Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Iournal of Clinical Neuroscience 19 (2012) 352-359

Contents lists available at SciVerse ScienceDirect

Review

Journal of Clinical Neuroscience

journal homepage: www.elsevier.com/locate/jocn

Intracranial neuroenteric cysts: A concise review including an illustrative patient

Andrew J. Gauden^{a,*}, Vini G. Khurana^a, Alpha E. Tsui^c, Andrew H. Kaye^{a,b}

^a Department of Neurosurgery, The Royal Melbourne Hospital, Grattan Street, Parkville, Victoria, Australia ^b Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia ^c Department of Neuropathology, The Royal Melbourne Hospital, Parkville, Victoria, Australia

ARTICLE INFO

Article history: Received 1 October 2011 Accepted 9 October 2011

Keywords: Endodermal cyst Enterogenous cyst Epidermal cyst Neurenteric cyst Neuroenteric cyst Surgery Surgical treatment

ABSTRACT

Neuroenteric cysts (NC) are rare, benign lesions lined by mucin-secreting cuboidal or columnar epithelium of an intestinal or respiratory type. They are regarded as ectopic endodermal cysts, and tend to be found in the spine rather than an intracranial location. Advances in neuroimaging have led to an increased frequency of diagnosis of NC, especially as an incidental finding, although such cysts may be confused radiologically with other lesions such as epidermoid and arachnoid cysts. We undertook a Pub-Med search of the literature using the search terms "neuroenteric cyst" and its many pseudonyms, including "endodermal cyst", "enterogenous cyst", "neurenteric cyst", "epithelial cyst", "intestinome", "teratomatous cyst", "gastrocytoma", and also "enterogenic", "foregut", "respiratory", and "bronchogenic cyst". Only reports in English and those containing histopathologically-confirmed NC were considered for this review. In total, 140 patients with intracranial NC were found, including the patient reported in the present review. This review describes the classification, epidemiology, embryology, clinical presentation, radiology, histopathology, and surgical treatment of NC, and includes an illustrative patient.

Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Neuroenteric cysts (NC) are rare congenital entities arising from displaced elements of the alimentary canal and are most frequently encountered in the posterior mediastinal region. Although they can occur in any region of the central nervous system (CNS), where they account for 0.01% of CNS tumours,^{1–3} NC are more commonly found in the spine and represent 0.3% to 0.5% of spinal tumours.^{4,5} When located in the cerebellopontine angle (CPA), NC are often misdiagnosed as arachnoid or epidermoid cysts.^{6–10} Owing to their disputed pathogenesis, historically the nomenclature for these lesions has varied, and has included terms such as "teratomatous" by Kubie and Fulton¹¹ in 1928, "intestinome" by Puusepp¹² in 1934, "neurenteric" by Holcomb and Matson¹³ in 1954, "gastrocytoma" by Knight et al.¹⁴ in 1955, and "enterogenous" by Scoville et al.¹⁵ in 1963. Other terms used to describe them include enterogenic, foregut, respiratory, and bronchogenic cysts,^{10,13} due in part to observed associations with bronchopulmonary foregut malformations.² However, the use of the term neuroenteric cyst has gained increasing support in the neuropathology literature,^{1,16} despite the World Health Organization's adoption of the term "enterogenous" in the revised 1993 classification of tumours of the CNS.¹⁷

To our knowledge, 140 intracranial NC, confirmed by histology, including the patient presented in this review, have been reported since 1952.^{1,3–8,18–100} All cysts described were symptomatic and required surgery and among those that were partially excised, a symptomatic recurrence occurred in approximately one-third.⁷⁶ Recent advances in neuroimaging have led to an increased frequency of diagnosis of these rare lesions. This article reviews the literature pertaining to NC and, in particular, clarifies their diagnosis and management, and includes an illustrative patient.

2. Literature search

The PubMed search engine of the National Library of Medicine and National Institutes of Health (http://www.ncbi.nlm.nih.gov/ pubmed/) was utilised to conduct an Internet Medline literature search based on the following search terms: "neuroenteric cyst", "endodermal cyst", "enterogenous cyst", "neurenteric cyst", "epithelial cyst", "intestinome", "teratomatous cyst", "gastrocytoma", and also "enterogenic", "foregut", "respiratory", and "bronchogenic cyst". Only reports in English involving histopathologicallyconfirmed intracranial NC were considered, no date limitations were imposed in the search criteria, and spinal NC were excluded. Cases from bibliographies of retrieved references were included. In total, 139 reports of intracranial NC were found.

3. Epidemiology

NC are rare benign neoplasms most commonly located within the spine. Intracranial NC are particularly rare and only comprise

^{*} Corresponding author. Tel.: +61 3 9342 7000; fax: +61 3 9342 7273. E-mail address: andrew.gauden@gmail.com (A.J. Gauden).

fable 1	
Reports of intracranial neurenteric cysts in the literature a,1,3-8,18-100	

	Ν	Percentage ^b
Median age (years)	34	
Age range (years)	0-78	
Male	61	51
Female	48	49
Location		
Posterior fossa	47	34
Craniocervical	61	44
Supratentorial	19	14
Other	12	9
Lateralisation		
Midline	87	63
Lateral	41	29
Not specified	11	8

^a Including the illustrative patient in this review.

^b Percentage does not add to 100% due to rounding.

of 10% to 17.9% of all NC.⁹⁶ Including the patient in this review, only 140 patients with intracranial NC have been reported since 1952.^{1–3,5,22,25,26,29,35,46,49,54,77–79,83,96,100–105} Due to the paucity of patients it is difficult to make an assessment of the true incidence or prevalence of NC. Two retrospective studies in China have suggested that intracranial NC make up approximately 0.15% to 0.35% of all intracranial neoplasms,^{96,106} but these finding were based on retrospective audits conducted at specialty neurosurgical centres and covered surgically referred patients only and not the general population. The true incidence remains unknown.

The patient demographics and features of the intracranial NC in the published reports is shown in Table 1. Our review of these reports has demonstrated a median age at presentation of 34 years (range 0–78 years). These reports suggest that intracranial NC occur more often in the adult population in comparison to intraspinal NC, which are more common in the paediatric setting (0–10 years of age).^{2.4} To date, only 18 patients with intracranial NC have been reported in patients younger than 14 years.^{4,27,31,33,39,56,64,77,79,91,93,94,99,100} The youngest patient reported to date is that of a prenatal diagnosis of a large NC occupying the sella and parasellar areas extending to both the right anterior and middle cranial fossa identified at 26 weeks' gestation on routine ultrasonography.²⁷

Of the published reports, there does not appear to be any significant gender preponderance. This is in contrast to previously published series which have suggested either male or female predominance.^{77,95,96,107} The age at presentation of intracranial NC is later than that of intraspinal cysts, possibly due to the lower tolerance of local mass effect on the spinal cord. A total of 61 (44%) NC in reported patients were located within the posterior fossa with 47 (34%) extending from the posterior fossa to the cervicomedullary junction. Only 19 (14%) of these reports described supratentorially located NC.^{1,3,20,21,27,29,32,37,65,66,77,84,87,88,93} This was in keeping with current knowledge of intracranial NC. Multiple NC in both the supratentorial and infratentorial compartments have been documented rarely.^{1,3,29,108,109}

Midline-located NC were described in 63% of patients and 29% were located laterally, with reports of 11 (8%) patients not providing sufficient details on cyst location. Although NC are most commonly located in the midline, 61% of those located laterally were found on the left side and 39% on the right side. No bilateral localisation of NC has been reported to our knowledge.

4. Clinical features

The most common presentations are related to the local mass effect of the NC and its specific location. NC located within the posterior fossa present most frequently with vertigo or imbalance (50%), hearing loss (14%) and tinnitus (11%). Less common symptoms have been associated with specific cranial nerve deficits including blurred vision (4%), lower cranial nerve deficits (2%), and sensory loss or trigeminal neuralgia (3%). These presentations appear to be more common in NC located within the CPA.^{1,4,7,29,53,76,110} Two small series of posterior fossa NC have demonstrated such symptoms.^{22,96} Other specific cranial nerve deficits have been reported secondary to localised NC compressing cranial nerves such as the oculomotor nerve (diplopia),⁷⁵ and optic nerve (visual failure).⁸⁰

In the rare supratentorial NC, presenting symptoms and signs are most commonly related to increased intracranial pressure. These patients commonly present with headache, nausea and vomiting. Patients may also present with focal and generalised seizures and associated focal motor and sensory deficits depending on the cyst location,^{3,20,21,29,88} or with symptomatic hydrocephalus in patients with intraventricular cysts.^{77,93} Some reports have documented recurrent presentations with fever and meningism related to aseptic meningitis. This has been postulated to occur secondary to intermittent leakage or a patent fistula causing drainage of cyst contents into the subarachnoid space leading to an inflammatory reaction.^{22,103}

Patients with NC often present with symptoms that been have recurrent over several years. This is presumably secondary to the slow growth of these lesions.^{10,29,46,95,96,111-114} This growth may be related to ongoing secretions from the epithelial cells,^{14,49,53} osmotic retention of cerebrospinal fluid (CSF)^{10,25,115} or intracystic haemorrhage.^{12,76,77,88,90,116} The mechanism of transient symptom regression is unknown, but may involve intermittent compression of neural structures through the mass effect of the NC followed by spontaneous leakage, relieving the compression and subsequent later reaccumulation of cyst contents.⁷⁶ This phenomenon has been reported in patients with spinal NC.^{26,49,78,79,102}

5. Definition and classification

NC have been defined as benign cystic lesions that are lined by mucin-secreting epithelium similar to that found in the gastrointestinal tract.¹¹⁷ However, this definition may not be entirely correct as publications documenting malignant transformation of NC exist, suggesting this entity may not be as benign as originally thought.^{3,32,78,97}

Defining and classifying NC has been problematic due to the lack of consistency in terminology regarding NC and the paucity of reports. There are two classifications of intraspinal NC in use, each relying on histological findings and topography.^{96,118} The first was developed in 1976 by Wilkins et al. – a classification system for intraspinal NC (Types A–C) based on histological features:¹⁰⁷

- Type A cysts have an epithelial lining composed of pseudostratified cuboidal or columnar epithelial cells mimicking the respiratory or gastrointestinal epithelium.
- Type B cysts in addition to the above structure, may be arranged in complex invaginations and have associated glands producing mucinous or serous fluid. These cysts may be composed of a range of associated tissue including smooth muscle, striated muscle, fat, cartilage, bone, elastic fibers, lymphoid tissue, nerve fibers, ganglion cells, or Vater Pacini corpuscles.
- Type C cysts, in addition to the findings in Type B, may be associated with glial elements such as ependymal cells of the wall.

The second classification system for spinal NC is based on the location of the lesion within the spinal column.^{4,5} The spectrum of anomalies according to this classification includes alimentary

diverticula, post-enteric prevertebral cysts, vertebral body malformations with intraspinal cyst, through to spina bifida and dermal sinus.^{13,16,40} There is no such classification tool available for intracranial NC due to their rarity. As the number of reports continues to increase, a classification tool may be developed to guide the diagnosis and management of this condition.

6. Embryology

The precise aetiology and pathogenesis of NC remains unclear, with several hypotheses proposed. The most common hypothesis is that NC develop from failure of the dissolution of the neurenteric canal between the foregut or the respiratory buds and the notochord.^{1,7,53,76} During the third and fourth weeks of embryogenesis, a transient communication, the neurenteric canal, exists between the primitive neural tube (ectoderm) and the enteric tube (endoderm). During the formation of the notochord the embryonic ectoderm and endoderm separate.²⁹ If the endodermal cells become separated from the normal gut and emerge intra-axially, a NC develops (Fig. 1).⁹⁶ NC are composed of an epithelial lining of endodermal origin along the neural axis, a finding which supports the theory that they arise from ectopic remnants of the primitive endoderm caught in the developing neuroectoderm during embryogenesis.^{29,40,53} This theory is supported by intracranial NC occurring within the posterior fossa and their predominantly anterior midline location as the rostral closure of the notochord by the mesenchyme that subsequently forms the clivus.¹

The developmental disturbance at the origin the NC is also reflected by the reported occurrence of vertebral body anomalies,^{4,5,13,16,116,119,120} although spinal NC without associated vertebral or other congenital abnormalities have been described.¹²¹ Additionally, intra-abdominal or intrathoracic cysts are frequently^{4,5} encountered in association with NC. Although this theory supports the formation of NC in both the posterior fossa and the spinal cord, it does not explain the origin of supratentorial NC. A further theory has proposed that supratentorial NC may originate from a remnant of Seessel's pouch, an outpouching of the oropharyngeal membrane, composed of endoderm that gives rise to the adenohypophysis.¹¹² This unsupported hypothesis further suggests that both Rathke's cleft cyst and colloid cysts may represent a form of NC that arises from Seessel's pouch. This theory, however, does not adequately explain the origin of laterally located supratentorial NC, which remain poorly understood.^{1,3,20,21,29,32,37,66,77,80,82,84,87,88}

Other hypotheses have also been proposed to explain the formation of NC and have suggested adhesions causing an abnormal development of the notochord,¹²² abnormal duplication or splitnotochord,^{123,124} disorders of gastrulation,¹²⁵ and persistence of the neurenteric canal.¹²⁶ No current theory can explain entirely the formation of NC.

7. Radiological features

Although NC are more commonly located within the spinal cord, they may develop intracranially.⁵ Most intracranial NC develop within the posterior fossa and account for approximately 70% to 90% of all intracranial NC.^{1,3,5,7,22,53,76,88,95,101,105,110} In a small retrospective case series of posterior fossa NC, it was reported that these lesions are located most commonly within the midline and anterior to the brain stem (23.1–51%).⁹⁶ The second most common location of NC in the posterior fossa is the CPA (17–51%)⁹⁶; however, these lesions can also occur within the fourth ventricle.⁶

Supratentorial NC are even rarer and have been reported in such locations as suprasellar,^{103,112} parasellar,^{22,127} along the optic nerve ⁸⁰ or the oculomotor nerve,⁶⁸ superior orbital fissure,¹²⁸ or as intraparenchymal or durally based lesions,^{21,105,110,115,129}

Fig. 1. Embryology of neuroenteric cysts (NC). (Upper) Normal development; and (lower) abnormal development showing abnormal migration of endoderm cells during the fourth week of embryogenesis, which is postulated to underlie NC formation. Blue = neural fold/neural tube, green = head mesenchyme, purple = endoderm, red = notochord, yellow–green = epidermal ectoderm. (Figure modified from¹⁴⁴ Rao MS, Jacobson M. *Developmental neurobiology*. 4th ed. New York, NY: Springer-Verlag 2005, reproduced with kind permission of Springer Science+Business Media B.V.)

intraventricular lesions,^{6,71,89,90,111} and those at the craniocervical junction.^{35,55,64} Given that NC can appear both histologically and radiologically similar to Rathke's cleft cyst and colloid cysts, location can provide an important distinguishing feature.

The radiographic findings of NC vary significantly with both CT scans and MRI. This has been ascribed to variability of cyst protein content.^{7,9,77,83,130–133} NC are usually demonstrated as hypodense lesions with no contrast enhancement using CT; however, they can occasionally appear as hyperdense lesions that are compartmentalised with some enhancement of the cyst wall.^{22,77} NC have appeared isodense with surrounding brain parenchyma on CT scan, posing a challenge in diagnosing the cyst radiologically.^{7,9} Intracranial NC, unlike their spine counterparts, only very rarely demonstrate associated bony abnormalities with one report demonstrating bony erosion of the petrous temporal bone adjacent to the cyst.^{22,77,96}

MRI is the radiological investigation-of-choice for NC. Most NC are proteinaceous and have a T1-weighted signal that ranges from isointense to slightly hyperintense to CSF and classically appears hyperintense on T2-weighted images.⁷⁷ NC appear as hyperintense on fluid-attenuated inversion recovery (FLAIR) sequences with an absence of surrounding oedema and usually demonstrate a mild restriction on diffusion-weighted imaging (DWI).⁷⁷ Enhancement on MRI is rare, similar to CT.^{77,83,132,133} To our knowledge, NC associated with calcification have been described in two patients only.^{77,88} Other variants of NC exist such as a solid nodule with strong enhancement from a xanthogranulomatous reaction that simulated cholesterol granuloma^{15,83} or a posterior rim enhancement at the interface between the cyst and the adjacent neural parenchyma.^{9,77,95,112} Associated hydrocephalus can also occur secondary to the location and mass effect of the NC.^{6,76,95,103,111}

8. Radiological differential diagnosis

Although the imaging characteristics and location of the cystic lesion may assist in forming a preoperative diagnosis of NC, other intracranial cystic lesions must also be considered in the differential diagnosis. These lesions include arachnoid cysts,¹³⁴ epidermoid or dermoid cysts,¹³⁵ choroidal cysts,^{73,103} colloid cysts,¹¹¹ Rathke's cleft cyst,^{73,103} ependymal cysts,^{73,103} cysts of parasitic or larval origin,^{136,137} and cystic tumours (both primary and metastatic).^{29,103} Due to the lack of specific imaging features, NC may be misdiagnosed as any of the above lesions preoperatively. Lesion location can assist with the consideration of an NC and cystic lesions located in the posterior fossa ventral to the brainstem should be considered suspicious for a NC. NC, epidermoid cysts, and dermoid cysts are often highly variable in location, radiological appearance, and manner of growth, making definitive radiological diagnosis difficult.

Arachnoid cysts have similar morphology to NC and generally the content of the cyst is consistent with CSF appearance on both MRI and CT scan, a finding that is common to NC as well. An arachnoid cyst, unlike an NC, commonly has a suppressed signal with MRI FLAIR sequence and does not restrict on DWI.^{7,9,64,77,96} This finding of cystic content with the same signal characteristics as CSF is also helpful in distinguishing NC from choroidal cysts and ependymal cysts.¹⁰³

Epidermoid and dermoid cysts may differ from NC in terms of location as they are more likely to be situated in lateral locations such as the CPA, but the NC is more likely to be midline.⁹⁶ However, in our review, we found it not uncommon for NC to occur laterally within the CPA.^{5,46,69,76,90,96} Epidermoid and dermoid cysts usually appear more lobulated compared to the regular rounded appearance of NC and may demonstrate calcification in 10% to 15% of patients.⁸⁸ Dermoid cysts usually demonstrate hyperinten-

sity on both T1-weighted and T2-weighted MRI, with epidermoid cysts typically demonstrating hypointensity on T1-weighted MRI, and hyperintensity on T2-weighted MRI, and with a degree of mild contrast enhancement. Both epidermoid and dermoid cysts demonstrate a moderate to quite significant restriction on DWI which may assist in differentiating these lesions from NC.¹¹³ However, diffusion restriction has been noted in histologically proven NC.⁷⁷ In addition to these findings, the rare "white" epidermoid cyst may appear very similar to NC given its hyperintense appearance on T1-weighted MRI and in midline lesions, they may be indistinguishable from NC.¹³⁰

Endodermal derived cysts such as Rathke's cleft cysts and colloid cysts may be differentiated from NC based on location of the lesion.¹³⁸ Cystic neoplasms such as schwannoma, pleomorphic xanthoastrocytoma and metastasis can be generally excluded from the differential diagnosis given their rare midline appearance, association with cranial nerves and contrast enhancement.⁷⁷

Parasitic infections such as racemose neurocysticercosis appear as large cystic lesions and may occur with a signal similar to CSF on both CT scans and MRI.⁸⁸ These lesions, however, are commonly multiple and located within the basal cisterns and Sylvian fissure. There may also be a degree of associated contrast enhancement of leptomeninges which does not occur with NC.¹³⁹

In the context of highly variable radiological and intraoperative appearances in conjunction with a variety of pathologies that may be indistinguishable with current imaging techniques, a definitive diagnosis of NC can only be made after histological and subsequent immunohistochemical analysis of the cyst wall.

9. Histopathology

On gross anatomical inspection intraoperatively, NC usually appear as yellow or milky-white, thin-walled cysts containing a gelatinous typically transparent fluid, although mucoid or xanthochromic cyst contents have been described.^{6,20,21,88,96,140} Upon histological examination NC are benign lesions with cyst walls composed of simple or pseudostratified cuboidal or columnar epithelium with a basement membrane that resembles gastrointestinal or respiratory epithelium.^{17,95,116} Approximately 50% of cysts are lined by gastrointestinal epithelium, with 17% by ciliated respiratory epithelium and the remainder having a mixed appearance of the above types as well as containing pancreatic and squamous epithelium.^{1,4,6,11,12,20,65,88,102,114,116} The finding of respiratory epithelium is in keeping with the embryological formation of the respiratory tract from buds of the neuroenteric canal.^{69,88,103} NC epithelium may also contain mucin-secreting goblet cells consistent with a gastrointestinal epithelium.¹

Although these lesions are most commonly benign, rare instances of both *de novo* malignancy and malignant transformation of NC in the setting of recurrence have been reported.^{3,32,78,97} Malignant transformation of the NC wall into an adenocarcinoma appears to have been the cause in these patients and this information is supported through careful exclusion of a potential primary as a source of metastasis and a noted increase in the Ki-67 immunohistochemical marker for cellular proliferation.^{32,78,97,141}

In addition to histopathological appearance using light and electron microscopy, immunohistochemistry (IHC) has assisted in the diagnosis of NC. NC epithelial cells usually stain positive with anti-carcinoembryonic antigen antibody, anti-cytokeratin (CK) monoclonal antibody, and anti-epithelial membrane antigen (EMA) antibody suggesting an endodermal origin of the epithe-lium.^{1,26,29,54,102,103,114,115} NC are reported to stain negative for glial fibrillary acidic protein, neuron specific enolase and vimentin, these markers being positive in ectodermal cysts.^{58,96,142} Additional special stains are also useful in the work-up of NC including

periodic acid Schiff (PAS) staining, an indicator of the presence of secretory granules in goblet cells, signifying an endodermal origin of the cyst.^{1,46} Carbohydrate antigen (CA) 19-9 has been demonstrated to stain positively in both NC of benign origin and those having undergone malignant transformation.^{102,143} IHC and light microscopy appear essential in establishing a diagnosis of NC, particularly in the setting of non-specific findings on radiology.

10. Management

Due to the lack of sufficient reports, the management of intracranial NC remains poorly understood. The current recommendation in the literature suggests that surgical excision is the only treatment to be advocated in patients presenting with a symptomatic NC. The most favourable outcomes have been associated with complete resection of the cyst wall through aspiration and ideally marsupialisation.¹⁰³ The surgical approach must adequately expose the cyst and its interface between the surrounding tissue. In some instances the cyst wall may adhere strongly to critical neural structures such as the brainstem and total resection may not be possible. The authors of a surgical series of seven patients with NC suggested that the degree of adhesion between the lesion and surrounding neural structures is directly proportional to the size of the lesion and thinness of the cyst wall.⁹⁶

Postoperative meningism has been reported with some patients complaining of headache, fever and neck stiffness.⁹⁶ It has been postulated the meningism is secondary to chemical meningitis caused by leakage of cyst contents into the subarachnoid space and has been confirmed through a finding of elevated CSF protein content. This was managed successfully with regular lumbar punctures every two to three days.⁹⁶ To prevent this complication, it was further suggested that the cyst should be punctured with a syringe and the contents aspirated prior to its incision. The subarachnoid space should be protected during this process with cotton patties surrounding the operative region and copious warm irrigation to remove residual cyst contents.⁹⁶

Avoidance of cyst fenestration, biopsy and partial wall resection have been suggested as management options due to the high risk of recurrence.^{26,128} Wang et al. have postulated that in subtotal resection of an NC, the residual cyst wall may be responsible for cyst recurrence. If the remnant walls are sufficient to overlap, the lesion may reform. Thus, care should be taken intraoperatively to identify cyst wall remnants and to electrocoagulate them to avoid NC recurrence.⁹⁶ Recurrence in NC, which may occur between four months and 14 years,^{26,96} has occurred even in the setting of complete macroscopic resection.²⁶ Duration of follow-up for postoperative intracranial NC patients with repeat imaging should reflect this potential for long-term recurrence. Recurrence may present with signs of aseptic meningitis or can be associated with increasing levels of CA19-9 isolated in the CSF.⁹⁶ This may provide an avenue for surveillance for recurrence with biochemical testing.

Outcome in terms of recurrence rates remain poorly understood due to the paucity of patients. In addition, there are case reports of apparent *de novo* progression of NC to adenocarcinoma which were subsequently treated with surgical resection.^{3,32,78,97} Surgery remains the treatment of choice and neither conventional radiation nor chemotherapy is recommended.^{32,97} There is insufficient evidence to support the use of stereotactic radiosurgery in the treatment of NC.^{26,96} However, more research, as the number of patients with NC increases, may assist in further delineating the roles of adjuvant treatments in NC, particularly in the setting of malignant progression.

11. Illustrative patient

11.1. Clinical presentation and investigation

A 47-year-old woman presented with an eight-week history of headache and minor, non-specific symptoms. The physical examination was normal. A CT scan showed low-density extra-axial lesions of the midline posterior fossa and the right frontal region. MRI demonstrated non-enhancing extra-axial cystic lesions in the posterior fossa, left cerebellar hemisphere, right frontal and right parietal convexity, all homogeneously hypointense on T1weighted, and hyperintense on T2-weighted, MRI (Fig. 2). The lesions were initially considered to be arachnoid cysts, but were noted to enlarge over a period of nine months. Other pathologies were considered including neurocysticercosis, as the patient had lived most of her life in South-East Asia.

11.2. Surgery and postoperative course

It was decided to biopsy/excise the right frontal cyst as this was the most accessible and had been observed to grow during the

Fig. 2. (A, B) Axial CT scans showing hypodense extra-axial lesions in the posterior fossa and right frontal lobe. (C, sagittal; D, E, coronal) MRI showing lesions that are hypointense on T1-weighted MRI, (F, axial) hyperintense on T2-weighted MRI, (G, coronal) non-enhancing on T1-weighted enhanced MRI and (H, axial) without significant restriction on diffusion-weighted imaging.

A.J. Gauden et al. / Journal of Clinical Neuroscience 19 (2012) 352-359

Fig. 3. Histopathological examination of the surgical specimen showing: (A) a single layer of cuboidal epithelium (haematoxylin and eosin [H&E], ×400), (B) scattered goblet cells (H&E, ×600), (C) goblet cells containing periodic acid Schiff (PAS)-positive mucin in the cytoplasm (PAS, ×400), (D) epithelial cells staining positively for cytokeratin (CAM5.2, ×400) and (E) staining positively for epithelial membrane antigen (EMA, x400).

period of observation. The patient underwent a right frontotemporal craniotomy. The cyst had a very thin arachnoid-like wall containing clear fluid, and had indented the adjacent frontal lobe. The wall of the cyst was excised completely and both the cyst wall and the fluid were sent for pathological analysis. The postoperative period was uneventful and the patient was discharged a few days after surgery. This patient, with bilateral localisation of multiple NC in both the supratentorial and infratentorial compartments, illustrates a very rare presentation.^{1,3,29,108,109}

11.3. Pathological examination

Light microscopy revealed a single layer of cuboidal epithelium with goblet cells containing PAS-positive mucin in the cytoplasm. IHC showed that the epithelial cells stained strongly for CK and EMA (Fig. 3). The morphological appearance intraoperatively and histological findings were in keeping with the diagnosis of NC.

12. Conclusion

NC are rare, benign and non-neoplastic lesions, but should be considered in the differential diagnosis of cystic lesions involving the CNS. Their radiological appearance may be misleading owing to variable protein content of the cyst fluid and the existence of similar intracranial lesions that are difficult to differentiate from NC. Because of this, histology with IHC is required to make a definitive diagnosis. Due to the high local recurrence rate observed after partial resection, the goal of surgery should be cyst content aspiration followed by complete microsurgical cyst wall resection. As recurrences may be delayed in the order of years, periodic clinical and MRI follow-up is advised for at least 10 years following surgery.

Acknowledgements

The authors thank A/Prof. Kate Drummond (Consultant Neurosurgeon, Royal Melbourne Hospital, Australia) for her advice and assistance in preparing this article.

References

- 1. Cheng JS, Cusick JF, Ho KC, et al. Lateral supratentorial endodermal cyst: case
- report and review of literature. *Neurosurgery* 2002;**51**:493–9 [discussion 9]. Demirbilek S, Kanmaz T, Bitiren M, et al. Mediastinal neurenteric cyst in a 2 child. Inonu Universitesi Tip Fakultesi Dergisi 2005;12:41-3.
- 3. Ho LC, Olivi A, Cho CH, et al. Well-differentiated papillary adenocarcinoma arising in a supratentorial enterogenous cyst: case report. Neurosurgery 1998;43:1474-7
- 4. de Oliveira RS, Cinalli G, Roujeau T, et al. Neurenteric cysts in children: 16 consecutive cases and review of the literature. J Neurosurg 2005;103:512-23.
- 5. Gessi M, Legnani FG, Maderna E, et al. Mucinous low-grade adenocarcinoma arising in an intracranial enterogenous cyst: case report. Neurosurgery 2008;62:E972-3 [discussion E3].
- 6. Afshar F, Scholtz CL. Enterogenous cyst of the fourth ventricle: case report. J Neurosurg 1981;54:836-8.
- 7. Brooks BS, Duvall ER, el Gammal T, et al. Neuroimaging features of neurenteric cysts: analysis of nine cases and review of the literature. AJNR Am J Neuroradiol 1993:14:735-46.
- Fuse T, Yamada K, Kamiya K, et al. Neurenteric cyst at the craniovertebral junction: report of two cases. Surg Neurol 1998;50:431-6.
- 9. Geremia GK, Russell EJ, Clasen RA. MR imaging characteristics of a neurenteric cyst. AJNR Am J Neuroradiol 1988;9:978-80.
- Gumerlock MK. Epidermoid, dermoid, and neurenteric cysts. In: Winn RH, editor. Youmans neurological surgery. Philadelphia: WB Saunders; 2004. p. 1223-30.
- 11. Kubie LS, Fulton JF. A clinical and pathological study of two teratomatous cysts of the spinal cord, containing mucinous and ciliated cells. Surg Gynecol Obstet 1928;**47**:297–311.
- Varie eteratomesousdural 12. Puusepp M. terared dela regioncervicale(intestinome): Quadripleggie-Expation: Guerison complete. Rev Neurol 1934;2:879-86.
- DD. Thoracic neurenteric cyst. Surgery Holcomb Ir GW. Matson 1954;**35**:115-21
- 14. Knight G, Griffiths T, Williams I. Gastrocystoma of the spinal cord. Br J Surg 1955;42:635-8

358

A.J. Gauden et al. / Journal of Clinical Neuroscience 19 (2012) 352-359

- 15. Scoville WB, Manlapaz JS, Otis RD, et al. Intraspinal enterogenous cyst. J Neurosurg 1963;20:704-6.
- Keating RF, Multani J, Cogen PH. Occult spinal dysraphism and the tethered spinal cord. In: Winn RH, editor. *Youmans neurological surgery*. 5th ed. Philadelphia: WB Saunders; 2004. p. 3257–88. 16
- 17. Kleihues P, Burger PC, Scheithauer BW. Histological typing of tumors of the central nervous system: World Health Organization. Berlin: Springer-Verlag; 1993
- 18. Abe K. Ovama K. Mori K. et al. Neurenteric cvst of the craniocervical junction case report. Neurol Med Chir (Tokyo) 1999;39:875-80.
- Akalan N, Seckin H, Kilic C, et al. Benign extramedullary tumors in the foramen magnum region. Clin Neurol Neurosurg 1994;96:284-9.
- Basheer N, Kasliwal MK, Suri A, et al. Lateral extradural, supratentorial neurenteric cyst. J Clin Neurosci 2010;**17**:639–41. 20.
- Bavetta S, El-Shunnar K, Hamlyn PJ. Neurenteric cyst of the anterior cranial 21. fossa. Br J Neurosurg 1996;**10**:225–7.
- Bejjani GK, Wright DC, Schessel D, et al. Endodermal cysts of the posterior 22. fossa. Report of three cases and review of the literature. J Neurosurg 1998:89:326-35.
- 23. Boyar B, Aksoy F, Taskin Y, et al. Enterogenous cyst of the cervicomedullary junction. A case report. J Neurosurg Sci 1991;35:169–72. 24. Breeze RE, Nichols P, Segal H, et al. Intradural epithelial cyst at the
- craniovertebral junction. Case report. J Neurosurg 1990;73:788-91.
- Chavda SV, Davies AM, Cassar-Pullicino VN. Enterogenous cysts of the central 25. nervous system: a report of eight cases. Clin Radiol 1985;36:245-51. 26.
- Chaynes P, Bousquet P, Sol JC, et al. Recurrent intracranial neurenteric cysts. Acta Neurochir (Wien) 1998;140:905-11.
- Chen PY, Wu CT, Lui TN, et al. Endodermal cyst presenting as a prenatally 27. diagnosed large intracranial cyst. Case report and review of the literature. J Neurosurg 2007:106:506-8.
- Cho JM, Ahn JY, Kim Sh, et al. An endodermal cyst mimicking an intra-axial 28. tumor in the medulla oblongata. *Childs Nerv Syst* 2010;**26**:853–6. Christov C, Chretien F, Brugieres P, et al. Giant supratentorial enterogenous
- 29 cyst: report of a case, literature review, and discussion of pathogenesis. Neurosurgery 2004;54:759-63 [discussion 63].
- 30. Crockard HA, Sen CN. The transoral approach for the management of intradural lesions at the craniovertebral junction: review of 7 cases. Neurosurgery 1991;28:88–97 [discussion-8].
- 31. Del Bigio MR, Jay V, Drake JM. Prepontine cyst lined by respiratory epithelium with squamous metaplasia: immunohistochemical and ultrastructural study. *Acta Neuropathol* 1992;83:564–8.
- 32. Dunham CP, Curry B, Hamilton M. Malignant transformation of an intraaxialsupratentorial neurenteric cyst - case report and review of the literature. Clin Neuropathol 2009;28:460-6.
- 33. Ergun R, Akdemir G, Gezici AR, et al. Craniocervical neurenteric cyst without
- associated abnormalities. *Pediatr Neurosurg* 2000;**32**:95–9. 34. Fabinyi GC, Adams JE. High cervical spinal cord compression by an enterogenous cyst. Case report. *J Neurosurg* 1979;**51**:556–9.
- 35. Filho FL, Tatagiba M, Carvalho GA, et al. Neurenteric cyst of the craniocervical junction. J Neurosurg 2001;94:129-32.
- 36. Gao P, Osborn AG, Smirniotopoulos JG, et al. Neurenteric cysts. Pathology, imaging spectrum, and differential diagnosis. Int J Neuroradiol 1995;1:17-27.
- 37. Garbizu JM, Mateo-Sierra O, Iza B, et al. Supratentorial endodermal cyst. Case report. Neurocirugia (Astur) 2009;20:367-71.
- Giombini S, Lodrini S, Migliavacca F. Intracranial enterogenous cyst. Surg 38. Neurol 1981;16:271-3
- Goel A, Muzumdar D, Chagla A. Endodermal cyst anterior and anterolateral to 39. the brainstem: a report of an experience with seven cases. Br J Neurosurg 2005·19·163-6
- 40. Harris CP, Dias MS, Brockmeyer DL, et al. Neurenteric cysts of the posterior recognition, management, and embryogenesis. Neurosurgerv fossa: 1991;29:893-7 [discussion 7-8].
- Hasegawa H, Bitoh S, Obashi J, et al. Lateral approach to the anterior foramen magnum tumor: report of two cases. No Shinkei Geka 1988;16:1517-20.
- 42. Hirai O, Kawamura J, Fukumitsu T. Prepontine epithelium-lined cyst. Case report. J Neurosurg 1981;**55**:312–7. 43. Hirai O, Kondo A, Kusaka H. Endodermal epithelial cyst in the prepontine
- cistern extending into the fourth ventricle case report. Neurol Med Chir (Tokyo) 1991;**31**:283-6.
- 44. Ho KL, Chason JL. Subarachnoid epithelial cyst of the cerebellum. Immunohistochemical and ultrastructural studies. Acta Neuropathol 1989:78:220-4.
- Husson M, Marchal JC, Hepner H. Kyste intra-crânien d'origine entoblastique. 45. A propos d'une observation. Ann Med Nancy Est 1981;20:1077-9.
- 46. Ito S, Fujiwara S, Mizoi K, et al. Enterogenous cyst at the cerebellopontine angle: case report. Surg Neurol 1992;37:366-70.
- Kak VK, Gupta RK, Sharma BS, et al. Craniospinal enterogenous cyst: MR findings. *J Comput Assist Tomogr* 1990;**14**:470–2. Kim CY, Wang KC, Choe G, et al. Neurenteric cyst: its various presentations. 47.
- 48. Childs Nerv Syst 1999;15:333-41.
- Kimura H, Nagatomi A, Ochi M, et al. Intracranial neurenteric cyst with recurrence and extensive craniospinal dissemination. Acta Neurochir (Wien) 2006;148:347-52 [discussion 52].
- 50. King NK, Joshi SM, Marino S, et al. Dorsally located endodermal cyst: case report and review. Br J Neurosurg 2009;23:318-20.

- 51. Kinney WC, Kinney SE, Perl 2nd J, et al. Rare lesions of the posterior fossa with initial retrocochlear auditory and vestibular complaints. Am J Otol 1997;18:373-80.
- 52. Koksel T, Revesz T, Crockard HA. Craniospinal neurenteric cyst. Br J Neurosurg 1990;4:425-8.
- Kulkarni V, Daniel RT, Haran RP. Extradural endodermal cyst of posterior 53. fossa: case report, review of the literature, and embryogenesis. Neurosurgery 2000:47:764-7
- 54. Lach B. Russell N. Atack D. et al. Intraparenchymal epithelial (enterogenous) cyst of the medulla oblongata. Can J Neurol Sci 1989;16:206-10.
- 55. Laidlaw JD. Iso-intense neuroenteric cyst in the lower cervical spine treated with ventral resection and anterior fusion utilising sternal notch exposure: report, technical note and literature review. J Clin Neurosci 2003.10.606-12
- 56. Lazareff JA, Hoil Parra JA. Intradural neurenteric cyst at the craniovertebral junction. Childs Nerv Syst 1995;**11**:536–8.
- Lee WY, Tseng HM, Lin MC, et al. Neurenteric cyst at craniocervical junction: report of a case. J Formos Med Assoc 1992;91:722-4.
- 58. Liu JK, Couldwell WT. Far-lateral transcondylar approach: surgical technique and its application in neurenteric cysts of the cervicomedullary junction. Report of two cases. *Neurosurg Focus* 2005;**19**:E9. 59. Lonjon M, Paquis P, Michiels JF, et al. Endodermal cyst of the foramen
- magnum: case report and review of the literature. Childs Nerv Syst 1998;14:100-3.
- Mackenzie IR, Gilbert JJ. Cysts of the neuraxis of endodermal origin. J Neurol 60. Neurosurg Psychiatry 1991;54:572-5.
- 61. Malcolm GP, Symon L, Kendall B, et al. Intracranial neurenteric cysts. Report of two cases. J Neurosurg 1991;75:115-20.
- Matson DD. Neurosurgery of infancy and childhood. 2nd ed. Springfield; 1969. Mehta VS, Chowdhury C, Bhatia R. Neuroenteric cyst of the cerebellum.
- Postgrad Med J 1984;60:287-9.
- 64. Menezes AH, Ryken TC. Craniocervical intradural neurenteric cysts. Pediatr Neurosurg 1995;22:88-95.
- Mishra GP, Sharma RR, Musa MM, et al. Endodermal cyst of septum 65. pellucidum and pregnancy: a case report. Surg Neurol 2000;53:583-5.
- Mittal S, Petrecca K, Sabbagh AJ, et al. Supratentorial neurenteric cysts a fascinating entity of uncertain embryopathogenesis. Clin Neurol Neurosurg 2010;112:89-97
- 67. Monaco R, Boscaino A, Di Blasi A, et al. Intraepithelial carcinoma arising in an endodermal cyst of the posterior fossa. Neuropathology 2003;23:219-24.
- Morgan MA, Enterline DS, Fukushima T, et al. Endodermal cyst of the 68. oculomotor nerve. Neuroradiology 2001;43:1063-6.
- Muller J, Voelker JL, Campbell RL. Respiratory epithelial cyst of the cerebellopontine angle. Neurosurgery 1989;24:936-9.
- 70. Nakagawa S, Kawaguchi S, Abe M, et al. Endodermal cyst of the cerebellopontine angle cistern: case report. *No Shinkei Geka* 1999;**27**:475–80. 71. Nakajima M, Miyajima M, Hishii M, et al. Endodermal cyst of the quadrigeminal
- cistern: case report. Surg Neurol 2001;56:385-8 [discussion 8-9].
- 72. Nishioka T, Kondo A, Kusaka H, et al. Epithelium-lined cyst of the pretectal region: case report and electron microscope study. Surg Neurol 1989:31:448-53.
- 73. Ohba S, Akiyama T, Kanai R, et al. Endodermal cyst of the cranio-cervical junction. *Acta Neurochir (Wien)* 2008;**150**:257-63 [discussion 63].
- 74. Okabe S, Kamata K, Kohno T, et al. Enterogenous cyst in the fourth ventriclecase report. Neurol Med Chir (Tokyo) 1995;35:40-4.
- 75. Okunaga T, Tsutsumi K, Hayashi T, et al. Endodermal cyst of the oculomotor nerve: case report. Neurosurgery 2006;58:E994.
- Perrini P, Rutherford SA, King AT, et al. Enterogenous cysts of the cerebellopontine angle: short review illustrated by two new patients. *Acta Neurochir (Wien)* 2008;150:177–84 [discussion 84].
- 77. Preece MT, Osborn AG, Chin SS, et al. Intracranial neurenteric cysts: imaging and pathology spectrum. AJNR Am J Neuroradiol 2006;27:1211-6.
- Sahara Y, Nagasaka T, Takayasu M, et al. Recurrence of a neurenteric cyst with 78. malignant transformation in the foramen magnum after total resection. Case report. J Neurosurg 2001;95:341-5.
- Sakata H, Fujimura M, Iwasaki M, et al. Neurenteric cyst of the craniocervical junction in an infant. Neurol Med Chir (Tokyo) 2008;48:86–9.
- Scaravilli F, Lidov H, Spalton DJ, et al. Neuroenteric cyst of the optic nerve: case report with immunohistochemical study. J Neurol Neurosurg Psychiatry 1992:55:1197-9.
- Scarone P, Boissonnet H, Heran F, et al. Neurenteric cyst of the posterior fossa. 81. Case report and review of the literature. *Neurochirurgie* 2009;**55**:45–52.
- Schelper RL, Kagan-Hallet KS, Huntington HW. Brainstem subarachnoid 82. respiratory epithelial cysts: report of two cases and review of the literature. Hum Pathol 1986;**17**:417–22.
- 83. Shakudo M, Inoue Y, Ohata K, et al. Neurenteric cyst with alteration of signal intensity on follow-up MR images. *AJNR Am J Neuroradiol* 2001;**22**:496–8. Sharma RR, Ravi RR, Gurusinghe NT, et al. Cranio-spinal enterogenous cysts:
- 84 clinico-radiological analysis in a series of ten cases. J Clin Neurosci 2001:8:133-9
- Shi W, Cui DM, Shi JL, et al. Microsurgical excision of the craniocervical neurenteric cysts by the far-lateral transcondylar approach: case report and review of the literature. Skull Base 2010;20:435-42.
- 86. Small JM. Pre-axial enterogenous cysts (Abstract). J Neurol Neurosurg Psychiatry 1962:25:184.

A.J. Gauden et al./Journal of Clinical Neuroscience 19 (2012) 352-359

- Suri VS, Tatke M, Sinha S. Intracranial neurenteric cysts: a report of two cases. Br J Neurosurg 2002;16:185–8.
- Tan GS, Hortobagyi T, Al-Sarraj S, et al. Intracranial laterally based supratentorial neurenteric cyst. Br J Radiol 2004;**77**:963–5.
- Uematsu Y, Komai N, Hirano A, et al. Cytokeratin immunohistochemical study of epithelial cysts in the central nervous system: with special reference to origins of colloid cyst of the third ventricle and Rathke's cleft cyst in the sella. *Noshuyo Byori* 1993;10:43–52.
- Umezu H, Aiba T, Unakami M. Enterogenous cyst of the cerebellopontine angle cistern: case report. *Neurosurgery* 1991;**28**:462–5 [discussion 5–6].
 van der Wal AC Troost D. Enterogenous cyst of the brainstem – a case report.
- 91. van der Wal AC, Troost D. Enterogenous cyst of the brainstem a case report. Neuropediatrics 1988; 19:216–7.
- Veeneklass GHM. Pathogenesis of intrathoracic gastrogenic cysts. Am J Dis Child 1952;83:500–7.
- Vlaho S, Gebhardt B, Gerlach R, et al. Cyst of the third ventricle as an unusual cause of acquired hydrocephalus. *Pediatr Neurol* 2003;28:225–7.
- 94. Wait SD, Choi LS, Teo C. Neurenteric cyst: an unusual cause of third nerve palsy. *Childs Nerv Syst* 2010;**27**:639–641..
- Walls TJ, Purohit DP, Aji WS, et al. Multiple intracranial enterogenous cysts. J Neurol Neurosurg Psychiatry 1986;49:438–41.
- 96. Wang L, Zhang J, Wu Z, et al. Diagnosis and management of adult intracranial neurenteric cysts. *Neurosurgery* 2011;**68**:44–52 [discussion].
- Wang W, Piao YS, Gui QP, et al. Cerebellopontine angle neurenteric cyst with focal malignant features. *Neuropathology* 2009;29:91–5.
- Wang YC, Chiang YH, Chiou SY, et al. Enterogenous cyst of the fourth ventricle: case report. *Zhonghua Yi Xue Za Zhi (Taipei)* 1992;50:331–4.
- Yoshida K, Nakamura S, Tsubokawa T, et al. Epithelial cyst of the fourth ventricle. Case report. J Neurosurg 1990;73:942–5.
- Zalatnai A. Neurenteric cyst of medulla oblongata a curiosity. Neuropediatrics 1987;18:40–1.
- Santos de Oliveira R, Cinalli G, Roujeau T, et al. Neurenteric cysts in children: 16 consecutive cases and review of the literature. J Neurosurg 2005;103:512–3.
- Fujita T, Kayama T, Saito S, et al. Immunohistochemical detection of tumor marker in recurrent clivus enterogenous cyst – case report. *Neurol Med Chir* (*Tokyo*) 1997;**37**:479–82.
- Tucker A, Miyake H, Tsuji M, et al. Neurenteric cyst of the lower clivus. Neurosurgery 2010;66:E224-5.
- Ikeda N, Wakabayashi S, Toriyama H, et al. A case of posterior fossa neurenteric cyst. Jpn J Neurosurg 2003;12:617–22.
- Vaishya S, Ramesh T. Spontaneous relapsing and recurring large multiloculated posterior fossa enteric cyst. Acta Neurochir (Wien) 2006;148:985-8.
- Wang YM. Intraspinal enterogenous cyst in children. *Chin J Neurosurg.* 2002;18:119–22.
- Wilkins RH, Odom GL. Tumors of the spine and spinal cord, part 2. In: Vinken PJ, Bruyn GW, editors. *Handbook of clinical neurology*. Amsterdam; 1976. p. 55– 102.
- Kachur E, Ang LC, Megyesi JF. Intraparenchymal supratentorial neurenteric cyst. Can J Neurol Sci 2004;31:412–6.
- 109. Smith JR. Accessory enteric formations: a classification and nomenclature. *Arch Dis Child* 1960;**35**:87–9.
- Neckrysh S, Valyi-Nagy T, Charbel FT. Neuroenteric cyst of the anterior cranial fossa: case report and review of the literature. *Surg Neurol* 2006;65:174–7 [discussion 7].
- 111. Buttner A, Winkler PA, Weis S. Endodermal cyst of the third ventricle: case report. *Neurosurgery* 1997;**40**:832–5 [discussion 5].
- 112. Graziani N, Dufour H, Figarella-Branger D, et al. Do the suprasellar neurenteric cyst, the Rathke cleft cyst and the colloid cyst constitute a same entity? *Acta Neurochir (Wien)* 1995;**133**:174–80.
- 113. Inoue T, Kawahara N, Shibahara J, et al. Extradural neurenteric cyst of the cerebellopontine angle. Case report. *J Neurosurg* 2004;**100**:1091–3.
- 114. Inoue T, Matsushima T, Fukui M, et al. Immunohistochemical study of intracranial cysts. *Neurosurgery* 1988;23:576–81.
- Miyagi A, Katayama Y. Neurenteric cyst arising in the high convexity parietal lesion: case report. *Neurosurgery* 2007;60:E203–4 [discussion E4].

- 116. Coca S, Martinez A, Vaquero J, et al. Immunohistochemical study of intracranial cysts. *Histol Histopathol* 1993;8:651–4.
- 117. Zulch KJ. Histological typing of tumours of the central nervous system. Geneva: World Health Organization; 1979.
- Woo PY, Sharr MM. Childhood cervical enterogenous cyst presenting with hemiparesis. Postgrad Med J 1982;58:424–6.
- 119. Hirano A, Ghatak NR, Wisoff HS, et al. An epithelial cyst of the spinal cord. An electron microscopic study. *Acta Neuropathol* 1971;**18**:214–23.
- Hutchinson J, Thompson JD. Congenital archenteric cysts. Br J Surg 1953;41:19–20.
- 121. Palma L, Di Lorenzo N. Spinal endodermal cysts without associated vertebral or other congenital abnormalities Report of four cases and review of the literature. Acta Neurochir (Wien) 1976;33:283–300.
- Beardmore HE, Wiglesworth FW. Vertebral anomalies and alimentary duplications; clinical and embryological aspects. *Pediatr Clin North Am* 1958; May: 457–74.
- Mc LN, Purves JK, Saunders RL. The genesis of gastric and certain intestinal diverticula and enterogenous cysts. Surg Gynecol Obstet 1954;92:135–41.
- 124. Saunders RL. Combined anterior and posterior spina bifida in a living human female. *Anat Rec* 1943;**87**:255–77.
- Dias MS, Walker ML. The embryogenesis of complex dysraphic malformations: a disorder of gastrulation? *Pediatr Neurosurg* 1992;18:229–53.
- Bremer JL. Dorsal intestinal fistula; accessory neurenteric canal; diastematomyelia. AMA Arch Pathol 1952;54:132–8.
 Sampath S, Yasha TC, Shetty S, et al. Parasellar neurenteric cyst: unusual site
- and histology: case report. *Neurosurgery* 1999;**44**:1335–7 [discussion 7–8]. 128. Leventer DB, Merriam JC, Defendini R, et al. Enterogenous cyst of the orbital
- apex and superior orbital fissure. *Ophthalmology* 1994;**101**:1614–21. 129. Jhawar SS, Nadkarni T, Goel A. Intraparenchymal temporal neurenteric cyst. J
- Clin Neurosci 2011;**18**:415–7. 130 Ochi M Hayashi K Hayashi T et al Unusual CT and MR appearance of an
- Ochi M, Hayashi K, Hayashi T, et al. Unusual CT and MR appearance of an epidermoid tumor of the cerebellopontine angle. *AJNR Am J Neuroradiol* 1998;19:1113–5.
- Kapoor V, Johnson DR, Fukui MB, et al. Neuroradiologic-pathologic correlation in a neurenteric cyst of the clivus. AJNR Am J Neuroradiol 2002;23:476–9.
- Evans A, Stoodley N, Halpin S. Magnetic resonance imaging of intraspinal cystic lesions: a pictorial review. Curr Probl Diagn Radiol 2002;31:79–94.
- 133. Hayashi Y, Tachibana O, Muramatsu N, et al. Rathke cleft cyst: MR and biomedical analysis of cyst content. J Comput Assist Tomogr 1999;23:34–8.
- Fandino J, Garcia-Abeledo M. Giant intraventricular arachnoid cyst: report of 2 cases. *Rev Neurol* 1998;26:763–5.
- Nagayama M, Shinohara Y, Takeoka T, et al. Intracranial paramedian hourglass-shaped dermoid associated with hereditary steatocystoma multiplex. *Eur Neurol* 1992;**32**:260–3.
- Castellanos F, Montes I, Porras LF, et al. Giant subarachnoid cysts due to neurocysticercosis: two cases reported fro a rural area in Extremadura. *Rev Neurol* 2000;**30**:433–5.
- 137. Taratuto AL, Venturiello SM. Echinococcosis. Brain Pathol 1997;7:673-9.
- Paleologos TS, Thom M, Thomas DG. Spinal neurenteric cysts without associated malformations. Are they the same as those presenting in spinal dysraphism? Br J Neurosurg 2000;14:185–94.
- Ghosh D, Dubey TN, Prabhakar S. Brain parenchymal, subarachnoid racemose, and intraventricular cysticercosis in an Indian man. *Postgrad Med J* 1999;**75**:164–6.
- Eynon-Lewis NJ, Kitchen N, Scaravilli F, et al. Neurenteric cyst of the cerebellopontine angle: case report. *Neurosurgery* 1998;42:655–8.
- 141. Perry A, Scheithauer BW, Zaias BW, et al. Aggressive enterogenous cyst with extensive craniospinal spread: case report. *Neurosurgery* 1999;44:401–4 [discussion 4–5].
- Menezes AH, Traynelis VC. Spinal neurenteric cysts in the magnetic resonance imaging era. *Neurosurgery* 2006;**58**:97–105 [discussion 97].
- 143. Rivierez M, Buisson G, Kujas M, et al. Intramedullary neurenteric cyst without any associated malformation. One case evaluated by RMI and electron microscopic study. Acta Neurochir (Wien) 1997;139:887–90.
- 144. Rao MS, Jacobson M. Developmental neurobiology. 4th ed. New York, NY: Springer-Verlag; 2005; P.144.