WATER OPERATOR EXAM FORMULA SHEET

9/1/15
1 minute $(\mathrm{min})=60$ seconds (sec)
1 hour $(\mathrm{hr})=60 \mathrm{~min}$
1 day $=24 \mathrm{hr}=1,440 \mathrm{~min}=86,400 \mathrm{sec}$
1 inch (in) $=2.54$ centimeters (cm)
$1 \mathrm{ft}=12$ in
$1 \mathrm{ft}=0.433$ pounds per square inch (psi)
$1 \mathrm{psi}=2.31 \mathrm{ft}$
1 cubic foot $\left(\mathrm{ft}^{3}\right)=7.48$ gallons (gal) $=62.38$ pounds (lbs)
$1 \mathrm{ft}^{3}=62.38 \mathrm{lbs}$
1 cubic yard $=27 \mathrm{ft}^{3}$
1 gal $=8$ pints
$1 \mathrm{gal}=8.34 \mathrm{lbs}$
1 gal $=3.785$ liters (L)
$1 \mathrm{lb}=454$ grams (g)
$1 \mathrm{~L}=1,000$ milliliters (mL)
1 milligrams per liter (mg / L) $=1$ part per million (ppm)
$1 \%=10,000 \mathrm{ppm}$
1 cubic foot per second (cfs or $\mathrm{ft}^{3} / \mathrm{sec}$) $=448$ gallons per minute (gpm)
$1 \mathrm{gpm}=1,440$ gallons per day (gpd)
$1 \mathrm{gpd}=2.63 \mathrm{~mL} / \mathrm{min}$
1 million gallons per day $(\mathrm{MGD})=694.4 \mathrm{gpm}$
1 grain per gallon $(\mathrm{gpg})=17.12 \mathrm{mg} / \mathrm{L}$
$1 \mathrm{ac}-\mathrm{ft}=43,560 \mathrm{ft}^{3}$
$\pi(\mathrm{pi})=3.14$
specific gravity $(\mathrm{Sp} \mathrm{Gr})$ of water $=1.00$

ABBREVIATIONS

$\mathrm{V}=$ volume	$\mathrm{A}=$ area
$\mathrm{v}=$ velocity	$\mathrm{D}=$ diameter
$\mathrm{Q}=$ flow	$\mathrm{r}=$ radius
$\mathrm{ft}^{2}=$ square feet	$\mathrm{C}=$ circumference
$\mathrm{W} / \mathrm{W}=$ weight/weight	$\mathrm{W} / \mathrm{V}=$ weight/volume
$\mathrm{DT}=$ detention time	$\mathrm{HP}=$ horsepower

TEMPERATURE

Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)=\left(1.8 \mathrm{x}{ }^{\circ} \mathrm{C}\right)+32$
Celsius $\left({ }^{\circ} \mathrm{C}\right)=\left({ }^{\circ} \mathrm{F}-32\right) \times 0.56$

CIRCUMFERENCE, AREA \& VOLUME

Circumference (C, ft) $=\pi \mathrm{xD}(\mathrm{ft})$
Area of a rectangle $\left(\mathrm{A}, \mathrm{ft}^{2}\right)=$ length $(\mathrm{ft}) \mathrm{x}$ width (ft)
Area of a circle $\left(\mathrm{A}, \mathrm{ft}^{2}\right)=0.785 \times \mathrm{D}(\mathrm{ft})^{2}$
Area of a circle $\left(\mathrm{A}, \mathrm{ft}^{2}\right)=\pi \mathrm{xr}(\mathrm{ft})^{2}$
Volume of a rectangle $\left(\mathrm{V}, \mathrm{ft}^{3}\right)=$ length $(\mathrm{ft}) \mathrm{x}$ width $(\mathrm{ft}) \mathrm{x}$ height (ft)
Volume of a rectangle $(\mathrm{V}, \mathrm{gal})=$ length $(\mathrm{ft}) \mathrm{x}$ width $(\mathrm{ft}) \mathrm{x}$ height $(\mathrm{ft}) \times 7.48\left(\mathrm{gal} / \mathrm{ft}^{3}\right)$
Volume of a cylinder $\left(\mathrm{V}, \mathrm{ft}^{3}\right)=0.785 \times \mathrm{D}(\mathrm{ft})^{2} \mathrm{x}$ height (ft)
Volume of a cylinder $(\mathrm{V}, \mathrm{gal})=0.785 \times \mathrm{D}(\mathrm{ft})^{2} \times$ height $(\mathrm{ft}) \times 7.48\left(\mathrm{gal} / \mathrm{ft}^{3}\right)$

DETENTION TIME

Detention time $(\mathrm{DT}, \mathrm{min})=\operatorname{volume}(\mathrm{V}$, gal $) \div$ flow $(\mathrm{Q}, \mathrm{gpm})$

CHLORINATION

Chlorine dose $(\mathrm{mg} / \mathrm{L})=$ chlorine demand $(\mathrm{mg} / \mathrm{L})+$ chlorine residual $(\mathrm{mg} / \mathrm{L})$
Total chlorine residual $(\mathrm{mg} / \mathrm{L})=$ free chlorine residual $(\mathrm{mg} / \mathrm{L})+$ combined chlorine residual $(\mathrm{mg} / \mathrm{L})$

POUNDS, DOSAGE \& FLOW

Dose $(\mathrm{mg} / \mathrm{L})=$ feed $(\mathrm{lbs} /$ day $) \div$ flow $(\mathrm{MGD}) \div 8.34$ (lbs/gal)
Feed (lbs/day) $=$ dose $(\mathrm{mg} / \mathrm{L}) \times$ flow $(\mathrm{MGD}) \times 8.34(\mathrm{lbs} / \mathrm{gal})$
Feed $(\mathrm{lbs} /$ day $)=$ dose $(\mathrm{mg} / \mathrm{L}) \times$ flow $(\mathrm{MGD}) \times 8.34(\mathrm{lbs} / \mathrm{gal}) \div \%$ purity (decimal
Flow $(\mathrm{Q}$, gpm $)=$ volume $(\mathrm{V}$, gal $) \div$ time (min)
Flow $(\mathrm{Q}, \mathrm{gps})=$ velocity $(\mathrm{v}, \mathrm{fps}) \mathrm{x}$ area $\left(\mathrm{A}, \mathrm{ft}^{2}\right) \times 7.48\left(\mathrm{gal} / \mathrm{ft}^{3}\right)$
Flow $(\mathrm{Q}, \mathrm{cfs})=\operatorname{velocity}(\mathrm{v}, \mathrm{fps}) \mathrm{x}$ area $\left(\mathrm{A}, \mathrm{ft}^{2}\right)$

COAGULATION AND FLOCCULATION

Polymer (lbs) = polymer solution (gal) x 8.34 (lbs/gal) x polymer (\%) x (Sp Gr)

$$
100 \%
$$

FILTRATION

Filtration or backwash rate $\left(\mathrm{gpm} / \mathrm{ft}^{2}\right)=$ flow $(\mathrm{Q}, \mathrm{gpm})$ surface area $\left(\mathrm{ft}^{2}\right)$

Unit Filter Rate Volume (UFRV) $\left(\mathrm{g} / \mathrm{ft}^{2}\right)=$ filtration rate $\left(\mathrm{gpm} / \mathrm{ft}^{2}\right) \times$ filter run $(\mathrm{hr}) \times 60(\mathrm{~min} / \mathrm{hr})$
Backwash water $(\mathrm{gal})=$ backwash flow $(\mathrm{gpm}) \times$ backwash time (min)
Backwash (\%) = backwash water (gal) x (100\%)
water filtered (gal)

FLUORIDATION

Fluoride feed rate $(\mathrm{lbs} /$ day $)=\quad$ dose $(\mathrm{mg} / \mathrm{L}) \times$ flow $(\mathrm{MGD}) \times 8.34$ ($\mathrm{lbs} / \mathrm{gal}$)
Available Fluoride Ion (AFI) x chemical purity (decimal)
Fluoride feed rate $(\mathrm{gpd})=$ dose $(\mathrm{mg} / \mathrm{L}) \times$ flow (gpd)

$$
18,000 \mathrm{mg} / \mathrm{L}
$$

Dose $(\mathrm{mg} / \mathrm{L})=$ fluoride feed rate (lbs/day) x AFI x chemical purity (decimal)
flow (MGD) x 8.34 (lbs/gal)
Dose $(\mathrm{mg} / \mathrm{L})=$ solution fed (gal) x $18,000 \mathrm{mg} / \mathrm{L}$ flow (gpd)

Chemical	Formula	Available Fluoride Ion (AFI) Concentration	Chemical Purity
Sodium fluoride	NaF_{2}	0.453	98%
Sodium fluorosilicate	$\mathrm{Na}_{2} \mathrm{SiF}_{6}$	0.607	98%
Fluorosilicic acid	$\mathrm{H}_{2} \mathrm{SiF}_{6}$	0.792	23%

CHEMICAL DOSES

Chemical feed setting $(\mathrm{mL} / \mathrm{min})=\underline{\text { flow }(M G D)} \times$ alum dose $(\mathrm{mg} / \mathrm{L}) \times 3.785(\mathrm{~L} / \mathrm{gal}) \times 1,000,000(\mathrm{gal} / \mathrm{MG})$ liquid alum $(\mathrm{mg} / \mathrm{mL}) \times 24(\mathrm{hr} /$ day $) \times 60(\mathrm{~min} / \mathrm{hr})$

Dry chemical feeder (lbs/day) $=\underset{\text { length of application (day) }}{\text { chemical applied }}$
Solution chemical feeder $(\mathrm{lbs} /$ day $)=$ chem conc. $(\mathrm{mg} / \mathrm{L}) \times \mathrm{V}$ pumped $(\mathrm{mL}) \times 1,440(\mathrm{~min} /$ day $)$

$$
\text { time pumped }(\mathrm{min}) \times 1,000(\mathrm{~mL} / \mathrm{L}) \times 1,000(\mathrm{mg} / \mathrm{g}) \times 454(\mathrm{~g} / \mathrm{lb})
$$

Average feed rate $(\mathrm{lbs} /$ day $)=$ average feed rate $(\mathrm{g} / \mathrm{min}) \times 1,440(\mathrm{~min} /$ day $)$

$$
454 \text { (g/lb) }
$$

DISINFECTION

Hypochlorite flow $(\mathrm{gpd})=$ container area $\left(\mathrm{ft}^{2}\right) \times \operatorname{drop}(\mathrm{ft}) \times 7.48\left(\mathrm{gal} / \mathrm{ft}^{3}\right) \times 24(\mathrm{hr} / \mathrm{day})$ time (hr)

Feed rate $(\mathrm{gpd})=$ feed rate $(\mathrm{lbs} /$ day $) \times$ feed dose $(\mathrm{mg} / \mathrm{L})$

$$
\text { feed solution }(\mathrm{mg} / \mathrm{L})
$$

Feed rate (lbs/day) = feeder setting (lbs/day)

$$
24 \text { (hr/day) }
$$

$\mathrm{CT}(\mathrm{mg} / \mathrm{L}-\mathrm{min})=\underline{\mathrm{V}(\mathrm{gal}) \times\left(\mathrm{T}_{10}\right) \times \text { free chlorine residual }(\mathrm{mg} / \mathrm{L})}$ flow (gpm)

Free chlorine residual $(\mathrm{mg} / \mathrm{L})=\frac{\mathrm{CT}(\mathrm{mg} / \mathrm{L}-\mathrm{min})}{\mathrm{T}_{10}(\mathrm{~min})}$

HORSEPOWER

$\mathrm{Q}(\mathrm{gpm})=\frac{3,956(\mathrm{HP})}{\text { head }(\mathrm{ft}) \times \mathrm{Sp} \mathrm{Gr}}$
$H P=\underline{\text { voltage } \mathrm{x} \text { current } \mathrm{x} \text { efficiency }}$ 746

Water $(\mathrm{HP})=\underline{\text { flow }(\mathrm{gpm}) \times \mathrm{lift}(\mathrm{ft}) \times 8.34(\mathrm{lbs} / \mathrm{gal})}$ $33,000 \mathrm{ft}-\mathrm{lb} / \mathrm{min}-\mathrm{HP}$

Power (kW-hr/day) = motor (HP) x 24 (hr/day) x $0.746(\mathrm{~kW} / \mathrm{HP})$

MISC

Percent (\%) = part \div whole x 100
Part $=$ whole x percent $\div 100$
Average $=\underset{\text { number of measurements }}{\text { sum of measurements }} \quad$ General ratio $\quad \frac{\mathrm{A} 1}{\mathrm{~A} 2}=\frac{\mathrm{B} 1}{\mathrm{~B} 2}$

Turnover or drawdown $(\mathrm{ft})=$ pumping $(\mathrm{ft})-$ static (ft)
Potassium permanganate dose $(\mathrm{mg} / \mathrm{L})=($ Iron concentration $\mathrm{mg} / \mathrm{L})+2($ Manganese concentration $\mathrm{mg} / \mathrm{L})$
Alkalinity $=\underline{\mathrm{mL}}$ of $\mathrm{H}_{2} \mathrm{SO}_{4} \times 1,000$
mL of sample
Hardness $=\underline{m L}$ of EDTA $\times 1,000$
mL of sample

Reservoir Volume $(\mathrm{V}, \mathrm{gal})=\mathrm{V}(\mathrm{ac}-\mathrm{ft}) \times 43,560\left(\mathrm{ft}^{3} / \mathrm{ac}-\mathrm{ft}\right) \times 7.48\left(\mathrm{gal} / \mathrm{ft}^{3}\right)$
Feeder setting, $\%=$ desired rate $\times 100 \%$
maximum rate
Weight of substance (lbs/gal) $=$ Sp Gr x 8.34 (lbs/gal)
Volume needed, $\mu \mathrm{L}=\underline{\text { dose }(\mathrm{mg} / \mathrm{L}) \mathrm{x} j \text { ar test beaker volume (} \mathrm{L} \text {) }}$ Sp Gr x Conc., \% (expressed as a decimal)
$(\text { Volume, } \mathrm{mL})_{1}=(\text { concentration, } \mathrm{mg} / \mathrm{L})_{2}(\text { volume }, \mathrm{mL})_{2}$ (concentration, $\mathrm{mg} / \mathrm{L})_{1}$

