ 12
x1 + x2 − 3x3 ≤ 8

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

28. Maximize z = 2x + 8y

subject to

2x + 3y + u = 18
3x − 2y + v = 6
x ≥ 0, y ≥ 0, u ≥ 0, v ≥ 0

Section 11.2, p. 589

2.

x1 x2 x3 x4 x5 z

x4 3 −2 1 1 0 0 4

x5 2 4 5 0 1 0 6

−2 −3 4 0 0 1 0
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4.

x1 x2 x3 x4 x5 x6 z

x4 1 −2 4 1 0 0 0 5

x5 2 2 4 0 1 0 0 5

x6 3 1 −1 0 0 1 0 7

−2 3 −1 0 0 0 1 0

6. x = 0, y = 6
7 , optimal z value is 30

7 .

8. No finite optimal solution.

10. x1 = 0, x2 = 5
2 , x3 = 0, optimal z value is z = 10.

12. 3
2 tons of regular steel and 5

2 tons of special steel; maximum profit is $430.

14. 4 units of A and 3 units of B; maximum amount of protein is 34 units.

T.1. We must show that if x and y are any two feasible solutions, then for any 0 ≤ r ≤ 1, the vector
rx + (1 − r)y is also a feasible solution. First, since r ≥ 0 and (1 − r) ≥ 0, and Ax ≤ b, Ay ≤ b,

A[rx + (1 − r)y)] = rAx + (1 − r)Ay ≤ rb + (1 − r)b = b.

Also, since x ≥ 0, y ≥ 0,

rx + (1 − r)y ≥ r · 0 + (1 − r) · 0 = 0.

Thus rx + (1 − r)y is a feasible solution.

T.2. Suppose that in a certain step of the simplex method, the minimum positive θ-ratio is not chosen.
After a reindexing of the variables, if necessary, we may assume that all the nonbasic variables occur
first followed by all the basic variables. That is, we may assume that we start with the situation
given by Tableau 2 which precedes Equation (16). Let us further assume that x1 is the entering
variable and xn+1 the departing variable and that the θ-ratio b2/a21 associated with the second row
is positive and smaller than b1/a11 associated with the first row — the row of the incorrectly chosen
departing variable xn+1. Thus

0 <
b2

a21
<

b1

a11

a11b2 < a21b1,

a11b2 − a21b1 < 0.

The new set of nonbasic variables is {x2, . . . , xn, xn+1}. Set these nonbasic variables equal to zero
and solve the first equation for x1:

a11x1 + a12 · 0 + · · · + a1n · 0 + 0 = b1

x1 =
b1

a11
.

Next substitute this value for x1 into the second equation and solve for the basic variable xn+2:

a21

(
b1

a11

)
+ a22 · 0 + · · · + a2n · 0 + xn+2 = b2,

xn+2 = b2 −
a21b1

a11
=

a11b2 − a21b1

a11
=

neg
pos

= neg,

a contradiction to the fact that the coordinate xn+2 of any feasible solution must be ≥ 0.
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ML.5. As a check, the solution is x4 = 2
3 , x3 = 0, x2 = 1

3 , x1 = 1, all other variables zero and the optimal
value of z is 11. The final tableau is as follows:

0 0 1.6667 1 0.0000 −0.1667 0 0.6667

0 1 3.3333 0 1.0000 −0.3333 0 0.3333

1 0 −3.0000 0 −1.0000 0.5000 0 1.0000

0 0 1.0000 0 1.0000 1.0000 1 11.0000

ML.6. As a check, the solution is x3 = 4
3 , x2 = 4, x7 = 22

3 , all other variables zero, and the optimal value
of z is 28

3 . The final tableau is as follows:

0.4444 0 1 −0.1111 0.3333 −0.1111 0 0 1.3333

0.6667 1 0 1.3333 0 0.3333 0 0 4.0000

0.7778 0 0 −2.4444 −0.6667 −0.4444 1 0 7.3333

0.7778 0 0 1.5556 0.3333 0.5556 0 1 9.3333

Section 11.3, p. 598

2. Maximize z′ = 5w1 + 6w2

subject to

w1 + 2w2 ≥ 10
3w1 − 4w2 ≥ 12
4w1 − 5w2 ≥ 15
w1 ≥ 0, w2 ≥ 0

4. Maximize z′ = 9w1 + 12w2

subject to

3w1 + 5w2 ≤ 14
5w1 + 2w2 ≤ 12

−4w1 + 7w2 ≤ 18
w1 ≥ 0, w2 ≥ 0

6. w1 = 2
3 , w2 = 0, optimal value is 4.

8. w1 = 1
10 , w2 = 7

10 , optimal value is 69
10 .

10. Use 6 oz. of dates and no nuts or raisins. Total cost is 90 cents.

Section 11.4, p. 612

2. C

R
stone

scissors
paper

⎡⎣
stone scissors paper

0 1 −1
−1 0 1

1 −1 0

⎤⎦
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4. C’s guess

R’s Choice
Nickel
Dime

[Nickel Dime
−5 5
10 10

]

6. (a) p =
[
0 1

]
, q =

[
1
0

]
, v = 3. (b) p =

[
0 1 0

]
, q =

⎡⎣0
1
0

⎤⎦, v = −1.

(c) p =
[
0 1 0 0

]
, q =

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦, v = −2 or p =
[
1 0 0 0

]
, q =

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦, v = −2.

8. (a) 5
3 . (b) 1

12 .

10. p1 = 2
3 , p2 = 1

3 , q1 = 5
6 , q2 = 1

6 , v = 14
3 . 12. p1 = 0, p2 = 3

4 , p3 = 1
4 , q1 = 3

4 , q2 = 1
4 , v = 29

4 .

14. p =
[
3
7 0 4

7

]
, q =

⎡⎢⎢⎢⎣
2
7

5
7

0

⎤⎥⎥⎥⎦, v = − 1
7 . 16. p =

[
11
20

9
20

]
, q =

⎡⎣ 11
20

9
20

⎤⎦, v = 1
20 .

18. p =
[
1 0

]
, q =

[
1
0

]
, v = 50.

20. For labor: p1 = 0, p2 = 3
4 , p3 = 1

4 ; for management: q1 = 3
4 , q2 = 1

4 , v = 11
4 .

T.1. The expected payoff to R is the sum of terms of the form (Probability that R plays row i and C plays
column j) × (Payoff to R when R plays i and C plays j) = piqjaij . Summing over all 1 ≤ i ≤ m
and 1 ≤ j ≤ n, we get

Expected payoff to R =
m∑

i=1

n∑
j=1

piaijqj = pAq.

T.2. Let p0 be an optimal strategy for R for the original game with payoff matrix A =
[
aij

]
. Then for

any strategy q for C and any strategy p for R,

E(p0,q) = p0Aq ≥ pAq = E(p,q)

or

m∑
i=1

n∑
j=1

p
(0)
i aijaj ≥

m∑
i=1

n∑
j=1

piaijqj ,

where p0 =
[
p
(0)
i

]
, p =

[
pi

]
, and q =

[
qj

]
.

Let A′ =
[
aij + r

]
be the payoff matrix for the new game in which each payoff to R has been
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increased by the constant r. Let E′ be the expected payoff to R for the new game. Then

E′(p,q) =
m∑

i=1

n∑
j=1

pi(aij + r)qj

=
m∑

i=1

n∑
j=1

piaijqj +
m∑

i=1

n∑
j=1

pirqj

= E(p,q) + r

(
m∑

i=1

pi

)⎛⎝ n∑
j=1

qj

⎞⎠
= E(p,q) + r.

Likewise, E′(p0,q) = E(p0,q) + r. Then

E′(p0,q) = E(p0,q) + r ≥ E(p,q) + r = E′(p,q),

so p0 is also an optimal strategy for R for the new game.

Similarly, the optimal strategy q0 for C is the same for both the original game and the new game.
Finally, the value v′ of the new game is

E′(p0,q0) = E(p0,q0) + r = v + r,

where v is the value of the original game.

Supplementary Exercises, p. 614

2. Manufacture 100 units of model A and 500 units of model B daily. The maximum profit is $58,000.

4. Maximize z′ = 6y1 + 10y2

subject to

2y1 + 5y2 ≤ 6
3y1 + 2y2 ≤ 5
y1 ≥ 0, y2 ≥ 0

6. p =
[
2
3

1
3 0

]
, q =

⎡⎢⎢⎢⎣
0
1
3

2
3

⎤⎥⎥⎥⎦, v = 8
3 .
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Complex Numbers

Appendix A.1, p. A7

2. (a) − 1
5 + 2

5 i. (b) 9
10 − 7

10 i. (c) 4 − 3i. (d) 1
26 − 5

26 i.

4. (a)
√

20. (b)
√

10. (c)
√

13. (d)
√

17.

6. (a)
[
2 + 4i 5i
−2 4 − 2i

]
. (b)

[
4 − 3i
−2 − i

]
. (c)

[
−4 + 4i −2 + 16i
−4i −8i

]
.

[
3i

−1 − 3i

]
.

(e)
[

2i −1 + 3i
−2 −1 − i

]
. (f)

[
−2i 1 − 2i
0 3 + i

]
. (g)

[
3 + i

−3 + 3i

]
. (h)

[
3 − 6i
−2 − 6i

]
.

8. (a) Hermitian, normal. (b) None. (c) Unitary, normal. (d) Normal.

(e) Hermitian, normal. (f) None. (g) Normal. (h) Unitary, normal.

10. (a)
[
0 0
0 0

]
. (b)

[
4 18
0 4

]
. (c)

[
−5 5i
5i −5

]
. (d)

[
4 7i
0 −3

]
.

12.
[
2 0
0 2

]
,
[
−1 0

0 −1

]
.

T.1. (a) Re (c1 + c2) = Re ((a1 + a2) + (b1 + b2)i) = a1 + a2 = Re (c1) + Re (c2).
Im (c1 + c2) = Im ((a1 + a2) + (b1 + b2)i) = b1 + b2 = Im (c1 + Im (c2).

(b) Re (kc) = Re (ka + kbi) = ka = Re (c).
Im (kc) = Im (ka + kbi) = kb = k Im (c).

(c) No.

(d) Re (c1c2) = Re ((a1 + b1i)(a2 + b2i)) = Re ((a1a2 − b1b2) + (a1b2 + a2b1)i) = a1a2 − b1b2 �=
Re (c1) Re (c2).

T.2. (a)
(
A + B

)
ij

= aij + bij = aij + bij =
(
A

)
ij

+
(
B

)
ij

(b)
(
kA

)
ij

= kaij = k aij = k
(
A

)
ij

.

(c) CC−1 = C−1C = In = In; thus (C)−1 = C−1.

T.3. (a) aii = aii, hence aii is real. (See Property 4 in Section B1.)

(b) First, AT = A implies that AT = A. Let B =
A + A

2
. Then

B =
(

A + A

2

)
=

A + A

2
=

A + A

2
=

A + A

2
= B,
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so B is a real matrix. Also,

BT =
(

A + A

2

)T

=
AT + A

T

2
=

AT + AT

2
=

A + A

2
=

A + A

2
= B

so B is symmetric.

Next, let C =
A − A

2i
. Then

C =
(

A − A

2i

)
=

A − A

−2i
=

A − A

2i
= C

so C is a real matrix. Also,

CT =
(

A − A

2i

)T

=
AT − A

T

2i
=

AT − AT

2i
=

A − A

2i
= −A − A

2i
= −C

so C is also skew symmetric. Moreover, A = B + iC.
(c) If A = AT and A = A, then AT = A = A. Hence, A is Hermitian.

T.4. (a) If A is real and orthogonal, then A−1 = AT or AAT = In. Hence A is unitary.

(b) (AT )T AT = (AT )
T
AT = (AAT )T = IT

n = In. Note: (AT )T = (AT )T .
Similarly, AT (AT )T = In.

(c) (A−1)T A−1 = (AT )−1A−1 = (AT )−1A−1 = (AAT )−1 = I−1
n = In.

Note: (A−1)T = (AT )−1 and (AT )−1 = (AT )−1. Similarly, A−1(A−1)T = In.

T.5. (a) Let

B =
A + AT

2
and C =

A − AT

2i
.

Then

BT =

(
A + AT

2

)T

=
AT + (AT )T

2
=

AT + A

2
=

A + AT

2
= B

so B is Hermitian. Also,

CT =

(
A − AT

2i

)T

=
AT − (AT )T

−2i
=

A − AT

2i
= C

so C is Hermitian. Moreover, A = B + iC.
(b) We have

AT A = (BT + iCT )(B + iC) = (BT + iCT )(B + iC)
= (B − iC)(B + iC)

= B2 − iCB + iBC − i2C2

= (B2 + C2) + i(BC − CB).

Similarly,

AAT = (B + iC)(BT + iC)T = (B + iC)(BT + iCT )
= (B + iC)(B − iC)

= B2 − iBC + iCB − i2C2

= (B2 + C2) + i(CB − BC).
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Since AT A = AAT , we equate imaginary parts obtaining BC −CB = CB−BC, which implies
that BC = CB. The steps are reversible, establishing the converse.

T.6. (a) If AT = A, then AT A = A2 = AAT , so A is normal.

(b) If AT = A−1, then AT A = A−1A = AA−1 = AAT , so A is normal.

(c) One example is
[
i i
i i

]
. Note that this matrix is not symmetric since it is not a real matrix.

T.7. Let A = B + iC be skew Hermitian. Then AT = −A so BT − iCT = −B − iC. Then BT = −B and
CT = C. Thus, B is skew symmetric and C is symmetric. Conversely, if B is skew symmetric and
C is symmetric, then BT = −B and CT = C so BT − iCT = −B − iC or AT = −A. Hence, A is
skew Hermitian.

Appendix A.2, p. A17

2. (a) x = − 7
30 − 4

30 i, y = − 11
15 (1 + 2i), z = 3

5 − 4
5 i.

(b) x = −1 + 4i, y = 1
2 + 3

2 i, z = 2 − i.

4. (a) 4i. (b) 0. (c) −9 − 8i. (d) −10.

6. (a) Yes. (b) No. (c) Yes.

8. (a) No. (b) No.

10. (a) −7 − 6i. (b) 10 + 19i.

12. (a) 4. (b) 4. (c)
√

3. (d)
√

19.

14. (a) P =
[
1 1
i −i

]
. (b) P =

[
1 1
i −i

]
.

(c) P1 =

⎡⎣0 1 0
1 0 1
i 0 −i

⎤⎦, P2 =

⎡⎣0 0 1
1 1 0
i −i 0

⎤⎦, P3 =

⎡⎣1 0 0
0 1 1
0 i −i

⎤⎦.

T.1. (a) Let A and B be Hermitian and let k be a complex scalar. Then

(A + B)T = (A + B)T = A
T

+ B
T

= A + B,

so the sum of Hermitian matrices is again Hermitian. Next,

(kA)T = kA
T

= kA �= kA,

so the set of Hermitian matrices is not closed under scalar multiplication and hence is not a
complex subspace of Cnn.

(b) From (a), we have closure of addition and since the scalars are real here, k = k, hence (kA)T =
kA. Thus, W is a real subspace of the real vector space of n × n complex matrices.

T.2. The zero vector 0n is not unitary, so W cannot be a subspace.

T.3. (a) Let A be Hermitian and suppose that Ax = λx, λ �= 0. We show that λ = λ. We have

(Ax)T =
(
Ax

)T
= xT A = xT A.

Also, (λx)T = λxT , so xT A = λxT . Multiplying both sides by x on the right, we obtain
xT Ax = λxT x. However, xT Ax = xT λx = λxT x. Thus, λxT x = λxT x. Then (λ−λ)xT x = 0
and since xT x > 0, we have λ = λ.
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(b) AT =

⎡⎣2 0 0
0 2 −i
0 i 2

⎤⎦ =

⎡⎣2 0 0
0 2 i
0 −i 2

⎤⎦ = A.

(c) No, see 11(b). An eigenvector x associated with a real eigenvalue λ of a complex matrix A is
in general complex, because Ax is in general complex. Thus λx must also be complex.

T.4. If A is unitary, then A
T

= A−1. Let A =
[
u1 u2 · · · un

]
. Since

In = AAT =
[
u1 u2 · · · un

]
⎡⎢⎢⎢⎢⎢⎢⎣
uT

1

uT
2

...

uT
n

⎤⎥⎥⎥⎥⎥⎥⎦ ,

then

ukuT
j =

{
0 if j �= k

1 if j = k.

It follows that the columns u1,u2, . . . ,un form an orthonormal set. The steps are reversible estab-
lishing the converse.

T.5. Let A be a skew symmetric matrix, so that AT = −A, and let λ be an eigenvalue of A with
corresponding eigenvector x. We show that λ = −λ. We have Ax = λx. Multiplying both sides
of this equation by xT on the left we have xT Ax = xT λx. Taking the conjugate transpose of both
sides yields

xT AT x = λxT x.

Therefore −xT Ax = λxT x, or −λxT x = λxT x, so (λ + λ)(xT x) = 0. Since x �= 0, xT x �= 0, so
λ = −λ. Hence, the real part of λ is zero.

T.6. (a) Let

u =

⎡⎢⎢⎢⎣
u1

u2

...
un

⎤⎥⎥⎥⎦ and v =

⎡⎢⎢⎢⎣
v1

v2

...
vn

⎤⎥⎥⎥⎦ .

Then

u ·u = u1u1 + u2u2 + · · · + unun.

Let uj = aj + bji, j = 1, 2, . . . , n. Then ujuj = a2
j + b2

j , so u ·u > 0. Moreover, u ·u = 0 if and
only if aj = bj = 0 for j = 1, 2, . . . , n. Thus u ·u = 0 if and only if u = 0.

(b) We have u ·v = uT v and

v ·u = vT u = uvT = vT u = v ·u.

Thus, u ·v = v ·u.
(c) We have

(u + v) ·w = (u + v)T w =
(
uT + vT

)
w = uT w + vT w = u ·w + v ·w.

(d) We have

(cu) ·v = (cu)T v =
(
cuT

)
v = c

(
uT v

)
= c(u ·v).
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Further Directions

Appendix B.1, p. A28

1. (b) (v,u) = a1b1 − a2b1 − a1b2 − 3a2b2 = (u,v).

(c) (u + v,w) = (a1 + b1)c1 − (a2 + b2)c1 − (a1 + b1)c2 + 3(a2 + b2)c2

= (a1c1 − a2c1 − a1c2 + 3a2c2) + (b1c1 − b2c1 − b1c2 + 3b2c2)
= (u,w) + (v,w).

(d) (cu,v) = (ca1)b1 − (ca2)b1 − (ca1)b2 + 3(ca2)b2 = c(a1b1 − a2b1 − a1b2 + 3a2b2) = c(u,v).

2. Almost the same as the verification given in Example 4.

3. We have

(a) (u,u) = u2
1 + 5u2

2 ≥ 0 and (u,u) = 0 if and only if u1 = u2 = 0, that is, if and only if u = 0.

(b) (u,v) = u1v1 + 5u2v2 and (v,u) = v1u1 + 5v2u2, so (u,v) = (v,u).

(c) (u + v,w) = (u1 + v1)w1 + 5(u2 + v2)w2 = u1w1 + 5u2w2 + v1w1 + 5v2w2 = (u,w) + (v,w).

(d) (cu,v) = (cu1)v1 + 5(cu2)v2 = c(u1v1 + 5u2v2) = c(u,v).

4. (a) (A, A) = a2
11 + a2

12 + a2
21 + a2

22 ≥ 0, and (A, A) = 0 if and only if a11 = a12 = a21 = a22 = 0,
that is, if and only if A = O.

(b) (A, B) = a11b11 + a12b12 + a21b21 + a22b22 and (B,A) = b11a11 + b12a12 + b21a21 + b22a22, so
(A, B) = (B,A).

(c) (A + B,C) = (a11 + b11)c11 + (a12 + b12)c12 + (a21 + b21)c21 + (a22 + b22)c22

= a11c11 + a12c12 + a21c21 + a22c22 + b11c11 + b12c12 + b21c21 + b22c22

= (A, C) + (B,C).

(d) (cA, B) = (ca11)b11 + (ca12)b12 + (ca21)b21 + (ca22)b22

= c(a11b11 + a12b12 + a21b21 + a22b22)
= c(A, B).

5. (a) If A =
[
aij

]
, then

(A, A) = Tr(AT A) =
n∑

j=1

n∑
i=1

a2
ij ≥ 0.

Also, (A, A) = 0 if and only if aij = 0, that is, if and only if A = O.
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(b) If B =
[
bij

]
, then (A, B) = Tr(BT A) and (B,A) = Tr(AT B). Now,

Tr(BT A) =
n∑

i=1

n∑
k=1

bT
ikaki =

n∑
i=1

n∑
k=1

bkiaki

and

Tr(AT B) =
n∑

i=1

n∑
k=1

aT
ikbki =

n∑
i=1

n∑
k=1

akibki,

so (A, B) = (B,A).

(c) If C =
[
cij

]
, then

(A + B,C) = Tr
[
CT (A + B)

]
= Tr

[
CT A + CT B

]
= Tr(CT A) + Tr(CT B) = (A, C) + B,C).

(d) (cA, B) = Tr(BT (cA)) = cTr(BT A) = c(A, B).

6. Almost the same as the verification given in Example 4.

8. 17. 10. 1
2 sin2 1. 12. 2.

14. (a)
√

1
5 . (b)

√
1
2 (e2 − 1).

16. (a)
√

21. (b)
√

96.

18. (a) 16
3
√

29
. (b) − 17

7
√

6
.

20. 3a = −5b.

22. (a) 5a = −3b. (b) b =
2a(cos 1 − 1)

e(sin 1 − cos 1 + 1)
.

24. Cauchy–Schwarz inequality:∣∣∣∣∫ 1

0

p(t)q(t) dt

∣∣∣∣ ≤

√∫ 1

0

(p(t))2 dt

√∫ 1

0

(q(t))2 dt.

Triangle inequality: √∫ 1

0

p(t)q(t) dt ≤

√∫ 1

0

(p(t))2 dt +

√∫ 1

0

(q(t))2 dt.

26. (a)
{√

3
7 (t + 1), 1√

7
(9t − 5)

}
. (b)

⎡⎢⎣ 11
2

√
3
7

1
2
√

7

⎤⎥⎦.

28.

⎧⎪⎪⎨⎪⎪⎩
√

3 t,
et − 3t√

e2

2 − 7
2

⎫⎪⎪⎬⎪⎪⎭.

30.
{

5
2 t4 − 10

3 t3 + t2, 10t4 − 10t3 + t, 45t4 − 40t3 + 1
}
.

32. (c)
(

eπ − e−π

2π

)
+

(
e−π − eπ

2π

)
cos t +

(
eπ − e−π

2π

)
sin t.
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34. w =
2
3

π3

√
2π

(
1√
2π

)
− 4π√

π

(
1√
π

cos t

)
+ 0

(
1√
π

sin t

)
= 1

3π2 − 4 cos t.

u = t2 − 1
3π2 + 4 cos t.

36. 0.

38. projW et =
1
2π

(eπ − e−π) +
1
π

(
−1

2
eπ +

1
2
e−π

)
cos t

+
1
π

(
1
2
eπ − 1

2
e−π

)
sin t +

1
π

(
1
5
eπ − 1

5
e−π

)
cos 2t

+
1
π

(
−2

5
eπ +

2
5
e−π

)
sin 2t.

T.1. (a) 0 + 0 = 0 so (0,0) = (0,0 + 0) = (0,0) + (0,0), and then (0,0) = 0. Hence ‖0‖ =
√

(0,0) =√
0 = 0.

(b) (u,0) = (u,0 + 0) = (u,0) + (u,0) so (u,0) = 0.

(c) If (u,v) = 0 for all v in V , then (u,u) = 0 so u = 0.

(d) If (u,w) = (v,w) for all w in V , then (u − v,w) = 0 and so u = v.

(e) If (w,u) = (w,v) for all w in V , then (w,u − v) = 0 or (u − v,w) = 0 for all w in V . Then
u = v.

T.2. (a) d(u,v) = ‖u − v‖ ≥ 0.

(b) d(u,v) = ‖u − v‖ = (u − v,u − v) = 0 if and only if u − v = 0.

(c) d(u,v) = ‖u − v‖ = ‖v − u‖ = d(v,u).

(d) We have u−v = (u−w)+(w−v) and ‖u−v‖ ≤ ‖u−w‖+‖w−v‖ so d(u,v) ≤ d(u,w)+d(w,v).

T.3. Let T = {u1,u2, . . . ,un} be an orthonormal basis for an inner product space V . If

[
v
]
T

=

⎡⎢⎢⎢⎣
a1

a2

...
an

⎤⎥⎥⎥⎦ ,

then v = a1u1 + a2u2 + · · · + anun. Since (ui,uj) = 0 if i �= j and 1 if i = j, we conclude that

‖v‖ =
√

(v,v) =
√

a2
1 + a2

2 + · · · + a2
n.

T.4. Let v = a1v1+a2v2+· · ·+anvn and w = b1v1+b2v2+· · ·+bnvn. By Exercise T.2, d(v,w) = ‖v−w‖.
Then

d(v,w) = ‖v − w‖ =
√

(v − w,v − w)

=
√

((a1 − b1)v1 + (a2 − b2)v2 + · · · + (an − bn)vn, (a1 − b1)v1 + (a2 − b2)v2 + · · · + (an − bn)vn)

=
√

(a1 − b1)2 + (a2 − b2)2 + · · · + (an − bn)2

since (vi,vj) = 0 if i �= j and 1 if i = j.

T.5. ‖u+v‖2 = (u+v,u+v) = (u,u)+2(u,v)+(v,v) = ‖u‖2+2(u,v)+(v,v) = ‖u‖2+2(u,v)+‖v‖2,
and ‖u − v‖2 = (u,u) − 2(u,v) + (v,v) = ‖u‖2 − 2(u,v) + ‖v‖2. Hence

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2.
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T.6. ‖cu‖ =
√

(cu, cu) =
√

c2(u,u) =
√

c2
√

(u,u) = |c| ‖u‖.

T.7. ‖u + v‖2 = (u + v,u + v) = (u,u) + 2(u,v) + (v,v) = ‖u‖2 + 2(u,v) + ‖v‖2. Thus ‖u + v‖2 =
‖u‖2 + ‖v‖2 if and only if (u,v) = 0.

T.8. 3.

T.9. Let S = {w1,w2, . . . ,wk}. If u is in span S, then

u = c1w1 + c2w2 + · · · + ckwk.

Let v be orthogonal to w1,w2, . . . ,wk. Then

(v,u) = (v, c1w1 + c2w2 + · · · + ckwk) = c1(v,w1) + c2(v,w2) + · · · + ck(v,wk)
= c1(0) + c2(0) + · · · + ck(0) = 0.

Appendix B.2, p. A35

2. (a)

⎡⎣ 14
−2

6

⎤⎦. (b)

⎡⎣5x − 4y
2y

2x − 2y

⎤⎦.

4. (a) −3. (b) 2. (c) b. (d) a.

6. (a) B =

⎡⎣−1 −4
0 2
2 0

⎤⎦. (b) A1 =
[
1 0
0 2

]
, A2 =

⎡⎣−1 −2
0 1
2 0

⎤⎦.

8. (a)
[
3 −2
0 1

]
(b)

[
1 0

−4 3

]
. (c)

[
9 −8

−3 3

]
. (d)

[
11 −6
−5 3

]
.

10. (a) L−1

⎛⎝⎡⎣2
3
4

⎤⎦⎞⎠ =

⎡⎢⎢⎢⎣
3
2

− 1
2

1
2

⎤⎥⎥⎥⎦.

12. Invertible. L−1(b1, b2) =
(

3
4b1 − 1

4b2,
1
4b1 + 3

4b2

)
.

14. Not invertible. 16. Invertible. L−1(ct + d) = dt − c.

18. Not invertible. 20. Not invertible. 22. Invertible.

24. (b)

⎡⎣ 2 0 −1
−2 −1 2

1 1 −1

⎤⎦. 26.
[

2 −3
−1 2

]
.

T.1. Let u and v be in V1 and let c be a scalar. We have

(L2 ◦ L1)(u + v) = L2(L1(u + v)) = L2(L1(u) + L1(v))
= L2(L1(u)) + L2(L1(v))
= (L2 ◦ L1)(u) + (L2 ◦ L1)(v)

and

(L2 ◦ L1)(cu) = L2(L1(cu)) = L2(cL1(u)) = cL2(L1(u)) = c(L2 ◦ L1)(u).
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T.2. We have

(L ◦ IV )(v) = L(IV (v)) = L(v) and (IW ◦ L)(w) = IW (L(w)) = L(w).

T.3. We have

(L ◦ OV )(v) = L(OV (v)) = L(0) = 0 = OV (v)

and

(OV ◦ L)(v) = OV (L(v)) = 0 = OV (v).

T.4. From Theorem B.2, it follows directly that A2 represents L2 = L ◦ L. Now Theorem B.2 implies
that A3 represents L3 = L ◦ L2. We continue this argument as long as necessary. A more formal
proof can be given using induction.

T.5. Suppose that L1 and L2 are one-to-one and onto. We first show that L2 ◦L1 is also one-to-one and
onto. First, one-to-one. Suppose that (L2 ◦L1)(v1) = (L2 ◦L1)(v2). Then L2(L1(v1)) = L2(L1(v2))
so L1(v1) = L1(v2), since L2 is one-to-one. Hence v1 = v2 since L1 is one-to-one. Next, let L1 and
L2 be onto, and let w be any vector in V . Since L2 is onto, there exists a vector v1 in V such that
L2(v1) = w. Since L1 is onto, there exists a vector v2 in V such that L1(v2) = v1. Then we have

(L2 ◦ L1)(v2) = L2(L1(v2)) = L2(v1) = w,

and therefore L2 ◦ L1 is onto. Hence L2 ◦ L1 is invertible. Since

(L2 ◦ L1) ◦ (L−1
1 ◦ L−1

2 ) = IV and (L−1
1 ◦ L−1

2 ) ◦ (L2 ◦ L1) = IV ,

we conclude that (L2 ◦ L1)−1 = L−1
1 ◦ L−1

2 .

T.6. If L is one-to-one and onto, so is cL, c �= 0. Moreover,

(cL) ◦
(

1
c
L−1

)
=

(
c · 1

c

)
L ◦ L−1 = IV and

(
1
c
L−1

)
◦ (cL) =

(
1
c
c

)
(L−1 ◦ L) = IV .

T.7. Since L is one-to-one and onto, it is invertible. First, L is one-to-one. To show this, let L(A) = L(B).
Then AT = BT so (AT )T = (BT )T which implies that A = B. Also, if B is any element in M22,
then L(BT ) = (BT )T = B, so L is onto. We have L−1(A) = AT .

T.8. Since L is one-to-one and onto, it is invertible. First, L is one-to-one. To show this, let L(A1) =
L(A2). Then BA1 = BA2. Since B is nonsingular, it follows that A1 = A2. Also, if C is any element
in M22, then B−1C is in M22 and L(B−1C) = C, so L is onto. We have

L−1(C) = B−1C =
[
−3 1

2 1

]
C.

T.9. We show that (a) =⇒ (b) =⇒ (c) =⇒ (a).

(a) =⇒ (b): Suppose that L is invertible. Then L is one-to-one and onto, so dim(rangeL) = n =
rankL.

(b) =⇒ (c): If rankL = n, then dim(kerL) = 0 so nullity L = 0.

(c) =⇒ (a): If nullity L = 0, then rankL = n, which means that dim(rangeL) = n. Hence L is
one-to-one and onto and is then invertible.

T.10. Assume that (L1 + L2)2 = L2
1 + 2(L1 ◦ L2) + L2

2. Then

L2
1 + L1 ◦ L2 + L2 ◦ L1 + L2

2 = L2
1 + 2(L1 ◦ L2) + L2

2,

and simplifying gives L1 ◦ L2 = L2 ◦ L1. The steps are reversible.
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T.11 We have

L(v1 + v2) = (v1 + v2,w) = (v1,w) + (v2,w) = L(v1) + L(v2).

Also, L(cv) = (cv,w) = c(v,w) = cL(v).
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