WATER OPERATOR EXAM FORMULA SHEET

9/1/15

1 minute (min) = 60 seconds (sec) 1 hour (hr) = 60 min1 day = 24 hr = 1,440 min = 86,400 sec1 inch (in) = 2.54 centimeters (cm) 1 ft = 12 in1 ft = 0.433 pounds per square inch (psi) 1 psi = 2.31 ft1 cubic foot $(ft^3) = 7.48$ gallons (gal) = 62.38 pounds (lbs) $1 \text{ ft}^3 = 62.38 \text{ lbs}$ 1 cubic vard = 27 ft^3 1 gal = 8 pints1 gal = 8.34 lbs1 gal = 3.785 liters (L)1 lb = 454 grams (g)1 L = 1,000 milliliters (mL)1 milligrams per liter (mg/L) = 1 part per million (ppm) 1% = 10,000 ppm1 cubic foot per second (cfs or ft^3/sec) = 448 gallons per minute (gpm) 1 gpm = 1.440 gallons per day (gpd)1 gpd = 2.63 mL/min1 million gallons per day (MGD) = 694.4 gpm 1 grain per gallon (gpg) = 17.12 mg/L $1 \text{ ac-ft} = 43,560 \text{ ft}^3$ π (pi) = 3.14 specific gravity (Sp Gr) of water = 1.00

ABBREVIATIONS

V = volume	A = area	
v = velocity	D = diameter	
Q = flow	r = radius	
$ft^2 = square feet$	C = circumference	
W/W = weight/weight	W/V = weight/volume	
DT = detention time	HP = horsepower	

TEMPERATURE

Fahrenheit (°F) = $(1.8 \times °C) + 32$ Celsius (°C) = (°F - 32) x 0.56

CIRCUMFERENCE, AREA & VOLUME

Circumference (C, ft) = π x D (ft)

Area of a rectangle (A, ft²) = length (ft) x width (ft) Area of a circle (A, ft²) = 0.785 x D (ft)² Area of a circle (A, ft²) = π x r (ft)²

Volume of a rectangle (V, ft^3) = length (ft) x width (ft) x height (ft) Volume of a rectangle (V, gal) = length (ft) x width (ft) x height (ft) x 7.48 (gal/ft³)

Volume of a cylinder (V, ft^3) = 0.785 x D (ft)² x height (ft) Volume of a cylinder (V, gal) = 0.785 x D (ft)² x height (ft) x 7.48 (gal/ ft^3)

DETENTION TIME

Detention time (DT, min) = volume (V, gal) ÷ flow (Q, gpm)

CHLORINATION

Chlorine dose (mg/L) = chlorine demand (mg/L) + chlorine residual (mg/L)

Total chlorine residual (mg/L) = free chlorine residual (mg/L) + combined chlorine residual (mg/L)

Feed (lbs/day)

Flow (MGD)

8.34

lbs/gal

Dose

(mg/L)

POUNDS, DOSAGE & FLOW

Dose $(mg/L) = feed (lbs/day) \div flow (MGD) \div 8.34 (lbs/gal)$

Feed (lbs/day) = dose (mg/L) x flow (MGD) x 8.34 (lbs/gal)

Feed (lbs/day) = dose (mg/L) x flow (MGD) x 8.34 (lbs/gal) ÷ % purity (decimal)

Flow $(Q, gpm) = volume (V, gal) \div time (min)$

Flow (Q, gps) = velocity (v, fps) x area (A, ft^2) x 7.48 (gal/ ft^3)

Flow (Q, cfs) = velocity (v, fps) x area (A, ft^2)

COAGULATION AND FLOCCULATION

Polymer (lbs) = polymer solution (gal) x 8.34 (lbs/gal) x polymer (%) x (Sp Gr)

100%

FILTRATION

Filtration or backwash rate $(gpm/ft^2) = \frac{flow (Q, gpm)}{surface area (ft^2)}$

Unit Filter Rate Volume (UFRV) (g/ft^2) = filtration rate (gpm/ft^2) x filter run (hr) x 60 (min/hr)

Backwash water (gal) = backwash flow (gpm) x backwash time (min)

Backwash (%) = $\underline{backwash water (gal) x (100\%)}$ water filtered (gal)

FLUORIDATION

Fluoride feed rate (lbs/day) = $\frac{\text{dose (mg/L) x flow (MGD) x 8.34 (lbs/gal)}}{\text{Available Fluoride Ion (AFI) x chemical purity (decimal)}}$

Fluoride feed rate (gpd) = $\frac{\text{dose (mg/L) x flow (gpd)}}{18,000 \text{ mg/L}}$

Dose (mg/L) = <u>fluoride feed rate (lbs/day) x AFI x chemical purity (decimal)</u> flow (MGD) x 8.34 (lbs/gal)

Dose (mg/L) =<u>solution fed (gal) x 18,000 mg/L</u> flow (gpd)

Chemical	Formula	Available Fluoride Ion (AFI) Concentration	Chemical Purity
Sodium fluoride	NaF	0.453	98%
Sodium fluorosilicate	Na ₂ SiF ₆	0.607	98%
Fluorosilicic acid	H_2SiF_6	0.792	23%

CHEMICAL DOSES

Chemical feed setting (mL/min) = flow (MGD) x alum dose (mg/L) x 3.785 (L/gal) x 1,000,000 (gal/MG)liquid alum (mg/mL) x 24 (hr/day) x 60 (min/hr) Dry chemical feeder (lbs/day) = chemical applied (lbs)length of application (day) Solution chemical feeder (lbs/day) = chem conc. (mg/L) x V pumped (mL) x 1,440 (min/day) time pumped (min) x 1,000 (mL/L) x 1,000 (mg/g) x 454 (g/lb) Average feed rate (lbs/day) = $\underline{average feed rate (g/min) \times 1,440 (min/day)}$ 454 (g/lb) DISINFECTION Hypochlorite flow (gpd) = container area (ft²) x drop (ft) x 7.48 (gal/ft³) x 24 (hr/day) time (hr) Feed rate (gpd) = feed rate (lbs /day) x feed dose (mg/L) feed solution (mg/L) Feed rate (lbs/day) = feeder setting (lbs/day) 24 (hr/day) $CT (mg/L-min) = V (gal) x (T_{10}) x$ free chlorine residual (mg/L) flow (gpm) Free chlorine residual (mg/L) = CT (mg/L-min) T_{10} (min) HORSEPOWER Q(gpm) = 3,956(HP)head (ft) x Sp Gr HP = voltage x current x efficiency746 Water (HP) = $\underline{\text{flow}}(\text{gpm}) \times \text{lift}(\text{ft}) \times 8.34 (\text{lbs/gal})$ 33,000 ft-lb/min-HP Power (kW-hr/day) = motor (HP) x 24 (hr/day) x 0.746 (kW/HP) MISC Percent (%) = part \div whole x 100 Part = whole x percent \div 100 Average = sum of measurements General ratio $\underline{A1} = \underline{B1}$ number of measurements A2 B2 Turnover or drawdown (ft) = pumping (ft) - static (ft) Potassium permanganate dose (mg/L) = (Iron concentration mg/L) + 2(Manganese concentration mg/L)Alkalinity = mL of $H_2SO_4 \times 1,000$ mL of sample

Hardness = $\underline{mL \text{ of } EDTA x 1,000}$ mL of sample Reservoir Volume (V, gal) = V (ac-ft) x 43,560 ($ft^3/ac-ft$) x 7.48 (gal/ft³)

Feeder setting, $\% = \frac{\text{desired rate x 100\%}}{\text{maximum rate}}$

Weight of substance $(lbs/gal) = Sp Gr \times 8.34 (lbs/gal)$

Volume needed, $\mu L = \underline{\text{dose (mg/L) x jar test beaker volume (L)}}$ Sp Gr x Conc., % (expressed as a decimal)

 $(Volume, mL)_1 = (concentration, mg/L)_2(volume, mL)_2$ (concentration, mg/L)₁