WATER DISTRIBUTION EXAM FORMULA SHEET
 4/10/15

EQUIVALENTS

1 minute (min) $=60$ seconds (sec)
1 hour $(\mathrm{hr})=60 \mathrm{~min}$
1 day $=24 \mathrm{hr}=1,440 \mathrm{~min}=86,400 \mathrm{sec}$
1 inch (in) $=2.54$ centimeters (cm)
$1 \mathrm{ft}=12$ in
$1 \mathrm{ft}=0.433$ pounds per square inch (psi)
$1 \mathrm{psi}=2.31 \mathrm{ft}$
1 cubic foot $\left(\mathrm{ft}^{3}\right)=7.48$ gallons $(\mathrm{gal})=62.38$ pounds (lbs)
$1 \mathrm{ft}^{3}=62.38 \mathrm{lbs}$
1 cubic yard $=27 \mathrm{ft}^{3}$
1 gal $=8$ pints
$1 \mathrm{gal}=8.34 \mathrm{lbs}$
1 gal $=3.785$ liters (L)
$1 \mathrm{lb}=454$ grams
$1 \mathrm{~L}=1,000$ milliliters (mL)
1 milligrams per liter (mg / L) $=1$ part per million (ppm)
$1 \%=10,000 \mathrm{ppm}$
1 cubic foot per second (cfs or $\mathrm{ft}^{3} / \mathrm{sec}$) $=448$ gallons per minute (gpm)
$1 \mathrm{gpm}=1,440$ gallons per day (gpd)
$1 \mathrm{gpd}=2.63 \mathrm{~mL} / \mathrm{min}$
1 million gallons per day $(\mathrm{MGD})=694.4 \mathrm{gpm}$
1 grain per gallon $(\mathrm{gpg})=17.12 \mathrm{mg} / \mathrm{L}$
$\pi(\mathrm{pi})=3.14$

ABBREVIATIONS

$\mathrm{V}=$ volume
$\mathrm{v}=$ velocity
$\mathrm{Q}=$ flow
$\mathrm{ft}^{2}=$ square feet
DT $=$ detention time

$$
\begin{aligned}
& A=\text { area } \\
& D=\text { diameter } \\
& r=\text { radius } \\
& C=\text { circumference }
\end{aligned}
$$

TEMPERATURE

Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)=\left(1.8 \mathrm{x}{ }^{\circ} \mathrm{C}\right)+32$
Celsius $\left({ }^{\circ} \mathrm{C}\right)=\left({ }^{\circ} \mathrm{F}-32\right) \times 0.56$

CIRCUMFERENCE, AREA \& VOLUME

Circumference ($\mathrm{C}, \mathrm{ft})=\pi \mathrm{xD}(\mathrm{ft})$
Area of a rectangle $\left(\mathrm{A}, \mathrm{ft}^{2}\right)=$ length $(\mathrm{ft}) \mathrm{x}$ width (ft)
Area of a circle $\left(\mathrm{A}, \mathrm{ft}^{2}\right)=0.785 \times \mathrm{D}(\mathrm{ft})^{2}$
Area of a circle $\left(\mathrm{A}, \mathrm{ft}^{2}\right)=\pi \mathrm{xr}(\mathrm{ft})^{2}$
Volume of a rectangle $\left(\mathrm{V}, \mathrm{ft}^{3}\right)=$ length $(\mathrm{ft}) \mathrm{x}$ width $(\mathrm{ft}) \mathrm{x}$ height (ft)
Volume of a rectangle $(\mathrm{V}, \mathrm{gal})=$ length $(\mathrm{ft}) \mathrm{x}$ width $(\mathrm{ft}) \times$ height $(\mathrm{ft}) \times 7.48\left(\mathrm{gal} / \mathrm{ft}^{3}\right)$
Volume of a cylinder $\left(\mathrm{V}, \mathrm{ft}^{3}\right)=0.785 \times \mathrm{D}(\mathrm{ft})^{2} \times$ height (ft)
Volume of a cylinder $(\mathrm{V}, \mathrm{gal})=0.785 \times \mathrm{D}(\mathrm{ft})^{2} \times$ height $(\mathrm{ft}) \times 7.48\left(\mathrm{gal} / \mathrm{ft}^{3}\right)$

CHLORINATION

Chlorine dose $(\mathrm{mg} / \mathrm{L})=$ chlorine demand $(\mathrm{mg} / \mathrm{L})+$ chlorine residual $(\mathrm{mg} / \mathrm{L})$
Total chlorine residual $(\mathrm{mg} / \mathrm{L})=$ free chlorine residual $(\mathrm{mg} / \mathrm{L})+$ combined chlorine residual $(\mathrm{mg} / \mathrm{L})$

POUNDS, DOSAGE \& FLOW

Dose $(\mathrm{mg} / \mathrm{L})=$ feed $(\mathrm{lbs} /$ day $) \div$ flow $(\mathrm{MGD}) \div 8.34(\mathrm{lbs} / \mathrm{gal})$
Feed $(\mathrm{lbs} /$ day $)=$ dose $(\mathrm{mg} / \mathrm{L}) \times$ flow $(\mathrm{MGD}) \times 8.34(\mathrm{lbs} / \mathrm{gal})$
Feed $(\mathrm{lbs} /$ day $)=$ dose $(\mathrm{mg} / \mathrm{L}) \times$ flow $(\mathrm{MGD}) \times 8.34(\mathrm{lbs} / \mathrm{gal}) \div \%$ purity $($ decimal $)$
Flow $(\mathrm{Q}$, gpm $)=$ volume $(\mathrm{V}$, gal $) \div$ time (min)
Flow $(\mathrm{Q}, \mathrm{gps})=$ velocity $(\mathrm{v}, \mathrm{fps}) \times \operatorname{area}\left(\mathrm{A}, \mathrm{ft}^{2}\right) \times 7.48\left(\mathrm{gal} / \mathrm{ft}^{3}\right)$
Flow $(\mathrm{Q}, \mathrm{cfs})=$ velocity $(\mathrm{v}, \mathrm{fps}) \times \operatorname{area}\left(\mathrm{A}, \mathrm{ft}^{2}\right)$

DETENTION TIME

Detention time $(\mathrm{DT}, \mathrm{min})=$ volume $(\mathrm{V}$, gal $) \div$ flow $(\mathrm{Q}, \mathrm{gpm})$

MISC

Percent (\%) $=$ part \div whole $\times 100$
Part $=$ whole \times percent $\div 100$
Average $=\underset{\text { number of measurements }}{\underline{\text { sum of measurements }}} \quad$ General ratio $\quad \frac{\mathrm{A} 1}{\mathrm{~A} 2}=\underline{\mathrm{B} 1}$

Turnover or drawdown $(\mathrm{ft})=\operatorname{pumping}(\mathrm{ft})-\operatorname{static}(\mathrm{ft})$
Dry chemical feeder (lbs/day) = chemical applied (lbs)
length of application (day)

Solution chemical feeder (lbs/day) = chem conc. $(\mathrm{mg} / \mathrm{L}) \times \mathrm{V}$ pumped (mL) x $1,440(\mathrm{~min} /$ day $)$ time pumped $(\mathrm{min}) \times 1,000(\mathrm{~mL} / \mathrm{L}) \times 1,000(\mathrm{mg} / \mathrm{g}) \times 454(\mathrm{~g} / \mathrm{lb})$

Hypochlorite flow $(\mathrm{gpd})=$ container area $\left(\mathrm{ft}^{2}\right) \times \operatorname{drop}(\mathrm{ft}) \times 7.48\left(\mathrm{gal} / \mathrm{ft}^{3}\right) \times 24(\mathrm{hr} /$ day $)$ time (hr)

Feed rate $(\mathrm{gpd})=\underline{\text { feed rate }(\mathrm{lbs} / \text { day })} \mathrm{x}$ feed dose $(\mathrm{mg} / \mathrm{L})$ feed solution (mg / L)

Feed rate $(\mathrm{lbs} /$ day $)=$ feeder setting ($\mathrm{lbs} /$ day $)$ 24 hr /day

