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Preface

Engineered structures are almost as old as human civilization and undoubtedly began
with rudimentary tools and the first dwellings outside caves. Great progress has been
made over thousands of years, and our world is now filled with engineered struc-

from fragile human-powered aircraft to sleek jets and thundering rockets are, in our
opinion, among the most challenging and creative examples of these efforts.

The study of mechanics and structural analysis has been an important area of en-
gineering over the past 300 years, and some of the greatest minds have contributed
to its development. Newton formulated the most basic principles of equilibrium in
the 17th century, but fundamental contributions have continued well into the 20th

century. Today, structural analysis is generally considered to be a mature field with
well-established principles and practical tools for analysis and design. A key rea-
son for this is, without doubt, the emergence of the finite element method and its
widespread application in all areas of structural engineering. As a result, much of
today’s emphasis in the field is no longer on structural analysis, but instead is on the
use of new materials and design synthesis.

The field of aerospace structural analysis began with the first attempts to build
flying machines, but even today, it is a much smaller and narrower field treated in far
fewer textbooks as compared to the fields of structural analysis in civil and mechan-
ical engineering. Engineering students have access to several excellent texts such as
those by Donaldson [1] and Megson [2], but many other notable textbooks are now
out of print.

This textbook has emerged over the past two decades from our efforts to teach

in aerospace engineering. By the time students enroll in the undergraduate course,
they have studied statics and covered introductory mechanics of deformable bodies
dealing primarily with beam bending. These introductory courses are taught using
texts devoted largely to applications in civil and mechanical engineering, leaving
our students with little appreciation for some of the unique and challenging features
of aerospace structures, which often involve thin-walled structures made of fiber-
reinforced composite materials. In addition, while in widespread use in industry and

tures from nano-scale machines to soaring buildings. Aerospace structures ranging

core courses in advanced structural analysis to undergraduate and graduate students
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the subject of numerous specialized textbooks, the finite element method is only
slowly finding its way into general structural analysis texts as older applied methods
and special analysis techniques are phased out.

The book is divided into four parts. The first part deals with basic tools and
concepts that provide the foundation for the other three parts. It begins with an intro-
duction to the equations of linear elasticity, which underlie all of structural analysis.
A second chapter presents the constitutive laws for homogeneous, isotropic and lin-
early elastic material but also includes an introduction to anisotropic materials and
particularly to transversely isotropic materials that are typical of layered composites.
The first part concludes with chapter 4, which defines isostatic and hyperstatic prob-
lems and introduces the fundamental solution procedures of structural analysis: the
displacement method and the force method.

Part 2 develops Euler-Bernoulli beam theory with emphasis on the treatment of
beams presenting general cross-sectional configurations. Torsion of circular cross-
sections is discussed next, along with Saint-Venant torsion theory for bars of arbitrary
shape. A lengthy chapter is devoted to thin-walled beams typical of those used in
aerospace structures. Coupled bending-twisting and nonuniform torsion problems
are also addressed.

Part 3 introduces the two fundamental principles of virtual work that are the ba-
sis for the powerful and versatile energy methods. They provide tools to treat more
realistic and complex problems in an efficient manner. A key topic in Part 3 is the de-
velopment of methods to obtain approximate solution for complex problems. First,
the Rayleigh-Ritz method is introduced in a cursory manner; next, applications of
the weak statement of equilibrium and of energy principles are presented in a more
formal manner; finally, the finite element method applied to trusses and beams is
presented. Part 3 concludes with a formal introduction of variational methods and
general statements of the energy principles introduced earlier in more applied con-
texts.

Part 4 covers a selection of advanced topics of particular relevance to aerospace
structural analysis. These include introductions to plasticity and thermal stresses,
buckling of beams, shear deformations in beams and Kirchhoff plate theory.

In our experience, engineering students generally grasp concepts more quickly
when presented first with practical examples, which then lead to broader generaliza-
tions. Consequently, most concepts are first introduced by means of simple examples;
more formal and abstract statements are presented later, when the student has a better
grasp of the significance of the concepts. Furthermore, each chapter provides numer-
ous examples to demonstrate the application of the theory to practical problems.
Some of the examples are re-examined in successive chapters to illustrate alternative
or more versatile solution methods. Step-by-step descriptions of important solution
procedures are provided.

As often as possible, the analysis of structural problems is approached in a unified
manner. First, kinematic assumptions are presented that describe the structure’s dis-
placement field in an approximate manner; next, the strain field is evaluated based on
the strain-displacement relationships; finally, the constitutive laws lead to the stress
field for which equilibrium equations are then established. In our experience, this ap-
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proach reduces the confusion that students often face when presented with develop-
ments that don’t seem to follow any obvious direction or strategy but yet, inevitably
lead to the expected solution.

The topics covered in parts 1 and 2 along with chapters 9 and 10 from part 3 form
the basis for a four semester-hour course in advanced aerospace structural analysis
taught to junior and senior undergraduate students. An introductory graduate level
course covers part 2 and selected chapters in parts 3 and 4, but only after a brief
review of the material in part 1. A second graduate level course focusing on varia-
tional end energy methods covers part 3 and selected chapters in part 4. A number
of homework problems are included throughout these chapters. Some are straightfor-
ward applications of simple concepts, others are small projects that require the use of
computers and mathematical software, and others involve conceptual questions that
are more appropriate for quizzes and exams.

A thorough study of differential calculus including a basic treatment of ordinary
and partial differential equations is a prerequisite. Additional topics from linear al-
gebra and differential geometry are needed, and these are reviewed in an appendix.

Notation is a challenging issue in structural analysis. Given the limitations of
the Latin and Greek alphabets, the same symbols are sometimes used for different
purposes, but mostly in different contexts. Consequently, no attempt has been made
to provide a comprehensive list of symbols, which would lead to even more confu-
sion. Also, in mechanics and structural analysis, sign conventions present a major
hurdle for all students. To ease this problem, easy to remember sign conventions are
used systematically. Stresses and force resultants are positive on positive faces when
acting along positive coordinate directions. Moments and torques are positive on
positive faces when acting about positive coordinate directions using the right-hand
rule.

In a few instances, new or less familiar terms have been chosen because of their
importance in aerospace structural analysis. For instance, the terms “isostatic” and
“hyperstatic” structures are used to describe statically determinate and indetermi-
nate structures, respectively, because these terms concisely define concepts that often
puzzle and confuse students. Beam bending stiffnesses are indicated with the symbol
“H” rather than the more common “EI .” When dealing exclusively with homoge-
neous material, notation “EI” is easy to understand, but in presence of heteroge-
neous composite materials, encapsulating the spatially varying elasticity modulus in
the definition of the bending stiffness is a more rational approach.

It is traditional to use a bold typeface to represent vectors, arrays, and matri-
ces, but this is very difficult to reproduce in handwriting, whether in a lecture or in
personal notes. Instead, we have adopted a notation that is more suitable for hand-
written notes. Vectors and arrays are denoted using an underline, such as u or F . Unit
vectors are used frequently and are assigned a special notation using a single overbar,
such as ı̄1, which denotes the first Cartesian coordinate axis. We also use the over-
bar to denote non-dimensional scalar quantities, i.e., k̄ is a non-dimensional stiffness
coefficient. This is inconsistent, but the two uses are in such different contexts that
it should not lead to confusion. Matrices are indicated using a double-underline, i.e.,
C indicates a matrix of M rows and N columns.
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Finally, we are indebted to the many students at Georgia Tech who have given us
helpful and constructive feedback over the past decade as we developed the course
notes that are the predecessor of this book. We have tried to constructively utilize
their initial confusion and probing questions to clarify and refine the treatment of
important but confusing topics. We are also grateful for the many discussions and
valuable feedback from our colleagues, Profs. Erian Armanios, Sathya Hanagud,
Dewey Hodges, George Kardomateas, Massimo Ruzzene, and Virgil Smith, several
of whom have used our notes for teaching advanced aerospace structural analysis
here at Georgia Tech.

Atlanta, Georgia, Olivier Bauchau
July 2009 James Craig
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Part I

Basic tools and concepts



1

Basic equations of linear elasticity

Structural analysis is concerned with the evaluation of deformations and stresses aris-
ing within a solid object under the action of applied loads. If time is not explicitly
considered as an independent variable, the analysis is said to be static; otherwise it
is referred to as structural dynamic analysis, or simply structural dynamics. Under
the assumption of small deformations and linearly elastic material behavior, three-
dimensional formulations result in a set of fifteen linear first order partial differential
equations involving the displacement field (three components), the stress field (six
components) and the strain field (six components). This chapter presents the deriva-
tion of these governing equations. In many applications, this complex problem can
be reduced to simpler, two-dimensional formulations called plane stress and plane
strain problems.

For most situations, it is not possible to develop analytical solutions of these
equations. Consequently, structural analysis is concerned with the analysis of struc-
tural components, such as bars, beams, plates, or shells, which will be addressed
in subsequent chapters. In each case, assumptions are made about the behavior of
these structural components, which considerably simplify the analysis process. For
instance, given a suitable set of assumptions, the analysis of bar and beam problems
reduces to the solution of one-dimensional equations for which analytical solutions
are easily obtained.

1.1 The concept of stress

1.1.1 The state of stress at a point

The state of stress in a solid body is a measure of the intensity of forces acting within
the solid. It can be visualized by cutting the solid by a plane normal to unit vector,
n̄, to create two free bodies which reveal the forces acting on the exposed surfaces.
From basic statics, it is well-known that the distribution of forces and moments that
will appear on the surface of the cut can be represented by an equipollent force, F ,
acting at a point of the surface and a couple, M . Newton’s 3rd law also requires
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a force and couple of equal magnitudes and opposite directions to act on the two
surfaces created by the cut through the solid, as depicted in fig. 1.1. (See appendix A
for a description of the vector, array and matrix notations used in this text.)

M

M

Mn M

A
n

Solid Body
Free Body
diagram

Small surface
on the cut

F

Fn

F

F

Plane of
the cut

P

n

n

Applied loads

Fig. 1.1. A solid body cut by a plane to isolate a free body.

Consider now a small surface of area An located at point P on the surface gen-
erated by the cut in the solid. The forces and moments acting on this surface are
equipollent to a force, Fn, and couple, Mn; note that these resultants are, in gen-
eral, different, in both magnitude and orientation, from the corresponding resultants
acting on the entire surface of the cut, as shown in fig. 1.1. Let the small surface be
smaller and smaller until it becomes an element of infinitesimal area dAn → 0. As
the surface shrinks to a differential size, the force and couple acting on the element
keep decreasing in magnitude and changing in orientation whereas the normal to the
surface remains the unit vector n̄ of constant direction in space. This limiting process
gives rise to the concept of stress vector, which is defined as

τn = lim
dAn→0

(
Fn

dAn

)
. (1.1)

The existence of the stress vector, i.e., the existence of the limit in eq. (1.1), is
a fundamental assumption of continuum mechanics. In this limiting process, it is as-
sumed that the couple, Mn, becomes smaller and smaller and, in the limit, Mn → 0
as dAn → 0; this is also an assumption of continuum mechanics which seems to
be reasonable because in the limiting process, both forces and moment arms become
increasingly small. Forces decrease because the area they act on decreases and mo-
ment arms decrease because the dimensions of the surface decrease. At the limit, the
couple is the product of a differential element of force by a differential element of
moment arm, giving rise to a negligible, second order differential quantity.

In conclusion, whereas an equipollent couple might act on the entire surface of
the cut, the equipollent couple is assumed to vanish on a differential element of area
of the same cut. The total force acting on a differential element of area, dAn, is
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Fn = dAn τn. (1.2)

Clearly, the stress vector has units of force per unit area. In the SI system, this is
measured in Newton per square meters, or Pascals (Pa).

During the limiting process de-
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Fig. 1.2. A rigid body cut at point P by three planes
orthogonal to the Cartesian axes.

scribed in the previous paragraph,
the surface orientation, as defined
by the normal to the surface, is kept
constant in space. Had a different
normal been selected, a different
stress vector would have been ob-
tained.

To illustrate this point, con-
sider a solid body and a coordinate
system, I, consisting of three mu-
tually orthogonal unit vectors, I =
(̄ı1, ı̄2, ı̄3), as shown in fig. 1.2.
First, the solid is cut at point P by a
plane normal to axis ı̄1; on the sur-
face of the cut, at point P, a differ-
ential element of surface with an
area dA1 is defined and let τ1 be

the stress vector acting on this face. Next, the solid is cut at the same point by a
plane normal to axis ı̄2; at point P, let τ2 be the stress vector acting on the differ-
ential element of surface with an area dA2. Finally, the process is repeated a third
time for a plane normal to axis ı̄3; at point P, the stress vector τ3 is acting on the
differential element of surface with an area dA3. Clearly, three stress vectors, τ1, τ2,
and τ3 are acting at the same point P, but on three mutually orthogonal faces normal
to axes ı̄1, ı̄2, and ı̄3, respectively. Because these three stress vectors are acting on
three faces with different orientations, there is no reason to believe that those stress
vectors should be identical.

To further understand the state of stress at point P, the components of each stress
vectors acting on the three faces are defined

τ1 = σ1 ı̄1 + τ12 ı̄2 + τ13 ı̄3, (1.3a)
τ2 = τ21 ı̄1 + σ2 ı̄2 + τ23 ı̄3, (1.3b)
τ3 = τ31 ı̄1 + τ32 ı̄2 + σ3 ı̄3. (1.3c)

The stress components σ1, σ2, and σ3 are called direct, or normal stresses; they
act on faces normal to axes ı̄1, ı̄2, and ı̄3, respectively, in directions along axes ı̄1,
ı̄2, and ı̄3, respectively. The stress components τ12 and τ13 are called shearing or
shear stresses; both act on the face normal to axis ı̄1, in directions of axes ı̄2 and ı̄3,
respectively. Similarly, stress components τ21 and τ23 both act on the face normal to
axis ı̄2, in directions of axes ı̄1 and ı̄3, respectively. Finally, stress components τ31

and τ32 both act on the face normal to axis ı̄3, in directions along axes ı̄1 and ı̄2,
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respectively. The various stress components appearing in eq. (1.3) are referred to as
the engineering stress components. The units of stress components are identical to
those of the stress vector, force per unit area, or Pascal.

The stress components represented
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Fig. 1.3. Sign conventions for the stress com-
ponents acting on a differential volume ele-
ment. All stress components shown here are
positive.

in fig. 1.2 are all defined as positive.
Furthermore, the three faces depicted
in this figure are positive faces. A face
is positive when the outward normal to
the face, i.e., the normal pointing away
from the body, is in the same direction
as the axis to which the face is normal;
a face is negative when its outward nor-
mal is pointing in the direction opposite
to the axis to which the face is normal.
The positive directions of stress com-
ponents acting on negative faces are the
opposite of those for stress components
acting on positive faces. This sign con-
vention is illustrated in fig. 1.3, which
shows positive stress components acting on the six faces of a cube of differential
size. Positive stress components are shown in solid lines on the three positive faces
of the cube; positive stress components are shown in dotted lines on the three nega-
tive (hidden) faces of the cube.

Taken together, the direct stress components σ1, σ2, and σ3 and the shear stress
components, τ12 and τ13, τ21 and τ23, and τ31 and τ32, fully characterize the state
of stress at point P. It will be shown in a later section that if the stress components
acting on three orthogonal faces are known, it is possible to compute the stress com-
ponents acting at the same point, on a face of arbitrary orientation. This discussion
underlines the fact that the state of stress at a point is a complex concept: its complete
definition requires the knowledge of nine stress components acting on three mutually
orthogonal faces.

This should be contrasted with the concept of force. A force is vector quantity
that is characterized by its magnitude and orientation. Alternatively, a force can be
defined by the three components of the force vector in a given coordinate system.
The definition of a force thus requires three quantities, whereas the definition of the
stress state requires nine quantities.

A force is a vector, which is referred to as a first order tensor, whereas a state of
stress is a second order tensor. Several quantities commonly used in solid mechanics
are also second order tensors: the strain tensor, the bending stiffnesses of a beam,
and the mass moments of inertia of a solid object. The first two of these quantities
will be introduced in later sections and chapters. Much like the case for vectors, all
second order tensors will be shown to possess certain common characteristics.
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1.1.2 Volume equilibrium equations

In general, the state of stress varies throughout a solid body, and hence, stresses
acting on two parallel faces located a small distance apart are not equal. Consider,
for instance, the two opposite faces of a differential volume element that are normal
to axis ı̄2, as shown in fig. 1.4. The axial stress component on the negative face at
coordinate x2 is σ2, but the stress components on the positive face at coordinate
x2 + dx2 will be slightly different and written as σ2(x2 + dx2). If σ2(x2) is an
analytic function, it is then possible to express σ2(x2 + dx2) in terms of σ2(x2)
using a Taylor series expansion to find

σ2(x2 + dx2) = σ2(x2) +
∂σ2

∂x2

∣∣∣∣
x2

dx2 + . . . higher order terms in dx2.

This expansion is a fundamental step in the derivation of the differential equa-
tions governing the behavior of a continuum. The stress component on the positive
face at coordinate x2 + dx2 can be written as σ2(x2 + dx2) ≈ σ2 + (∂σ2/∂x2)dx2.
The same Taylor series expansion technique can be applied to all other direct and
shear stress components.

i1

i2

i3

s s3 3 3 3+ (d /dx ) dx

s3

s s2 2 2 2+ (d /dx ) dx

t t32 32 3 3+ (d /dx ) dx

t32

t t31 31 3 3+ (d /dx ) dx

t31

t t23 23 2 2+ (d /dx ) dx

t23 t t21 21 2 2+ (d /dx ) dx

t21

s
2

Fig. 1.4. Stress components acting on a differential element of volume. For clarity of the
figure, the stress components acting on the faces normal to ı̄1 are not shown.

Consider now the differential element of volume depicted in fig. 1.4. It is sub-
jected to stress components acting on its six external faces and to body forces per
unit volume, represented by a vector b acting at its centroid. These body forces could
be gravity forces, inertial forces, or forces of an electric or magnetic origin; the com-
ponents of this body force vector resolved in coordinate system I = (̄ı1, ı̄2, ı̄3) as
b = b1 ı̄1 + b2 ı̄2 + b3 ı̄3. The units of the force vector are force per unit volume or
Newton per cubic meter.

Force equilibrium

According to Newton’s law, static equilibrium requires the sum of all the forces
acting on this differential element to vanish. Considering all the forces acting along
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the direction of axis ı̄1, the equilibrium condition is

− σ1 dx2dx3 +
(

σ1 +
∂σ1

∂x1
dx1

)
dx2dx3

− τ21 dx1dx3 +
(

τ21 +
∂τ21

∂x2
dx2

)
dx1dx3

− τ31 dx1dx2 +
(

τ31 +
∂τ31

∂x3
dx3

)
dx1dx2 + b1 dx1dx2dx3 = 0.

This equation states an equilibrium of forces, and therefore the stress components
must be multiplied by the area of the surface on which they act to yield the corre-
sponding force. Similarly, the component of the body force per unit volume of the
body is multiplied by the volume of the differential element, dx1dx2dx3, to give
the body force acting on the element. After simplification, this equilibrium condition
becomes [

∂σ1

∂x1
+

∂τ21

∂x2
+

∂τ31

∂x3
+ b1

]
dx1dx2dx3 = 0.

This equation is satisfied when the expression in brackets vanishes, and this
yields the equilibrium equation in the direction of axis ı̄1

∂σ1

∂x1
+

∂τ21

∂x2
+

∂τ31

∂x3
+ b1 = 0.

For the same reasons, forces along axes ı̄2 and ı̄3 must vanish as well, and a similar
reasoning yields the following three equilibrium equations

∂σ1

∂x1
+

∂τ21

∂x2
+

∂τ31

∂x3
+ b1 = 0, (1.4a)

∂τ12

∂x1
+

∂σ2

∂x2
+

∂τ32

∂x3
+ b2 = 0, (1.4b)

∂τ13

∂x1
+

∂τ23

∂x2
+

∂σ3

∂x3
+ b3 = 0, (1.4c)

which must be satisfied at all points inside the body.
The equilibrium conditions implied by Newton’s law, eqs. (1.4), have been writ-

ten by considering an differential element of the undeformed body. Of course, when
forces are applied, the body deforms and so does every single differential element.
Strictly speaking, equilibrium should be enforced on the deformed configuration of
the body, rather than its undeformed configuration. Indeed, stresses are only present
when external forces are applied and the body is deformed. When no forces are ap-
plied, the body is undeformed, but stresses all vanish.

Unfortunately, it is difficult to write equilibrium conditions on the deformed con-
figuration of the body because this configuration is unknown; indeed, the goal of
the theory of elasticity is to predict the deformation of elastic bodies under load.
It is a basic assumption of the linear theory of elasticity developed here that the
displacements of the body under the applied loads are very small, and hence, the
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difference between the deformed and undeformed configurations of the body is very
small. Under this assumption, it is justified to impose equilibrium conditions to the
undeformed configuration of the body, because it is nearly identical to its deformed
configuration.

Moment equilibrium

To satisfy all equilibrium requirements, the sum of all the moments acting on the
differential element of volume depicted in fig. 1.4 must also vanish. Consider first
the moment equilibrium about axis ı̄1. The contributions of the direct stresses and of
the body forces can be eliminated by choosing an axis passing through the center of
the differential element. The resulting moment equilibrium equation is

τ23 dx1dx3
dx2

2
+

(
τ23 +

∂τ23

∂x2
dx2

)
dx1dx3

dx2

2

−τ32 dx1dx2
dx3

2
−

(
τ32 +

∂τ32

∂x3
dx3

)
dx1dx2

dx3

2

=
[
τ23 − τ32 +

∂τ23

∂x2

dx2

2
− ∂τ32

∂x3

dx3

2

]
dx1dx2dx3 = 0.

The bracketed expression must vanish and after neglecting higher order terms, this
reduces to the following equilibrium condition

τ23 − τ32 = 0.

Enforcing the vanishing of the sum of
t

t

t

t

90
o

90
o

Fig. 1.5. Reciprocity of the shearing
stresses acting on two orthogonal faces.

the moments about axes ı̄2 and ı̄3 leads to
similar equations,

τ23 = τ32, τ13 = τ31, τ12 = τ21. (1.5)

The implication of these equalities is sum-
marized by the principle of reciprocity
of shear stresses, which is illustrated in
fig. 1.5.

Principle 1 (Principle of reciprocity of shear stresses) Shear stresses acting in
the direction normal to the common edge of two orthogonal faces must be equal in
magnitude and be simultaneously oriented toward or away from the common edge.

Another implication of the reciprocity of the shear stresses is that of the nine
components of stresses, six only are independent. It is common practice to arrange
the stress tensor components in a 3×3 matrix format




σ1 τ12 τ13

τ12 σ2 τ23

τ13 τ23 σ3


 . (1.6)

The principle of reciprocity implies the symmetry of the stress tensor.
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directions of axes ı̄2 and ı̄3. The three components of the surface traction vector then
become

t1 = σ1 n1 + τ12 n2 + τ13 n3, (1.9a)
t2 = τ12 n1 + σ2 n2 + τ23 n3, (1.9b)
t3 = τ31 n1 + τ32 n2 + σ3 n3. (1.9c)

A body is said to be in equilibrium if eqs. (1.4) are satisfied at all points inside
the body, and eqs. (1.9) are satisfied at all points of its external surface.

1.2 Analysis of the state of stress at a point

The state of stress at a point is characterized in the previous section by the normal
and shear stress components acting on the faces of a differential element of volume
cut from the solid. The faces of this cube are cut normal to the axes of a Cartesian ref-
erence frame I = (̄ı1, ı̄2, ı̄3), and the stress vector acting on these faces are resolved
along the same axes. Clearly, another face at an arbitrary orientation with respect to
these axes can be selected. In section 1.2.1, it will be shown that the stresses acting
on this face can be related to the stresses acting on the faces normal to axes ı̄1, ı̄2, and
ı̄3. This important result implies that once the stress components are known on three
mutually orthogonal faces at a point, they are known on any face passing through that
point. Hence, the state of stress at a point is fully defined once the stress components
acting on three mutually orthogonal faces at a point are known.

1.2.1 Stress components acting on an arbitrary face

To establish relationships between stresses, it is necessary to consider force or mo-
ment equilibrium due to these stresses, and this must be done with reference to a
specific free body diagram. Figure 1.7 shows a specific free body constructed from a
tetrahedron defined by three faces cut normal to axes ı̄1, ı̄2, and ı̄3, and a fourth face
normal to unit vector n̄ = n1 ı̄1 + n2 ı̄1 + n3 ı̄3, of arbitrary orientation. This tetra-
hedron is known as Cauchy’s tetrahedron. The components, n1, n2, and n3, of this
unit vector are the direction cosines of unit vector n̄, i.e., the cosines of the angles
between n̄ and ı̄1, n̄ and ı̄2, and n̄ and ı̄3, respectively.

Figure 1.7 shows the stress components acting on faces COB, AOC and AOB,
of area dA1, dA2, and dA3, respectively; the stress vector, τn, acts on face ABC of
area dAn. The body force vector, b, is also acting on this tetrahedron. Equilibrium of
forces acting on tetrahedron OABC requires

τ1dA1 + τ2dA2 + τ3dA3 = τndAn + bdV,

where τ1, τ2 and τ3 are the stress vectors acting on the faces normal to axes ı̄1, ı̄2,
and ı̄3, respectively, and dV is the volume of the tetrahedron.

Dividing this equilibrium equation by dAn and using eq. (1.8) gives the stress
vector acting of the inclined face as
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Fig. 1.7. Differential tetrahedron element with one face, ABC, normal to unit vector n and the
other three faces normal to axes ı̄1, ı̄2, and ı̄3, respectively.

τn = τ1n1 + τ2n2 + τ3n3 − b dV/dAn

The body force term is multiplied by a higher order term, dV/dAn, which can be
neglected in the equilibrium condition. Expanding the three stress vectors in terms
on the stress components then yields

τn = (σ1 ı̄1+τ12 ı̄2+τ13 ı̄3) n1+(τ21 ı̄1+σ2 ı̄2+τ23 ı̄3) n2+(τ31 ı̄1+τ32 ı̄2+σ3 ı̄3) n3.
(1.10)

To determine the direct stress, σn, acting on face ABC, it is necessary to project
this vector equation in the direction of unit vector n̄. This can be achieved by taking
the dot product of the stress vector by unit vector n̄ to find

n̄ · τn = n̄· [(σ1 ı̄1 + τ12 ı̄2 + τ13 ı̄3) n1 + (τ21 ı̄1 + σ2 ı̄2 + τ23 ı̄3) n2+
(τ31 ı̄1 + τ32 ı̄2 + σ3 ı̄3) n3] .

Because n̄ = n1 ı̄1 + n2 ı̄1 + n3 ı̄3, this yields

σn = (σ1n1 + τ12n2 + τ13n3) n1 + (τ21n1 + σ2n2 + τ23n3) n2

+ (τ31n1 + τ32n2 + σ3n3) n3,

and finally, after minor a rearrangement of terms,

σn = σ1n
2
1 + σ2n

2
2 + σ3n

2
3 + 2τ23n2n3 + 2τ13n1n3 + 2τ12n1n2. (1.11)

The stress components acting in the plane of face ABC can be evaluated in a
similar manner by projecting eq. (1.10) along a unit vector in the plane of face ABC.
Consider a unit vector, s̄ = s1 ı̄1 +s2 ı̄1 +s3 ı̄3, normal to n̄, i.e., such that n̄ · s̄ = 0.
The shear stress component acting on face ABC in the direction of unit vector s̄ is
denoted τns and is obtained by projecting eq. (1.10) along vector s̄ to find

τns =(σ1s1 + τ12s2 + τ13s3) n1 + (τ21s1 + σ2s2 + τ23s3) n2

+ (τ31s1 + τ32s2 + σ3s3) n3,
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and finally, after minor a rearrangement of terms,

τns = σ1n1s1 + σ2n2s2 + σ3n3s3 + τ12(n2s1 + n1s2)
+ τ13(n1s3 + n3s1) + τ23(n2s3 + n3s2).

(1.12)

Equations. (1.11) and (1.12) express an important result of continuum mechanics.
They imply that once the stress components acting on three mutually orthogonal
faces are known, the stress components on a face of arbitrary orientation can be
readily computed. To evaluate the direct stress component acting on an arbitrary face,
all that is required are the direction cosines of the normal to the face. Evaluation the
shear stress component acting on the same face requires, in addition, the direction
cosines of the direction of the shear stress component in that face.

Consider the following question: how much information is required to fully de-
fine the state of stress at point P of a solid? Clearly, the body can be cut at this
point by a plane of arbitrary orientation. The stress vector acting on this face gives
information about the state of stress at point P. The stress vector acting on a face
with another orientation would give additional information about the state of stress
at the same point. If additional faces are considered, each new stress vector pro-
vides additional information. This reasoning would seem to imply that the complete
knowledge of the state of stress at a point requires an infinite amount of information,
specifically, the stress vectors acting on all the possible faces passing through point
P. Equations. (1.11) and (1.12), however, demonstrate the fallacy of this reasoning:
once the stress vectors acting on three mutually orthogonal faces are known, the
stress vector acting on any other face can be readily predicted. In conclusion, com-
plete definition of the state of stress at a point only requires knowledge of the stress
vectors, or equivalently of the stress tensor components, acting on three mutually
orthogonal faces.

1.2.2 Principal stresses

As discussed in the previous section, eqs. (1.11) and (1.12) enable the computa-
tion of the stress components acting on a face of arbitrary orientation, based on the
knowledge of the stress components acting on three mutually orthogonal faces. As
illustrated in fig. 1.7, the stress vector acting on a face of arbitrary orientation has, in
general, a component σn n̄, acting in the direction normal to the face, and a compo-
nent τns s̄, acting within the plane of the face.

This discussion raises the following question: is there a face orientation for which
the stress vector is exactly normal to the face? In other words, does a particular
orientation, n̄, exist for which the stress vector acting on this face consists solely of
τn = σp n̄, where σp is the yet unknown magnitude of this direct stress component?

Introducing this expression into eq. (1.10) results in

σpn̄ = (σ1 ı̄1+τ12 ı̄2+τ13 ı̄3) n1+(τ21 ı̄1+σ2 ı̄2+τ23 ı̄3) n2+(τ31 ı̄1+τ32 ı̄2+σ3 ı̄3) n3.

This equation alone does not allow the determination of both σp and of unit vector
n̄. Projecting this vector relationship along axes ı̄1, ı̄2, and ı̄3 leads to the following
three scalar equations
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(σ1 − σp) n1 + τ12 n2 + τ13 n3 = 0,

τ12 n1 + (σ2 − σp) n2 + τ23 n3 = 0,

τ13 n1 + τ23 n2 + (σ3 − σp) n3 = 0,

respectively. The unknowns of the problem are the direction cosines, n1, n2, and
n3 that define the orientation of the face on which shear stresses vanish, and the
magnitude, σp, of the direct stress component acting on this face.

These equations are recast as a homogeneous system of linear equations for the
unknown direction cosines




σ1 − σp τ12 τ13

τ12 σ2 − σp τ23

τ13 τ23 σ3 − σp








n1

n2

n3



 = 0. (1.13)

Since this is a homogeneous system of equations, the trivial solution, n1 = n2 =
n3 = 0, is, in general, the solution of this system. When the determinant of the
system vanishes, however, non-trivial solutions will exist. The vanishing of the de-
terminant of the system leads to the cubic equation for the magnitude of the direct
stress

σ3
p − I1σ

2
p + I2σp − I3 = 0, (1.14)

where the quantities I1, I2, and I3 are defined as

I1 = σ1 + σ2 + σ3, (1.15a)

I2 = σ1σ2 + σ2σ3 + σ3σ1 − τ2
12 − τ2

13 − τ2
23, (1.15b)

I3 = σ1σ2σ3 − σ1τ
2
23 − σ2τ

2
13 − σ3τ

2
12 + 2τ12τ13τ23, (1.15c)

are called the three stress invariants.
The solutions of eq. (1.14) are called the principal stresses. Since this is a cubic

equation, three solutions exist, denoted σp1, σp2, and σp3. For each of these three
solutions, the matrix of the system of equations defined by eq. (1.13) has a zero de-
terminant, and a non-trivial solution exists for the directions cosines that now define
the direction of a face on which the shear stresses vanish. This direction is called a
principal stress direction. Because the equations to be solved are homogeneous, their
solution will include an arbitrary constant, which can be determined by enforcing the
normality condition for unit vector n̄, n2

1 + n2
2 + n2

3 = 1.
This solution process can be repeated for each of the three principal stresses.

This will result in three different principal stress directions. It can be shown that
these three directions are mutually orthogonal.

1.2.3 Rotation of stresses

In the previous sections, free body diagrams are formed with faces cut in directions
normal to axes of the orthonormal basis I = (̄ı1, ı̄2, ı̄3), and the stress vectors are
resolved into stress components along the same directions. The orientation of this
basis is entirely arbitrary: basis I∗ = (̄ı∗1, ı̄

∗
2, ı̄

∗
3) could also have been selected, and
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an analysis identical to that of the previous sections would have led to the definition
of normal stresses σ∗1 , σ∗2 , σ∗3 , and shear stresses τ∗23, τ∗13, τ∗12. A typical equilibrium
equation at a point of the body would be written as

∂σ∗1
∂x∗1

+
∂τ∗21
∂x∗2

+
∂τ∗31
∂x∗3

+ b∗1 = 0, (1.16)

where the notation (.)∗ is used to indicate the components of the corresponding quan-
tity resolved in basis I∗. A typical surface traction would be defined as

t∗1 = n∗1 σ∗1 + n∗2 τ∗21 + n∗3 τ∗31. (1.17)

Although expressed in different reference frames, eqs. (1.4) and (1.16), or (1.9)
and (1.17) express the same equilibrium conditions for the body. Two orthonormal
bases, I and I∗, are involved in this problem. The orientation of basis I∗ relative
to basis I is discussed in section A.3.1 and leads to the definition of the matrix of
direction cosines, or rotation matrix, R, given by eq. (A.36).

Consider the stress component σ∗1 : it represents the magnitude of the direct stress
component acting on the face normal to axis ı̄∗1. Equation (1.11) can now be used
to express this stress component in terms of the stress components resolved in axis
system I to find

σ∗1 = σ1`
2
1 + σ2`

2
2 + σ3`

2
3 + 2τ23`2`3 + 2τ13`1`3 + 2τ12`1`2, (1.18)

where `1, `2, and `3, are the direction cosines of unit vector ı̄∗1. Similar equations
can be derived to express the stress components σ∗2 and σ∗3 in terms of the stress
components resolved in axis system I. For σ∗2 , the direction cosines `1, `2, and `3
appearing in eq. (1.18) are replaced by direction cosines m1, m2, and m3, respec-
tively, whereas direction cosines n1, n2, and n3 will appear in the expression for σ∗3 .
Coordinate rotations are defined in appendix A.3.

The shear stress components follow from eq. (1.12) as

τ∗12 = σ1`1m1 + σ2`2m2 + σ3`3m3 + τ12(`2m1 + `1m2)
+ τ13(`1m3 + `3m1) + τ23(`2m3 + `3m2).

(1.19)

Here again, similar relationships can be derived for the remaining shear stress com-
ponents, τ∗13 and τ∗23, through appropriate cyclic permutation of the indices.

All these relationships can be combined into the following compact matrix equa-
tion 


σ∗1 τ∗12 τ∗13
τ∗21 σ∗2 τ∗23
τ∗31 τ∗32 σ∗3


 = RT




σ1 τ12 τ13

τ12 σ2 τ23

τ13 τ23 σ3


R, (1.20)

where R is the rotation matrix defined by eq. (A.36). This equation concisely en-
capsulates the relationship between the stress components resolved in two different
coordinate systems, and it can be used to compute the stress components resolved in
basis I∗ in terms of the stress components resolved in basis I.
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Finally, since the principal stresses at a point are independent of the particular
coordinate system used to define the stress state, the coefficients of the cubic equation
that determines the principal stresses, eq. (1.14), must be invariant with respect to
reference frames. This is the very reason why quantities I1, I2, and I3 defined by
eq. (1.15) are called the stress invariants. The word “invariant” refers to the fact that
these quantities are invariant with respect to a change of coordinate system. Let I∗
and I be two different orthonormal bases,

I1 = σ∗1 + σ∗2 + σ∗3 = σ1 + σ2 + σ3, (1.21a)

I2 = σ∗1σ∗2 + σ∗2σ∗3 + σ∗3σ∗1 − τ∗212 − τ∗213 − τ∗223

= σ1σ2 + σ2σ3 + σ3σ1 − τ2
12 − τ2

13 − τ2
23, (1.21b)

I3 = σ∗1σ∗2σ∗3 − σ∗1τ∗223 − σ∗2τ∗213 − σ∗3τ∗212 + 2τ∗12τ
∗
13τ

∗
23

= σ1σ2σ3 − σ1τ
2
23 − σ2τ

2
13 − σ3τ

2
12 + 2τ12τ13τ23. (1.21c)

Tedious algebra using eqs. (1.20) to write the stress components resolved in basis
I∗ in terms of the stresses components resolved in basis I will reveal that the above
relationships are correct.

Example 1.1. Computing principal stresses
Consider the following stress tensor

S =



−5 −4 0
−4 1 0

0 1


 .

Compute the principal stresses and the principal stress directions. The stress invari-
ants defined by eq. (1.15) are computed as I1 = −3, I2 = −25 and I3 = −21. The
principal stress equation, eq. (1.14), now becomes

σ3
p + 3σ2

p − 25σp + 21 = (σp − 1)(σ2
p + 4σp − 21) = 0,

The solutions of this cubic equations yield the principal stresses as σp1 = 3, σp2 = 1
and σp3 = −7.

Next, the principal direction associated with σp1 = 3 is computed. The homoge-
neous system defined by eq. (1.13) becomes



−8 −4 0
−4 −2 0

0 0 −2








n1

n2

n3



 = 0.

The determinant of this system vanishes because the first two equations are a multiple
of each other. The first equation yields n1 = α and n2 = −2α, where α is an
arbitrary constant, whereas the third equation gives n3 = 0. Since the principal
direction must be unit vector, n2

1 + n2
2 + n2

3 = 1, or 5α2 = 1; finally n1 = 1/
√

5,
n2 = −2/

√
5 and n3 = 0. Proceeding in a similar manner for the other two principal

stresses, the three principal directions are found to be
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n̄1 =
1√
5





1
−2

0



 ; n̄2 =





0
0
1



 ; n̄3 =

1√
5




−2
−1

0



 .

It is easily verified that the principal directions are orthogonal to each other; indeed,
n̄1 · n̄2 = n̄2 · n̄3 = n̄3 · n̄1 = 0.

Example 1.2. Principal stresses as an eigenproblem
Consider the following stress tensor

S =




5.0 2.5 −1.3
2.5 7.8 −3.4

−1.3 −3.4 −4.5


 .

Compute the principal stresses and the principal stress directions. Rather than fol-
lowing the procedure described in the previous examples, the homogeneous system
of linear equations, eq. (1.13), that govern the problem is recast as




σ1 τ12 τ13

τ12 σ2 τ23

τ13 τ23 σ3








n1

n2

n3



 = σp





n1

n2

n3



 . (1.22)

In this form, it becomes clear (see appendix A.2.4) that the determination of the
principal stresses and principal stress directions is equivalent to the determination of
the three eigenvalues, σp1, σp2 and σp3, of the stress tensor, and determination of the
corresponding three eigenvectors, n̄1, n̄2, and n̄3. Using a standard linear algebra
software package, the three eigenpairs of the above stress tensor are found to be

σp1 = −5.4180, n̄1 =




−0.064
−0.237
−0.969



 ; σp2 = 3.5693, n̄2 =





0.879
−0.473

0.058



 ;

σp3 = 10.1487, n̄3 =





0.472
0.849

−0.239



 .

Here again, it is easily verified that the principal directions are orthogonal to each
other by computing n̄i·n̄j for any combination of i and j. This can be represented in a
more compact way by creating a matrix, denoted P , that is constructed by arranging
the principal stress direction vectors as the columns

P = [n̄1, n̄2, n̄3] =



−0.0640 0.8791 0.4723
−0.2372 −0.4731 0.8485
−0.9693 0.0577 −0.2388


 .

Because the principal directions are mutually orthogonal unit vectors, this matrix is
orthogonal, that is: PT P = I , where I is the 3 × 3 identity matrix. Furthermore,
since matrix P stores the eigenvectors of the stress tensor S, it follows that the trans-
formation PT S P will diagonalize the stress tensor. That is,
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PT S P =




σp1 0 0
0 σp2 0
0 0 σp3


 =



−5.4180 0 0

0 3.5693 0
0 0 10.1487


 ,

and this can easily be verified by direct computation.

Example 1.3. Stresses acting on the octahedral face
Figure 1.8 shows a tetrahedron cut along three faces normal to the principal stress
directions defined by axes ı̄∗1, ı̄∗2 and ı̄∗3. The three mutually orthogonal edges of the
tetrahedron each are of unit length. The fourth face of the tetrahedron is the octahe-
dral face which is, by definition, the face that is equally inclined with respect to the
principal stress directions. The normal to the octahedral face is n̄T =

{
1, 1, 1

}
/
√

3,
i.e., the direction cosines of this unit vector are 1/

√
3 with respect to each of the

three principal stress directions. Find the stress components acting on the octahedral
face.

n

i1

*

i3

*

i2

*

s
p2

s
p3

s
p1

soc n

toc

Octahedral
face

Fig. 1.8. The octahedral face.

By definition, the principal stress directions are such that on the corresponding
faces, the shear stresses vanish. Hence, fig. 1.8 shows only the principal stress acting
on each face. The stress vector acting on the octahedral face can be resolved into the
octahedral direct stress vector, σoc n̄, acting in the direction normal to the octahedral
face, and octahedral shear stress vector, τoc, acting in the plane of the octahedral
face. Using eq. (1.11), the magnitude of the direct octahedral stress is

σoc = σp1

(
1√
3

)2

+ σp2

(
1√
3

)2

+ σp3

(
1√
3

)2

=
σp1 + σp2 + σp3

3
. (1.23)

The direct stress acting on the octahedral face is the average of the principal stresses.
The equilibrium condition for the tetrahedron in fig. 1.8 is now

1
2
σp1 ı̄∗1 +

1
2
σp2 ı̄∗2 +

1
2
σp3 ı̄∗3 =

√
3

2
(σoc n̄ + τoc), (1.24)

where the factor of 1/2 represents the area of each of the three faces normal to the
principal axes directions and

√
3/2 the area of the octahedral face which is an equi-

lateral triangle with sides of length
√

2. The octahedral shear stress vector now be-
comes
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1.1.3 Surface equilibrium equations

At the outer surface of the body, the stresses acting inside the body must be in equi-
librium with the externally applied surface tractions. Surface tractions are repre-
sented by a stress vector, t, that can be resolved in reference frame I = (̄ı1, ı̄2, ı̄3) as
t = t1 ı̄1+t2 ı̄2+t3 ı̄3. Figure 1.6 shows a free body in the form of a differential tetra-
hedron bounded by three negative faces cut through the body in directions normal to
axes ı̄1, ı̄2, and ı̄3, and by a fourth face, ABC, of area dAn, which is a differential
element of the outer surface of the body. The unit normal to this element of area is
denoted n̄, and its components in coordinate system I are n̄ = n1 ı̄1 + n2 ı̄2 + n3 ı̄3.
Note that n1, n2, and n3 are the cosines of the angle between n̄ and ı̄1, n̄ and ı̄2, and
n̄ and ı̄3, respectively, also called the direction cosines of n̄: n1 = n̄ · ı̄1 = cos(n̄, ı̄1),
n2 = n̄ · ı̄2 = cos(n̄, ı̄2), and n3 = n̄ · ı̄3 = cos(n̄, ı̄3).

Fig. 1.6. A tetrahedron with one face along the outer surface of the body.

Equilibrium of forces acting along axis ı̄1 implies

t1dAn = σ1dA1 + τ21dA2 + τ31dA3 − b1
dx1dx2dx3

6
, (1.7)

where dA1, dA2, and dA3 are the areas of triangles OBC, OAC and OAB, respec-
tively, and the last term represents the body force times the volume of the tetrahe-
dron. The areas of the three faces normal to the axes are found by projecting face
ABC onto planes normal to the axes using the direction cosines to find

dA1 = n1dAn, dA2 = n2dAn, and dA3 = n3dAn. (1.8)

Dividing eq. (1.7) by dAn then yields the first component of the surface traction
vector

t1 = σ1n1 + τ21n2 + τ31n3,

where the body force term vanishes because it is a higher order differential term.
The same procedure can be followed to express equilibrium conditions along the
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√

3 τoc = (σp1 − σoc)̄ı∗1 + (σp2 − σoc)̄ı∗2 + (σp3 − σoc)̄ı∗3.

The magnitude of the octahedral shear stress, τoc = ‖τ oc‖, is

τoc =
1√
3

[
(σ2

p1 + σ2
p2 + σ2

p3)−
1
3
(σp1 + σp2 + σp3)2

]1/2

. (1.25)

The first two invariants of the stress state, see eqs. (1.21a) and (1.21b), are
easily expressed in terms of principal stresses as I1 = σp1 + σp2 + σp3 and
I2 = σp1σp2 + σp2σp3 + σp3σp1. The octahedral stresses are now expressed in
terms of these invariants as

σoc =
I1

3
, τoc =

√
2

3

√
I2
1 − 3I2.

1.2.4 Problems

Problem 1.1. Stresses on an inclined face
Consider the tetrahedron shown in fig. 1.7. A set of three mutually orthogonal unit vectors will
be defined: ¯̀ is a unit vector parallel to vector AB, m̄ is such that m̄ = n̄ × ¯̀, and n̄ is the
normal to face ABC. Let the stress vector acting on face ABC be resolved along these axes,
i.e., let τn = τnl

¯̀+ τnm m̄ + σn n̄. (1) Find the stress components, τn`, τnm and σn, in
terms of the stress components acting on the faces normal to axes ı̄1, ı̄2, and ı̄3.

Problem 1.2. Principal stresses
Given a state of stress defined by: σ1=200 MPa, σ2=300 MPa, σ3 = −100 MPa, τ12 =
50 MPa, τ13 = −80 MPa and τ23 = 100 MPa, (1) Determine the principal stresses. (2)
Determine the principal stress directions. Note: you should consider using a software package
to handle the computations.

i1

i3

t12

i2

b

h

Fig. 1.9. Uniform distribution of shear
stresses over the cross-section of a beam.

i3

i3

i2

i1

i2

p0

t

A

B

tA

tB

Mid-span
section

Fig. 1.10. Shear stresses at points A and B on
cross-section.
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Problem 1.3. Shear stress distribution over the cross-section of a beam
Figure 1.9 depicts a beam with a rectangular cross-section of a width b and height h. This
beam is subjected to a vertical shear force, V2, and the resulting shear stress distribution is
assumed to be uniformly distributed over the cross-section, i.e., τ12 = V3/(bh). (1) Is this
assumption reasonable? Explain your answer.

Problem 1.4. Shear stresses in a “Z” section
Figure 1.10 depicts a cantilevered beam with a “Z” cross-section subjected to a distributed
transverse load p0. Due to this loading, direct and shear stresses will develop in the beam. (1)
Evaluate the shear stresses, denoted τA and τB , acting in the plane of the beam’s mid-span
cross-section at points A and B, respectively. Explain your answer.

1.3 The state of plane stress

A particular state of stress of great practical importance is the plane state of stress.
In this case, all stress components acting along the direction of axis ı̄3 are assumed
to vanish, or to be negligible compared to the stress components acting in the other
two directions. The only non-vanishing stress components are σ1, σ2, and τ12, and
furthermore, these stress components are assumed to be independent of x3. This state
of stress occurs, for instance, in a very thin plate or sheet subjected to loads applied in
its own plane. This type of situation is illustrated by the thin sheet shown in fig. 1.11.
For the plane stress state, the two flat surfaces of the thin sheet must be stress free.

1.3.1 Equilibrium equations

The equations of equilibrium derived for the general, three-dimensional case, see
eq. (1.4), considerably simplify in the plane stress case. The equation in the ı̄3 direc-
tion is satisfied, and the remaining two equations reduce to

∂σ1

∂x1
+

∂τ21

∂x2
+ b1 = 0;

∂τ12

∂x1
+

∂σ2

∂x2
+ b2 = 0. (1.26)

Similar simplifications take place for the definition of surface tractions in eq. (1.9),

t1 = n1 σ1 + n2 τ21; t2 = n1 τ12 + n2 σ2. (1.27)

For this two-dimensional problem, the boundary of the thin sheet on which ex-
ternally applied stresses and forces may act is the thin edge defined by the curve C as
shown in fig. 1.11. The outer normal to this curve is the unit vector n̄ = n1 ı̄1 +n2 ı̄2
and the tangent direction is the unit vector s̄ = s1 ı̄1 + s2 ı̄2. If θ is the angle be-
tween the normal and axis ı̄1, it follows that n1 = cos θ, n2 = sin θ, n3 = 0 and
s1 = − sin θ, s2 = cos θ, s3 = 0. The surface traction component in the direction of
vector n̄ then follows from eq. (1.11) as

tn = cos2 θ σ1 + sin2 θ σ2 + 2 sin θ cos θ τ12, (1.28)
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and eq. (1.12) yields the surface traction component in the direction of the tangent s̄
to curve C as

ts = sin θ cos θ(σ2 − σ1) + (cos2 θ − sin2 θ) τ12. (1.29)

Thus, for plane stress problems, the equilibrium equations, eq. (1.26), must be
satisfied at all points within the body, and along curve C, the surface equilibrium
equations, eq. (1.27), or eqs. (1.28) and (1.29), must be satisfied.

B

i1

i2i3

O A

B

tstn

C

n

Applied
tractions

Fig. 1.11. Plane stress problem in thin
sheet with in-plane tractions.
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B
q

q

dx1

dx2

s1
s

n

s2

t12

tns

t12

ntn

t1

t2

ds

Fig. 1.12. Differential element with a face at an
angle θ.

1.3.2 Stresses acting on an arbitrary face within the sheet

Figure 1.12 shows a free body OAB taken from within the thin sheet in fig. 1.11. It is
a differential triangle with two sides cut normal to axes ı̄1 and ı̄2, and the third side
cut normal to a unit vector, n̄ = n1 ı̄1 +n2 ı̄2, at an arbitrary orientation angle θ with
respect to axis ı̄1. Clearly, n1 = cos θ and n2 = sin θ.

Triangle OAB is the two-dimensional version of Cauchy’s tetrahedron presented
in section 1.2.1 and depicted in fig. 1.7. Hence, the results derived in section 1.2
are directly applicable to the present case. Figure 1.12 shows the stress components
acting on sides OA and OB, of length dx1, and dx2, respectively. On side AB, of
length ds, the stress vector τn is acting. Finally, the body force vector, b, is also
acting on this triangle. For convenience, the thickness of the body in the direction of
axis ı̄3 is taken to be unity.

Equilibrium of forces acting on triangle OAB can be expressed by multiplying
each of the stress vectors by the area over which they acts, i.e., the length times the
unit thickness, and this yields

τ2dx1 + τ1dx2 = τnds + b dx1dx2/2,

where τ1 and τ2 are the stress vectors acting on the faces normal to axes ı̄1 and ı̄2,
respectively. Dividing this equilibrium equation by ds gives the stress vector acting
on the inclined face as
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τn = τ1n1 + τ2n2 − b dx1dx2/2ds

The body force term is multiplied by a higher order differential term, which can
neglected. Expanding the stress vectors in terms of the stress components then yields

τn = (σ1 ı̄1 + τ12 ı̄2) cos θ + (τ21 ı̄1 + σ2 ı̄2) sin θ. (1.30)

The three-dimensional equivalent of this relationship is given by eq. (1.10).
Projecting this vector equation in the direction of unit vector n̄ yields the direct

stress component, σn, acting on this face as σn = (σ1 cos θ + τ12 sin θ) cos θ +
(τ21 cos θ + σ2 sin θ) sin θ, or after rearrangement,

σn = σ1 cos2 θ + σ2 sin2 θ + 2τ12 cos θ sin θ. (1.31)

Next, eq. (1.30) is projected in the direction normal to unit vector n̄. This is in the
direction of edge AB, and the direction cosines of this vector with axes ı̄1 and ı̄2 are
− sin θ and cos θ, respectively. The shear stress component, τns, acting on side AB
then becomes τns = (−σ1 sin θ + τ12 cos θ) cos θ + (−τ21 sin θ + σ2 cos θ) sin θ
which, after rearrangement, becomes

τns = −σ1 cos θ sin θ + σ2 sin θ cos θ + τ12(cos2 θ − sin2 θ). (1.32)

Equations (1.31) and (1.32) could have been directly derived from their three-
dimensional equivalent, eqs. (1.11) and (1.12), respectively, by noting that for the
plane stress case, n1 = cos θ, n2 = sin θ, n3 = 0 and s1 = − sin θ, s2 = cos θ,
s3 = 0.

These important results show that knowledge of the stress components σ1, σ2,
and τ12 on two orthogonal faces allows computation of the stress components acting
on a face with an arbitrary orientation. In other words, the knowledge of the stress
components on two orthogonal faces fully defines the state of stress at a point.

1.3.3 Principal stresses

Principal stresses and their directions can also be determined for plane stress situ-
ations. It is a straightforward process to simply write eqs. (1.13), (1.14) and (1.15)
with σ3 = τ23 = τ13 = 0. This yields a vanishing principal stress along axis ı̄3 and a
quadratic equation for the remaining two principal stresses, which must lie in plane
(̄ı1, ı̄2). The computational procedure is otherwise unchanged.

It is more interesting, however, to consider eq. (1.31) as defining the direct stress,
σn, acting on side AB of triangle OAB, see fig. 1.12. The magnitude of this direct
stress is a function of θ, the orientation angle of this face. The particular orientation,
θp, that maximizes (or minimizes) the magnitude of this stress component is deter-
mined by requiring the vanishing of the derivative of σn with respect to angle θ, to
find

dσn

dθ
= −2σ1 cos θp sin θp + 2σ2 cos θp sin θp + 2τ12(cos2 θp − sin2 θp) = 0.
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Using the elementary double-angle trigonometric identities, the orientation of the
side that gives the extreme direct stress is found to be

tan 2θp =
2τ12

σ1 − σ2
. (1.33)

This equation possesses two solutions θp and θp+π/2 corresponding to two mutually
orthogonal principal stress directions. The maximum axial stress is found along one
direction, and the minimum along the other.

To determine these axes unambiguously, it is convenient to develop separate
equations for both sin 2θp and cos 2αp as follows. If eq. (1.33) is rewritten as

tan 2θp =
2τ12

σ1 − σ2
=

sin 2θp

cos 2θp
,

it is then possible to identify sin 2θp = τ12/∆ and cos 2θp = (σ1 − σ2)/2∆, where
∆ is determined by the following trigonometric identity, sin2 2θp + cos2 2θp = 1, to
find

∆ =

[(
σ1 − σ2

2

)2

+ (τ12)2
]1/2

.

Thus, the sine and cosine of angle 2θp can be expressed as follows

sin 2θp =
τ12

∆
, cos 2θp =

σ1 − σ2

2∆
, (1.34)

where

∆ =

√(
σ1 − σ2

2

)2

+ τ2
12. (1.35)

This result is equivalent to eq. (1.33), but it gives a unique solution for θp be-
cause both the sine and cosine of the angle are known. The maximum and mini-
mum axial stresses, denoted σp1 and σp2, respectively, act in the directions θp and
θp +π/2, respectively. These maximum and minimum axial stresses, called the prin-
cipal stresses, are evaluated by introducing eq. (1.34) into eq. (1.31) to find

σp1 =
σ1 + σ2

2
+ ∆; σp2 =

σ1 + σ2

2
−∆. (1.36)

The principal stresses are maximum and minimum values of the axial stress in an
algebraic sense. Note that it is possible, however, to have |σp2| > |σp1|.

The shear stress acting on the faces normal to the principal stress directions van-
ishes, as expected. This can be verified by introducing eq. (1.34) into eq. (1.32)

τns = −σ1 − σ2

2
sin 2θp + τ12 cos 2θp = −σ1 − σ2

2
τ12

∆
+ τ12

σ1 − σ2

2∆
= 0.

It is also interesting to find the orientation of the faces leading to the maximum
value of the shear stress. Indeed, in view of eq. (1.32), the shear stress is also a
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function of the face orientation angle. The orientation, θs, of the face on which the
maximum (or minimum) shear stress acts satisfies the following extremal condition

dτns

dθ
= −σ1 − σ2

2
2 cos 2θs − τ12 2 sin 2θs = 0, (1.37)

or
tan 2θs = −σ1 − σ2

2τ12
= − 1

tan 2θp
, (1.38)

where the last equality follows from eq. (1.34). Here again, this equation presents
two solutions, θs and θs + π/2, corresponding to two mutually orthogonal faces. To
define these orientations unequivocally, separate definitions of the sine and cosines
of angle 2θs are given as follows

sin 2θs = −σ1 − σ2

2∆
; cos 2θs =

τ12

∆
, (1.39)

where ∆ is again given by eq. (1.35).
The maximum shear stress acting on these faces results from introducing

eq. (1.39) into eq. (1.32) to find

τmax = ∆ =
σp1 − σp2

2
. (1.40)

Since tan 2θs = −1/ tan 2θp, trigonometric identities reveal that

θs = θp − π

4
. (1.41)

This means that the faces on which the maximum shear stresses occur are inclined at
a 45◦ angle with respect to the principal stress directions.

The axial stresses acting on these faces are found by introducing eq. (1.39) into
eq. (1.31) and using the first stress invariant property to find

σ1s = σ2s =
σ1 + σ2

2
=

σp1 + σp2

2
. (1.42)

1.3.4 Rotation of stresses

In the previous sections, faces are cut in planes normal to the two axes of an or-
thonormal basis I = (̄ı1, ı̄2), and the stress vectors are resolved into stress compo-
nents along the same directions. It is clear that the orientation of this basis is entirely
arbitrary: an orthonormal basis I∗ = (̄ı∗1, ı̄

∗
2) could have been selected, and an anal-

ysis identical to that of the previous sections would have led to the definition of axial
stresses σ∗1 and σ∗2 , and shear stress τ∗12. A typical equilibrium equation at a point of
the body would be written as

∂σ∗1
∂x∗1

+
∂τ∗21
∂x∗2

+ b∗1 = 0; (1.43)
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where the notation (·)∗ is used to indicate the components of the corresponding quan-
tity resolved in I∗. A typical surface traction is be defined as

t∗1 = n∗1 σ∗1 + n∗2 τ∗21. (1.44)

Although expressed in different reference frames, eqs. (1.26) and (1.43), or (1.27)
and (1.44) express the same equilibrium conditions for the body. The problem at hand
involves two distinct orthonormal bases, I and I∗, and the relationship between these
two basis is developed in appendix A.3.3.

Consider the stress component σ∗1 : it represents the magnitude of the direct stress
component acting on the face normal to axis ı̄∗1. Let θ be the angle between unit vector
ı̄∗1 and axis ı̄1. Equation (1.31) can now be used to express the stress component σ∗1
in terms of the stress components resolved in axis system I to find

σ∗1 = σ1 cos2 θ + σ2 sin2 θ + 2τ12 sin θ cos θ. (1.45)

A similar equation can be derived to express σ∗2 in terms of the stress components
resolved in axis system I by replacing angle θ by θ + π/2 in the above equation;
θ + π/2 is the angle between unit vector ı̄∗2 and axis ı̄1.

Finally, the shear stress component can be computed from eq. (1.32) as

τ∗12 = −σ1 sin θ cos θ + σ2 sin θ cos θ + τ12(cos2 θ − sin2 θ). (1.46)

These results can be combined into a compact matrix form as




σ∗1
σ∗2
τ∗12



 =




cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ








σ1

σ2

τ12



 . (1.47)

This relationship can be easily inverted by recognizing that the inverse transforma-
tion is obtained simply by replacing θ by −θ to find





σ1

σ2

τ12



 =




cos2 θ sin2 θ −2 sin θ cos θ
sin2 θ cos2 θ 2 sin θ cos θ

sin θ cos θ − sin θ cos θ cos2 θ − sin2 θ








σ∗1
σ∗2
τ∗12



 . (1.48)

With the help of double-angle trigonometric identities, the transformation rules
for stress components, eq. (1.47), can also be written in the following useful form

σ∗1 =
σ1 + σ2

2
+

σ1 − σ2

2
cos 2θ + τ12 sin 2θ, (1.49a)

σ∗2 =
σ1 + σ2

2
− σ1 − σ2

2
cos 2θ − τ12 sin 2θ, (1.49b)

τ∗12 = − σ1 − σ2

2
sin 2θ + τ12 cos 2θ. (1.49c)

These important results show that knowledge of the stress components σ1, σ2,
and τ12 on two orthogonal faces allows computation of the stress components acting
on a face with an arbitrary orientation. In other words, the knowledge of the stress
components on two orthogonal faces fully defines the state of stress at a point.
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1.3.5 Special states of stress

Two plane stress states are of particular interest. One is called the hydrostatic stress
state and the other is called the pure shear state. A third special state of plane stress
is the stress developed in a thin-walled cylindrical pressure vessel.

Hydrostatic stress state. A stress state of practical importance is the hydrostatic
state of stress. In this case, the principal stresses are equal, i.e., σp1 = σp2 = p,
where p is the hydrostatic pressure. It follows from eq. (1.49) that the stresses acting
on a face with any arbitrary orientation are

σ1 = σ2 = p, τ12 = 0. (1.50)

Pure shear state. A stress state of great prac-
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Fig. 1.13. A differential plane
stress element in pure shear.

tical importance is the state of pure shear charac-
terized by principal stresses of equal magnitude but
opposite signs, i.e., σp2 = −σp1, as depicted in fig.
1.13. Equations (1.45) and (1.46) then reveal the di-
rect and shear stresses, respectively, acting on a face
inclined at a 45◦ angle with respect to the principal
stress directions as

τ∗12 = −σp1; σ∗1 = σ∗2 = 0. (1.51)

On faces oriented at 45◦ angles with respect
to the principal stress directions, the direct stresses vanish and the shear has a
maximum value, equal in magnitude to the common magnitudes of the two principal
stresses.

Stress state in thin-walled pressure vessels. The stress state in the walls of
thin-walled tanks, called pressure vessels, of certain shapes consists of two in-plane
normal stresses and an in-plane shear stress. Although the pressure vessel may be
subjected to a large internal pressure that will produce a pressure loading on the in-
terior wall in the transverse direction, the magnitude of this stress often is orders
of magnitude smaller than the in-plane stress components and is therefore usually
neglected. The spherical pressure vessel and a long cylindrical pressure vessel (ig-
noring the effect of the ends) are two useful examples.

A thin-walled (t ¿ R) cylindrical pressure vessel subjected to an internal pres-
sure, pi, is depicted in fig. 1.14, where it is assumed that the only stresses are the two
in-plane stress components, σa in the axial direction, and σh in the circumferential
or “hoop” direction, and possibly a shear stress, τah. In the central portion of the
cylinder, it is possible to create the simple free body shown in the figure, which will
allow direct calculation of these stresses. From axial force equilibrium, it follows that
σaπRt = piπR2/2, and hence, σa = piR/2t. Equilibrium in the tangential (hoop)
direction implies 2σhbt = pi2Rb, and hence, σh = piR/t. Finally, it should be clear
that τah = 0 for this axis orientation.

It is left as an exercise to show that by a similar free body analysis of a spherical
thin-walled pressure vessel, σa = σh = piR/t in any direction and the shear stress
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Fig. 1.14. Long, thin-walled cylindrical pressure vessel (left) and free body diagram (right)
used to calculate in-plane stresses σh and σa.

vanishes. This is a special case of two-dimensional hydrostatic stress. A more formal
analysis of pressure vessels is presented in section 4.4.

1.3.6 Mohr’s circle for plane stress

Equation (1.49) expresses the direct and shear stresses acting on a face oriented at an
arbitrary angle θ with respect the axis ı̄1, but the presence of trigonometric functions
involving the angle 2θ makes it difficult to give a simple, geometric interpretation of
these formulæ. A useful geometric interpretation, however, called Mohr’s circle, can
be developed. Let the state of stress at a point be defined by its principal stresses, σp1

and σp2. Equation (1.49) then implies that the stresses acting on a face oriented at an
angle θ with respect to the principal stress directions can be written as

σ∗ = σa + R cos 2θ; τ∗ = −R sin 2θ, (1.52)

where σa = (σp1 + σp2)/2 and R = (σp1 − σp2)/2. With this notation and the help
of basic trigonometric identities, eq. (1.52) becomes

(σ∗ − σa)2 + (τ∗)2 = R2. (1.53)

s
p2 s

p1

s
a

s
p1

s
p2

s
*

t
*

2q
q

O

A1

A2

B P1P2

E2

E1

Direction of

positive q

s*
t*

Fig. 1.15. Mohr’s circle for visualizing plane
stress state.

s
a s

*

t
*

2b

2q
p1

O

A1

B1

B2

A2

Direction of

positive q

E2

E1

s
p1

P1

s
p2

P2

Fig. 1.16. Mohr’s circle construction proce-
dure.



28 1 Basic equations of linear elasticity

This equation clearly represents the equation of a circle, known as Mohr’s circle
in which σ∗ is plotted along the horizontal axis, τ∗ is plotted along the vertical axis,
and the circle is centered at a coordinate σa on the horizontal axis with a radius of R,
as depicted in fig. 1.151. The reason for plotting τ∗ with an inverted axis will become
clear in the next paragraphs.

Consider point A1 on Mohr’s circle such that segment OA1 makes an angle
2θ with the horizontal. The coordinates of this point are σ∗ = σa + R cos 2θ and
τ∗ = −R sin 2θ; hence, in view of eq. (1.52), the coordinates of point A1 represent
the state of stress on a face oriented at an angle θ. In fact, each point on Mohr’s circle
represents the state of stress acting on a face at a specific orientation.

An important sign convention must be defined: on Mohr’s circle, a positive
angle θ is measured in the counterclockwise direction, see fig. 1.15, to match the
positive direction of angle θ that identifies the orientation of a face in fig. 1.12. Given
the sign convention for angle θ, the shear stress must be positive downward on the
ordinate of Mohr’s circle depicted in fig. 1.15.2

The following observations are made.

• At point P1, the stress state is σ∗ = σp1 and τ∗ = 0; this corresponds, as
expected, to the stress components acting in the principal stress direction. Similar
results are found at point P2 which represents the stress components acting in
the second principal direction.

• At point E1, associated with an angle θ = π/4, the stress components are
τ∗max = R = (σp1 − σp2)/2 and σ∗ = σa = (σp1 + σp2)/2. These results
are identical to those expressed by eqs. (1.40) and (1.42), respectively. In the
graphical representation of stress states given by Mohr’s circle, it becomes obvi-
ous that the maximum shear stress is found on faces oriented at±45◦ angles with
respect to the principal stress directions, and this is defined by points E1 and E2

in fig. 1.15.
• Points A1 and A2 represent the stress components acting on two faces oriented

90◦ apart. The shear stresses acting on those two faces are equal in magnitude
and of opposite sign, as required by the principle of reciprocity of shear stresses
illustrated in fig. 1.5. The direct stresses correspond to stresses σ∗1 and σ∗2 in
eqs. (1.49).

In the above discussion, Mohr’s circle is constructed based on the knowledge
of the principal stresses represented by points P1 and P2 in figs. 1.15 and 1.16. In
practice, it is often the case that the state of stress at a point is defined by known stress
components σ1, σ2 and τ12. These three stress components define two diametrically
opposed points, A1 and A2, on Mohr’s circle depicted in fig. 1.16. Once this circle
is constructed with the help of the procedure described below, the stress components
acting on any face rotated by an angle β in a counterclockwise direction, represented
1 A Mohr’s circle representation that describes the rotation of a three-dimensional second

order tensor can be constructed but it involves three interdependent circles and is quite
tedious to construct and to use.

2 An equivalent construction of Mohr’s circle has the shear stress positive upwards along the
ordinate, but angle θ is then positive in the clockwise direction.
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by points B1 and B2 in fig. 1.16, can be directly obtained from simple geometric
constructions.

1. Draw a first point, identified as point A1, at coordinates (σ1, τ12). This repre-
sents the direct and shear stresses acting on one face of the solid.

2. Draw a second point, identified as point A2, at coordinates (σ2,−τ12). This
represents the direct and shear stresses acting on a face of the solid at a 90◦

angle counterclockwise with respect to the first face. Since the two faces are
90◦ apart, these two points must define diametrically opposite points on Mohr’s
circle.

3. Draw a straight line segment joining points A1 and A2; the intersection of this
segment with the horizontal axis defines the center of the Mohr’s circle of diam-
eter A1OA2 at point O. Points A1 and A2 represent the stress components on
two orthogonal faces, that is, on faces of relative orientation θ = 90◦, since the
angle between segments OA1 and OA2 is 2θ = 180◦.

4. Once Mohr’s circle is drawn, the stress state on faces at any orientation angle
can be computed. For instance, the stress components acting on a face oriented
at an angle β from the face on which stress components σ1 and τ12 act can be
computed by constructing a new diameter B1OB2 rotated 2β degrees from the
reference diameter A1OA2. The coordinates of point B1 yield the new stress
components.

Mohr’s circle displays in a graphical manner many important features character-
izing the state of stress at a point.

1. The principal stresses, σp1 and σp2, shown in figs. 1.15 and 1.16, are represented
by the points P1 and P2 at the intersection of Mohr’s circle with the horizontal
axis. Clearly, these points define the orientation of the faces on which the direct
stresses take on maximum and minimum values and for which the shear stress
vanishes.

2. The faces on which the maximum shear stresses occurs are represented by the
points at the intersection of Mohr’s circle with a vertical line passing through
its center. It is clear that the magnitude of the maximum shear stress equals
the radius of Mohr’s circle: τmax = (σp1 − σp2)/2, see eq. (1.40). The angle
between the principal stress directions and those of the face of maximum shear is
45◦, because the angle P1OE1 is 90◦, see eq. (1.41). Finally, the direct stresses
acting on the faces of maximum shear equal the average of the principal stresses,
σ1s = σ2s = (σp1 + σp2)/2, see eq. (1.42).

3. The stress components acting on two mutually orthogonal faces are represented
by two diametrically opposite points on Mohr’s circle. Since the center of the
circle is on the horizontal axis, the shear stresses on those two faces are equal
in magnitude and opposite in sign, as required by the principle of reciprocity of
shear stresses illustrated in fig. 1.5.

4. Finally, note that all the points on Mohr’s circle represent the same state of
stress at one point of the solid. Of course, this state of stress is represented by
stress components that depend on the orientation of the face on which they act.
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Mohr’s circle is a graphical representation of all the possible stress components
corresponding to a single state of stress.

1.3.7 Lamé’s ellipse

Lamé’s ellipse provides an elegant geometric interpretation of the state of stress at
a point. Consider a material in a plane state of stress and let τn be the stress vector
acting on the face with a unit normal n̄ at an angle θ with respect to axes ı̄∗1, as
depicted in fig. 1.17. As angle θ varies, the tip of the stress vector, τn, draws an
ellipse, called Lamé’s ellipse, with its center at O and its semi-axes given by the
absolute value of the principal stresses, |σp1| and |σp2|, respectively. The minor and
major axes of the ellipse are aligned with the principal stress directions so that axes
ı̄∗1 and ı̄∗2 are the principal stress directions.
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Fig. 1.17. Lamé’s ellipse. Stress vector τn corresponds to positive principal stresses whereas
stress vector τ ′n corresponds to σp1 > 0 and σp2 < 0.

To prove the stated claim that the locus of the tip of the stress vector draws the
ellipse shown in fig. 1.17, the stress vector acting on the face at an angle θ with
respect to axis ı̄∗1 can be expressed with the help of eq. (1.30) as τn = σ1p cos θ ı̄∗1 +
σ2p sin θ ı̄∗2, where it is noted that σ1 = σ1p, σ2 = σ2p, and τ12 = 0 because the
selected axis system coincides with the principal stress directions. Let x1 and x2 be
the coordinates of the tip of the stress vector, hence, τn = x1 ı̄∗1 + x2 ı̄∗2. It then
follows that x1 = σ1p cos θ and x2 = σ2p sin θ, and elimination of the angle θ using
the elementary trigonometric identity leads to

(
x1

σ1p

)2

+
(

x2

σ2p

)2

= 1. (1.54)

This is the equation of an ellipse with semi-axes equal to |σp1| and |σp2|, respectively,
proving the stated claim.

As the orientation of the face changes, the tip of the stress vector sweeps around
Lamé’s ellipse. Note that while the shape of the ellipse is not affected by the sign of
the principal stresses, the orientation of the stress vector does depend on their sign.
For instance, the stress vector τn shown in fig. 1.17 corresponds to σp1 > 0 and
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σp2 > 0; for the case where σp1 > 0 and σp2 < 0, however, the stress vector acting
on the same face is now represented by vector τ ′n.
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Fig. 1.18. Lamé’s ellipse for the case of pure shear; the three figures illustrate the stress vectors
acting on faces at 0, 45, and 90 degrees with respect to axis ı̄∗1.

An interesting case is provided by the pure shear state of stress discussed in
section 1.3.5. This is defined by the principal stresses σ1p = τ and σ2p = −τ : the
principal stresses are equal in magnitude but of opposite sign. Since the two semi-
axes of Lamé’s ellipse are equal, it becomes the circle depicted in fig. 1.18, and
hence, the norm of the stress vector remains constant as the face on which it act
rotates. When the face is oriented at a 45 degree angle, the stress vector acts at a -45
degree angle with respect to axis ı̄∗1 and the face is subjected to only a shear stress, as
expected. Finally, note that while the face rotates counterclockwise, the stress vector
describes Lamé’s ellipse in the clockwise direction.

1.3.8 Problems

Problem 1.5. Stress states on two sets of faces
The plane stress state at a point is known and characterized by the following stress compo-
nents: σ1 = 250 MPa, σ2 = 250 MPa, and τ12 = 0 MPa in a coordinate system I = (̄ı1, ı̄2).
Find the stress components σ∗1 , σ∗2 , and τ∗12 in a coordinate system I∗ = (̄ı∗1, ı̄∗2), where ı̄∗1 is
at a 25 degree angle with respect to ı̄1.

Problem 1.6. Stress invariants for plane stress state
The stress invariants defined in eq. (1.15) for three-dimensional problems. (1) Show that for
plane stress problems, the following two quantities are invariants

I1 = σ1 + σ2; I2 = σ1σ2 − τ2
12. (1.55)

(2) Prove your claim of invariance by showing that these quantities are identical when com-
puted in terms of the principal stresses and in terms of stresses acting on a face at an arbitrary
orientation.

Problem 1.7. Stress rotation formulæ in matrix form
Show that the plane stress stress rotation formulae given by eq. (1.47) can be recast in the
following compact matrix form
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[
σ∗1 τ∗12
τ∗12 σ∗2

]
=

[
cos θ sin θ

− sin θ cos θ

] [
σ1 τ12

τ12 σ2

] [
cos θ − sin θ
sin θ cos θ

]
.

Problem 1.8. Mohr’s circle
Draw Mohr’s circle for the state of stress defined by σ1 = 80 MPa, σ2 = -20 MPa and τ12 =
40 MPa. Using this circle, (1) calculate the stress on axes rotated 60 degrees counterclock-
wise from the reference axes, and (2) determine the principal stresses and the corresponding
directions. Do these results agree with the results in section 1.3.3?

Problem 1.9. Mohr’s circle for the state of pure shear
Draw Mohr’s circle for the state of pure shear defined in section 1.3.5. Show how eq. (1.51)
can be readily derived from Mohr’s circle.

Problem 1.10. Mohr’s circle for the hydrostatic state of stress
Draw Mohr’s circle for the state of hydrostatic stress defined in section 1.3.5. Show how
eq. (1.50) can be readily derived from Mohr’s circle.

Problem 1.11. Stresses in a pressure vessel
A cylindrical pressure vessel of radius R and thickness t is subjected to an internal pressure
pi. At any point in the cylindrical portion of vessel wall, two stress components are acting: the
hoop stress, σh = Rpi/t and the axial stress, σa = Rpi/(2t). The radial stress, acting in the
direction perpendicular to the wall, is very small, σr ≈ 0. The pressure vessel features a weld
line at a 45 degree angle with respect to the axis of the cylinder, as shown in fig. 1.19. (1) Find
the direct stress acting in the direction perpendicular to the weld line. (2) Find the shear stress
acting along the weld line.
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Fig. 1.19. Pressure vessel with a weld line.
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Fig. 1.20. Stresses acting in a pressure vessel.

Problem 1.12. Maximum stresses in a pressure vessel
Figure 1.20 shows a cylindrical pressure vessel of radius R and thickness t subjected to an
internal pressure pi. At any point in the cylindrical portion of vessel wall, two stress com-
ponents are acting: the hoop stress, σh = Rpi/t and the axial stress, σa = Rpi/(2t). The
radial stress, acting in the direction perpendicular to the wall, is very small, σr ≈ 0. (1) Find
the orientation of the face on which the maximum direct stress is acting. What is the value of
the maximum direct stress? (2) Find the orientation of the face on which the maximum shear
stress is acting acting. What is the value of the maximum shear stress?

Problem 1.13. Stresses in a composite material layer
A layer of unidirectional composite material is subjected to a state of stress σ1 = 245 MPa,
σ2 = −175 MPa, and τ12 = 95 MPa. As depicted in fig. 1.21, the fibers in the unidirectional
composite material layer run at an angle θ = 25 degrees with respect to axis ı̄1. (1) Find the
direct stress acting in the direction of the fiber. (2) Find the direct stress acting in the direction
perpendicular to the fiber.
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Fig. 1.21. Layer of unidirectional composite material with fiber direction.

1.4 The concept of strain

The state of strain at a point is a characterization of the deformation in the neighbor-
hood of a material point in a solid. The description of the state of strain at a point
is a great deal more complicated than that of the stress state, and the presence of
nonlinear terms is much more obvious. The state of strain is concerned with the de-
formation of a solid in the neighborhood of a given point, say point P, located by a
position vector r = x1 ı̄1 + x2 ı̄2 + x3 ı̄3, as depicted in fig. 1.22.

To visualize this deformation, a small rectangular parallelepiped PQRST of dif-
ferential size dx1 by dx2 by dx3 is cut in the neighborhood of point P. The reference
configuration is the configuration of the solid in its undeformed state. Under the
action of applied loads, the body deforms and assumes a new configuration, called
the deformed configuration. All the material particles that formed the rectangular
parallelepiped PQRST in the reference configuration now form the parallelepiped
PQRST in the deformed configuration. The state of strain at a point characterizes
the deformation of the parallelepiped without any consideration for the loads that
created the deformation.
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Fig. 1.22. The neighborhood of point P in the reference and deformed configurations.

While position vector, r, locates material point P, the displacement vector, u, is
a measure of how much a material point moves from the reference to the deformed
configuration. The components of the displacement vector resolved in coordinate
system I = (̄ı1, ı̄2, ı̄3) can be expressed as

u(x1, x2, x3) = u1(x1, x2, x3) ı̄1 + u2(x1, x2, x3) ı̄2 + u3(x1, x2, x3) ı̄3. (1.56)
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This displacement field describes the displacement of a point at position (x1, x2, x3)
within the solid and consists of two parts: a rigid body motion and a deformation or
straining of the solid. The rigid body motion itself consists of two parts: a rigid body
translation and a rigid body rotation. By definition, a rigid body motion does not pro-
duce strain in the body. Consequently, the strain-displacement equations must extract
from the displacement field the information that describes only the deformation of
the body while ignoring its rigid body motion.

1.4.1 The state of strain at a point

A material line is the ensemble of material particles that form a straight line in the
reference configuration of the body. For instance, segments PR, PS and PT of the
reference configuration are material lines. Due to the deformation of the body, all the
material particles forming material line PR will move to segment PR in the deformed
configuration. Due to the differential nature of this segment, it can be assumed to
remain straight in the deformed configuration.

When comparing segment PR in the reference and deformed configurations, the
motion consists of two parts: a change in orientation and a change in length. Clearly,
the change in length is a deformation or stretching of the material line. Similarly,
segments PR and PS form a rectangle in the reference configuration, but they form a
parallelogram in the deformed configuration. The angular distortion of the rectangle
into a parallelogram represents a deformation of the body. Stretching of a material
line and angular distortion between two material lines will be selected as measures
of the state of strain at a point.

The stretching or relative elongations of material lines PR, PS and PT will be
denoted as ε1, ε2 and ε3, respectively. The angular distortions between segments PS
and PT, PR and PT, and PR and PS will be denoted γ23, γ13, and γ12, respectively.

Relative elongations or extensional strains

The relative elongation, ε1, of material line PR is defined as

ε1 =
‖PR‖def − ‖PR‖ref

‖PR‖ref , (1.57)

where the subscripts (·)ref and (·)def are used to indicate the reference and deformed
configurations, respectively, and ‖·‖means magnitude of a vector. The relative elon-
gation is a non-dimensional quantity. The length of the material line in the reference
configuration is

‖PR‖ref = ‖dx1 ı̄1‖ = dx1, (1.58)

whereas in the deformed configuration, it is
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‖PR‖def =‖dx1 ı̄1 + u(x1 + dx1)− u(x1)‖

=‖dx1 ı̄1 + ū(x1) +
∂u

∂x1
dx1 − u(x1)‖ = ‖dx1 ı̄1 +

∂u

∂x1
dx1‖

=‖ı̄1dx1 +
(

∂u1

∂x1
ı̄1 +

∂u2

∂x1
ı̄2 +

∂u3

∂x1
ı̄3

)
dx1‖

=

√
1 + 2

∂u1

∂x1
+

(
∂u1

∂x1

)2

+
(

∂u2

∂x1

)2

+
(

∂u3

∂x1

)2

dx1,

(1.59)

where the higher order differential terms in the Taylor series expansion of the dis-
placement field are neglected. The relative elongation now becomes

ε1 =

√
1 + 2

∂u1

∂x1
+

(
∂u1

∂x1

)2

+
(

∂u2

∂x1

)2

+
(

∂u3

∂x1

)2

− 1. (1.60)

A fundamental assumption of linear elasticity is that all displacement compo-
nents remain very small so that all second order terms can be neglected. This can be
stated as requiring

∣∣∣∣
∂u1

∂x1

∣∣∣∣ ¿ 1,

∣∣∣∣
∂u2

∂x1

∣∣∣∣ ¿ 1,

∣∣∣∣
∂u3

∂x1

∣∣∣∣ ¿ 1,

∣∣∣∣
∂u1

∂x2

∣∣∣∣ ¿ 1, etc. (1.61)

With these assumptions and by making use of the binomial expansion3, the expres-
sion for the relative elongation given in eq. (1.60) reduces to

ε1 ≈ 1 +
∂u1

∂x1
− 1 =

∂u1

∂x1
. (1.62)

A similar reasoning applied to material lines PS and PT yields expressions for the
three components of relative elongation

ε1 =
∂u1

∂x1
, ε2 =

∂u2

∂x2
, ε3 =

∂u3

∂x3
. (1.63)

Angular distortions or shear strains

The angular distortion, γ23, between two material lines PT and PS is defined as the
change of the initially right angle

γ23 = 〈TPS〉ref − 〈TPS〉def =
π

2
− 〈TPS〉def , (1.64)

where the notation 〈TPS〉 is used to indicate the angle between segments PT and PS.
Both relative elongation and angular distortion are non-dimensional quantities. To
eliminate the difference between the two angles, basic properties of the sine function
are used: the sine of the angular distortion becomes
3 When |a| ¿ 1, it is possible to expand (1± a)n ≈ 1± na.
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sin γ23 = sin
(π

2
− 〈TPS〉def

)
= cos〈TPS〉def . (1.65)

The cosine of the angle between the two material lines is computed from the law of
cosines applied to triangle TPS in the deformed configuration

‖TS‖2def = ‖PT‖2def + ‖PS‖2def − 2 cos〈TPS〉def‖PT‖def‖PS‖def . (1.66)

The angular distortion thus becomes

γ23 = arcsin
‖PT‖2def + ‖PS‖2def − ‖TS‖2def

2‖PT‖def‖PS‖def
. (1.67)

The same procedure as used above in determining ε1 can be used to compute
‖PR‖def and ‖PS‖def but since the present computations are a bit more tedious,
it will be convenient to introduce two temporary vectors, A an B, defined as follows

PTdef =
(

ı̄3 +
∂u

∂x3

)
dx3 = A, PSdef =

(
ı̄2 +

∂u

∂x2

)
dx2 = B,

and hence
TSdef = PSdef − PTdef = B −A.

With the help of this notation, the numerator, N , of eq. (1.67) becomes

N = A ·A + B ·B − (B −A) · (B −A) = 2A ·B

= 2
(

ı̄2 +
∂u

∂x2

)(
ı̄3 +

∂u

∂x3

)
dx2dx3 = 2

(
∂u2

∂x3
+

∂u3

∂x2
+

∂u

∂x2

∂u

∂x3

)
dx2dx3

= 2
(

∂u2

∂x3
+

∂u3

∂x2
+

∂u1

∂x2

∂u1

∂x3
+

∂u2

∂x2

∂u2

∂x3
+

∂u3

∂x2

∂u3

∂x3

)
dx2dx3.

(1.68)
The denominator, D, can be expressed in the same manner to find

D =2‖A‖ ‖B‖ = 2
√

A ·A
√

B ·B

=2dx2dx3

√
1 + 2

∂u2

∂x2
+

(
∂u1

∂x2

)2

+
(

∂u2

∂x2

)2

+
(

∂u3

∂x2

)2

√
1 + 2

∂u3

∂x3
+

(
∂u1

∂x3

)2

+
(

∂u2

∂x3

)2

+
(

∂u3

∂x3

)2

.

(1.69)

Finally, these results can be combined in eq. (1.67) to yield the rather cumbersome
expression γ23 = arcsinN/D. With the help of the small displacement assumption,
see eq. (1.61), the numerator simplifies to N ≈ 2(∂u2/∂x3 + ∂u3/∂x2) dx2dx3,
whereas the denominator reduces to D ≈ 2(1+∂u2/∂x2+∂u3/∂x3) dx2dx3. With
these simplifications, the shearing strain component becomes

γ23 ≈ ∂u2/∂x3 + ∂u3/∂x2

1 + ∂u2/∂x2 + ∂u3/∂x3
≈ ∂u2

∂x3
+

∂u3

∂x2
. (1.70)
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A similar reasoning applies to the other material lines to yield the three angular
distortions or shear strains as

γ23 =
∂u2

∂x3
+

∂u3

∂x2
, γ13 =

∂u1

∂x3
+

∂u3

∂x1
, γ12 =

∂u1

∂x2
+

∂u2

∂x1
. (1.71)

Summary

The relative elongations, eqs. (1.63), and angular distortions, eqs. (1.71) charac-
terize the state of deformation at a point. The relative elongations are also called
direct strains or axial strains, whereas the angular distortions are called shearing
strains or simply shear strains. It is important to note that the strain-displacement
relationships, eqs. (1.63) and (1.71) are obtained under the small displacement as-
sumption defined in eq. (1.61). If the displacements become large, expressions (1.60)
and (1.67) should be used instead. It is clear that the small displacement assumption
implies that all strain components also remain very small, i.e.,

|ε1| ¿ 1, |ε2| ¿ 1, |ε3| ¿ 1, |γ23| ¿ 1, |γ13| ¿ 1, |γ12| ¿ 1. (1.72)

Rigid body rotation

In general, the motion of a solid body can be decomposed into a rigid body motion
and straining or deformation. The previous sections are focused on the deformation
of the solid, but the rigid body motion can also be extracted from the displacement
field. The components of the rotation vector associated with the displacement field
are

ω1 =
1
2

(
∂u3

∂x2
− ∂u2

∂x3

)
, (1.73a)

ω2 =
1
2

(
∂u1

∂x3
− ∂u3

∂x1

)
, (1.73b)

ω3 =
1
2

(
∂u2

∂x1
− ∂u1

∂x2

)
. (1.73c)

Each components of the rotation vector ωT =
{
ω1, ω2, ω3

}
represent the rotation of

the solid about axes ı̄1, ı̄2, and ı̄3, respectively.

1.4.2 The volumetric strain

Consider the block of material defined by the three segments PR, PS, and PT. The
volume of this block in the reference configuration is dx1dx2dx3. After deformation,
this volume becomes

V ≈ (1+ ε1)(1+ ε2)(1+ ε3) dx1dx2dx3 ≈ (1+ ε1 + ε2 + ε3) dx1dx2dx3, (1.74)
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where the higher order strain quantities are neglected in view of eq. (1.72). The
relative change in volume is now

e =
(1 + ε1 + ε2 + ε3) dx1dx2dx3 − dx1dx2dx3

dx1dx2dx3
= ε1 + ε2 + ε3. (1.75)

The quantity e is known as the volumetric strain and measures the relative change in
volume of the material.

1.5 Analysis of the state of strain at a point

The state of strain at a point is characterized in the previous section by the relative
elongations of three material lines and their relative angular distortions. The orienta-
tions of three material lines are selected parallel to the axes of the Cartesian reference
frame I = (̄ı1, ı̄2, ı̄3). It is clear that the orientation of this reference frame is entirely
arbitrary: a reference frame I∗ = (̄ı∗1, ı̄

∗
2, ı̄

∗
3) could have been selected, and an analy-

sis identical to that of the previous section would have led to the definition of relative
elongations

ε∗1 =
∂u∗1
∂x∗1

, ε∗2 =
∂u∗2
∂x∗2

, ε∗3 =
∂u∗3
∂x∗3

, (1.76)

and angular distortions

γ∗23 =
∂u∗2
∂x∗3

+
∂u∗3
∂x∗2

, γ∗13 =
∂u∗1
∂x∗3

+
∂u∗3
∂x∗1

, γ∗12 =
∂u∗1
∂x∗2

+
∂u∗2
∂x∗2

. (1.77)

Although expressed in different reference frames, the strain displacements equations,
eq. (1.63) and (1.71), or (1.76) and (1.77) both characterize the state of deformation
at a point of the body. Therefore, the strain components resolved in the two reference
frames should be closely related. Because strain components are purely geometric in
nature, it should not be unexpected that the relationship between the strain compo-
nents resolved in two different coordinate systems is also purely geometric in nature.

1.5.1 Rotation of strains

In this section, the strain components resolved two different bases, I and I∗, will
be related to each other. The orientation of basis I∗ relative to basis I is discussed
in appendix A.3.1 and leads to the definition of the matrix of direction cosines, or
rotation matrix, R, given by eq. (A.36).

With the help of the chain rule for derivatives, the first component of strain given
by eq. (1.76) becomes

ε∗1 =
∂u∗1
∂x∗1

=
∂u∗1
∂x1

∂x1

∂x∗1
+

∂u∗1
∂x2

∂x2

∂x∗1
+

∂u∗1
∂x3

∂x3

∂x∗1
=

∂u∗1
∂x1

`1+
∂u∗1
∂x2

`2+
∂u∗1
∂x3

`3, (1.78)

where eq. (A.39) is used to express the derivatives of x1, x2, and x3 with respect to
x∗1.
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Next the displacement component u∗1 is expressed in terms of the displacement
components in coordinate system I with the help of eq. (A.39), to find

ε∗1 = `1
∂

∂x1
(`1u1 + `2u2 + `3u3) + `2

∂

∂x2
(`1u1 + `2u2 + `3u3)

+ `3
∂

∂x3
(`1u1 + `2u2 + `3u3) .

(1.79)

The last step is to use the strain-displacement relationships, eqs. (1.63) and (1.71), to
find

ε∗1 = ε1`
2
1 + ε2`

2
2 + ε3`

2
3 + γ12`1`2 + γ13`1`3 + γ23`2`3.

A similar analysis for the other direct strain components results in the following
expressions for the extensional strain in system I∗,

ε∗1 = ε1`
2
1 + ε2`

2
2 + ε3`

2
3 + 2

γ12

2
`1`2 + 2

γ13

2
`1`3 + 2

γ23

2
`2`3, (1.80a)

ε∗2 = ε1m
2
1 + ε2m

2
2 + ε3m

2
3 + 2

γ12

2
m1m2 + 2

γ13

2
m1m3 + 2

γ23

2
m2m3, (1.80b)

ε∗3 = ε1n
2
1 + ε2n

2
2 + ε3n

2
3 + 2

γ12

2
n1n2 + 2

γ13

2
n1n3 + 2

γ23

2
n2n3. (1.80c)

Proceeding in a similar manner yields the shear strain components expressed in
basis I∗

γ∗12
2

= ε1`1m1 + ε2`2m2 + ε3`3m3 +
γ12

2
(`1m2 + `2m1)

+
γ13

2
(`1m3 + `3m1) +

γ23

2
(`2m3 + `3m2), (1.81a)

γ∗13
2

= ε1`1n1 + ε2`2n2 + ε3`3n3 +
γ12

2
(`1n2 + `2n1)

+
γ13

2
(`1n3 + `3n1) +

γ23

2
(`2n3 + `3n2), (1.81b)

γ∗23
2

= ε1m1n1 + ε2m2n2 + ε3m3n3 +
γ12

2
(m1n2 + m2n1)

+
γ13

2
(m1n3 + m3n1) +

γ23

2
(m2n3 + m3n2). (1.81c)

Expressions (1.80) and (1.81) are quite tedious, but the permutations of indices
are readily observed. In these equations, it should be noted that the shear strain com-
ponents are divided by a factor of 2. In this form, eqs. (1.80) and (1.81) become
similar to eqs. (1.11) and (1.12), respectively; the axial strain take the place of the
axial stresses and the shear strain that of the shear stresses.

The shearing strain components γ23, γ13 and γ12 are called the engineering shear
strain components, whereas the tensor shear strain components, ε23, ε13 and ε12, are
defined as

ε23 =
γ23

2
, ε13 =

γ13

2
, ε12 =

γ12

2
. (1.82)

When using the tensor strain components, the strain rotation expressions,
eqs. (1.80) and (1.81), can be written in a compact matrix form as
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


ε∗1 ε∗12 ε∗13
ε∗12 ε∗2 ε∗23
ε∗13 ε∗23 ε∗3


 = RT




ε1 ε12 ε13
ε12 ε2 ε23
ε13 ε23 ε3


R, (1.83)

where R is the rotation matrix defined by eq. (A.36).
Comparing this result with eq. (1.20) for the rotation of stress components, it

becomes clear that the transformation equations for these second order tensors are
identical. Equation (1.20) expresses the transformation rules for the components of
the second order stress tensor, whereas eq. (1.83) expresses the same rule for the
second order strain tensor. In fact, a second order tensor is defined as a mathematical
entity whose components measured in two different coordinate systems transform
according to the ruled expressed by eqs. (1.20) or (1.83).

1.5.2 Principal strains

Because it has been established that stress and strain components are the components
of the second order stress and strain tensors, respectively, it should not be unexpected
that the concept of principal stresses, discussed in section 1.2.2 for the stress tensor,
has its equivalent when it comes to the strain tensor.

To introduce the concept of principal strains, the following question is asked: is
there a coordinate system I∗ for which the shear strains vanish? If such a coordinate
system exists, eq. (1.83) implies that




ε∗1 0 0
0 ε∗2 0
0 0 ε∗3


 = RT




ε1 ε12 ε13
ε12 ε2 ε23
ε13 ε23 ε3


R,

where ε∗1 = εp1, ε∗2 = εp2, and ε∗3 = εp3 are the principal strains. By pre-multiplying
by R and reversing the equality, this equation can be written in the following form




ε1 ε12 ε13
ε12 ε2 ε23
ε13 ε23 ε3


R = R




εp1 0 0
0 εp2 0
0 0 εp3


 ,

where the orthogonality of the direction cosine matrix, eq. (A.37), is used. It follows
that the principal strains, εp1, εp2 and εp3, are the solutions of three systems of three
equations of the form




ε1 ε12 ε13
ε12 ε2 ε23
ε13 ε23 ε3








n1

n2

n3



 = εp





n1

n2

n3



 ,

where εp represents each of the three principal strains and n1, n2, and n3 the principal
strain directions. These equations can be recast as a homogeneous system of linear
equations 


ε1 − εp ε12 ε13

ε12 ε2 − εp ε23
ε13 ε23 ε3 − εp








n1

n2

n3



 = 0. (1.84)
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Clearly, this homogeneous system is equivalent to system (1.13) that defines the
principal stresses.

Since this is a homogeneous system of equations, the trivial solution, n1 = n2 =
n3 = 0, is, in general, the solution of this system. When the determinant of the
system vanishes, however, non-trivial solutions will exist. The vanishing of the de-
terminant of the system leads to a cubic equation for the magnitude of the principal
strains given by

ε3p − I1ε
2
p + I2εp − I3 = 0, (1.85)

where the quantities, I1, I2, and I3, defined as

I1 = ε1 + ε2 + ε3, (1.86a)

I2 = ε1ε2 + ε2ε3 + ε3ε1 − ε212 − ε213 − ε223, (1.86b)

I3 = ε1ε2ε3 − ε1ε
2
23 − ε2ε

2
13 − ε3ε

2
12 + 2ε12ε13ε23, (1.86c)

are called the three strain invariants.
The solutions of eq. (1.85) are called the principal strains. Because this is a

cubic equation, there will be three solutions, denoted εp1, εp2, and εp2. For each of
these three solutions, the matrix of the system of equations defined by eq. (1.84) has
a zero determinant, and a non-trivial solution exists for the directions cosines that
now define the direction for which the shear strains vanish. Such direction is called a
principal strain direction. Because the equations to be solved are homogeneous, their
solution will include an arbitrary constant which can be determined by enforcing the
normality condition for unit vector n̄, n2

1 + n2
2 + n2

3 = 1.
Since there exist three principal strains, three principal strain directions must also

exist. It can be shown that these three directions are mutually orthogonal.

1.6 The state of plane strain

A particular state of strain of great practical importance is the plane state of strain.
In this case, the displacement component along the direction of axis ı̄3 is assumed
to vanish, or to be negligible compared to the displacement components in the other
two directions. This means that the only non-vanishing strain components are ε1, ε2,
and γ12, and furthermore, these strain components are assumed to be independent of
x3.

Unlike the plane state of stress considered in section 1.3, plane strain problems
are not characterized by having one dimension much thinner than the others. Instead,
displacement in one direction is zero. An example of a plane strain problem is that
of a very long buried pipe aligned with the ı̄3 direction. Such a problem is clearly
three-dimensional in its overall geometry, but if the displacement along the direction
of axis ı̄3 is small or negligible, the pipe is in a plane state of strain.

1.6.1 Strain-displacement relations for plane strain

If the material is in a plane state of strain, i.e., if u3 = 0 and ∂/∂x3 = 0, eqs (1.63)
and (1.71) reduce to
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ε1 =
∂u1

∂x1
, ε2 =

∂u2

∂x2
, γ12 =

∂u1

∂x2
+

∂u2

∂x1
. (1.87)

1.6.2 Rotation of strains

Next, the strain components measured two different orthonormal bases, I and I∗,
will be related to each other. Since this problem involves two distinct orthonormal
bases, the relationship between these two basis, as explored in appendix A.3.3, is
relevant to this development.

With the help of the chain rule for derivatives, the first component of strain given
by eq. (1.76) becomes

ε∗1 =
∂u∗1
∂x∗1

=
∂u∗1
∂x1

∂x1

∂x∗1
+

∂u∗1
∂x2

∂x2

∂x∗1
=

∂u∗1
∂x1

cos θ +
∂u∗1
∂x2

sin θ,

where eq. (A.43) is used to express the derivatives of x1 and x2 with respect to
x∗1. Next, the displacement component u∗1 is expressed in terms of the displacement
components resolved in coordinate system I with the help of eq. (A.43) to yield

ε∗1 = cos θ
∂

∂x1
(u1 cos θ + u2 sin θ) + sin θ

∂

∂x2
(u1 cos θ + u2 sin θ) . (1.88)

The last step is to use the strain-displacement relationships, eqs. (1.87), to find

ε∗1 = cos2 θ ε1 + sin2 θ ε2 + sin θ cos θ γ12. (1.89)

Proceeding in a similar manner yields the shear strain components in the I∗ coordi-
nate system

γ∗12
2

= −ε1 cos θ sin θ + ε2 sin θ cos θ +
γ12

2
(cos2 θ − sin2 θ). (1.90)

Here again, it is convenient to use the tensor component of shearing strain, ε12 =
γ12/2, see eq. (1.82).

These results can be written in a matrix form as




ε∗1
ε∗2
ε∗12



 =




cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ








ε1
ε2
ε12



 . (1.91)

This relationship can be readily inverted by recognizing that the inverse transforma-
tion is obtained by replacing θ by −θ to find





ε1
ε2
ε12



 =




cos2 θ sin2 θ −2 sin θ cos θ
sin2 θ cos2 θ 2 sin θ cos θ

sin θ cos θ − sin θ cos θ cos2 θ − sin2 θ








ε∗1
ε∗2
ε∗12



 . (1.92)

Note that these transformation formulæ are identical to those derived for the stress
tensor, see eqs. (1.47) and (1.48), respectively.
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With the help of double-angle trigonometric identities, the transformation equa-
tions for tensor strain components, eq. (1.91), can also be written as

ε∗1 =
ε1 + ε2

2
+

ε1 − ε2
2

cos 2θ + ε12 sin 2θ, (1.93a)

ε∗2 =
ε1 + ε2

2
− ε1 − ε2

2
cos 2θ − ε12 sin 2θ, (1.93b)

ε∗12 = − ε1 − ε2
2

sin 2θ + ε12 cos 2θ. (1.93c)

While use of the strain tensor components, εij , renders the treatment of stress and
strain component rotation formulæ identical, it is customary to use the engineering
shear strain components, γij , instead of their tensor counterparts, and hence, the
previous equations become

ε∗1 =
ε1 + ε2

2
+

ε1 − ε2
2

cos 2θ +
γ12

2
sin 2θ, (1.94a)

ε∗2 =
ε1 + ε2

2
− ε1 − ε2

2
cos 2θ − γ12

2
sin 2θ, (1.94b)

γ∗12 = − (ε1 − ε2) sin 2θ + γ12 cos 2θ. (1.94c)

This important result shows that knowledge of the plane strain components ε1, ε2,
and γ12 in two orthogonal directions allows the computation of the strain compo-
nents in an arbitrary orientation. In other words, the knowledge of the plane strain
components in two orthogonal directions fully defines the state of strain at that point.

1.6.3 Principal strains

The relative elongation in an arbitrary direction, θ, can be computed with the help
of eq. (1.94). The orientation, θp, in which the maximum (or minimum) elongation
occurs is determined by requiring the derivative of ε∗1 with respect to θ to vanish, and
this yields

dε∗1
dθ

= −ε1 − ε2
2

2 sin 2θp +
γ12

2
2 cos 2θp = 0. (1.95)

This can be solved for 2θp to find the orientation of extreme elongation as

tan 2θp =
γ12/2

(ε1 − ε2)/2
, (1.96)

where the factor 2 has not been canceled out in order to retain the similarity with
eq. (1.33) if τ12 is replaced with γ12/2 and σ1 and σ2 with ε1 and ε2, respectively.
This equation presents two solutions, θp1 and θp2 = θp1+π/2, corresponding to two
mutually orthogonal principal strain directions. The maximum axial strain is found
along one direction, and the minimum is found along the other.

To define these orientations unequivocally, it is convenient to separately define
the sine and cosines of angle 2θp as follows
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sin 2θp =
γ12

2∆
, cos 2θp =

ε1 − ε2
2∆

, (1.97)

where

∆ =

√(
ε1 − ε2

2

)2

+
(γ12

2

)2

. (1.98)

This result is equivalent to eq. (1.96), but it gives a unique solution for θp because
both the sine and cosine of the angle are known. The maximum and minimum axial
strains, denoted εp1 and εp2, respectively, act in the directions θp1 and θp2 = θp1 +
π/2, respectively. These maximum and minimum axial strains, called the principal
strains, are evaluated by introducing eq. (1.97) into eq. (1.94) to find

εp1 =
ε1 + ε2

2
+ ∆; εp2 =

ε1 + ε2
2

−∆. (1.99)

Finally, the shear strain in the principal directions vanishes as can be verified by
introducing eq. (1.97) into eq. (1.94).

The development of the equations for the state of strain at a point yield equations
that are very similar to those developed in section 1.2.2 for the state of stress at a
point. In particular, the transformation equations are similar in form (identical if the
strain tensor components, ε12 = γ12/2, are used to define the shear strain) and lead in
both cases to the existence of principal stresses and principal strains. The orientations
of the principal stresses and principal strains are not necessarily identical.

1.6.4 Mohr’s circle for plane strain

Equations (1.94) express the direct and shear strains along an arbitrary direction de-
fined by angle θ with respect the axis ı̄1, but the presence of trigonometric functions
involving the angle 2θ makes it difficult to give a geometric interpretation of these
formulae. Let the state of strain at a point be defined by its principal strains, εp1 and
εp2; eq. (1.94) then implies that the strains along a direction defined by angle θ with
respect to the principal strain directions can be written as

ε∗ = εa + R cos 2θ,
γ∗

2
= −R sin 2θ, (1.100)

where εa = (εp1 + εp2)/2, and R = (εp1 − εp2)/2. With this notation and the help
of trigonometric identities, eq. (1.100) becomes

(ε∗ − εa)2 +
(

γ∗

2

)2

= R2. (1.101)

This equation represents the equation of a circle which is known as Mohr’s circle.
When ε∗ is plotted along the horizontal axis and γ∗/2 along the vertical axis, the
center of the circle is at a coordinate εa on the horizontal axis, and the radius of the
circle is R, as depicted in fig. 1.23.
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Consider now point A1 on Mohr’s circle such that segment OA1 makes an an-
gle 2θ with the horizontal. The coordinates of this point are ε∗ = εa + R cos 2θ and
γ∗/2 = −R sin 2θ; hence, in view of eq. (1.100), the coordinates of point A1 rep-
resent the strain components along a direction defined by angle θ. In fact, each point
on Mohr’s circle represents the strain components along a specific orientation.

An important sign convention must be

e
p1

e
p2

e
a

2q

O

A2

A1

B P1P2

E2

E1

Direction of

positive q

e

g  /212

Fig. 1.23. Mohr’s circle for visualizing
plane strain state.

defined: on Mohr’s circle, a positive angle
θ is measured in the counterclockwise di-
rection, see fig. 1.23, to match the positive
direction of angle θ that identifies the ori-
entation of a face in fig. 1.12. Given the
sign convention for angle θ, the shear strain
must be positive downward on the ordinate
of Mohr’s circle depicted in fig. 1.23.4

All the developments presented in sec-
tion 1.3.6 for visualizing a plane state of

stress using Mohr’s circle also apply to the present problem of visualizing the plane
state of strain, provided however, that the strain tensor is used. This means that γ12/2
must be plotted on the vertical axis.

1.7 Measurement of strains
The goal of the theory of elasticity is to predict the state of stress at any point of an
elastic body, given the applied loading. Such predictions must be validated by mea-
suring the state of stress at specific points of a body, then comparing these measure-
ments with the corresponding predictions. Unfortunately, no practical experimental
device can measure stresses directly. An indirect measurement must therefore be
made by first measuring the state of strain, then computing the corresponding state
of stress using the constitutive laws for the material.

Strain gauges

Measurement of the state of strain itself is not an entirely straightforward process.
First, it is relatively difficult to measure the strain state at an interior point of a solid
body, so most measurement methods focus on measuring strains on the body’s exter-
nal surface. As noted in previous sections, the two-dimensional strain state is charac-
terized by both direct and shear components. Measurements of the very small angular
changes associated with shear strains are difficult to perform, but measurements of
extensional strains on a surface are surprisingly easy to acquire.

The relative elongation at the surface of a body can be measured with the help
of what are called electrical resistance strain gauges, or more simply strain gauges.
This device consists of a very thin electric wire, or an etched foil pattern, which is
glued to the surface of the solid. When the solid experiences an extensional strain,
this strain is transferred through the glue to the gauge, hence increasing the length
4 An equivalent construction of Mohr’s circle has the shear strain positive upwards along the

ordinate, but angle θ is then positive in the clockwise direction.
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of the wire. In turn, the wire’s cross-section is reduced by Poisson’s effect, thereby
slightly increasing its electrical resistance. The reverse happens for compressional
strains, and the electrical resistance is slightly reduced in this case.

An accurate electrical measurement of this resistance change, using a Wheat-
stone bridge circuit for instance, yields an estimate of the length change, which in
turn, allows an accurate estimate of the relative elongation and finally, the exten-
sional strain in the direction of the wire. Because strain quantities are very small,
strain measurements are often labeled in micro-strains, which indicates a relative
elongation of µ m/m = 10−6 m/m. Because strains are non-dimensional quantities,
the units employed for measurement of elongation can be any units of length.

Chevron strain gauge

Figure 1.24 shows the external surface of a body with two strain gauges forming at
a 90 degree angle with respect to each other; this configuration is sometimes called
chevron strain gauge. This device is of finite size, and hence, the two extensional
strain measurements are not made exactly at the same point, but if the chevron strain
gauge is very small and the strain gradients are small compared to its size, it can be
assumed that the two gauges experience the same strain state.

Let e+45 and e−45 be the experimentally measured relative elongations in the
two gauge directions. The two gauges of the chevron are oriented at ± 45 degrees
with respect to a triad, I = (̄ı1, ı̄2), as shown in fig. 1.24. The state of strain at that
point is defined by the three strain components, ε1, ε2, and γ12, resolved in triad I.
With the help of eq. (1.94a), these measurements can be expressed as follows

e+45 =
ε1 + ε2

2
+

ε1 − ε2
2

cos(2× 45◦) +
γ12

2
sin(2× 45◦) =

ε1 + ε2
2

+
γ12

2
,

e−45 =
ε1 + ε2

2
+

ε1 − ε2
2

cos(2× 135◦) +
γ12

2
sin(2× 135◦) =

ε1 + ε2
2

− γ12

2
.

Clearly, the two measurements, e+45 and e−45, are not sufficient to determine the
strain state at the chevron’s location. Indeed, three measurements would be required
to determine the three strain components, ε1, ε2, and γ12. It is possible, however,
to unequivocally determine the shear strain by subtracting the above equations from
each other to find

γ12 = e+45 − e−45. (1.102)

Adding the two equations yields ε1 + ε2 = e+45 + e−45, but the two normal strain
components, ε1 and ε2, cannot be determined individually.

The complete state of strain at the surface of the body is specified by three in-
dependent quantities, i.e., either two extensional and a shear strain, or two principal
strains and a principal direction. These can be computed from the measurement of
relative elongation in three distinct directions on the surface.
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Fig. 1.24. Two strain gauges at the surface of
a solid.

e3e2

e160
o

60
o

i1

i2

Fig. 1.25. Three strain gauges forming a
rosette at the surface of a solid.

Strain gauge rosette

The experimental determination of the strain state at the surface of a body requires
three independent measurements. One approach is to locate three strain gauges form-
ing an equilateral triangle at the external surface of a body, as depicted in fig. 1.25.
This type of device is commonly referred to as a strain gauge rosette; the configu-
ration shown in the figure is often called a “delta rosette.” Once again, this rosette
is of finite size, and hence, the three extensional strain measurements are not made
exactly at the same point, but if the rosette is very small and the strain gradients are
small compared to the size of the rosette, it can be assumed that the three gauges
experience the same strain state.

Let e1, e2, and e3 be the experimentally measured relative elongations in the three
gauge directions. With the help of eq. (1.94a), these measurements can be related to
the strain components measured in triad I = (̄ı1, ı̄2) as follows

e1 =
ε1 + ε2

2
+

ε1 − ε2
2

,

e2 =
ε1 + ε2

2
+

ε1 − ε2
2

cos(+2× 60◦) +
γ12

2
sin(+2× 60◦),

e3 =
ε1 + ε2

2
+

ε1 − ε2
2

cos(−2× 60◦) +
γ12

2
sin(−2× 60◦).

These relationships can be inverted to yield the strain components in terms of the
measured axial strains

ε1 = e1, ε2 =
2
3

(
e2 + e3 − e1

2

)
, γ12 =

2√
3

(e2 − e3) . (1.103)

The principal strain directions then follow from (1.97)

sin 2θp =
e2 − e3√

3∆
, cos 2θp =

2e1 − e2 − e3

3∆
, (1.104)

and the principal strains are

εp1 = ē + ∆, εp2 = ē−∆, (1.105)

where ē = (e1 + e2 + e3)/3 and ∆ = 2/3
√

e2
1 + e2

2 + e2
3 − e2e3 − e1e3 − e1e2.
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Various commonly used strain gauge arrangements are depicted in fig. 1.26. Note
that a complete evaluation of the state of strain requires the knowledge of three strain
components, and thus requires three independent measurements in three distinct di-
rections. Combinations (a) and (c) of fig. 1.26 provide three independent measure-
ments from which the strain state can be evaluated using a similar approach to that
developed above for the delta strain gauge rosette shown in fig. 1.25.

Combinations (B) and (D) allow four independent measurements to be made
to provide enough information in the event when one of the gauges is damaged.
If the four gauges are properly working, the redundant information can be used to
compensate for experimental errors, as illustrated in example 1.4 for the T-Delta
rosette.
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Fig. 1.26. Various commonly used strain gauge arrangements.

Example 1.4. Data reduction for the T-Delta rosette
Consider the T-Delta rosette shown in fig. 1.26 D. Given the output of the four
gauges, e1, e2, e3 and e4, find the state of strain at the location of the rosette. First,
the four measurements are expressed in terms of the three strain components with
the help of eq. (1.94a) to find

e1 =
ε1 + ε2

2
+

ε1 − ε2
2

cos 120 +
γ12

2
sin 120 =

ε1 + ε2
2

− ε1 − ε2
4

+
√

3
4

γ12,

e2 =
ε1 + ε2

2
+

ε1 − ε2
2

cos 240 +
γ12

2
sin 240 =

ε1 + ε2
2

− ε1 − ε2
4

−
√

3
4

γ12,

e3 =
ε1 + ε2

2
+

ε1 − ε2
2

= ε1,

e4 =
ε1 + ε2

2
+

ε1 − ε2
2

cos 180 +
γ12

2
sin 180 = ε2.

These relationships form a set of four equations for three unknowns, the strain com-
ponents ε1, ε2, and γ12, which can be written in a compact matrix form as




1/4 3/4
√

3/4
1/4 3/4 −√3/4
1 0 0
0 1 0








ε1
ε2
γ12



 =





e1

e2

e3

e4





.
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These equations form an over-determined set of equations to evaluate the three com-
ponents of strain. Since the strain measurement are likely to involve experimental
errors, it seems appropriate to solve the over-determined system in a least squares
sense, as explained in appendix A.2.10. For this problem, the least-squares solution
given by eq. (A.33) becomes

1
8




9 3 0
3 17 0
0 0 3








ε1
ε2
γ12



 =





(e1 + e2)/4 + e3

3(e1 + e2)/4 + e4√
3 (e1 − e2)/4



 .

The solution of this 3× 3 linear system then yields the desired strain components as

ε1 =
2e1 + 2e2 + 17e3 − 3e4

18
; ε2 =

6e1 + 6e2 − 3e3 + 9e4

18
; γ12 =

2(e1 − e2)√
3

.

1.7.1 Problems

Problem 1.14. Data reduction for the delta rosette
Consider the delta rosette shown in fig. 1.26 C. The measured data are e1 = 410µ, e2 =
−290µ, and e3 = 610µ. (1) Find the state of strain at this location. (2) Draw Mohr’s circle
for this state of strain. (3) Find the orientation of the principal strain directions, and (4) find
the principal strains. Use a software package to carry out these calculations.

Problem 1.15. Data reduction for the rectangular rosette
Consider the rectangular rosette shown in fig. 1.26 A. The measured data are e1 = −510µ,
e2 = 780µ, e3 = 340µ. (1) Develop expressions similar to eq. (1.103) for the state of strain
with respect to a surface axis system aligned with gauges #1 and #2. (2) Find the state of strain
at this location for the given data. (3) Draw Mohr’s circle for this state of strain. (4) Find the
orientation of the principal strain directions, and (5) the principal strains.

Problem 1.16. Data reduction for the T-V rosette
Consider the T-V rosette shown in fig. 1.26 B. The measured data is e1 = 910µ, e2 = 990µ,
e3 = 310µ and e4 = 190µ. Use a least square approach to solve this problem. (1) Find
the state of strain at this location. (2) Draw Mohr’s circle for this state of strain. (3) Find the
orientation of the principal strain directions, and (4) the principal strains.

Problem 1.17. Correlating rosette strain measurements
Consider the strain gauge arrangements shown in fig. 1.26 B. If the strain measurements e1,
e2 and e3 are given find the strain e4.

Problem 1.18. Correlating rosette strain measurements
Consider the strain gauge arrangements shown in fig. 1.26 D. If the strain measurements e1,
e2 and e4 are given, find the strain e3.

Problem 1.19. Misaligned Delta rosette
The delta rosette depicted in fig. 1.27 has been improperly installed on a solid: instead of
aligning the rosette with axes ı̄1 and ı̄2, as desired, the gage was installed at an angle θ with
respect to the desired directions. This implies that the gauge measurements will be e∗1, e∗2 and
e∗3, instead of the desired e1, e2 and e3. Since the misalignment is unintentional, the experi-
mentalist will use the measurements, e∗1, e∗2 and e∗3, as if they were e1, e2 and e3, respectively.
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In other words, he will use the measurements e∗1, e∗2 and e∗3 to extract the strain state, thinking
that θ = 0. (1) If the strain state is ε1 = 1245µ, ε2 = −780µ and γ12 = 675µ, determine
the state of strain that the experimentalist will erroneously extract, denoted ε̂1, ε̂2 and γ̂12, as
function of the misalignment angle. (2) On one graph, plot the relative errors (ε̂1 − ε1)/ε1,
(ε̂2 − ε2)/ε2 and (γ̂12 − γ12)/γ12, as functions of θ ∈ [−10, 10] degrees.
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Fig. 1.27. Delta rosette with an angular misalignment of θ.

Problem 1.20. Transverse shear strain in beams
In beam theory, it is assumed that the planar cross-section of the beam remains planar and
remains perpendicular to the axis of the beam as it bends. This implies that two material lines,
the axis of the beam and a material line in the plane of the cross-section, remain perpendicular
to each other. In view of this assumption, what is the transverse shear strain along the axis of
the beam?

1.8 Strain compatibility equations

The displacement field uniquely defines the deformation of a solid body. Six strain
components, however, are defined to characterize the state of deformation at a point.
Hence, the strain components are not independent and must satisfy a set of relation-
ships called the strain compatibility equations. Consider the following derivatives of
the shear strain components

∂2γ23

∂x2∂x3
=

∂2

∂x2∂x3

(
∂u2

∂x3
+

∂u3

∂x2

)
=

∂3u2

∂x2∂x2
3

+
∂3u3

∂2x2∂x3
=

∂2ε2
∂x2

3

+
∂2ε3
∂x2

2

.

This implies that the shear and axial strain components are not independent. Consider
now a different set of derivatives

∂2ε1
∂x2∂x3

=
∂3u1

∂x1∂x2∂x3
,

∂γ23

∂x1
=

∂2u2

∂x1∂x3
+

∂2u3

∂x1∂x2
;

∂γ13

∂x2
=

∂2u1

∂x2∂x3
+

∂2u3

∂x1∂x2
,

∂γ12

∂x3
=

∂2u1

∂x2∂x3
+

∂2u2

∂x1∂x3
,

which imply
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2
∂2ε1

∂x2∂x3
=

∂

∂x1

(
−∂γ23

∂x1
+

∂γ13

∂x2
+

∂γ12

∂x3

)
.

This is another relationship between the shear and axial strain components.
Similar relationships can be obtained through cyclical permutations of the indices

to yield Saint-Venant’s strain compatibility equations

∂2γ23

∂x2∂x3
=

∂2ε2
∂x2

3

+
∂2ε3
∂x2

2

, (1.106a)

∂2γ13

∂x1∂x3
=

∂2ε1
∂x2

3

+
∂2ε3
∂x2

1

, (1.106b)

∂2γ12

∂x1∂x2
=

∂2ε1
∂x2

2

+
∂2ε2
∂x2

1

, (1.106c)

2
∂2ε1

∂x2∂x3
=

∂

∂x1

(
−∂γ23

∂x1
+

∂γ13

∂x2
+

∂γ12

∂x3

)
, (1.106d)

2
∂2ε2

∂x1∂x3
=

∂

∂x2

(
+

∂γ23

∂x1
− ∂γ13

∂x2
+

∂γ12

∂x3

)
, (1.106e)

2
∂2ε3

∂x1∂x2
=

∂

∂x3

(
+

∂γ23

∂x1
+

∂γ13

∂x2
− ∂γ12

∂x3

)
. (1.106f)

Some reflection is needed to fully understand the need for stating the compati-
bility equations. Clearly, if the state of deformation is defined by the three compo-
nents of the displacement vector, i.e., if the displacement field is given, it is a simple
matter to compute the six strain components using eqs. (1.63) and (1.71). The in-
verse problem, however, is not so simple: if the state of deformation is defined by
six components of strain, i.e., given the strain field, it is not obvious to determine the
displacement components that give rise to this strain field. Indeed, the six strain com-
ponents are generated based on three displacement components only. Furthermore,
some strain states could possibly be associated with displacement fields that include
discontinuities or jumps corresponding to gaps or tears in the continuous body. In
summary, if the six components of the strain field are derived from the three com-
ponents of the displacement field, they are not independent and must satisfy Saint-
Venant’s strain compatibility equations. Three only of the six compatibility equations
are independent.
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Constitutive behavior of materials

The solution of elasticity problems requires three types of relationships. First, the
equilibrium equations discussed in section 1.1.2, second, the strain-displacement
relationships of section 1.4.1. Finally, the stress and strain fields must be related
through a set of constitutive laws. These constitutive laws characterize the mechani-
cal behavior of the material and consist of a set of mathematical idealizations of their
observed behavior.

Homogeneity and isotropy

Constitutive laws for homogeneous, isotropic materials will be presented first. A
homogeneous material is a material for which the physical properties are identical
at each point within the sample. An isotropic material is a material for which the
physical properties are identical in all directions. A sample of mild steel or aluminum
can usually be assumed to be both homogeneous and isotropic.

Many engineering materials, however, are neither homogeneous nor isotropic.
Consider a composite material consisting of long fibers aligned along a single direc-
tion and embedded in a matrix material. Such material is not homogeneous: the prop-
erties of the fibers are, in general, very different from those of the matrix material.
Furthermore, it is not isotropic: if loading is applied along the fibers, the response
of the material is likely to be very different from that observed when the loading is
applied in a direction transverse to the fiber orientation. Such a material is referred
to as being heterogeneous and anisotropic and will be examined in the second half
of this chapter.

The assumptions of homogeneity or isotropy are scale dependent. For instance,
it seems reasonable to consider a sample of aluminum to be both homogeneous
and isotropic. Of course, at the atomic level, aluminum is neither homogeneous nor
isotropic. Hence, assumptions of homogeneity and isotropy only hold for samples
containing a very large number of atoms.

For high temperature turbine blade applications, either poly-crystalline or single
crystal materials might be used. For single crystal materials, the atoms are arranged
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to form regular lattice structures that create a clearly defined orientation in the mate-
rial. In such a case, a sample containing a large number of atoms could be assumed
to be homogeneous but anisotropic, because the response of the material will be
different when stresses are applied in different directions with respect to the lattice
directions.

For poly-crystalline material samples containing a large number of crystals, the
material could be considered homogeneous, but if the crystals are generally ori-
ented in a specific direction, the material will be anisotropic. This can be the case
for forged metals where the forging process aligns the crystals. For poly-crystalline
material samples containing a large number of crystals arranged at random orienta-
tions with respect to each other, the material can be considered both homogeneous
and isotropic, and this is often the case for common structural metals such as steel
and aluminum.

For composite material reinforced with long fibers all aligned in the same direc-
tion, the material is clearly anisotropic because the fiber direction defines a preferen-
tial direction for the material. For samples containing just a few fibers, the material
is not homogeneous, whereas for samples containing a very large number of fibers it
is a reasonable assumption to consider the material to be homogeneous.

Material testing

At present, no first-principles based models models accurately describe the constitu-
tive properties of structural materials. Most practical constitutive models are based
on empirical data, and various types of constitutive laws have been proposed to rep-
resent the many types of experimentally observed material behaviors.

If the deformation of the body remains
N

N

Specimen
cross-section

l
Test

section

Grip of
the testing

machine

A

Fig. 2.1. Homogeneous bar loaded by
a single stress component σ1

very small, however, the stress-strain relation-
ship can often be assumed to be linear. This
widely used approximation, in which stress is
proportional to strain, will be discussed in sec-
tion 2.1.1. As the magnitude of the deformation
increases, the stress-strain relationship can no
longer be assumed to remain linear.

The stress-strain relationship for large de-
formations has distinctly different characteris-
tics depending on whether the material is duc-
tile or brittle. Constitutive relationships for duc-
tile materials are presented in section 2.1.4 and
relationships for brittle materials are presented
in section 2.1.5.

Typically, material behavior is characterized by carrying out a tensile test similar
to that sketched in fig. 2.1, in which a bar of circular cross-sectional area, A, is
loaded in a testing machine that applies an axial force, N , to the test specimen. The
test section is a representative portion of the test specimen of length, `, located at a
sufficient distance away from the grips of the testing machine to avoid the end effects
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they generate. The grips of the testing machine move slowly, applying an increasing
load to the specimen. During the test, the extensional strain in the sample is computed
by dividing the change in length of the test section by its original length, ε1 = ∆`/`.
The stress in the sample is computed by dividing the applied load by the sample
cross-sectional area, σ1 = N/A. The results of the test are presented in the form of
a stress-strain diagram: the strain is plotted along the abscissa, the stress along the
ordinate.

2.1 Constitutive laws for isotropic materials

2.1.1 Homogeneous, isotropic, linearly elastic materials

For specimens undergoing small deformations, the stress-strain diagram often ex-
hibits a linear behavior. Although this is a very crude approximation to the behavior
of actual materials, it is a convenient assumption that is often used for preliminary
evaluation. A linear relationship between stress and strain can be expressed as

σ1 = E ε1, (2.1)

where the coefficient of proportionality, E, is called Young’s modulus or modulus of
elasticity. Since strains are non-dimensional quantities, this coefficient has the same
units as stress quantities, i.e., Pa. This linear relationship is known as Hooke’s law.

The elongation of a bar in the direction of the applied stress is accompanied by a
lateral contraction that is also proportional to the applied stress. The resulting defor-
mations for this uniaxial state of stress can therefore be described by the following
strains

ε1 =
1
E

σ1, ε2 = − ν

E
σ1, ε3 = − ν

E
σ1, (2.2)

where ν is called Poisson’s ratio and is a non-dimensional constant.
If a stress component, σ2, is applied to the same material, similar deformations

will result
ε1 = − ν

E
σ2, ε2 =

1
E

σ2, ε3 = − ν

E
σ2. (2.3)

Note that the assumption of material isotropy implies identical values of Young’s
modulus and Poisson’s ratio in eq. (2.2) and (2.3). Similar relationships hold for an
applied stress, σ3.

Generalized Hooke’s law

When the three stress components are applied simultaneously, the resulting defor-
mation is the sum of the deformations obtained for each stress component applied
individually because of the assumed linear behavior of the material. This results in
the generalized Hooke’s law for extensional strains
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ε1 =
1
E

[σ1 − ν(σ2 + σ3)] , (2.4a)

ε2 =
1
E

[σ2 − ν(σ1 + σ3)] , (2.4b)

ε3 =
1
E

[σ3 − ν(σ1 + σ2)] . (2.4c)

The extensional strains depend only on the direct stresses and not on the shear
stresses. This is a key characteristic of isotropic materials, which does not hold for
anisotropic materials.

Shear stress-shear strain relationships

The relationship between the shear strains and the shear stresses is bit more compli-
cated to deduce, but it is revealed by the following reasoning. Consider the state of
pure shear in a plane stress state described in section 1.3.5, which is characterized
by two principal stresses that are equal and opposite in magnitude and with the third
principal stress equal to zero. Assume that the principal stresses are σp2 = −σp1,
σp3 = 0. The corresponding extensional strain components then follow from the
generalized Hooke’s law eq. (2.4a) and (2.4b) while the shear strain must be zero in
the principal axes

ε1 =
1 + ν

E
σp1, ε2 = −1 + ν

E
σp1, γ12 = 0. (2.5)

In the analysis of the pure shear stress state, the state of stress on faces oriented
at a 45◦ angle with respect to the principal stress directions is shown to take on an
extreme value given by

τ∗s12 = σp2 = −σp1, σ∗s1 = σ∗s2 = 0 (2.6)

where the asterisk and subscript “s” are used to designate this special rotated axis
system with maximum shear stresses. The strains in this rotated axis system are
readily obtained from eq. (1.94), with θs = 45◦,

γ∗s12 = −(ε1 − ε2) = −2(1 + ν)
E

σp1; ε∗s1 = ε∗s2 = 0. (2.7)

The relationship between τ∗s12 and γ∗s12 is then obtained by comparing eq. (2.6) and
eq. (2.7) above to find γ∗s12 = −2(1+ν)σp1/E = 2(1+ν)τ∗s12/E, or τ∗s12 = G γ∗s12,
where

G =
E

2(1 + ν)
(2.8)

is defined as the shear modulus.
The above reasoning can be repeated for a state of pure shear in the other two

orthogonal planes leading to similar results for the other shear stresses and strains,
and this can be summarized by the generalized Hooke’s law for shear strains
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γ23 = τ23/G, γ13 = τ13/G, γ12 = τ12/G. (2.9)

Here again, the shear modulus is the same in all directions due to the assumed
isotropy of the material.

The shear strain-shear stress relationships, eq. (2.9), are established for the case
of pure shear. They remain valid, however, for more complex stress states involving
axial stresses, because, in view of eq. (2.4), axial stresses create no shear strains. Sim-
ilarly, the generalized Hooke’s law, eq. (2.4), is established when only axial stresses
are applied. They do remain valid for more complex stress states involving shear
stresses because, in view of eq. (2.9), shear stresses create no axial strains.

Matrix form of the constitutive laws

The constitutive laws, eqs. (2.4) and (2.9), are often called the generalized Hooke’s
laws. They can be expressed in a compact matrix form as

ε = S σ, (2.10)

where ε and σ are the strain and stress arrays, respectively, and store the six strain
and stress components, respectively,

ε =
{
ε1, ε2, ε3, γ23, γ13, γ12

}T
, (2.11a)

σ =
{
σ1, σ2, σ3, τ23, τ13, τ12

}T
, (2.11b)

and the 6× 6 material compliance matrix, S, is defined as

S =
1
E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)




. (2.12)

The upper left 3 × 3 partition of the compliance matrix represents generalized
Hooke’s law, eq. (2.4), whereas the lower right 3 × 3 partition represents the shear
stress-shear strain relationships, eq. (2.9). The vanishing of the upper right and lower
left partitions stems from the absence of coupling between axial stresses and shear
strains, and shear stresses and axial strains, respectively.

In summary, a homogeneous, linearly elastic, isotropic material is characterized
by the constitutive laws given by eqs. (2.4) and (2.9) or combined as eq. (2.10).
Only two material parameters are involved in these laws, Young’s modulus, E, and
Poisson’s ratio, ν. The shear modulus G can be evaluated from eq. (2.8).

The constitutive laws are often presented in the compliance form of eq. (2.10),
i.e., strains are expressed as a function of stress. A straightforward algebraic process,
however, yields the stiffness form of the same constitutive laws, where stresses are
expressed as a function of strains,
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σ = C ε, (2.13)

where the 6× 6 material stiffness matrix, C, is defined as

C =
E

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0
1− 2ν

2
0 0

0 0 0 0
1− 2ν

2
0

0 0 0 0 0
1− 2ν

2




. (2.14)

Plane stress state

The state of plane stress is studied in section 1.3. It will be convenient to define stress
and strain arrays that include only the relevant components of stress and strain,

ε =
{
ε1, ε2, γ12

}T
, (2.15a)

σ =
{
σ1, σ2, τ12

}T
. (2.15b)

For the state of plane stress, σ3 = τ13 = τ23 = 0, and the stiffness matrix reduces to
a 3× 3 matrix,

C =
E

(1− ν2)




1 ν 0
ν 1 0

0 0
1− ν

2


 . (2.16)

The constitutive laws for plane stress then become σ = C ε, where stress and strain
arrays are defined by eqs. (2.15), and the stiffness matrix by eq. (2.16). Note that due
to Poisson’s ratio effect, the strain component ε3 does not vanish, ε3 = −ν(σ1 +σ2).

Plane strain state

For the plane strain case, ε3 = γ13 = γ23 = 0, the stiffness matrix again reduces to
a 3× 3 matrix, but now different from eq. (2.16),

C =
E

(1 + ν)(1− 2ν)




1− ν ν 0
ν 1− ν 0

0 0
1− 2ν

2


 . (2.17)

The constitutive laws for plane stress then become σ = C ε, where stress and strain
arrays are defined by eqs. (2.15), and the stiffness matrix by eq. (2.17). Note that the
stress component, σ3, does not vanish due to Poisson’s ratio effect, σ3 = νE(ε1 +
ε2)/[(1 + ν)(1− 2ν)].
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The bulk modulus

The volumetric strain is readily evaluated with the help of eq. (1.75)

e = ε1 + ε2 + ε3 =
1− 2ν

E
(σ1 + σ2 + σ3) =

1− 2ν

E
I1, (2.18)

where I1 is the first stress invariant defined by eq. (1.15a).
In the special case of an applied hydrostatic pressure, σ1 = σ2 = σ3 = p, a linear

relationship is found between the applied pressure and the resulting volumetric strain

p = κ e, (2.19)

where
κ =

E

3(1− 2ν)
, (2.20)

is known is the bulk modulus of the material. When Poisson’s ratio approaches a
value of 1/2, the bulk modulus approaches infinity, implying the vanishing of the
volumetric strain under an applied pressure. Such a material is called an incompress-
ible material. Many types of rubber materials are nearly incompressible, and metals
undergoing plastic deformations are often assumed to be nearly incompressible.

2.1.2 Thermal effects

When a sample of a material is heated, its dimensions will change. Under a change in
temperature, homogeneous isotropic materials will expand equally in all directions,
generating thermal strains, εt = f(∆T ), where f(∆T ) is a function of the change in
temperature ∆T . The volume of most materials increases when they are subjected to
increased temperatures, whereas temperature decreases generally cause the material
to shrink. There are, however, notable exceptions. For example, the transition from
water to ice under decreasing temperature is accompanied by a volume increase.

For moderate temperature changes, it is often adequate to assume that f(∆T )
is a linear function of the temperature change, i.e., f(∆T ) = α∆T , where α is the
coefficient of thermal expansion, a positive number if the material expands under
increased temperature. The thermal strain now becomes

εt = α∆T. (2.21)

Two important aspects of thermal deformations must be emphasized. First, ther-
mal strains are purely extensional: temperature changes do not induce shear strains.
Second, thermal strains do not generate internal stresses, in contrast with mechanical
strains that are related to internal stresses through the material constitutive law. An
unconfined material sample subjected to a temperature change simply expands, but
remains unstressed.

For homogeneous isotropic materials, the total strain is the sum of the thermal
and mechanical strains. Thermal strains are the consequence of temperature changes,
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whereas mechanical strains result from the application of stresses. The total strains
are the superposition of the mechanical strains, given by eq. (2.4), and their thermal
counterparts, given by eq. (2.21),

ε1 =
1
E

[σ1 − ν(σ2 + σ3)] + α∆T ; (2.22a)

ε2 =
1
E

[σ2 − ν(σ1 + σ3)] + α∆T ; (2.22b)

ε3 =
1
E

[σ3 − ν(σ1 + σ2)] + α∆T. (2.22c)

Because temperature changes induce no shear strains, the shear stress-shear strain
relationships given by eq. (2.9) remain unchanged.

When dealing with constrained material samples, temperature changes will indi-
rectly generate stresses in the material. For example, consider a bar constrained at its
two ends by rigid walls that prevent any extension of the bar. When subjected to a
temperature change, ∆T , the bar tries to expand in all directions, but the rigid walls
prevent expansion of the bar along its axis, ı̄1. The stress components in the trans-
verse direction, σ2 and σ3, must vanish because the bar is free to expand in those
directions, whereas the axial strain, ε1, must vanish, due to the presence of the rigid
walls. Eq. (2.22a) then implies

ε1 =
1
E

[σ1] + α∆T = 0,

and hence, σ1 = −Eα∆T ; the temperature change induces a compressive stress
in the bar. Such stresses are called thermal stresses. If same the bar is allowed to
freely expand, i.e., if the end walls are removed, axial equilibrium of the bar implies
σ1 = 0 and eq. (2.22a) then yields ε1 = α∆T : the temperature change induces
thermal strains, but no thermal stresses.

Example 2.1. Material sample confined in a rigid circular cylinder
Consider a sample of linearly elastic, isotropic material confined in an infinitely rigid
circular cylinder and subjected to an applied stress σ3, as depicted in fig. 2.2. Because
the circular cylinder cannot deform in the directions perpendicular to the applied
stress direction, the corresponding strain components must vanish, ε1 = ε2 = 0. The
first two equations of the generalized Hooke’s laws, eqs. (2.4a) and (2.4b), then yield
σ1 = σ2 = ν/(1 − ν) σ3. Introducing these results into the last of the generalized
Hooke’s laws, eq. (2.4c), leads to

ε3 =
(1 + ν)(1− 2ν)

E(1− ν)
σ3.

The apparent modulus of elasticity of the sample is defined as Ea = σ3/ε3, and

Ea =
(1− ν)

(1 + ν)(1− 2ν)
E.
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s3

Fig. 2.2. Elastic material sample confined in
a rigid circular cylinder.
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Fig. 2.3. Normalized apparent modulus of
elasticity versus Poisson’s ratio.

As Poisson’s ratio approaches 1/2, the normalized apparent modulus of elasticity
Ea/E increases rapidly, as shown in fig. 2.3. For ν = 0.45, Ea/E = 3.79, i.e., the
apparent modulus of the sample is 3.79 times that of the material.

Example 2.2. State of strain at the outer surface of a body
An experimentalist has measured the state of strain, ε1, ε2, and γ12, at the outer sur-
face of a three-dimensional body made of a homogeneous, isotropic, linearly elastic
material. Axes ı̄1 and ı̄2 define the plane tangent to the outer surface of the body, and
axis ı̄3 is normal to this outer surface. Find the strain components ε3, γ13 and γ23.

Since the outer surface of the body is stress free, equilibrium requires σ3 = τ13 =
τ23 = 0. Hooke’s law for shear components, see eq. (2.9), then readily implies that
γ13 = γ23 = 0. The determination of the last strain component is more arduous. For
this particular situation, generalized Hooke’s laws, eqs. (2.4), become

ε1 =
1
E

[σ1 − νσ2] , ε2 =
1
E

[σ2 − νσ1] , ε3 =
1
E

[−ν(σ1 + σ2)] ,

since σ3 = 0. Adding together the first two equations yields ε1 + ε2 = (1− ν)(σ1 +
σ2)/E. Introducing this result in the last equation then yields

ε3 = − ν

1− ν
(ε1 + ε2).

Typically, the three strain components at the outer surface of the body, ε1, ε2, and
γ12, are measured with the help of strain gauges. The determination of the remaining
strain components is based on the equilibrium conditions at the surface of the body
and on the constitutive laws, in this case Hooke’s law.

2.1.3 Problems

Problem 2.1. Stresses expressed in terms of strains
It is sometimes necessary invert Hooke’s law to express the stress in terms of the strain com-
ponents. (1) Based on eqs. (2.4) and (2.9) prove the following relationships
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σ1 =
E

(1 + ν)(1− 2ν)
[(1− ν)ε1 + νε2 + νε3] , (2.23a)

σ2 =
E

(1 + ν)(1− 2ν)
[νε1 + (1− ν)ε2 + νε3] , (2.23b)

σ3 =
E

(1 + ν)(1− 2ν)
[νε1 + νε2 + (1− ν)ε3] , (2.23c)

and
τ12 = Gγ12, τ23 = Gγ23, τ13 = Gγ13. (2.24)

Note: do not simply expand eq. (2.13) for your answer.

Problem 2.2. Independent coefficients for linearly elastic, isotropic materials
For a linearly elastic, isotropic material, the constitutive laws involve three parameters:
Young’s modulus, E, Poisson’s ratio, ν, and the shear modulus, G. (1) Are these three co-
efficients independent of each other? (2) If not, give the equations that relate them.

Problem 2.3. Constitutive laws for stress and strain invariants
Let Iε

1 be the first invariant of the strain tensor, as defined by eq. (1.86), and Iσ
1 be the first

invariant of the stress tensor, as defined by eq. (1.15). (1) Find the constitutive law relating
these two invariants if the material obeys the generalized Hooke’s law.

Problem 2.4. Relationship between the principal stress and strain axes orienta-
tions
Prove that the principal stress and principal strain directions are always coincident at any point
of a three-dimensional body made of a homogeneous, isotropic, linearly elastic material.

Problem 2.5. Stress data reduction for a strain gauge rosette
Consider the strain gauge rosette depicted in fig. 1.26A, bonded to the external surface of a
body made of a homogeneous, isotropic, linearly elastic material. The following strains have
been measured: e1 = 3657µ, e2 = −1245µ, e3 = 956µ. (1) Find the strain state at this
point. (2) Find the principal strains and the principal strain directions at this point. (3) Sketch
the rosette and superpose on this sketch the principal strain directions. (4) compute the state
of stress at this point. (5) Find the principal stresses and the principal stress directions at this
point. (6) Find the relationship between the principal strain and stress directions. For this
material, E = 73 GPa and ν = 0.3

Problem 2.6. Data reduction for the “stress gauge”
A “fish-bone” strain gauge has the configuration shown in

a

- a

gauge
direction

Fig. 2.4. Configuration of
the “fish-bone” gauge.

fig. 2.4. The various sub-gauges, inclined at angles +α and
−α with respect to the gauge direction, measure strains along
those two directions, denoted εα and ε−α, respectively. The
sub-gauges are electrically connected in such a way that a sin-
gle measurement is made, e = εα +ε−α. The fish-bone gauge,
also known as a “stress gauge,” is intended to measure the
stress, σ, along the direction of the gauge, independently of
any other stress components acting at that location. (1) Find
the value of angle α for which the gauge measurement, e, becomes independent of the other
stress components. (2) Find the relationship between the measurement and the stress, σ, in the
gauge direction.
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2.1.4 Ductile materials

The linearly elastic behavior described in the previous section is a highly idealized
behavior. In general, materials will present a nonlinear relationship between stress
and strain.

Figure 2.5 shows a typical stress-strain diagram for a ductile material such as
mild steel. From point O to point A, the material behaves in a linear manner, and
this can be described by Hooke’s law. In this region, the slope of the stress-strain
diagram is constant and its value equals Young’s modulus, E. If the loading is re-
leased, the specimen will come back to its original configuration without sustaining
any permanent deformations, and it is referred to as being “elastic.”

Beyond point A, the behavior is no longer proportional (linear), and hence, this
point is called the limit of proportionality. The corresponding stress level is denoted
σe, see fig. 2.5. The material may continue to be elastic beyond point A, but at some
point it will begin to deform plastically, and when the load is removed, a permanent
deformation will remain. The stress at which this occurs is called the yield stress,
σy . More often than not, especially for mild steels, little difference exists between
the limit of proportionality and the yield stress, and so σe and σy are often used
interchangeably.

Beyond point B, the material un-
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Fig. 2.5. Stress-strain diagram for a ductile ma-
terial such as mild steel.

dergoes extensive deformation at a
nearly constant stress level, denoted by
σp. From point B to point C, the mate-
rial is undergoing a plastic flow under
nearly constant stress level. Figure 2.5
shows that the strain over this region
amounts to about 5% (i.e., ε1 = 0.05),
but for highly ductile steels and other
materials, this may amount to more
than 10%.

Beyond point C, an increasing
stress level is required to continue de-
forming the material. The stress level
increases up to point E, where the maximum stress level, denoted by σf , is reached.

Past this point, the cross-sectional area of the specimen decreases significantly at
a particular location along the test section: this phenomenon is called “necking” of
the specimen. Because the stress level is determined by dividing the applied load by
the original cross-sectional area, the stress level will seem to decrease beyond point
E, but if the stress level is computed by dividing the applied load by the reduced
cross-section area of the specimen at the location where necking occurs, this true
stress level sill continue to increase past point E.

With most experimental testing equipment, a controlled load (rather than a con-
trolled deformation) is applied, and hence, point F is never recorded. Instead, once
point E is reached, necking develops and the specimen breaks almost immediately
afterwards. Consequently, the stress at point E is called the failure stress and desig-
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nated by σf . Only when controlled extension is applied to the specimen is it possible
to follow the behavior of the specimen from point E to point F.

Clearly, ductile materials undergo very large deformations before failure, cor-
responding to the portion of the stress-strain curve from point B to E in fig. 2.5.
Experiments show that if the specimen is unloaded at a point between B and E,
for example at point D, the stress-strain relationship will follow curve DG, parallel
to AO, and while unloading, the material behaves elastically, although a permanent
deformation of magnitude OG will remain after all loading is removed. If the speci-
men is reloaded, the stress-strain relationship will follow curve GD, and if additional
loading is applied, it will follow curve DEF, as if the prior unloading had not taken
place. The reloading curve GD is linear and reaches a higher stress level at point D
before yield occurs and plastic deformation begins again. This increase in the yield
stress is called strain hardening1.

The discussion presented in the previous paragraphs is focused on diagrams of
axial stress versus axial strain obtained from a tensile test as depicted in fig. 2.1. It is
not unexpected that material behavior under shear exhibits nonlinear characteristics
of a nature that is similar to that observed under tension. Figure 2.6 shows a typi-
cal shear stress-shear strain diagram for a ductile material such as mild steel. Here
again, upon unloading, the material tends to behave in a linear manner, although a
permanent deformation of magnitude OG will be remain after unloading.
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Fig. 2.6. Shear stress-shear strain diagram for
a ductile material.
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Fig. 2.7. Stress-strain diagram for an elastic-
perfectly plastic material.

It is sometimes convenient to idealize the stress-strain diagram of ductile mate-
rials as presenting an initial elastic regime, followed by a perfectly plastic regime.
This idealization is depicted in fig. 2.7. For a strain range −εe ≤ ε ≤ εe, the mate-
rial is linearly elastic, but for strain level outside this range, the material is perfectly
plastic, that is, the material flows under a constant stress level, σe which is also the
yield stress σy . This highly idealized material behavior is called elastic-perfectly
1 Strain hardening is particularly noticeable in annealed copper such as might be encountered

in new copper tubing. After the tube is initially bent, it requires a considerably greater effort
to begin bending again or to try to reverse the initial bend.
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plastic material behavior. Failure occurs when the strain reaches the level εf . Such a
constitutive model is a good first approximation to the behavior of a ductile metal-
lic material such as mild steel or annealed aluminum. Of course, if the material is
unloaded at point D, the unloading curve follows segment DG, parallel to OE.

Other ductile materials such as aluminum and copper do not exhibit a plastic
flow regime like the portion of the stress-strain diagram from point B to C in fig. 2.5
observed for mild steel. Figure 2.8 shows a representative stress-strain diagram for
aluminum. For such materials, no pronounced limit of proportionality is present nor
is the yield stress (elastic limit) evident. Instead, it is convenient to define the yield
stress, denoted σy , as the stress level for which the specimen will exhibit a small
permanent residual strain upon unloading. For aluminum, this residual strain is spec-
ified as 0.2% or ε = 0.002. The yield stress can be determined from the stress-strain
diagram by constructing a straight line parallel to the initial linearly elastic portion
of the curve at a 0.2% offset and recording the stress at the intersection with the
stress-strain curve, as illustrated in fig. 2.8.

2.1.5 Brittle materials

Ductile materials are characterized by stress-strain diagrams such as those presented
in figs. 2.5 and 2.8: large deformations occur when stress levels greater than that
corresponding to the elastic limit of the material are applied. For brittle materials,
very little deformation is observed beyond the elastic limit. Typically, failure occurs
abruptly at strain levels much smaller than those observed for ductile materials. Fig-
ure 2.9 shows a stress-strain diagram typical of that observed for brittle materials
such as glass, concrete, stone, wood, unidirectional composites or ceramic materials.
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material such as aluminum.
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Fig. 2.9. Stress-strain diagram for a brittle
material.
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2.2 Allowable stress

A central problem of structural analysis is to determine the optimal configuration of
a structure subjected to specific loads. The design will be influenced by many factors
associated with various structural characteristics, such as those listed below.

1. The strength of the structure. When the local stress in the structure exceeds a spe-
cific value, the material will break or sustain permanent damage such as cracks
or plastic deformations.

2. The elastic deformation of the structure under load. Even when subjected to
small loads, a structure can present undesirable levels of elastic deformation.
For example, the elastic deflection of a part may lead to interference with other
parts in a structural assembly.

3. The dynamics characteristics of the structure. If the structure is subjected to
dynamic loads, the time history of its response becomes important. More often
than not, its natural frequencies must be carefully placed to avoid resonance. For
aerospace structures, aeroelastic phenomena such as flutter will put stringent
requirements on the torsional natural frequencies of wings and fuselages.

4. The stability characteristics of the structure. When parts of the structures are
subjected to compressive loads, the equilibrium configuration can become un-
stable, resulting in buckling. During level flight, the upper skin of a wing of an
aircraft is subjected to compressive loads. Wing design is significantly affected
by buckling considerations.

5. The time dependent deformations of the structure associated with creep of the
constitutive materials. Creep considerations play an important role in aircraft
turbine engine design, because they are subjected to high temperatures.

The strength of a structure is the focus of the present section, although a good
design must incorporate all the above characteristics. A structure is said to fail if
it breaks, collapses, or develops significant permanent damage. Clearly, the applied
service loads must be less, and often much less, than those corresponding to failure.
The main reason for decreasing service loads is due to the numerous uncertainties
about the problem. Among these are

1. The actual magnitude of the applied service loads is not accurately known. In
an aircraft, maneuver loads or loads associated with a rough landing conditions
cannot be precisely evaluated. Accidental overloads might also take place during
flight or ground operations of the aircraft.

2. The strength of materials presents statistical characteristics. Measurements of
the strengths of two nominally identical samples of aluminum will be different
due to material inhomogeneities, processing difference, and experimental errors.

3. Manufacturing variability also plays an important role. For instance, machining
fittings of complex shapes is a delicate operation. Dimensional tolerances might
vary from part to part; the strength of the resulting material might not be equal
to that measured in laboratory samples, and quality control sometimes fails to
detect some types of defects in manufactured parts.
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4. The strength of the material might decrease in time due to corrosion, wear, or
the presence of a chemically aggressive environment such as salt water, fuels or
solvents.

5. Finally, if failure is predicted based on the computed value of internal stresses
in the structure, these predicted stresses might be very different from their actual
value, because simplifying assumptions are used to predict these stresses.

Consequently, service loads must be limited to a conservative level, and as the
uncertainty about the problem increases, so must the level of conservatism in the
design. It is common practice to account for all these uncertainties by defining a
load factor

load factor =
failure load
service load

, (2.25)

where failure load is the load at which the part fails and service load is the maximum
load that is expected in normal service. Of course, the load factor should be larger
than unity, and it is sometimes as large as 10. Engineering judgment must be carefully
exercised in choosing this load factor. If a low value is selected, the likelihood of
accidental failure will increase, whereas for high values, the design might be too
expensive or too heavy for its intended purpose.

The load factor might be viewed as a factor of safety with respect to failure: lim-
iting the service loads to a fraction of the failure loads implies a safe operation of the
structure. Using the load factor as a factor of safety is not always practical because
the failure load is often unknown. Indeed, it is not practical, nor cost effective to test
all structures to failure to determine the failure load. A more common approach is
to compute the local stresses induced by the applied loads and limit the these local
stresses to an allowable level. This can be written as

allowable stress =
yield stress
safety factor

, or σallow =
σy

n
, (2.26)

where σallow is the allowable stress, σy the yield stress of the material, and n the
factor of safety. This definition is adequate for ductile materials described in sec-
tion 2.1.4. Once the yield stress is reached, permanent deformation occurs. On the
other hand, for brittle materials such as those discussed in section 2.1.5, the following
definition of the allowable stress is more appropriate

allowable stress =
ultimate stress
safety factor

, or σallow =
σf

n
, (2.27)

where the ultimate stress is the failure stress for the material.
In summary, the stress level, σ, that a structure is subjected to during service

should be smaller than the allowable stress, leading to the following strength criterion

|σ| ≤ σallow. (2.28)

For some materials, the allowable stress in tension and in compression are different,
and the actual stress level should then be compared to the appropriate allowable
stress.
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2.3 Yielding under combined loading

The concept of allowable stress discussed in the previous section is focused on the
highly idealized case where a structural component is subjected to a single stress
component. The yield criterion is then simply expressed in terms of the single stress
component as σ ≤ σy . As depicted in fig. 1.3, a differential element of material can
be subjected to a number of stress components simultaneously. The question is now:
what is the proper yield criterion to be used when multiple stress components are
acting simultaneously? Consider an aircraft propeller connected to a homogeneous,
circular shaft. The engine applies a torque to the shaft resulting in shear stresses, τ ,
throughout the shaft. On the other hand, the propeller creates a thrust that generates
uniform axial stresses, σ, over the cross-section. If the torque acts alone, the yield
criterion is τ < τy; if the axial force acts alone, the corresponding criterion is σ <
σy . In the actual structure, both stress components are acting simultaneously, and it
is natural to ask: what is the proper criterion to apply?

The yield criteria to be presented in this section are applicable to isotropic, ho-
mogeneous material subjected to a general three-dimensional state of stress. Because
the material is isotropic, the direction of application of the stress is irrelevant. If the
material is subjected to a single stress component, it should yield under the same
stress level regardless of the direction in which this stress component is applied. In
contrast, if the material is anisotropic, the direction of application of stress becomes
important.

For isotropic materials, there is no directional dependency of the yield criterion,
even when subjected to a combined state of stress. An arbitrary state of stress can
be represented by the six stress components defining the stress tensor at that point,
for example, see eq. (1.3). Alternatively, the state of stress can be represented by
the three principal stresses, σp1, σp2, and σp3 and the three orientations defining the
faces on which these principal stresses act, see section 1.2.2. If the yield criterion
should not depend on directional information because of material isotropy, it is clear
that only the magnitudes of the principal stress should appear in its expression.

In addition, empirical evidence indicates that hydrostatic stress does not cause
yielding. This implies that changes in the state of stress in which the three principal
stresses are increased equally will not result in yielding. Other empirical evidence
also suggests that yielding is directly related to the maximum shear stress in the ma-
terial which, in turn, is directly proportional to the differences between the principal
stresses.

Two specific criteria will be presented here, Tresca’s criterion, see section 2.3.1,
and von Mises’ criterion, see section 2.3.2. Both compute an equivalent maximum
shear stress intensity but yield slightly different results for some cases. A more de-
tailed discussion of yield criteria can be found in section 13.1.

2.3.1 Tresca’s criterion

Tresca’s yield criterion is expressed in terms of the following three principal stress
inequalities
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|σp1 − σp2| ≤ σy, |σp2 − σp3| ≤ σy, |σp3 − σp1| ≤ σy, (2.29)

where σy is the yield stress observed in a uniaxial test such as that described in
fig. 2.5. The material operates in the linearly elastic range when the stress state it
is subjected to satisfies the three inequalities expressed by eq. (2.29). Conversely,
yielding develops whenever any one of these conditions is violated. Tresca’s crite-
rion clearly meets the two conditions stated above: it depends only on the principal
stresses, and a hydrostatic state of stress will not produce yielding.

Tresca’s criterion can be interpreted in the following manner. Let ı̄∗1, ı̄∗2, and ı̄∗3 be
the principal stress directions. Consider now a rotation of magnitude θ about axis ı̄∗3.
The shear stress on this face inclined with respect to the principal stress directions
is then given by eq. (1.49), where σ1 = σp1, σ2 = σp2 and τ12 = 0, to yield
τ12 = −(σp1 − σp2)/2 sin 2θ. Clearly, the maximum shear stress is found on a
face inclined at an angle θ = 45 degrees and gives τ12max = |σp1 − σp2|/2. Similar
arguments for rotations about axes ı̄∗2 and ı̄∗1 lead to τ13max = |σp1 − σp3|/2, and
τ23max = |σp2 − σp3|/2, respectively. Tresca’s criterion is now recast as τ23max ≤
σy/2, τ13max ≤ σy/2 and τ12max ≤ σy/2.

By denoting τmax = max (τ23max, τ13max, τ12max), Tresca’s criterion can be
expressed by a single condition, τmax ≤ σy/2: the material reaches the yield con-
dition when the maximum shear stress equals half the yield stress under a uniaxial
stress state. This physical interpretation of Tresca’s criterion helps explain why it
is sometimes called the maximum shear stress criterion. Tresca’s criterion is now
applied to a few combined loading cases of practical interest.

Uniaxial stress state

First, consider the case of a material subjected to an uniaxial state of stress, σp1,
σp2 = σp3 = 0. The sole non-vanishing principal stress is σp1, and Tresca’s yield
criterion reduces to σp1 ≤ σy . This result is identical to the yield criterion discussed
in section 2.2, as expected.

Plane state of stress

Consider a material under a plane state of stress, as defined in section 1.3. If σ1, σ2,
and τ12 are the stress components in an arbitrary coordinate system, the principal
stresses are readily found as

σp1, σp2 =
σ1 + σ2

2
±

√(
σ1 − σ2

2

)2

+ τ2
12, σp3 = 0. (2.30)

Tresca’s criterion now implies the following three conditions

2

√(
σ1 − σ2

2

)2

+ τ2
12 ≤ σy,

∣∣∣∣∣∣
σ1 + σ2

2
±

√(
σ1 − σ2

2

)2

+ τ2
12

∣∣∣∣∣∣
≤ σy.

(2.31)
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Pure shear state

The state of pure shear is a special case of a plane stress state where σ1 = σ2 = 0 and
τ12 = τ . The only remaining condition of Tresca’s criterion, eq. (2.31), is τ ≤ σy/2.
According to Tresca’s criterion, the shear stress level at which the material yields in
a pure shear state is one half the level observed under uniaxial stress state.

2.3.2 Von Mises’ criterion

Von Mises’ yield criterion is expressed by the following inequality

σeq =
1√
2

√
[(σp1 − σp2)2 + (σp2 − σp3)2 + (σp3 − σp1)2] ≤ σy, (2.32)

where the first equality defines the equivalent stress, σeq. Von Mises’ criterion states
that the yield condition is reached under the combined loading, when the equivalent
stress, σeq, reaches the yield stress for a uniaxial stress state, σy . Von Mises’ criterion
clearly meets the requirement stated above: it only depends on the principal stresses
and a hydrostatic state of stress will not produce yielding.

The physical nature of this equivalent stress is better understood by considering
the octahedral face discussed in example 1.3 on page 18. The magnitude of the shear
stress acting on this octahedral face is given by eq. (1.25), and simple algebra then
reveals

3τ2
oc = (σ2

p1 + σ2
p2 + σ2

p3)−
1
3
(σp1 + σp2 + σp3)2 =

2
3
σ2

eq. (2.33)

This result implies that the equivalent stress is proportional the octahedral shear
stress: σeq = 3/

√
2 τoc. Von Mises’ criterion can now be restated as: the yield con-

dition is reached under combined loading when the octahedral shear stress reaches
3/
√

2 of the yield stress for a uniaxial stress state, σy .
When applying von Mises’ criterion, the first step is to compute the equivalent

stress defined by eq. (2.32). Given a loading state defined by the direct stress compo-
nents σ1, σ2, and σ3 and shear stress components τ23, τ13, and τ12, it is necessary to
first compute the principal stresses, σp1, σp2, and σp3 using the procedure described
in section 1.2.2. This laborious procedure can be bypassed by noticing that the first
two invariants of the stress tensor, see eq. (1.15a) and (1.15b), can be written as
I1 = σp1 +σp2 +σp3 and I2 = σp1σp2 +σp2σp3 +σp3σp1, respectively, because the
shear stresses vanish on the faces normal to the principal stress directions. The fol-
lowing algebraic manipulations show that the equivalent stress is readily expressed
in terms of these two invariant as

σ2
eq =

[
(σp1 − σp2)2 + (σp2 − σp3)2 + (σp3 − σp1)2

]
/2

= (σ2
p1 + σ2

p2 + σ2
p3)− (σp1σp2 + σp2σp3 + σp3σp1)

= (σp1 + σp2 + σp3)2 − 3(σp1σp2 + σp2σp3 + σp3σp1) = I2
1 − 3I2.

(2.34)
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If the first two stress invariants are now expressed in terms of the stress components
in an arbitrarily oriented axis system using eqs. (1.15a) and (1.15b), von Mises’ yield
criterion can then be written as

σeq =
√

σ2
1 + σ2

2 + σ2
3 − σ2σ3 − σ3σ1 − σ1σ2 + 3(τ2

23 + τ2
13 + τ2

12) ≤ σy.

(2.35)
This criterion is now applied to several combined loading cases of practical interest.

Uniaxial stress state

First, consider the case of a material subjected to an uniaxial state of stress, σp1,
σp2 = σp3 = 0. The sole non-vanishing principal stress is σp1, and von Mises’s
yield criterion reduces to σp1 ≤ σy . This result is identical to the yield criterion
discussed in section 2.2, as expected.

Plane state of stress

Consider a material under a plane state of stress as defined in section 1.3. If σ1, σ2

and τ12 are the stress components in an arbitrary coordinate system, the equivalent
stress, eq. (2.35), now reduces to

σeq =
√

σ2
1 + σ2

2 − σ1σ2 + 3τ2
12 ≤ σy. (2.36)

Pure shear state

The state of pure shear is a special case of plane stress where σ1 = σ2 = 0 and
τ12 = τ . Von Mises’ criterion, eq. (2.36), reduces to τ ≤ σy/

√
3. According to von

Mises’ criterion, the shear stress level at which the material yields in a pure shear
state is 1/

√
3 ≈ 0.577, i.e., about 60% of the level observed under uniaxial stress

state. Experimentation shows that this prediction is slightly more accurate than that
of Tresca’s criterion. This and computational simplicity are the reasons why von
Mises’ criterion is more widely used than Tresca’s.

2.3.3 Comparing Tresca’s and von Mises’ criteria

A useful geometric interpretation of Tresca’s and von Mises’ criteria can be obtained
by considering a plane stress problem for which σp3 = 0. In the stress space of
the two remaining principal stresses, σp1 and σp2, Tresca’s criterion, see eq. (2.29),
reduce to three inequalities

|σp1

σy
| ≤ 1, |σp2

σy
| ≤ 1, |σp2

σy
− σp1

σy
| ≤ 1.

When taken as the limiting equalities, these three equations define the six straight line
segments depicted in fig. 2.10. In the construction of this graph, the principal stresses
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are normalized by the yield stress. Safe stress levels correspond to stress states falling
within the irregular hexagon enclosed by the six dashed line segments. For this plane
stress state, the yield envelope is therefore the hexagon shown in dashed lines in
fig. 2.10.

For the same stress states, von Mises’

s
p1

s
p

2
s

e
s

e

Fig. 2.10. Comparison of Tresca’s and von
Mises’ criteria for a plane stress case.

criterion, see eq. (2.32), becomes the
oblique ellipse defined by

(
σp1

σy

)2

+
(

σp2

σy

)2

−
(

σp1

σy

)(
σp2

σy

)
= 1.

Safe stress levels correspond to stress states
falling within the ellipse shown in fig. 2.10
which forms the yield envelope.

At the six vertices of the hexagon, the
yield conditions predicted by the two cri-
teria are identical. For all other stress con-
ditions, Tresca’s criterion is slightly more
conservative. In most experimental studies,
yielding is observed to occur at points falling between these two criteria. As a purely
practical matter, von Mises’criterion is often preferred because of its relatively sim-
pler representation as a single analytical expression in contrast with the three separate
inequalities that must be evaluated for Tresca’s criterion.

When a set of loads is applied to a structure, it is natural to assume that they
are all increased proportionally. Consequently, the components of the stress state,
and therefore the principal stresses, increase proportionally as well. Three special
stress states will be contrasted. In all three cases, the principal stresses are assumed
to remain proportional as the load is applied, and hence, a single stress parameter,
denoted σ, will be used to describe the loading for each case. The three stress cases
are: (1) σp1 = −σp2 = σ, (2) σp1 = 2σp2 = σ, and (3) σp2 = 2σp1 = σ, and
these correspond to the three radial lines OA, OB, and OC, respectively, shown in
fig. 2.10. Table 2.1 shows a quantitative comparison of the cases. These three loading
cases give the maximum discrepancy in the predictions of the two criteria. For all
other loading configurations, the prediction differ by less than 15%.

Table 2.1. Comparison of the Tresca and von Mises yield criteria.

Stress Radial line Tresca’s von Mises’ Percent
state in fig. 2.10 yield stress yield stress difference

σp1 = −σp2 = σ OA σy/2 σy/
√

3 15.5%
σp1 = 2σp2 = σ OB σy 2σy/

√
3 15.5%

σp2 = 2σp1 = σ OC σy 2σy/
√

3 15.5%
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2.3.4 Problems

Problem 2.7. Yield criterion for a confined cylindrical sample
Consider a sample of homogeneous, isotropic material of Poisson’s ratio ν and yield stress σy

confined in a rigid cylinder, as depicted in fig. 2.2. A single stress component is applied to
the material and it is assumed that there is no friction between the sample and the enclosure.
(1) Find the stress level σ3 for which the sample will yield as a function of σy and ν if the
material obeys Tresca’s criterion. Plot your results. (2) Find the stress level σ3 for which the
sample will yield as a function of σy and ν if the material obeys von Mises’ criterion. Plot
your results. Use a range of Poisson’s ratios ν ∈ [0, 0.5].

Problem 2.8. Yield criterion for a pressure vessel
A cylindrical pressure vessel of radius R and thickness t is subjected to an internal pressure
pi, as shown in fig. 1.20. At any point in the cylindrical portion of vessel wall, two stress
components are acting: the hoop stress, σh = Rpi/t and the axial stress, σa = Rpi/(2t).
The radial stress, acting in the direction perpendicular to the wall, is very small, σr ≈ 0. The
yield stress for the material is σy . (1) If the material is assumed to follow von Mises’ criterion,
find the maximum internal pressure the vessel can carry. (2) If the material is assumed to
follow Tresca’s criterion, find the maximum internal pressure the vessel can carry.

2.4 Material selection for structural performance

An important phase of structural design is the selection of a specific material. Ta-
ble 2.2 lists the physical properties of three commonly used metals: aluminum, tita-
nium, and steel. This table lists their respective ultimate stress, modulus of elasticity,
and density. Table 2.3 lists the corresponding properties for a number of fibers.

Table 2.2 shows that the ultimate stress and modulus of elasticity of steel are far
superior to those of titanium or aluminum. Why then is steel not always preferred,
since it is far stronger and stiffer? A second look at table 2.2 shows that while steel
is far stronger and stiffer, it is also far heavier that the other two metals. In a weight
sensitive design, a compromise must be made between these conflicting characteris-
tics. The same observations can be made when comparing the properties of fibers, as
listed in table 2.3.

It is important to compare the performance of these various materials for specific
structural applications. Three categories of structural design situations will be inves-
tigated, namely strength design, stiffness design, and buckling design. A performance
index of the material will be derived in each case.

Table 2.2. Physical properties of a few metals.

Ultimate stress [MPa] Modulus of elasticity [GPa] Density [kg/m3]
Aluminum 620 73 2700
Titanium 1900 115 4700

Steel 4100 210 7700
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Table 2.3. Physical properties of a few fibers.

Ultimate stress [MPa] Modulus of elasticity [GPa] Density [kg/m3]
E-Glass 3400 72 2550
S-Glass 4800 86 2500
Carbon 1700 190 1410
Boron 3400 400 2570

Graphite 1700 250 1410

2.4.1 Strength design

Consider a sheet of material of length L, width b, and thickness t, subjected to a
tension load P , as depicted in the left portion of fig. 2.11. Assuming the stress dis-
tribution to be uniform over the sheet’s cross-section, the total load the material can
carry is Pmax = σultbt, where σult is the ultimate allowable stress for the material.

P

P

L

t

b
L

t

h

b
P

P

L

t

b

Strength design Stiffness design Buckling design

Fig. 2.11. Three types of design situation.

The total mass, M , of the structure is M = ρ btL, where ρ is the material density.
Eliminating the sheet thickness between these two equations yields

Pmax =
M

L

σult

ρ
. (2.37)

For a given mass and geometry of the structure, the maximum load it can carry is

Pmax ∝ σult

ρ
. (2.38)

The desired material performance index for strength design is σult/ρ, and it is pro-
portional to the maximum load that can be carried by a structure of given geometry
and mass.

2.4.2 Stiffness design

In many instances, the stiffness of a structure is specified, but more often than not,
it is the natural frequency of the structure that must be maximized. Consider the
cantilevered, thin-walled beam of length L consisting of two thin skins of width b
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and thickness t separated by a distance h as shown in the middle portion of fig. 2.11.
Under certain conditions, the natural frequency of this structure is

ω ∝ 1
L2

[
Hc

22

m

]1/2

(2.39)

where Hc
22 is the bending stiffness, and m the mass per unit span of the beam; these

quantities are readily found as Hc
22 = Ebth2/2[1 + 1/3(t/h)2] and m = 2ρbt,

respectively. For a thin-walled structure t/h ¿ 1, and the natural frequency becomes

ω ∝ h

L2

[
E

ρ

]1/2

(2.40)

For a given configuration of the structure, h and L are given quantities, and the de-
sired material performance index for stiffness design is

√
E/ρ, and it is proportional

to the natural frequency of a structure of a given geometry and mass.

2.4.3 Buckling design

The right portion of fig. 2.11 shows a thin plate of length L, width b, and thickness t.
The plate is supported around all its edges, and subjected to an in-plane compressive
load P . The critical value of the load that will cause the plate to buckle is

Pcr ∝ Et3

b
. (2.41)

This formula will be derived in section 16.7. The total mass of the structure is M =
ρ btL; eliminating the thickness of the plate from then yields

Pcr ∝ M3

b4L3

E

ρ3
. (2.42)

For a given mass and geometry of the structure, the desired performance index is
E/ρ3, and it is proportional to the maximum compressive load that can be carried by
a structure of given geometry and mass.

Table 2.4 lists the performance indices σult/ρ,
√

E/ρ, and E/ρ3 for strength,
stiffness, and buckling designs, respectively. Table 2.5 lists the corresponding quan-
tities for a few fibers.

Consider first the data of table 2.4. Steel is clearly the best material for strength
design. When it comes to stiffness design, however, the three metals perform about
equally well, with only a slight disadvantage for titanium. Finally, comparing the
strength and buckling designs, the ranking of the materials is now reversed: alu-
minum performs far better than steel and titanium in buckling design.

The same observations can be made about the fibers for which data is listed in
table 2.5. In a strength design, S-glass out performs the other fibers. The situation
is reversed for stiffness and buckling designs. It is clear that the third power of the
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density in the denominator of the buckling design performance index makes lighter
materials perform well in buckling sensitive designs.

It is not possible to directly compare the materials in tables 2.4 and 2.5. Indeed,
the various metals can be used as structural materials, whereas the fibers cannot be
used, as such, as structural materials. It is clear, however, that the remarkably high
performance indices of these fibers justifies a closer look at their potential use in
structural applications.

Table 2.4. Structural design performance indices for a few metals.

Performance Strength design Stiffness design Buckling design
index σult/ρ [103 m2/sec2]

√
E/ρ [103 m/sec] E/ρ3 [m8/(kg2sec2)]

Aluminum 230 5.2 3.7
Titanium 405 4.9 1.1

Steel 530 5.2 0.46

Table 2.5. Structural design performance indices for a few fibers.

Performance Strength design Stiffness design Buckling design
Index σult/ρ [103 m2/sec2]

√
E/ρ [103 m/sec] E/ρ3 [m8/(kg2 sec2)]

E-Glass 1330 5.3 4.3
S-Glass 1920 5.9 5.5
Carbon 1200 11.6 68
Boron 1320 12.5 23

Graphite 1200 13.3 89

2.5 Composite materials

2.5.1 Basic characteristics

Advanced composite materials for structural applications are made by embedding
in a matrix material fibers that are all aligned in a single direction. A number of
polymeric materials can be used as matrix materials. Thermoset materials such as
epoxy have been extensively used as matrices for composite materials. The mechan-
ical properties of epoxy are

σtens
ult = 50 MPa, σcomp

ult = 140 MPa, (2.43)

for the ultimate allowable stress in tension and compression, respectively. The mod-
ulus of elasticity, and the density of the material are

E = 3.5 GPa, ρ = 1300 kg/m3
. (2.44)
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A very crude way of approximating the strength of a composite material consist-
ing of fibers all aligned in a single direction embedded in a matrix is to use a rule of
mixture

Sc = VfSf + VmSm, (2.45)

where Sc, Sf , and Sm are the strength of the composite, fiber, and matrix materials,
respectively; and Vf and Vm the volume fractions of fiber, and matrix materials,
respectively. If the material contains no voids Vf + Vm = 1.

Consider a composite material consisting of graphite fibers (Vf = 0.6), embed-
ded in an epoxy matrix (Vm = 0.4). The strength of the composite can be estimated
using eq. (2.45) and the data of table 2.3

Sc = 1700× 0.6 + 50× 0.4 = 1020 + 20 = 1040 MPa. (2.46)

Clearly, the matrix material contributes very little to the strength of the composite.
The stiffness of the composite can also be crudely estimated from the following

reasoning. Assume the various phases of the material to be perfectly bonded together,

εm = εf = εc, (2.47)

where εm, εf , and εc are the strains in the matrix, fiber, and composite materials,
respectively. If a sheet of this material is subjected to a tensile load P , the average
stress in the composite, σc, can be defined as follows

P = Acσc = Afσf + Amσm, (2.48)

where σf and σm are the stresses in the fiber and matrix materials, respectively,
and Ac, Af , and Am are the cross-sectional areas of composite, fiber, and matrix
materials, respectively. Dividing eq. (2.48) by Ac yields

σc =
Af

Ac
σf +

Am

Ac
σm = Vfσf + Vmσm. (2.49)

If both fiber and matrix materials are assumed to be linearly elastic, isotropic
materials, the following constitutive laws adequately describe their behavior

σf = Ef εf , σm = Emεm, (2.50)

where Ef and Em are the moduli of elasticity for the fiber and matrix materials,
respectively. Similarly, the modulus of elasticity Ec for the composite is defined as

σc = Ecεc. (2.51)

Introducing eqs. (2.50) and (2.51) into eq. (2.49), and taking into account the
assumed equality of the strain in the various materials, eq. (2.47), yields

Ec = VfEf + VmEm. (2.52)

For the graphite epoxy material considered above, the composite modulus of
elasticity can be estimated as
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Ec = 250× 0.6 + 3.5× 0.4 = 150 + 1.4 ≈ 150 GPa. (2.53)

Here again, the intrinsic stiffness of the matrix material contributes little to the stiff-
ness of the composite.

The above discussion clearly shows that a significant fraction of the high strength
and stiffness of the fibers is directly inherited by the composite. The matrix material,
however, contributes little to the strength and stiffness of the composite. This obser-
vation prompts the following question: what is the role of the matrix material in a
composite? The matrix is needed to keep all the fibers together, and to provide an
adequate surface finish. A less obvious role of the matrix is to diffuse the stresses
among the otherwise isolated fibers. This aspect is explored in the next section.

2.5.2 Stress diffusion in composites

Consider a lamina consisting of fibers all aligned in a single direction embedded in
a matrix material. The lamina is subjected to a far-field stress, σ0. If all the fibers are
continuous, it is easy to see how the entire load will be carried by the fibers only, with
no significant contribution of the matrix. In practical situations, however, numerous
broken fibers will be present in the lamina.

s0 s0

s0 s0

Lamina with
broken fibers

Lamina with
one broken fiber

L

L

Fig. 2.12. Lamina with a broken fiber.

x1

h

s0

sa sa

sf

Smeared
material

ra rm

L
rf

A A

Fig. 2.13. Stress diffusion problem.

Figure 2.12 shows the geometry of the problem, including a single broken fiber
of length 2L. At the two ends of the fiber, the stress in the fiber must vanish. Nev-
ertheless, the matrix material adjacent to the broken fiber will transfer stress from
the surrounding material to the broken fiber. This stress diffusion process is a very
important phenomenon because it allows all fibers, including broken fibers, to carry
the applied load.

A simplified model of this phenomenon is depicted in the cross-section shown
in fig. 2.13. It consists of a cylindrical fiber of radius rf , surrounded by circular
sleeve of matrix material of outer radius rm, itself surrounded by a circular sleeve of
composite material of outer radius ra. The following assumptions will be made. (1)
The matrix material carries shear stresses only. This assumption can be justified by
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the fact that the stiffness of the fiber is far greater than that of the matrix, and hence,
the axial stress it carries is far greater than that carried by the matrix. (2) The axial
stress in the fiber is uniformly distributed over its cross-section. (3) The properties of
the composite material surrounding the core fiber/matrix cylinder can smeared, i.e.,
the existence of individual fibers can be ignored, except for the specific broken fiber
at the heart of the model. (4) The various phases of the model are perfectly bonded
together.

Due to the symmetry of the problem, the displacements at x1 = 0 are set to zero.
Figure 2.14 shows the displacements uf (x1), and ua(x1) of the fiber, and composite,
respectively, at section A-A in fig. 2.13. The stress-displacement relationships for the
various constituents of the model are

εf =
duf

dx1
, (2.54a)

εa =
dua

dx1
, (2.54b)

γm =
ua − uf

rm − rf
, (2.54c)

where εf , εa, and γm are the axial strains in the fiber and composite, and the shear
strain in the matrix, respectively.

s sf f 1 1+ d /dx  dx

sf

dx1

ua

uf

gm

rf
rm

Free body
diagram

tf

Fig. 2.14. Displacement definition and free body diagram of a differential element of fiber.

A free body diagram of a differential element of the fiber is shown in fig. 2.14. A
summation of the forces along the axis of the fiber yields

dσf

dx1
+

2
rf

τm = 0, (2.55)

where σf (x1) is the uniform axial stress in the fiber, and τm(x1) the shear stress in
the matrix. On the other hand, the free body diagram of the entire model depicted in
fig. 2.13 yields an overall equilibrium equation

σa =
σ0

1− r2
m/r2

a

− r2
f

r2
a

σf

1− r2
m/r2

a

≈ σ0. (2.56)

It is clear that the fiber has a much smaller radius than the overall composite, i.e.,
rf/ra ¿ 1, and the second term of this equation become negligible. Furthermore,
rm/ra ¿ 1, i.e., 1− (rm/ra)2 ≈ 1.
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If Ef , Ea, and Gm are the moduli of elasticity of the fiber, and composite, and
the shearing modulus of the matrix, respectively, the constitutive laws for the various
constituents of the model are

σf = Ef εf , (2.57a)
σa = Eaεa, (2.57b)
τm = Gmγm. (2.57c)

Introducing the matrix material constitutive law, eq. (2.57c), and the definition of
the shear strain, eq. (2.54c), into the fiber equilibrium, eq. (2.55), yields

dσf

dx1
+

2Gm

rf (rm − rf )
(ua − uf ) = 0.

Taking a derivative of this equation with respect to x1, introducing the definition of
the fiber and composite strains, eqs. (2.54a) and (2.54b), respectively, and using the
constitutive laws, eqs. (2.57a) and (2.57b) leads to

d2σf

dx2
1

+
2Gm

rf (rm − rf )
(
σa

Ea
− σf

Ef
) = 0.

Finally, the stress in the composite, σa, is eliminated by means of the overall equi-
librium eq. (2.56) to find the governing equation for the fiber stress

d2σf

dx2
1

− 2
rf (rm − rf )

Gm

Ef
σf = − 2

rf (rm − rf )
Gm

Ef

Ef

Ea
σ0.

As shown in fig. 2.13, the non-dimensional variable η = (L − x1)/(2rf ) mea-
sures the distance from the fiber break divided by the fiber diameter. The governing
equation for the fiber stress becomes

σ′′f − λ2σf = −λ2 Ef

Ea
σ0,

where the notation (.)′ is used to denote a derivative with respect to η; and λ2 =
8(Gm/Ef )(rf/rm)/(1 − rf/rm). The volume fraction of the material is Vf =
(πr2

f )/(πr2
m) = (rf/rm)2. Furthermore, the rule of mixture for the modulus of elas-

ticity, eq. (2.52), yields Ef/Ea = Ef/(VfEf + VmEm) ≈ Ef/(VfEf ) = 1/Vf ,
where the fact that Em ¿ Ef is taken into account. The governing equation finally
can be recast as

σ′′f − λ2σf = −λ2 σ0

Vf
, (2.58)

where

λ2 = 8
Gm

Ef

√
Vf

1−√
Vf

. (2.59)

The boundary conditions are σf = 0 at the broken end of the fiber, i.e., at η = 0.
At η = L/2rf , the symmetry of the problem requires σ′f = 0. The solution of
eq. (2.58) subjected to these boundary conditions is
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σf

σ0
=

1
Vf

(
1− cosh λ(L/2rf − η)

cosh(λL/2rf )

)
≈ 1

Vf

(
1− e−λη

)
. (2.60)

To illustrate the distribution of stress near a fiber break, three material systems
will be considered. Table 2.6 lists the relevant parameters for the three material sys-
tems: boron, graphite, and kevlar fibers in an epoxy matrix with a shearing modulus
of 1.35 GPa.

Table 2.6. Physical properties of three material systems.

Material system Volume fraction Ef [GPa] λ, Eq. (2.59) δ/df , Eq. (2.62)
Boron/Epoxy 0.5 400 0.255 11

Graphite/Epoxy 0.6 250 0.385 7.3
Kevlar/Epoxy 0.6 130 0.534 5.3

The fiber stress at a large distance from the fiber break can be obtained from
eq. (2.49): σ0 = Vfσf∞ + (1 − Vf )σm∞ ≈ Vfσf∞. The stress distribution,
eq. (2.60), then becomes

σf

σf∞
= 1− e−λη, (2.61)

where the notation (.)∞ is used to denote the value of the corresponding quantity at a
large distance from the fiber break. The non-dimensional parameter, λ, characterizes
the fiber axial stress distribution near the fiber break, which is plotted in fig. 2.15 for
the three material systems. At η = 0, which corresponds to the fiber break, the fiber
axial stress vanishes. The fiber axial stress grows rapidly to its far field value σf∞.
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Fig. 2.15. Distribution of fiber axial stress
near a fiber break for three material systems.
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Fig. 2.16. Distribution of matrix shear stress
near a fiber break for three material systems.

It is convenient to define the fiber ineffective length δ as the distance it takes for
the fiber stress to reach 95% of its far field value, i.e., 0.95 = 1 − exp(−λδ/df ),
where df is the fiber diameter. Solving this equation yields the ineffective length as
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δ

df
≈

[
Ef

Gm

1−√
Vf√

Vf

]1/2

. (2.62)

The ineffective length can be thought of as the length of fiber, near a fiber break,
that does not carry axial stress at full capacity. Table 2.6 lists the ineffective length
for the three material systems. It appears that 5.3 fiber diameters away from a break,
the Kevlar fiber is already carrying 95% of its far field stress. This means that the
matrix material transfers the load from the surrounding material to the broken fiber
very rapidly. This mechanism is called the shear lag mechanism because the shear
stress in the matrix is effectively transferring the load to the fiber. The shear stress in
the matrix can be readily evaluated from the fiber equilibrium equation (2.55) as

τm

σf∞
=

λ

4
e−λη. (2.63)

Figure 2.16 shows the distribution of shear stress in the matrix near a fiber break, for
the three material systems. The shear stress is maximum near the fiber break, then
decays very rapidly.

An important role of the matrix material now becomes apparent in light of the
above analysis. Near a fiber break, the matrix material transfers stresses from the
surrounding material to the broken fiber. The shearing of the matrix near the fiber
break is the mechanism that allows this stress transfer to occur. This mechanism
is very efficient: for the material systems described above, the broken fiber is fully
loaded within about ten fiber diameters from the fiber break. The zone affected by
the fiber break is about 2δ in length (δ on each side of the break). For a graphite fiber
with a diameter of 10 microns, the zone affected by a fiber break is therefore only
about 200 microns in length.

Another way of looking at this fact is to say that a fiber is continuous or infinitely
long, if its total length is much larger, say 100 times larger, than its ineffective length.
Hence, a 10 micron diameter graphite fiber can be considered continuous or infinitely
long when its length is greater than 100× 100 10−6 = 10 mm. From a load carrying
stand point, a 10 millimeter long graphite fiber can be considered continuous or
infinitely long.

2.6 Constitutive laws for anisotropic materials

Section 2.1 focuses on the constitutive behavior of isotropic materials. Due to
the growing importance of composite materials, the linearly elastic behavior of
anisotropic materials will be addressed here. The physical properties of anisotropic
materials are directional, i.e., the physical response of the material depends on the
direction in which it is acted upon.

Consider, as an example, the stiffness of the unidirectional composite material
described in section 2.5: in the fiber direction the stiffness of the composite is dom-
inated by the high stiffness of the fiber, see eq. (2.52). In the direction transverse
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to the fiber, however, the stiffness of the composite is dominated by that of the ma-
trix material, which is far small than that of the fiber. This contrasts with isotropic
materials for which the mechanical response is identical in all directions.

The straining of the material will be measured by the engineering strain com-
ponents which are stored in array ε, defined by eq. (2.11a). Similarly, the state of
stress in the material is measured by the engineering stress components stored in ar-
ray σ, defined by eq. (2.11b). A linearly elastic, anisotropic material is characterized
a linear relationship between the stress and strain measures,

σ = C ε; ε = S σ, (2.64)

where C is the 6×6 stiffness matrix and S the 6×6 compliance matrix. These two
matrices are the inverse of each other, i.e.,

S = C−1. (2.65)

The strain energy, A, stored in a differential element of the material is

A =
1
2

εT σ =
1
2

εT C ε =
1
2

σT S σ. (2.66)

The stored strain energy is a positive quantity for whatever deformation or stress state
the material is subjected to. This implies that both stiffness and compliance matrices
are symmetric and definite positive.

In general, the 6×6 stiffness matrix has 6×6 = 36 independent coefficients. The
symmetry requirement, however, reduces the number of independent coefficients to
21. The stress-strain relationship, eq. (2.64), written in expanded form is





σ1

σ2

σ3

τ23

τ13

τ12





=




C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

sym C66








ε1
ε2
ε3
γ23

γ13

γ12





, (2.67)

where the entries in the lower triangular part of the stiffness matrix are equal to the
corresponding upper triangular entries. The 21 constants, Cij , characterize the be-
havior of the material. Each constant must be determined experimentally. A material
characterized by relationship (2.67) is called an anisotropic or triclinic material.

Materials sometimes possess a plane of symmetry. Let plane (̄ı1, ı̄2) be a plane
of symmetry of the material. The stress-strain relationship reduces to





σ1

σ2

σ3

τ23

τ13

τ12





=




C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0
C55 0

sym C66








ε1
ε2
ε3
γ23

γ13

γ12





. (2.68)
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The stiffness coefficient, C14, must vanish, because, if it does not vanish, an axial
strain, ε1, would give rise to a shear stress, τ23. The presence of a shear stress, τ23,
however, would violate the symmetry of the response, which is a natural consequence
of the material symmetry. A systematic application of this symmetry argument shows
that the 8 coefficients indicated as “0” in eq. (2.68) must vanish, leaving 21−8 = 13
independent coefficients. This type of material is called a monoclinic material.

Some materials show a higher level of symmetry characterized by two mutually
orthogonal planes of symmetry; for instance, let planes (̄ı1, ı̄2) and (̄ı2, ı̄3) be planes
of symmetry. The stress-strain relationships then reduces to





σ1

σ2

σ3

τ23

τ13

τ12





=




C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
sym C66








ε1
ε2
ε3
γ23

γ13

γ12





. (2.69)

Here again symmetry arguments can be used to prove that the 12 coefficients in-
dicated as “0” in the above matrix must vanish, leaving 21 − 12 = 9 independent
coefficients. This type of material is called an orthotropic material.

A case of particular importance to the study of laminated composite materials
is that of materials presenting two orthogonal planes of symmetry, and one plane of
isotropy. Let planes (̄ı1, ı̄2) and (̄ı2, ı̄3) be the mutually orthogonal planes of symme-
try, and let the material be isotropic in plane (̄ı2, ı̄3). This means, for instance, that
the coefficients C12 and C13 should be identical due to the isotropic response of the
material in plane (̄ı2, ı̄3). The stress-strain relationships now reduce to





σ1

σ2

σ3

τ23

τ13

τ12





=




C11 C12 C12 0 0 0
C22 C23 0 0 0

C22 0 0 0
C22−C23

2 0 0
C55 0

sym C55








ε1
ε2
ε3
γ23

γ13

γ12





. (2.70)

Only five constants remain for this material called transversely isotropic.
Finally, an isotropic material is characterized by an identical response in all di-

rections, leading to the following stress-strain relationship




σ1

σ2

σ3

τ23

τ13

τ12





=




C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C11−C12

2 0 0
C11−C12

2 0
sym C11−C12

2








ε1
ε2
ε3
γ23

γ13

γ12





. (2.71)

Two independent constants only are left for this type of material. Relations (2.67)
to (2.71) give the structure of the stiffness matrix, C, for various types of materials.
The compliance matrix, S can be obtained by inversion, see eq. (2.65).
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While the actual structure of the stiffness matrix is obtained based on energy
and symmetry arguments, the physical interpretation of the various terms appearing
in this matrix is not clear. For example, isotropic materials are shown to be charac-
terized by two independent coefficients, C11 and C12; in practice, isotropic materi-
als are generally characterized by their Young’s modulus and Poisson’s ratio, which
have a clear physical interpretation. These constants are called the engineering con-
stants because they can be readily measured experimentally. For the various types
of materials, the stiffness and compliance terms can be expressed in terms of the
engineering constants. The following section discusses the experimental determina-
tion and the physical interpretation of the engineering constants for a lamina made
of unidirectional fibers embedded in a matrix material.

2.6.1 Constitutive laws for a lamina in the fiber aligned triad

Consider a thin sheet of composite material made of unidirectional fibers embedded
in a matrix. Let axis ı̄∗1 be oriented along the fiber direction, ı̄∗2 in the transverse di-
rection, and ı̄∗3 is perpendicular to the plane of the thin sheet. Triad I∗ = (̄ı∗1, ı̄

∗
2, ı̄

∗
3)

is called the fiber aligned triad and the superscript (·)∗ will be used to indicate quan-
tities measured in this triad.

If the diameter of the fiber is small compared to the thickness of the sheet, the
material can be assumed to be a homogeneous, transversely isotropic material. The
existence of individual fibers can be ignored: fibers and matrix materials are smeared
into an equivalent, homogeneous, anisotropic material. For a linearly elastic, trans-
versely isotropic material the constitutive laws reduce to eq. (2.70).

It will be assumed that the thin sheet of material is in a plane stress state, see
section 1.3, i.e., σ∗3 ≈ τ∗13 ≈ τ∗23 ≈ 0. The constitutive laws expressed in compliance
form are written in the following form





ε∗1
ε∗2
γ∗12



 =




1/E∗
1 −ν∗21/E∗

2 0
−ν∗12/E∗

1 1/E∗
2 0

0 0 1/G∗12








σ∗1
σ∗2
τ∗12



 . (2.72)

The compliance matrix is expressed in terms of four constants, E∗
1 , E∗

2 , ν∗12, and G∗12,
which are called the engineering constants. Note that the compliance matrix must be
symmetric, thus ν∗12/E∗

1 = ν∗21/E∗
2 . This means that although five constants appear

in the expression of the compliance matrix, one of, them say ν∗21, can be computed
from the other, and hence, is not an independent quantity.

The engineering constants can be readily measured experimentally. Consider a
simple test where the composite is subjected to a known stress in the fiber direction
only, σ∗1 , i.e., σ∗2 = τ∗12 = 0, as depicted in the left part of fig. 2.17. The first equation
of (2.72) now reduces to ε∗1 = σ∗1/E∗

1 . The strain in the fiber direction, ε∗1, can be
measured as a function of the applied stress, σ∗1 , by means of a strain gauge, and the
modulus of elasticity is then computed as E∗

1 = σ∗1/ε∗1. Clearly, E∗
1 is the modulus

of elasticity of the material in the fiber direction.
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The second equation of (2.72) becomes ε∗2 = −ν12σ
∗
1/E∗

1 . The strain in the
direction transverse to the fiber, ε∗2, can also be measured by means of a strain gauge.
Poisson’s ratio now becomes ν∗12 = −E∗

1ε∗2/σ∗1 .
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Fig. 2.17. Three simple tests for the determination of the engineering constants.

Consider next a second test where the composite material is subjected to a known
stress in the direction transverse to the fiber, σ∗2 , i.e., σ∗1 = τ∗12 = 0, as depicted in
the middle portion of fig. 2.17. Using the same approach as before, a measurement
of the transverse strain, ε∗2, as a function of the transverse stress, σ∗2 , will then yield
E∗

2 , the modulus of elasticity of the material in the direction transverse to the fiber.
An additional measurement of the strain in the fiber direction, ε∗1, will yield ν∗21. The
symmetry of the compliance matrix can be verified experimentally by checking that
the various measured quantities satisfy the symmetry condition ν∗12/E∗

1 = ν∗21/E∗
2 ,

within the expected experimental errors.
Finally, in the last test, the composite material is subjected to a known shear

stress, τ∗12, only, i.e., σ∗1 = σ∗2 = 0, as depicted in right portion of fig. 2.17. The last
equation of (2.72) reduces to γ∗12 = τ∗12/G∗12. A measurement of the shear strain,
γ∗12, then allows the evaluation of the shearing modulus, G∗12 = τ∗12/γ∗12.

The stiffness matrix is obtained by inverting eq. (2.72) to find





σ∗1
σ∗2
τ∗12



 =




E∗
1

1− ν∗212E∗
2/E∗

1

ν∗12E
∗
2

1− ν∗212E∗
2/E∗

1

0

ν∗12E
∗
2

1− ν∗212E∗
2/E∗

1

E∗
2

1− ν∗212E∗
2/E∗

1

0

0 0 G∗12








ε∗1
ε∗2
γ∗12



 . (2.73)

To simplify the writing of the above relationships, the following stress and strain
arrays are introduced

σ∗ =
{
σ∗1 , σ∗2 , τ∗12

}T
, ε∗ =

{
ε∗1, ε

∗
2, γ

∗
12

}T
. (2.74)

The constitutive laws, eqs. (2.73) and (2.72), are written in compact form as

σ∗ = C∗ε∗, and ε∗ = S∗σ∗, (2.75)

respectively. The stiffness and compliance matrices are then
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C∗ =




E∗
1

1− ν∗212E∗
2/E∗

1

ν∗12E
∗
2

1− ν∗212E∗
2/E∗

1

0

ν∗12E
∗
2

1− ν∗212E∗
2/E∗

1

E∗
2

1− ν∗212E∗
2/E∗

1

0

0 0 G∗12


 =




C∗11 C∗12 0
C∗12 C∗22 0
0 0 C∗66


 , (2.76)

and

S∗ =




1/E∗
1 −ν∗21/E∗

2 0
−ν∗12/E∗

1 1/E∗
2 0

0 0 1/G∗12


 =




S∗11 S∗12 0
S∗12 S∗22 0
0 0 S∗66


 , (2.77)

respectively.
The engineering constant for lamina made of a few different type of materials are

listed in table 2.7. This table lists the volume fraction Vf , engineering constants E∗
1 ,

E∗
2 , ν∗12, and G∗12, as well as the density of the various lamina.

Table 2.7. Engineering constants for lamina made of different materials.

Material Vf E∗
1 E∗

2 ν∗12 G∗12 density
system [GPa] [GPa] [GPa] [kg/m3]

Graphite/Epoxy (T300/5208) 0.70 180. 10. 0.28 7.0 1600
Graphite/Epoxy (AS/3501) 0.66 138. 9. 0.30 7.0 1600
Boron/Epoxy (T300/5208) 0.50 204. 18. 0.23 5.6 2000

Scotchply (1002) 0.45 39. 8. 0.26 4.0 1800
Kevlar 49 0.60 76. 5.5 0.34 2.3 1460

2.6.2 Constitutive laws for a lamina in an arbitrary triad

In the previous section, the constitutive laws for

i1

i1

*
i2

*

i2

q

Fig. 2.18. Definition of two axis sys-
tems for a lamina.

a lamina made of a transversely isotropic mate-
rial are discussed. The stresses and strains are
measured in the fiber aligned triad, I∗. In many
cases, however, the constitutive laws for the
lamina are required for a direction that might
not coincide with that of the fibers. Figure 2.18
shows a transversely isotropic lamina with a
reference triad, I = (̄ı1, ı̄2, ı̄3) and the fiber
aligned triad, I∗. The fibers run at an angle θ with respect to a reference triad; angle
θ is counted positive in the counterclockwise direction. Let σ, and ε be the arrays
of in-plane stresses and strains, respectively, measured in the reference triad I. The
lamina constitutive laws, measured in triad I, now become

σ = C ε. (2.78)

Stiffness matrix C could be obtained experimentally by performing a series
a tests on the lamina, applying a stress along axis ı̄1 first, then along axis ı̄2, as
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described in the previous section. Although conceptually feasible, this approach is
not practical because a series of tests would have to be performed each time the
constitutive laws are desired for a specific angle θ. A better approach would be to
relate the stiffness properties at an angle θ to those measured in the fiber direction.
This can be readily achieved with the help of the formulae for computing stresses
and strains in a rotated axis system.

Rotation of the stiffness matrix

All the elements required to relate the constitutive laws in the two triads are now in
place. The constitutive laws for a lamina expressed in the fiber aligned triad, σ∗ =
C∗ε∗, are the starting point of the development. Introducing the rotation formulae
for stresses, eq. (1.47), and strain, eq. (1.91), yields




m2 n2 2mn
n2 m2 −2mn
−mn mn m2 − n2








σ1

σ2

τ12



 = C∗




m2 n2 mn
n2 m2 −mn

−2mn 2mn m2 − n2








ε1
ε2
γ12



 ,

where m = cos θ and n = sin θ. Multiplying from the left by the inverse of the
rotation matrix for stresses results in





σ1

σ2

τ12



 =




m2 n2 −2mn
n2 m2 2mn
mn −mn m2 − n2


C∗




m2 n2 mn
n2 m2 −mn

−2mn 2mn m2 − n2








ε1
ε2
γ12



 .

Comparing this relationship to (2.78) then leads to

C =




m2 n2 −2mn
n2 m2 2mn
mn −mn m2 − n2


C∗




m2 n2 2mn
n2 m2 −2mn
−mn mn m2 − n2


 . (2.79)

Performing this triple matrix multiplication yields the various terms of the stiff-
ness matrix

C =




C11 C12 C16

C12 C22 C26

C16 C26 C66


 , (2.80)

where C11 = m4C∗11 + n4C∗22 + 2m2n2C∗12 + 4m2n2C∗66 and similar expressions
hold for the other entries. In view of the complexity of this result that involves powers
of trigonometric functions, an alternative expression can be derived based on well-
known trigonometric identities to find

C11 = α1 + α2 + α3 cos 2θ + α4 cos 4θ,
C22 = α1 + α2 − α3 cos 2θ + α4 cos 4θ,
C12 = α1 − α2 − α4 cos 4θ,
C66 = α2 − α4 cos 4θ,
C16 = (α3/2) sin 2θ + α4 sin 4θ,
C26 = (α3/2) sin 2θ − α4 sin 4θ,

(2.81)
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where the four material invariants, α1, α2, α3, and α4, are defined as

α1 =
E∗

1 + E∗
2 + 2ν∗12E

∗
2

4α0
, α2 =

E∗
1 + E∗

2 − 2ν∗12E
∗
2

8α0
+

G∗12
2

, (2.82a)

α3 =
E∗

1 − E∗
2

2α0
, α4 =

E∗
1 + E∗

2 − 2ν∗12E
∗
2

8α0
− G∗12

2
, (2.82b)

and where α0 = 1− ν∗212E∗
2/E∗

1 .
This relationship is written in a more compact manner by defining the following

matrix

χ(θ) =




1 1 cos 2θ cos 4θ
1 1 − cos 2θ cos 4θ
1 −1 0 − cos 4θ
0 1 0 − cos 4θ
0 0 1

2 sin 2θ sin 4θ
0 0 1

2 sin 2θ − sin 4θ




, (2.83)

which is a function of the lamina orientation angle only. Next, the array of stiffness
component is defined as

C =
{
C11, C22, C12, C66, C16, C26

}T
, (2.84)

and finally, the array of material invariants

α =
{
α1, α2, α3, α4

}T
. (2.85)

With these notations, the entries of the stiffness matrix for a lamina with a fiber
orientation angle θ can be written as

C(θ) = χ(θ)α. (2.86)

In summary, the stiffness matrix for a lamina can be obtained as follows.

1. Determine the engineering constants, E∗
1 , E∗

2 , ν∗12, and G∗12 by performing a
series of test on the lamina, as discussed in section 2.6.1.

2. Compute the stiffness matrix, C∗, in the fiber aligned triad, see eq. (2.76).
3. Compute the material invariants, α1, α2, α3, and α4, with the help of eqs.(2.82).

Set up the array of material invariants defined by eq. (2.85).
4. Set up matrix χ(θ) given by eq. (2.83) for the desired fiber orientation angle, θ,

and evaluate the components of the stiffness matrix using eq. (2.86).

The material invariants for lamina made of a few different type of materials are
listed in table 2.8. This table lists the material invariants computed from eqs. (2.82)
based on the data of table 2.7.

Figure 2.19 shows the stiffness components, C11 and C22, as a function of the
lamina angle, θ, for the Graphite/Epoxy T300/5208 material system. Note the rapid
decline of the stiffness coefficient, C11, when the lamina angle moves away from 0
degrees. This sharp decline is due to the high directionality of the lamina stiffness
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Table 2.8. Material invariants for lamina made of different materials.

Material system α1 [GPa] α2 [GPa] α3 [GPa] α4 [GPa]
Graphite/Epoxy (T300/5208) 49.11 26.65 85.37 19.65
Graphite/Epoxy (AS/3501) 38.32 21.30 64.88 14.30
Boron/Epoxy (T300/5208) 57.84 29.64 93.44 24.04

Scotchply (1002) 12.97 7.43 15.72 3.43
Kevlar 49 21.49 10.95 35.55 8.65

properties. The shearing stiffness component, C66, shown in fig. 2.20, drastically in-
creases when the lamina angle is 45 degrees. This can be explained as follows: a state
of pure shear, see section 1.3.5, is equivalent to stresses in tension and compression
acting at 45 and 135 degree angles, respectively. Theses stresses are now aligned
with the fiber direction, which presents very high stiffness.

The coupling stiffness terms, C16 and C26, do not vanish. These terms express a
coupling between extension and shearing of the lamina. In contrast, the stiffness ma-
trix, C∗, expressed in the fiber aligned triad, has vanishing terms in the corresponding
entries. Indeed, when the loading is applied along the fiber direction, which is the in-
tersection of two planes of symmetry, the response of the system must be symmetric,
precluding extension-shear coupling. When the loading is no longer aligned with the
intersection of the two planes of symmetry, a coupled response of the lamina is in-
tuitively expected. Figure 2.21 shows the stiffness components, C16 and C26, as a
function of lamina angle θ.
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Fig. 2.19. Variation of the stiffness coeffi-
cients, C11 and C22, and the engineering
constants, E1 and E2, as a function of θ.

Fig. 2.20. Variation of the stiffness coeffi-
cient, C66, and engineering constant, G12 as
a function of θ.

Rotation of the compliance matrix

The lamina constitutive laws can be expressed in the stiffness form, eq. (2.78), or in
the compliance form as
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Fig. 2.21. Variation of the coupling stiffness coefficients, C16 and C26, with the lamina angle
θ.

ε = S σ, (2.87)

where S = C−1 is the compliance matrix measured in the arbitrary triad. Of course,
the compliance matrix can be obtained by inverting the stiffness matrix, as indicated
by eq. (2.65), but a direct determination is also possible. Introducing the stress rota-
tion formula, eq. (1.47), and strain rotation formula, eq. (1.91), into the constitutive
laws, eq. (2.75), and identifying the result with eq. (2.87) yields

S =




m2 n2 −mn
n2 m2 mn

2mn −2mn m2 − n2


S∗




m2 n2 2mn
n2 m2 −2mn
−mn mn m2 − n2


 . (2.88)

Performing this triple matrix multiplication yields the terms of the compliance matrix

S =




S11 S12 S16

S12 S22 S26

S16 S26 S66


 =




1/E1 −ν21/E2 ν61/G12

−ν12/E1 1/E2 ν62/G12

ν16/E1 ν26/E2 1/G12


 , (2.89)

where E1, E2, ν12, G12, ν16, and ν26, define the engineering constants in the ar-
bitrary triad. Due to the symmetry of the compliance matrix, the following relation-
ships hold ν12/E1 = ν21/E2, ν16/E1 = ν61/G12, and ν26/E2 = ν62/G12. The first
entry of the compliance matrix is S11 = m4S∗11 + n4S∗22 + 2m2n2S∗12 + m2n2S∗66,
and similar expressions can be obtained for the other entries. In view of the com-
plexity of this result that involves powers of trigonometric functions, an alternative
expression is derived based on well-known trigonometric identities to find

S11 = β1 + β2 + β3 cos 2θ + β4 cos 4θ,
S22 = β1 + β2 − β3 cos 2θ + β4 cos 4θ,
S12 = β1 − β2 − β4 cos 4θ,
S66 = 4β2 − 4β4 cos 4θ,
S16 = β3 sin 2θ + 2β4 sin 4θ,
S26 = β3 sin 2θ − 2β4 sin 4θ,

(2.90)
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where the material invariants, β1, β2, β3, and β4, are defined as

β1 =
1
4

(
1

E∗
1

+
1

E∗
2

− 2ν∗12
E∗

1

)
, β2 =

1
8

(
1

E∗
1

+
1

E∗
2

+
2ν∗12
E∗

1

)
+

1
8G∗12

, (2.91a)

β3 =
1
2

(
1

E∗
1

− 1
E∗

2

)
, β4 =

1
8

(
1

E∗
1

+
1

E∗
2

+
2ν∗12
E∗

1

)
− 1

8G∗12
. (2.91b)

Explicit expression for the engineering constants can be obtained from eq. (2.89)

E1 = 1/ (β1 + β2 + β3 cos 2θ + β4 cos 4θ) , (2.92a)
E2 = 1/ (β1 + β2 − β3 cos 2θ + β4 cos 4θ) , (2.92b)
ν12 = − (β1 − β2 − β4 cos 4θ) / (β1 + β2 + β3 cos 2θ + β4 cos 4θ) , (2.92c)
G12 = 1/ (4β2 − 4β4 cos 4θ) , (2.92d)
ν16 = (β3 sin 2θ + 2β4 sin 4θ) / (β1 + β2 + β3 cos 2θ + β4 cos 4θ) , (2.92e)
ν26 = (β3 sin 2θ − 2β4 sin 4θ) / (β1 + β2 + β3 cos 2θ + β4 cos 4θ) . (2.92f)

These engineering constants can also be measured experimentally by performing
the various tests depicted in fig. 2.22. The tests are similar to those discussed in
section 2.6.1, except for the fact that stresses are now applied at an angle θ with
respect to the fibers.
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Fig. 2.22. Three simple tests for the determination of the engineering constants.

Figure 2.19 shows the variation of the modulus of elasticity, E1, as a function of
the lamina angle θ. Note the precipitous drop in the modulus of elasticity when the
lamina angle moves away from 0 degrees. This drop is much more pronounced than
that of the stiffness coefficient, C11.

It is important to understand the difference between the stiffness coefficient, C11,
and the engineering constant, E1. Mathematically, these two quantities clearly are
different: E1 = 1/S11 but 1/S11 6= C11 because the inverse of a matrix is not sim-
ply the inverse of its terms. This difference is easily understood in physical terms by
looking at the tests that would allow the measurement of these quantities. Figure 2.22
shows the tests to be performed to measure the engineering constants, and fig. 2.23
shows the corresponding tests to be performed to measure the stiffness coefficients.
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Focusing on the first test depicted in fig. 2.22, a single stress component, σ1, is ap-
plied, i.e., σ2 = τ12 = 0. A complex state of strain results that involves ε1, ε2, and
γ12. The measurement of the strain component, ε1, yields E1 from the first eq. (2.87),
the measurement of ε2 yields ν12 from the second eq. (2.87), and the measurement
of γ12 yields ν16 from the last eq. (2.87).

s1
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s2 s2

e1

e2 t12

t12
t12

t12

e g2 12=      = 0 e g1 12=      = 0

e e1 2= = 0

Test 1 Test 2 Test 3

Fig. 2.23. Three simple tests for the determination of the stiffness coefficients.

In the first test depicted in fig. 2.23, a single strain component, ε1, is applied,
i.e., ε2 = γ12 = 0. A complex state of stress results that involves stress components
σ1, σ2, and τ12. Measurements of these stresses would yield the stiffness coeffi-
cients, C11, C12, and C16, from the first, second, and last equation of eqs. (2.78),
respectively. Although conceptually simple, the tests depicted in fig. 2.23 are very
difficult to perform in practice. For the first test, the test specimen would have to be
constrained to prevent any deformations except for strain component ε1, and the re-
sulting stresses components would then need to be measured. Furthermore, friction
between the sample and the side restraints should be completely eliminated. Clearly,
such test is difficult to perform in practice.

Considering the first test in fig. 2.23 it is clear that the stiffness coefficient, C11,
reflects the stiffness of the material when it is constrained, i.e., when ε2 = γ12 = 0.
The effect of these constraints is to considerably stiffen the response of the material.
At a 20 degree lamina angle, the stiffness coefficient C11 is about 130 GPa, see
fig. 2.19, whereas the engineering constant E1 is only about 50 GPa. The effect of
constraining the material is clearly very important.

A similar effect is observed in fig. 2.19, which compares the stiffness coefficient,
C66, and the shearing modulus, G12. The stiffness coefficient increases considerably,
whereas the shearing modulus rises very modestly. Both quantities, however, reach
their maximum values for a 45 degree lamina angle.

Figure 2.24 shows the Poisson’s ratios, ν12, and ν21. Poisson’s ratio ν12 has a
value of 0.28 at a 0 degree lamina angle, but a value of about 0.02 only for a 90
degree lamina angle. For most metals, Poisson’s ratio is about 0.3; with composite
materials, a much wider range of value is observed. Finally, fig. 2.24 also shows the
variation of the engineering constants ν16, ν61, ν26, and ν62 as a function the lamina
angle.
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2.7 Strength of a transversely isotropic lamina

The constitutive laws for a linearly elastic, transversely isotropic material are in-
vestigated in section 2.6.2. The equations developed in that section express a linear
relationship between stress and strain, but provide no information about the strength
of the material.

2.7.1 Strength of a lamina under simple loading conditions

The strength of a lamina made of transversely isotropic material can be experimen-
tally determined by performing a series of simple tests. In practical applications,
this lamina will be under plane state of stress. Consider a first test where the lam-
ina is subjected to a single tensile stress, σ∗1 , applied in the fiber direction, i.e.,
σ∗2 = τ∗12 = 0, as depicted in fig. 2.26. As the applied stress increases, a point is
reached where the material fails. Let σ∗f1t be the stress level at which failure occurs.
The same test could be repeated for a compressive stress σ∗1 , and let σ∗f1c be the abso-
lute value of the compressive stress at failure. There is no reason to believe that σ∗f1t

and σ∗f1c are, in general, equal. Therefore, the subscripts (.)t and (.)c will be used to
distinguish the tensile and compressive failure stresses, respectively.

In a second test, depicted in fig. 2.26, the lamina is subjected to a single tensile
stress, σ∗2 , applied in the direction transverse to the fiber, i.e., σ∗1 = τ∗12 = 0. The
applied stress level that corresponds to failure of the lamina is denoted σ∗f2t , and
let σ∗f2c be the absolute value of the compressive stress that corresponds to failure.
Figure 2.26 also shows the third test to be performed in which the lamina is subjected
to a shear stress, τ∗12, whereas σ∗1 = σ∗2 = 0. Let τ∗f12 denote the level of applied shear
stress that corresponds to failure. Clearly, the failure level in shear does not depend
on the sign of the shear stress.

Although conceptually simple, the above tests can be very difficult to perform
in practice. Care must be taken in the tensile tests to reinforce the ends of the test
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Fig. 2.26. Three tests for the determination of the strength of a lamina

specimens that fit into the grips of the testing machine to avoid premature failure
near the grips. Furthermore, the specimen must be long enough to ensure that the
test section is free of end effects. The test setup to measure compressive strength
is far more complex because buckling of the specimen must be prevented. This can
be achieved by providing lateral support of the test sample. Performing the shear
test is also very complex. Subjecting a flat specimen to a state of pure shear is very
difficult to achieve experimentally. Of course, a tubular specimen can be used, but at
a far greater cost. Table 2.9 lists the typical failure stress levels for lamina made of
different materials.

Table 2.9. Typical failure stresses for lamina made of different materials.

Material σ∗f
1t σ∗f

1c σ∗f
2t σ∗f

1c τ∗f
12

system [MPa] [MPa] [MPa] [MPa] [MPa]
Graphite/Epoxy (T300/5208) 1500 1500 40 240 68
Graphite/Epoxy (AS/3501) 1450 1450 52 205 93
Boron/Epoxy (T300/5208) 1260 2500 61 202 67

Scotchply (1002) 1060 610 31 118 72
Kevlar 49 1400 235 12 53 34

2.7.2 Strength of a lamina under combined loading conditions

In practical design situations, the lamina might be subjected to several stress com-
ponents simultaneously. Consider, for instance, a lamina subjected to stresses along
both the fiber direction and the transverse direction. Figure 2.27 shows the corre-
sponding stress space and the failure stress levels σ∗f1t , σ∗f1c , σ∗f2t , and σ∗f2c which
correspond to the various failure stress levels measured in the tests described pre-
viously. Assume that equal stresses are applied in both directions simultaneously,
i.e., σ∗1 = σ∗2 . These stress states form a 45 degree line in the stress space. As the
applied stresses increase, failure will occur at a certain level. Of course, the applied
stresses σ∗1 and σ∗2 could be applied in any proportion, corresponding to various ra-
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dial lines emanating from the origin of the stress space. A different failure level will
correspond to each radial line.

To cover all possible combinations, the failure envelope, depicted in fig. 2.27,
should be known. All stress states within the failure envelope correspond to stress
levels the material can sustain without failing, whereas the stress states outside the
failure envelope result in failure.
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Fig. 2.27. Stress space for a lamina in biaxial stress state.

Clearly, the failure envelope could be obtained experimentally by performing a
large number of tests with various combinations of applied stress components, σ∗1 ,
σ∗2 , and τ∗12. This approach is not practical because it would require an overwhelm-
ing amount of testing to determine the failure envelope. A more desirable approach
would be to determine the failure envelope based on the knowledge of a few failure
stress levels such as σ∗f1t , σ∗f1c , σ∗f2t , σ∗f1c , and τ∗f12 . This can be achieved by means of a
failure criterion that predicts failure under combined loads. Although many different
failure criteria have been proposed, none is fully satisfactory, in the sense that their
predictions are not always in very good agreement with the experimentally measured
failure stresses. They are, however, widely used in preliminary design.

It is important to note that when designing with composite materials, the failure
mode is often as important as the failure stress. Indeed, consider the case of a lamina
subjected to a load transverse to the fibers: the lamina will fail at a very low stress
level which is indicative of the low load carrying capability of the matrix material.
On the other hand, if the same lamina is subjected to a stress aligned with the fibers,
it will fail at a far higher stress level which reflects the high strength of the fiber.
The failure modes in the two cases are quite different: matrix failure for the former,
fiber failure for the latter. Failure of the matrix due to a transverse load does not
substantially decrease the ability of the lamina to continue to carry high loads in the
fiber direction, whereas with fiber failure, load carrying capability is completely lost.
Clearly, a matrix failure is not always a catastrophic event in contrast to fiber failure,
which completely eliminates any load carrying capability.

2.7.3 The Tsai-Wu failure criterion

A commonly used failure criterion is the Tsai-Wu failure criterion. This criterion
states that the failure condition is reached when the combined applied stresses satisfy
the following equality
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F ∗11σ
∗2
1 + 2F ∗12σ

∗
1σ∗2 + F ∗22σ

∗2
2 + F ∗66τ

∗2
12 + F ∗1 σ∗1 + F ∗2 σ∗2 = 1, (2.93)

where the coefficients F ∗11, F ∗12, F ∗22, F ∗66, F ∗1 , and F ∗2 must be determined experi-
mentally. Note that the stress components appearing in the criterion are expressed in
the fiber aligned triad. Consider first the test described earlier where a single stress
component σ∗1 is applied. At failure in tension and in compression, the above equality
must be satisfied, implying

F ∗11σ
∗f2
1t + F ∗1 σ∗f1t = 1, F ∗11σ

∗f2
1c − F ∗1 σ∗f1c = 1.

The second test involves stress component σ∗2 only and yields

F ∗22σ
∗f2
2t + F ∗2 σ∗f2t = 1, F ∗22σ

∗f2
2c − F ∗2 σ∗f2c = 1.

Finally, the last test involves τ∗12 only and implies F ∗66τ
∗f2
12 = 1. These five equations

can be solved for five of the coefficients appearing in eq. (2.93) to find

F ∗11 =
1

σ∗f1t σ∗f1c

, F ∗22 =
1

σ∗f2t σ∗f2c

, F ∗66 =
1

τ∗f2
12

;

F ∗1 =
σ∗f1c − σ∗f1t

σ∗f1t σ∗f1c

, F ∗2 =
σ∗f2c − σ∗f2t

σ∗f2t σ∗f2c

.

These results are introduced in the initial statement of the failure criterion, eq. (2.93),
to yield

σ̄∗211 + 2F̄ ∗12σ̄
∗
11σ̄

∗
22 + σ̄∗222 + τ̄∗212 + F̄ ∗1 σ̄∗11 + F̄ ∗2 σ̄∗22 = 1, (2.94)

where the following non-dimensional stress components are defined,

σ̄∗11 =
σ∗1√

σ∗f1t σ∗f1c

; σ̄∗22 =
σ∗2√

σ∗f2t σ∗f2c

; τ̄∗12 =
τ∗12
τ∗f12

; (2.95)

as well as the following non-dimensional coefficients:

F̄ ∗1 =
σ∗f1c − σ∗f1t√

σ∗f1t σ∗f1c

; F̄ ∗2 =
σ∗f2c − σ∗f2t√

σ∗f2t σ∗f2c

. (2.96)

Coefficient F̄ ∗12 is as yet undetermined. Clearly, an additional test involving a
biaxial state of applied stress (i.e., a test where both σ∗1 and σ∗2 are applied simulta-
neously) is required to determine this coefficient. Because such a biaxial test is very
difficult to perform, coefficient F̄ ∗12 is often selected by fitting the prediction of the
criterion to available experimental data. F̄ ∗12 = −1/2 has been found to provide the
best fit. The final statement of the Tsai-Wu criterion becomes

σ̄∗211 − σ̄∗11σ̄
∗
22 + σ̄∗222 + τ̄∗212 + F̄ ∗1 σ̄∗11 + F̄ ∗2 σ̄∗22 = 1. (2.97)
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Example 2.3. Tsai-Wu failure criterion for uniaxial stress
As an example of application of this criterion consider the simple test shown in
fig. 2.28. A single stress component, σ1, is applied to a lamina with fibers running at
an angle θ. The stress rotation formula (1.47) yields the applied stresses in the fiber
aligned triad as σ∗1 = σ1 cos2 θ, σ∗2 = σ1 sin2 θ, and τ∗12 = −σ1 cos θ sin θ.

The level of applied stress that corresponds to failure satisfies the failure crite-
rion 2.97, i.e.,

σ2
1


 cos4 θ

σ∗f1t σ∗f1c

− sin2 θ cos2 θ√
σ∗f1t σ∗f1c σ∗f2t σ∗f2c

+
sin4 θ

σ∗f2t σ∗f2c

+
sin2 θ cos2 θ

τ∗f2
12




+ σ1


 F̄ ∗1 cos2 θ√

σ∗f1t σ∗f1c

+
F̄ ∗2 sin2 θ√

σ∗f2t σ∗f2c


− 1 = 0.

This second order equation can be solved to find the failure load. The two solu-
tions correspond to the failure loads in tension and compression. Figure 2.29 shows
the absolute value of these failure loads as a function of the lamina angle θ for the
Graphite/Epoxy materials (T300/5208) whose properties are given in table 2.9. Note
the precipitous drop in strength as the lamina angle moves away from 0 degrees.

2.7.4 The reserve factor

The concept of reserve factor is often used in stress computations. The reserve factor,
R, is defined as the factor by which the applied stress can be multiplied to reach
failure, i.e.,

σfail = R σappl. (2.98)

From this definition it follows that:

• R = 1 means that the applied stresses causes failure;
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• R > 1 means that the applied stresses level is safe, i.e., it is below the failure
level. A reserve factor of two means that the applied stresses can be doubled
before failure occurs;

• R < 1 means that the applied stresses is above the failure stress.

Let σ∗1 , σ∗2 , and τ∗12 be the stresses applied to a lamina. By definition of the re-
serve factor, it follows that Rσ∗1 , Rσ∗2 , Rτ∗12 is the stress level that will cause failure.
Assuming failure can be predicted by the Tsai-Wu failure criterion, eq. (2.97), the
failure condition can be written as

(Rσ∗1)2

σ∗f1t σ∗f1c

− (Rσ∗1)(Rσ∗2)√
σ∗f1t σ∗f1c σ∗f2t σ∗f2c

+
(Rσ∗2)2

σ∗f2t σ∗f2c

+
(Rτ∗12)

2

τ∗f2
12

+F̄ ∗1
Rσ∗1√
σ∗f1t σ∗f1c

+ F̄ ∗2
Rσ∗2√
σ∗f2t σ∗f2c

− 1 = 0.

Introducing the non-dimensional stresses, eq. (2.95), and regrouping the powers of
R yields the following quadratic equation for the reserve factor

(
σ̄∗211 − σ̄∗11σ̄

∗
22 + σ̄∗222 + τ̄∗212

)
R2 +

(
F̄ ∗1 σ̄∗11 + F̄ ∗2 σ̄∗22

)
R− 1 = 0. (2.99)

This quadratic equation has two roots, R1 and R2, which are positive and neg-
ative, respectively. The positive root gives the failure stress level, and the negative
root gives the failure stress level when the sign of the applied stresses is reversed.
In general, |R1| 6= |R2| since the failure stress level in tension and compression are
different.
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Linear elasticity solutions

The equations of linear elasticity are derived in chapters 1 and 2, and can be divided
into three groups: the equilibrium equations, the strain displacement equations, and
the constitutive laws. Figure 3.1 shows these three groups of equations in a block
diagram.

Newton’s
Laws

Equilibrium
equations

Constitutive
laws

Material
science

Geometry

Strain-
displacement,
compatibility

Equations
of elasticity

Physics
or science

origin

Fig. 3.1. The elasticity equations separated into three groups.

The equilibrium equations express the equilibrium conditions for a differential
element of the body in terms of the stress field. These equilibrium conditions are
a direct consequence Newton’s laws applied to a differential element of the de-
formable body. They consists of the three partial differential equations of equilib-
rium, eqs. (1.4).

The strain-displacement equations, also called the kinematic equations, describe
the deformation of the body without reference to the forces that create the deforma-
tion. The strain components are defined based on a purely kinematic description of
the deformed and undeformed configurations of the solid. The strain-displacement
equations consists of the six partial differential equations relating the strain compo-
nents to the displacement components, eqs. (1.63) and (1.71).



102 3 Linear elasticity solutions

The constitutive laws describe the behavior of materials under load. More specif-
ically, they take the form of relationships linking the stress and strain components at
a point. Constitutive laws are rooted in material science and express an approxima-
tion to the observed behavior of actual materials. For Hooke’s law, they consists of
six algebraic equations, eqs. (2.4) and (2.9).

A total of 15 equations of linear elasticity are obtained. Given the proper bound-
ary conditions, these 15 equations can be solved to obtain the following 15 un-
knowns: the three components of the displacement vector, the six components of
the strain tensor, and the six components of the stress tensor.

In addition, the six partial differential strain compatibility equations, eqs. (1.106),
impose certain continuity conditions on the displacement components that may arise
from a state of strain. While these compatibility equations are not part of the basic 15
equations of elasticity, their use may be a critical element of any solution procedure.
In this chapter, solutions of this set of equations will be presented for very simple
problems. Indeed, exact solutions for realistic problems are very difficult to obtain
in general.

3.1 Solution procedures

The linear equations of elasticity form a set of coupled partial differential equations
that are elegantly simple but like most partial differential equations, are often quite
difficult to solve for realistic problems. Considerable simplification can be achieved
when the general, three-dimensional formulation is reduced to a two-dimensional
formulation by assuming the problem to be either plane stress or plane strain, as dis-
cussed in sections 1.3 or 1.6, respectively. Further simplification can be achieved for
problems presenting specific symmetries. For example, the governing equations for
two-dimensional problems featuring cylindrical symmetry reduce to ordinary differ-
ential equations. It is often necessary, however, to reformulate the elasticity equa-
tions in cylindrical or spherical coordinates to take advantage of specific symmetries
or easily impose boundary conditions.

Three approaches are available for the solution of elasticity problems.

1. Displacement formulations: the objective is to derive three equations for the
three unknown displacement components.

2. Stress formulations: the objective is to solve for the state of stress in the body.
This means that six equations are required for the six stress components.

3. Semi-inverse approaches: assumptions are made to solve the problem for a sub-
set of the variables. With that solution at hand, the remaining equations of the
problem are solved. If all equations can be exactly satisfied, an exact solution is
obtained and the initial assumptions are validated.

For all three approaches, dimensional reduction is often performed first. Under spe-
cific conditions, the initial three-dimensional problem can be reduced to a two- and
sometimes one-dimensional problem, considerably easing the solution process. Ex-
amples of these various approaches are given in the following sections.
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3.1.1 Displacement formulation

A formulation leading to equations involving only the displacement components, u1,
u2, and u3, is readily developed based on the following procedure.

1. Substitute the stress-strain equations (2.4) and (2.9) into the three equilibrium
equations (1.4) to obtain three equations expressed in terms of strain compo-
nents.

2. Substitute the strain-displacement equations (1.63) and (1.71) into these equa-
tions to obtain a set of three equilibrium equations expressed in terms of the
displacement components, u1, u2, and u3 alone.

These equations are generally referred to as Navier’s equations. Given appro-
priate boundary conditions expressed in terms of displacement components, solu-
tion of Navier’s equations yields the unknown displacement field throughout the
body. While specification of displacement boundary conditions is straightforward,
the specification of traction boundary conditions in terms of displacements often lead
to complicated formulations. It is left as an exercise to show that Navier’s equations
are

E

2(1 + ν)(1− 2ν)
∂e

∂x1
+ G ∇2u1 + b1 = 0 (3.1a)

E

2(1 + ν)(1− 2ν)
∂e

∂x2
+ G ∇2u2 + b2 = 0 (3.1b)

E

2(1 + ν)(1− 2ν)
∂e

∂x3
+ G ∇2u3 + b3 = 0, (3.1c)

where e is the volumetric strain defined by eq. (1.75). The differential operator, ∇2,
called the Laplacian, is defined as

∇2 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

. (3.2)

If body forces are constant throughout the body, taking a derivative with respect to
x1, x2, and x3 of eqs. (3.1a), (3.1b) and (3.1c), respectively, and summing up the
resulting equations leads to

∂e

∂x2
1

+
∂e

∂x2
2

+
∂e

∂x2
3

= ∇2e = 0. (3.3)

Thus, for constant body forces, the volumetric strain satisfies the homogeneous
Laplace’s equation.

3.1.2 Stress formulation

It is a much more difficult task to formulate elasticity equations in terms of the stress
components. The three equilibrium equations alone are not sufficient to determine
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the six unknown stress components. In this case, the compatibility equations must
be included to insure that stress components correspond to a deformation state that
is continuous and sufficiently smooth. The formulation is quite tedious but can be
accomplished by following the steps.

1. Substitute the stress-strain equations (2.4) and (2.9) into the six compatibility
equations (1.106).

2. Further simplify these six equations into three equations for the normal stresses
and three equations for the shear stresses.

The resulting equations are called Beltrami-Michell’s equations, which can be
written as

∇2σ1 +
1

1 + ν

∂2I1

∂x2
1

+
ν

1− ν

(
∂b1

∂x1
+

∂b2

∂x2
+

∂b3

∂x3

)
+ 2

∂b1

∂x1
= 0, (3.4a)

∇2σ2 +
1

1 + ν

∂2I1

∂x2
2

+
ν

1− ν

(
∂b1

∂x1
+

∂b2

∂x2
+

∂b3

∂x3

)
+ 2

∂b1

∂x2
= 0, (3.4b)

∇2σ3 +
1

1 + ν

∂2I1

∂x2
3

+
ν

1− ν

(
∂b1

∂x1
+

∂b2

∂x2
+

∂b3

∂x3

)
+ 2

∂b1

∂x3
= 0, (3.4c)

∇2τ12 +
1

1 + ν

∂2I1

∂x1∂x2
+

(
∂b1

∂x2
+

∂b2

∂x1

)
= 0, (3.4d)

∇2τ23 +
1

1 + ν

∂2I1

∂x2∂x3
+

(
∂b2

∂x3
+

∂b3

∂x2

)
= 0, (3.4e)

∇2τ31 +
1

1 + ν

∂2I1

∂x3∂x1
+

(
∂b1

∂x3
+

∂b3

∂x1

)
= 0, (3.4f)

where I1 is the first stress invariant given by eq. (1.15a). These equations, along
with appropriate stress boundary conditions, can be solved for the stress state within
the body. Solutions to all but the simplest problems are extremely difficult to con-
struct. Moreover, many problems of practical interest involve boundary conditions
expressed in terms of displacement components over parts of the body and in terms
of stress components over other portions of the body; this leads to so called “mixed
boundary value problems,” which are very difficult to handle for all but the simplest
problems.

If body forces are constant throughout the body, summing up eqs. (3.4a) to (3.4c)
leads to ∇2I1 = 0, i.e., the first stress invariant satisfies the homogeneous Laplace’s
equation. Introducing eq. (2.18), this becomes E/(1 − 2ν) ∇2e = 0 and finally
∇2e = 0, a result that is obtained in the previous section, see eq. (3.3).

3.1.3 Solutions to elasticity problems

Solutions to practical problems in three dimensions are very difficult to achieve for
all but the simplest geometries. This is largely due to the large number of partial
differential equations in the governing equations of linear elasticity and the fact that
solutions to partial differential equations involve arbitrary functions (rather than the
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much simpler arbitrary constants that occur in solutions to ordinary differential equa-
tions). The choice of such functions generally depends critically on the particular ge-
ometry of the problem under consideration. In this section, one single problem will
be treated to illustrate the difficulty of the solution procedure.

Example 3.1. Rectangular bar hanging under its own weight
To illustrate the solution problem for a simple practical problem, the stress and dis-
placement distributions in a prismatic bar hanging vertically under its own weight
will be evaluated. For simplicity, consider a prismatic bar of length L, with a rectan-
gular cross-section of width b and thickness t, hanging vertically under the action of
gravity as shown in fig. 3.2. The cross-sectional dimensions of the bar are assumed
to be far smaller than its length, i.e., b/L ¿ 1 and t/L ¿ 1.

i1

i2

i3

t

b

rg
L

Fig. 3.2. Prismatic bar hanging under its own weight.

While a number of approaches to this problem are possible, perhaps the simplest
is to seek a solution for the stress field. This is a natural choice because all the sides
of the bar are stress-free, except for the top surface where it is attached to the support.
Expressing these stress-free boundary conditions is relatively easy in a stress based
formulation. While the six Beltrami-Michell equations, eqs. (3.4), could be used as
the starting point of this development, it is easier to adopt a semi-inverse method, in
which simplifying assumptions are made prior to solving the governing equations.

Because the cross-sectional dimensions of the bar are small compared to its
length, it seems reasonable to assume that, (1) all transverse stress components
vanish, and (2) the axial stress, σ3, is solely a function of the variable x3. With
these simplifications, the three equilibrium equations reduce to the single equation,
dσ3/dx3 + b3 = 0. The applied load per unit volume of the bar is b3 = −ρg, where
ρ is the material mass density and g the gravitational constant; this equation is in-
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tegrated to find the axial stress component, σ3, as σ3 =
∫ −b3 dx3 = ρgx3 + C,

where C is an integration constant.
The stress boundary conditions can be expressed using eq. (1.9), but since all

surfaces are perpendicular to one of the coordinate axes, it follows that σ1 = τ12 =
τ13 = 0 on faces normal to axis ı̄1, σ2 = τ21 = τ23 = 0 on faces normal to ı̄2,
and σ3 = τ31 = τ32 = 0 on the lower face. The assumed stress state satisfies all
these boundary conditions except for the condition that σ3 = 0 on the lower face.
Imposing this condition on the stress field yields C = 0 and hence,

σ3 = ρgx3. (3.5)

All all other stress components vanish. This solution implies that the stress on the
upper surface, at x3 = L, is σ3 = ρgL. The net force on this area is the integral of
the stress over the cross-section, which is equal to ρgLbt, the total weight of the bar,
as expected from elementary statics.

Now that the stress field throughout the body has been established, the corre-
sponding displacement field must be evaluated. The first step in determining the dis-
placement components is to express the strains in terms of the stresses using the
constitutive equations (2.4) and (2.8) to find

ε1 = −νρgx3

E
, ε2 = −νρgx3

E
, ε3 =

ρgx3

E
, γ12 = γ13 = γ23 = 0. (3.6)

The shear strain components vanish, while the direct strain components are linear
functions of x3, hence, all six compatibility equations (1.106) are satisfied.

To determine the displacements, it is necessary to integrate the strain-
displacement equations (1.63) and (1.71) which can be stated as follows

∂u1

∂x1
= −νρg

E
x3, (3.7a)

∂u2

∂x2
= −νρg

E
x3, (3.7b)

∂u3

∂x3
=

ρg

E
x3, (3.7c)

∂u1

∂x2
+

∂u2

∂x1
= 0, (3.7d)

∂u1

∂x3
+

∂u3

∂x1
= 0, (3.7e)

∂u2

∂x3
+

∂u3

∂x2
= 0. (3.7f)

Integration of these partial differential equations to determine the displacement field
turns out to be a bit more challenging than it appears. Integrating eq. (3.7c) yields
the third displacement component as

u3 =
ρg

2E
x2

3 + f1(x1, x2), (3.8)
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where the constant of partial integration is a function, f1(x1, x2), rather than simply
a constant, as would be the case for ordinary differential equations. This result can
now be substituted into equations (3.7e) and (3.7f) to find ∂u1/∂x3 = −∂f1/∂x1

and ∂u2/∂x3 = −∂f1/∂x2. These equations can be integrated to yield

u1 = − ∂f1

∂x1
x3 + f2(x1, x2), u2 = − ∂f1

∂x2
x3 + f3(x1, x2), (3.9)

where f2(x1, x2) and f3(x1, x2) are arbitrary functions arising from the integration.
While eqs. (3.7c), (3.7e) and (3.7f) have been used already, the above displacements
can be substituted into eqs. (3.7a) and (3.7b) to find−(∂2f1/∂x2

1) x3+(∂f2/∂x1) =
−(νρg/E) x3 and −(∂2f1/∂x2

2) x3 + (∂f3/∂x2) = −(νρg/E) x3, which can be
rearranged into a more useful form as

(
∂2f1

∂x2
1

− νρg

E

)
x3 =

∂f2

∂x1
,

(
∂2f1

∂x2
2

− νρg

E

)
x3 =

∂f3

∂x2
. (3.10)

These results must be carefully examined: functions f1(x1, x2), f2(x1, x2), and
f3(x1, x2) are all three independent of x3. Because the above equations must hold
for any value of x3, the expressions in parentheses, which depend only on x1 and x2,
must vanish, as must the righthand sides of the equations, implying that

∂2f1

∂x2
1

=
νρg

E
, (3.11a)

∂2f1

∂x2
2

=
νρg

E
, (3.11b)

∂f2

∂x1
= 0, (3.11c)

∂f3

∂x2
= 0. (3.11d)

These expressions are still insufficient to determine the functions f1(x1, x2),
f2(x1, x2) and f3(x1, x2), but eq. (3.7d) has not yet been used. Substituting u1 and
u2 from eq. (3.9) into eq. (3.7d) yields

−2
∂2f1

∂x1∂x2
x3 +

∂f3

∂x1
+

∂f2

∂x2
= 0.

The reasoning used earlier applies here again: because the above equation must hold
for any value of x3 and because f2 and f3 are functions of x1 and x2 only, both the
coefficient of x3 and the independent term must vanish, leading to

∂2f1

∂x1∂x2
= 0 (3.12a)

∂f3

∂x1
+

∂f2

∂x2
= 0. (3.12b)
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Equations (3.11) and (3.12) now constitute a set of equations that can be solved
for the unknown functions f1, f2 and f3. Equations (3.11c) and (3.11d) can be inte-
grated to yield f2 = C1a1(x2) + C2 and f3 = C3a2(x1) + C4, where a1(x2) and
a2(x1) are arbitrary functions and C1, C2, C3 and C4 arbitrary constants. Substitut-
ing these into eq. (3.12b) results in

C3
da2(x1)

dx1
+ C1

da1(x2)
dx2

= 0,

where the functional dependence is explicitly shown and the partial derivatives be-
come regular derivatives. Inspection of this result reveals that the only possible solu-
tion is a1 = x2, a2 = x1 and C3 = −C1, leading to

f2 = C1x2 + C2 and f3 = −C1x1 + C4. (3.13)

Next, eqs. (3.11a) and (3.11b) can be integrated to yield two different expres-
sions for f1: f1 = (νρg/2E) x2

1 + f4(x2) x1 + C5 and f1 = (νρg/2E) x2
2 +

f5(x1) x2 + C6. Equation (3.12a) now implies (∂2f1)/(∂x1∂x2) = df4/dx2 = 0
and (∂2f1)/(∂x1∂x2) = df5/dx1 = 0, and hence, f4 = C7 and f5 = C8. Finally,
it is possible to combine these results into a single expression for f1

f1 =
νρg

2E
(x2

1 + x2
2) + C7x1 + C8x2 + C9, (3.14)

where the C7, C8 and C9 are arbitrary constants. The functions expressed in
eqs. (3.13) and (3.14) can now be substituted into eqs. (3.8) and (3.9) to yield so-
lutions for the displacement components

u1 = −νρg

E
x1x3 − C7x3 + C1x2 + C3,

u2 = −νρg

E
x2x3 − C8x3 − C1x1 + C4,

u3 =
ρg

2E
x2

3 +
νρg

2E
(x2

1 + x2
2) + C7x1 + C8x2 + C9.

(3.15)

At this point, the only remaining task is to determine the integration constants
appearing in the displacement field. Two requirements must be met: the bar un-
dergoes no rigid body translation and no rigid body rotation. The simplest way to
impose these conditions is to enforce the vanishing of displacements and rotations
at the center of the upper surface along which the bar is attached: vanishing of the
displacements implies u1(0, 0, L) = u2(0, 0, L) = u3(0, 0, L) = 0, whereas van-
ishing of the rotations leads to ω1(0, 0, L) = ω2(0, 0, L) = ω3(0, 0, L) = 0, see
eqs. (1.73). Application of these boundary conditions to the displacement field given
by eq. (3.15) is left as an exercise; the final expression for the displacement field is

u1 = −νρg

E
x1x3, u2 = −νρg

E
x2x3, u3 =

ρg

2E

[
x2

3 − L2 + ν(x2
1 + x2

2)
]
. (3.16)

Equations (3.5) and (3.16) describe the state of stress and displacement, respec-
tively, inside the prismatic bar hanging vertically under its own weight. A number of
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features of this solution are worth examining in more detail. The stress field consists
of a single component, σ3, which linearly increases from the lower to the upper end
of the bar, as expected from basic statics requirements. The displacement solution
is a bit more complex but quite revealing. The vertical displacement of the lower
surface of the bar, i.e., at x3 = 0, is given by

u3(x3 = 0) = − ρg

2E

[
L2 − ν(x2

1 + x2
2)

]
.

Figure 3.3 shows this distribution of non-dimensional displacement,
u3/(ρg/2EL2), over the cross-section of the bar. The vertical displacement at
the centerline, i.e., at x1 = x2 = 0, is that which would be obtained from a
one dimensional analysis ignoring the finite dimension of the cross-section. The
vertical displacement away from the centerline is reduced by a factor proportional
to Poisson’s ratio and the square of the distance from the centerline, resulting in a
spherical shape for the deflected surface; the central portion of the bar deflects more
than the outer regions. The vertical displacement of the upper surface vanishes only
at the centerline, as required by the imposed boundary conditions, but is otherwise
parabolic. These results are consistent with the stress-free boundary conditions
assumed at the lower surface, but had the upper surface been assumed to remain
planar, a completely different solution would have resulted. This behavior is perhaps
easier to visualize if one imagines the bar to be made of a very soft material like
gelatin; in this case, the parabolic displacement of the bar’s cross-section becomes
more intuitive.
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Fig. 3.3. Vertical displacement component,
u3, of lower surface of the prismatic bar.
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Fig. 3.4. Lateral displacement component,
u2, of the left and right sides of prismatic bar.

The displacements of the sides of the bar reveal additional details of the deforma-
tion behavior. Figure 3.4 shows a greatly exaggerated plot of the shape of a section
of the bar taken through the centerline and perpendicular to axis ı̄1. As indicated by
eq. (3.16), the sides of the bar taper inwards for increasing values of x3 so that the
transverse dimensions of the upper cross-section are smaller than those of the lower.
This behavior is due to Poisson’s effect, and the presence of Poisson’s ratio, ν, in the
equations for u1 and u2 clearly indicates the origin of this phenomenon.
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3.2 Plane strain problems

The assumption of plane strain state introduced in section 1.6 reduces three-
dimensional problems to two-dimensional problems and results in considerable sim-
plification of the governing equations. In plane strain problems, the displacements,
body forces and changes in properties are assumed to vanish along a preferential
direction; it is always possible to select axis ı̄3 to coincide with that preferential di-
rection. Problems meeting these conditions are not necessarily two-dimensional in
appearance, such as a thin sheet or a flat plate, but instead, experience no deformation
in one direction. For example, the cross-section of a buried pipe or a cross-section
of a long dam could be modeled as plane strain problems under the assumption that
there is no displacement in the axial direction.

For plane strain states, the strain-displacement equations, eqs. (1.63) and (1.71),
reduce to

ε1 =
∂u1

∂x1
, ε2 =

∂u2

∂x2
, γ12 =

∂u1

∂x2
+

∂u2

∂x1
, (3.17)

while the axial and transverse shear strain components vanish, ε3 = γ13 = γ23 = 0.
Similarly, the equilibrium equations, eqs. (1.4), reduce to

∂σ1

∂x1
+

∂τ21

∂x2
+ b1 = 0,

∂τ12

∂x1
+

∂σ2

∂x2
+ b2 = 0. (3.18)

The transverse shear stress components vanish, τ13 = τ23 = 0, while the axial stress
does not due to Poisson’s effect, σ3 = ν(σ1 + σ2). If the material is assumed to
obey Hooke’s law, the vanishing of the axial and transverse shear strain components
results in the following reduced constitutive laws

ε1 =
1 + ν

E
[(1− ν)σ1 − νσ2] , ε2 =

1 + ν

E
[(1− ν)σ2 − νσ1] , γ12 =

τ12

G
.

(3.19)
Under plane strain assumptions, Navier’s equations, eqs. (3.1), reduce to two

equations only,

E

2(1 + ν)(1− 2ν)
∂e

∂x1
+ G ∇2u1 + b1 = 0, (3.20a)

E

2(1 + ν)(1− 2ν)
∂e

∂x2
+ G ∇2u2 + b2 = 0, (3.20b)

where the volumetric strain, see eq. (1.75), reduces to e = ε1 + ε2. The differential
operator ∇2 is now the two-dimensional Laplacian

∇2 =
∂2

∂x2
1

+
∂2

∂x2
2

. (3.21)

Taking derivatives with respect to x1 and x2 of eqs. (3.20a) and (3.20b), respec-
tively, and summing up the resulting equations leads to
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2(1− ν)G
1− 2ν

∇2e = −
(

∂b1

∂x1
+

∂b2

∂x2

)
. (3.22)

The constitutive law for the volumetric strain, given by eq. (2.18), reduces to e =
(1− 2ν)(1 + ν)(σ1 + σ2)/E for plane strain state. It then follows that

∇2(σ1 + σ2) = − 1
1− ν

(
∂b1

∂x1
+

∂b2

∂x2

)
. (3.23)

Unfortunately, this equation alone is insufficient to determine the three stress
components, σ1, σ2 and τ12. To overcome this problem, a novel approach, first pro-
posed by Airy, is introduced. It is assumed that the body forces, b1 and b2, are con-
servative forces, i.e., they can be derived from a potential: b1 = −∂V/∂x1 and
b2 = −∂V/∂x2, where V (x1, x2) is the potential of the body forces. Next, the stress
field is written in terms of Airy’s stress function, φ(x1, x2), as

σ1 =
∂2φ

∂x2
2

+ V, σ2 =
∂2φ

∂x2
1

+ V, τ12 = − ∂2φ

∂x1∂x2
. (3.24)

The stress field written in terms of Airy’s stress function automatically satis-
fies the equilibrium equations of the problem, as can be verified by introducing
eqs. (3.24) into eqs. (3.18). This is the very reason why Airy’s stress function is
introduced in the first place: instead of working with three stress components, σ1, σ2

and τ12, a single unknown, the stress function, φ, remains. Furthermore, the stress
field derived from Airy’s stress function through eqs. (3.24) automatically satisfies
equilibrium conditions.

Introducing the stress components expressed in terms of Airy’s stress function
into equilibrium equation (3.23) yields a single equation for the stress function

∂4φ

∂x4
1

+ 2
∂4φ

∂x2
1∂x2

2

+
∂4φ

∂x4
2

= ∇4φ = −1− 2ν

1− ν
∇2V. (3.25)

This is a nonhomogeneous, two-dimensional bi-harmonic partial differential equa-
tion. When the body forces vanish or are harmonic function, i.e., when ∇2V = 0,
the governing equation becomes the homogeneous bi-harmonic equation. The bi-
harmonic equation has been extensively studied and a number of solution procedures
are available.

3.3 Plane stress problems

The assumption of plane stress state introduced in section 1.3 reduces three-
dimensional problems to two-dimensional problems and results in considerable sim-
plification of the governing equations. In plane stress problems, the stress compo-
nents and body forces are assumed to vanish along a preferential direction. It is
always possible to select axis ı̄3 to coincide with that preferential direction; hence
σ3 = τ13 = τ23 = 0 and b3 = 0. Next, it is assumed that the response of the solid
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does not vary along axis ı̄3, leading to further simplification of the governing equa-
tions. This latter assumption is realistic for bodies in the form of thin sheets loaded
by forces acting in the plane of the sheet.

For plane stress states, the equilibrium equations are identical to those for plane
strain states, eqs. (3.18). If the material is assumed to obey Hooke’s law, the vanish-
ing of the axial and shear stress components leads to the following reduced constitu-
tive laws

ε1 =
1
E

(σ1 − νσ2), ε2 =
1
E

(σ2 − νσ1), γ12 =
1
G

τ12. (3.26)

The inverse relationships are

σ1 =
E

1− ν2
(ε1 + νε2), σ2 =

E

1− ν2
(ε2 + νε1), τ12 = G γ12, (3.27)

Finally, the strain along axis ı̄3 is ε3 = −ν(σ1 + σ2)/E. Although Hooke’s law is
used for both plane strain and plane stress problems, the reduced constitutive law
differ for the two cases, see eqs (3.19) and (3.26), respectively.

It is convenient here again to use Airy’s stress function to satisfy equilibrium con-
ditions and substitute the stress components expressed in terms of the stress function,
eq. (3.24), into the constitutive equations to obtain the following expressions for the
strain components

ε1 =
1
E

[
∂2φ

∂x2
2

− ν
∂2φ

∂x2
1

+ (1− ν)V
]

, ε2 =
1
E

[
∂2φ

∂x2
1

− ν
∂2φ

∂x2
2

+ (1− ν)V
]

ε3 = − ν

E

[
∂2φ

∂x2
2

+
∂2φ

∂x2
1

+ 2V

]
, γ12 = − 1

G

∂2φ

∂x1∂x2
.

Of course, the transverse shear strain components vanish, γ13 = γ23 = 0.
These strain components can be substituted into the strain compatibility equa-

tions (1.106c), (1.106b), (1.106a) and (1.106f) to obtain

∇4φ = −(1− ν)∇2V, (3.28a)

∂2ε3
∂x2

1

=
∂4φ

∂x4
1

+
∂4φ

∂x2
1∂x2

2

+ 2
∂2V

∂x2
1

= 0, (3.28b)

∂2ε3
∂x2

2

=
∂4φ

∂x4
2

+
∂4φ

∂x2
1∂x2

2

+ 2
∂2V

∂x2
2

= 0, (3.28c)

∂2ε3
∂x1∂x2

=
∂4φ

∂x3
1∂x2

+
∂4φ

∂x1∂x3
2

+ 2
∂2V

∂x1∂x2
= 0, (3.28d)

respectively, while the last two compatibility equations, eqs. (1.106d) and (1.106e),
are automatically satisfied. This appears to be a complicated situation with four equa-
tions to define the stress function. It can be shown, however, that failure to satisfy
the last three equations, eqs. (3.28b) to (3.28d), does not lead to large errors. Hence,
a single equation for Airy’s stress function remains
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∇4φ = −(1− ν)∇2V. (3.29)

When the body forces vanish or are harmonic function, i.e., when ∇2V = 0, the
governing equation becomes the homogeneous bi-harmonic equation, as is the case
for the plane strain state.

In conclusion, both plane strain and plane stress states lead to nonhomoge-
neous bi-harmonic equations, eqs. (3.25) and (3.29), respectively. The two equations
present only slight differences in their nonhomogeneous parts. For plane strain and
plane stress problems, boundary conditions will differ considerably and the consti-
tutive relationships are also different; hence, identical solutions of the two problems
should not be expected. Nonetheless, the wealth of knowledge about how to solve
bi-harmonic equations is useful for both types of problems.

3.4 Plane strain and plane stress in polar coordinates

A number of practical plane strain or plane stress problems present circular bound-
aries or cylindrical symmetry. Examples include such problems as thick-walled tubes
subjected to torsion or internal pressure, thin sheets with circular holes, curved beams
and many others.

To formulate these types of problems, the governing equations of elasticity must
be recast in a polar (or cylindrical) coordinate system. While this can be accom-
plished by re-examination of differential volume and area elements defined in the
cylindrical coordinate system, the equations can also be obtained from those derived
in Cartesian coordinates through appropriate transformations. To this end, consider
the coordinate system (̄ı1, ı̄2) that forms the basis of a Cartesian system and the unit
vectors of the polar system, (̄ır, ı̄θ), as depicted fig. 3.5.

Polar coordinates are expressed in terms of

i1

ir

i
q i2

q
r

P

Fig. 3.5. Coordinate rotation from
Cartesian into Polar.

their Cartesian counterparts through the follow-
ing well-known relationships

r =
√

x2
1 + x2

2, θ = arctan
x2

x1
, (3.30)

where r is the radial coordinate and θ is the an-
gular coordinate, while the inverse transforma-
tion is readily obtained as

x1 = r cos θ, x2 = r sin θ. (3.31)

Transformations of the displacement components expressed in the two coordinates
systems are particular cases of the transformations expressed by eqs. (A.43), recast
as

{
ur

uθ

}
=

[
cos θ sin θ

− sin θ cos θ

]{
u1

u2

}
,

{
u1

u2

}
=

[
cos θ − sin θ
sin θ cos θ

]{
ur

uθ

}
. (3.32)
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It will also be necessary to express the transformations of partial derivatives
with respect to both coordinates system. The chain rule for derivatives implies that
∂/∂x1 = (∂/∂r)(∂r/∂x1) + (∂/∂θ)(∂θ/∂x1), with a similar expression for the
partial derivative with respect to x2. It then follows that





∂

∂x1
∂

∂x2





=
[
cos θ − sin θ
sin θ cos θ

]




∂

∂r
1
r

∂

∂θ





. (3.33)

The derivatives of polar coordinates with respect to their Cartesian counterparts
are easily developed from eq. (3.30) to find

∂r

∂x1
=

x1

r
= cos θ,

∂r

∂x2
=

x2

r
= sin θ,

∂θ

∂x1
= − sin θ

r
,

∂θ

∂x2
=

cos θ

r
. (3.34)

Next, the strain components expressed in the two coordinate systems will be
related to each other using the general two-dimensional strain rotation expressions
given by eqs. (1.91). The radial strain component, εr, becomes

εr = ε1 cos2 θ + ε2 sin2 θ + γ12 sin θ cos θ, (3.35)

where the Cartesian strain components, ε1, ε2, and γ12, are computed by means of
the strain-displacement equations, eqs. (1.63) and (1.71), to find

ε1 =
∂u1

∂x1
=

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
(ur cos θ − uθ sin θ),

ε2 =
∂u2

∂x2
=

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
(ur sin θ + uθ cos θ),

γ12 =
∂u1

∂x2
+

∂u2

∂x1
=

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
(ur cos θ − uθ sin θ)

+
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)
(ur sin θ + uθ cos θ).

Note that the partial derivatives and displacement components are evaluated with
the help of eqs. (3.33) and (3.32), respectively. Finally, these strain components are
substituted into eq. (3.35) to find, after considerable algebraic manipulation,

εr = (cos4 θ + 2 sin2 θ cos2 θ + sin4 θ)
∂ur

∂r
=

∂ur

∂r
. (3.36)

A similar procedure can be followed to derive the three components of strain in the
polar coordinate system as

εr =
∂ur

∂r
, (3.37a)

εθ =
1
r

∂uθ

∂θ
+

ur

r
, (3.37b)

γrθ =
∂uθ

∂r
+

1
r

∂ur

∂θ
− uθ

r
. (3.37c)
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A similar development can be carried out to express stress components in polar
coordinates in terms of Airy’s stress function. The two-dimensional stress component
transformation equations (1.47) are used to express the radial stress component, σr,
in terms of its Cartesian counterparts to find

σr = σ1 cos2 θ + σ2 sin2 θ + 2τ12 sin θ cos θ

=
∂2φ

∂x2
2

cos2 θ +
∂2φ

∂x2
1

sin2 θ − 2
∂2φ

∂x1∂x2
sin θ cos θ,

where the Cartesian stress components are expressed in terms of Airy’s stress func-
tion using eq. (3.24) and body force terms are neglected. The final step is to use
eq. (3.33) to express the derivatives with respect to Cartesian coordinates in terms of
derivatives with respect to polar coordinates. Tedious algebra then yields

σr =
1
r

∂φ

∂r
+

1
r2

∂2φ

∂θ2
.

The same procedure can be used to obtain expressions for the remaining stress com-
ponents in polar coordinates, leading to

σr =
1
r

∂φ

∂r
+

1
r2

∂2φ

∂θ2
, (3.38a)

σθ =
∂2φ

∂r2
, (3.38b)

τrθ =
1
r2

∂φ

∂θ
− 1

r

∂2φ

∂r∂θ
. (3.38c)

To obtain a complete set of gov-
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Fig. 3.6. Stresses acting on a differential area
defined in polar coordinates.

erning equations, it is also necessary to
express the two equilibrium equations
in polar coordinates. Figure 3.6 shows
a differential element of area in po-
lar coordinates with normal and shear
stresses acting on each of its four faces.
Since the stress state is assumed to vary
smoothly, stress components on oppo-
site faces of the differential element are
expanded in Taylor series, using the
first term of the series only.

The first equilibrium equation is
obtained by projecting all forces along
axis ı̄r. Forces are obtained by multi-
plying the the stress components by the area on which they act, and a unit thickness
of the volume element is assumed. Note that in view of the shape of the element, the
circumferential stress component, σθ, contributes to the axial equilibrium equation
because this components acts in a direction that forms an angle dθ/2 with axis ı̄θ.
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The second equilibrium equation is obtained by projecting forces along axis ı̄θ. It is
left as an exercise to show that the resulting equilibrium equations are

∂σr

∂r
+

1
r

∂τrθ

∂θ
+

σr − σθ

r
= 0, (3.39a)

1
r

∂σθ

∂θ
+

∂τrθ

∂r
+ 2

τrθ

r
= 0. (3.39b)

Finally, since the bi-harmonic equation governs both plane strain and plane stress
problems, see eqs. (3.25) and (3.29), respectively, it is necessary to develop an ex-
pression for the Laplacian, ∇2, in polar coordinates. This task is achieved by us-
ing eq. (3.33), which relates the derivatives with respect to Cartesian coordinates to
derivatives with respect to polar coordinates, to find

∇2 =
∂2

∂x2
1

+
∂2

∂x2
2

=
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)2

+
(

sin θ
∂

∂r
+

cos θ

r

∂

∂θ

)2

=
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂

∂θ2
.

(3.40)

The bi-harmonic operator then becomes

∇4φ =
(

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)(
∂2φ

∂r2
+

1
r

∂φ

∂r
+

1
r2

∂2φ

∂θ2

)
. (3.41)

In the next section, several example problems will be solved to illustrate the use of
polar coordinates for problems with cylindrical geometry.

3.5 Problem featuring cylindrical symmetry

Problems featuring cylindrical symmetry, that is, problems for which it is possible to
assume that ∂/∂θ = 0, represent an important class of problems for which solutions
are easily obtained because the process developed in the previous sections leads to
ordinary, rather than partial differential equations. Such problems are also called
axisymmetric problems, and the relationship between polar stress components and
Airy’s stress function, see eq. (3.38), reduces to

σr =
1
r

∂φ

∂r
, σθ =

∂2φ

∂r2
, and τrθ = 0. (3.42)

In the absence of body forces, the governing equation for both plane strain and plane
stress problems becomes the bi-harmonic equation, see eqs. (3.25) and (3.29), re-
spectively. In view of eq. (3.41), the governing equation becomes

∇4φ =
d4φ

dr4
+

2
r

d3φ

dr3
− 1

r2

d2φ

dr2
+

1
r3

dφ

dr
= 0. (3.43)
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This is now an ordinary differential equation called the Euler-Cauchy differential
equation. It can be transformed into an ordinary differential equation with constant
coefficients through the following change of variables: r = eξ. Using the chain rule
for derivatives, dφ/dr = (dφ/dξ) (dξ/dr) = e−ξ dφ/dξ. Equation (3.43) then
becomes

d4φ

dξ4
− 4

d3φ

dξ3
+ 4

d2φ

dξ2
= 0. (3.44)

The solution to this equation is in the form φ = ezξ, where z is a constant.
This leads to the characteristic equation, z4 − 4z3 + 4z2 = z2(z − 2)2 = 0, with
solutions z = 0, 0, 2, 2. In view of the repeated roots, the solution can then be written
as φ(ξ) = C1 + C2ξ + C3e

2ξ + C4ξe
2ξ in terms of ξ, and finally, in terms of r as

φ(r) = C1 + C2 ln r + C3r
2 + C4r

2 ln r,

where C1, C2, C3, and C4 are integration constants. In view of eq. (3.42), the stress
components now become

σr =
1
r

dφ

dr
=

C2

r2
+2C3+C4(1+2 ln r), σθ =

d2φ

dr2
= −C2

r2
+2C3+C4(3+2 ln r).

(3.45)
Of course, the shear stress still vanishes, i.e., τrθ = 0.

The determination of the integration constants and of the displacement field de-
pends on the nature of the problem and the boundary conditions. The examples below
illustrate the solution process.

Example 3.2. Thick-walled tube in plane strain state
Figure 3.7 shows a thick-walled cylinder of inner and outer radii, Ri and Re, re-
spectively, and subjected to internal and external pressures, pi and pe, respectively.
Determine the stress and displacement distributions through the thickness of the tube.

The problem clearly presents cylindrical symmetry and hence, eq. (3.45) defines
the stress state in the tube. In this example, the tube is assumed to be in a state of
plane strain, i.e., the axial strain component vanishes.

Ri

Re

pi

pe

Fig. 3.7. Thick-walled tube subjected to internal and external pressures.

The applied pressures translate into boundary conditions at the inner and outer
surfaces of the tube, σr(r = Re) = −pe and σr(r = Ri) = −pi. No boundary
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condition exists for the circumferential stress component, σθ, since this stress does
not act on any of the boundaries of the system. Using eqs. (3.45), these boundary
conditions become

−pe =
C2

R2
e

+2C3 +C4(1+2 ln Re), −pi =
C2

R2
i

+2C3 +C4(1+2 ln Ri). (3.46)

The solution process now seems to have reached an impasse: three unknown co-
efficients, C2, C3 and C4, must be evaluated to determine the stress components,
but only two boundary conditions, eqs. (3.46), are available. To obtain the missing
condition, the other fields of the problem, the strain and displacement fields, must be
evaluated. First, the strain components are expressed in terms of their stress counter-
parts with the help of the constitutive laws, eqs. (3.19), to find

εr =
1− ν2

E
σr − ν(1 + ν)

E
σθ = Caσr − Cbσθ

= Ca

[
C2

r2
+ 2C3 + C4(1 + 2 ln r)

]
− Cb

[
−C2

r2
+ 2C3 + C4(3 + 2 ln r)

]
,

εθ =
1− ν2

E
σθ − ν(1 + ν)

E
σr = Caσθ − Cbσr

= Ca

[
−C2

r2
+ 2C3 + C4(3 + 2 ln r)

]
− Cb

[
C2

r2
+ 2C3 + C4(1 + 2 ln r)

]
,

where Ca = (1− ν2)/E and Cb = ν(1 + ν)/E.
For problems presenting cylindrical symmetry, the strain-displacement equa-

tions, eqs. (3.37), reduce to εr = dur/dr and εθ = ur/r. Eliminating the radial
displacement components from these two equations yields the strain compatibility
condition: εr − εθ = r dεθ/dr. Introducing the strain components computed above
yields the following condition: 4CaC4 = 0, and finally, C4 = 0.

Equations (3.46) now involve only two unknown coefficients, which are easily
found as C2 = −R2

i R
2
e(pi−pe)/(R2

e−R2
i ) and C3 = (R2

i pi−R2
epe)/2(R2

e−R2
i ),

leading to the following expressions for the two stress components

σr(r) =
R2

i pi −R2
epe

R2
e −R2

i

− 1
r2

(pi − pe)R2
i R

2
e

R2
e −R2

i

,

σθ(r) =
R2

i pi −R2
epe

R2
e −R2

i

+
1
r2

(pi − pe)R2
i R

2
e

R2
e −R2

i

.

(3.47)

In view of the assumption of plane strain state, ε3 = 0 and u3 = 0 and σ3 =
ν(σr + σθ) = 2ν(piR

2
i − peR

2
e)/(R2

e −R2
i ): the axial stress component is constant

through the thickness of the pipe. Since the shear stress components vanish, stress
components σr, σθ, and σ3 are, in fact, the principal stresses. Von Mises’ equivalent
stress is then readily obtained from eq. (2.32) as 2σ2

eq = (σr − σθ)2 + (σθ − σ3)2 +
(σ3 − σr)2.

Figures 3.8 (a), (b) and (c) show the non-dimensional radial stress, σr/pi, hoop
stress, σθ/pi, and Von Mises’ equivalent stress, σe/pi, respectively, when the cylin-
der is subjected to an internal pressure, pi, i.e., when pe = 0. Results are presented
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for three different ratios of the outer to inner radii (R̄ = Re/Ri = 1.5, 2.0 and 3.0).
The radial stress is compressive through the thickness of the cylinder and vanishes
at the outer radial location, whereas the hoop stress is tensile. The maximum stress
component is the hoop stress at r = Ri. A similar behavior is observed for the
various values of R̄. Clearly, von Mises’ equivalent stress peaks at the inner radial
location, i.e., yield will initiate at the inside surface of the thick cylinder.
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Fig. 3.8. Plots of the non-dimensional radial stress, σr/pi, hoop stress, σθ/pi, and Von Mises’
equivalent stress, σe/pi, for three different thickness ratios R̄ = 1.5, 2.0, 3.0.

The radial and hoop strain components are readily obtained from the constitutive
laws, and finally, the radial displacement field is obtained as ur = rεθ, leading to

ur(r) =
(1 + ν)(1− 2ν)

E

R2
i pi −R2

epe

R2
e −R2

i

r +
1 + ν

E

(pi − pe)R2
i R

2
e

R2
e −R2

i

1
r
. (3.48)

Figures 3.9 (a), (b) and (c) show the non-dimensional radial strain, Eεr/pi, hoop
strain, Eεθ/pi, and radial displacement, Eur/(Ripi), respectively, when the cylinder
is subjected to an internal pressure, pi, i.e., when pe = 0. Results are presented for
three different ratios of the outer to inner radii (R̄ = Re/Ri = 1.5, 2.0 and 3.0).

Example 3.3. Thick-walled tube in plane stress state
Figure 3.7 shows a thick-walled cylinder of inner and outer radii, Ri and Re, respec-
tively, and subjected to internal and external pressures, pi and pe, respectively. In
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Fig. 3.9. Plots of the non-dimensional radial strain, Eεr/pi, hoop strain Eεθ/pi, and radial
displacement, Eur/(Ripi), for three different thickness ratios R̄ = 1.5, 2.0, 3.0.

this example, the cylinder is assumed to be in a state of plane stress, in contrast with
the plane strain assumption of example 3.2. Determine the stress and displacement
distributions through the thickness of the tube.

The approach followed in the previous example could be used again here but
with the constitutive laws associated with the plane stress state rather than those cor-
responding to the plane strain state. Instead of using Airy’s stress function to satisfy
the stress equilibrium and the compatibility equations, a displacement approach is
used in this example.

It is assumed here that the cylinder is closed at both ends; hence, it is subjected
to an axial load, πR2

i pi− πR2
epe, which is assumed to be uniformly distributed over

the cross-section of the tube, πR2
e − πR2

i , leading to an axial stress

σ3 =
R2

i pi −R2
epe

R2
e −R2

i

. (3.49)

The constitutive laws for the material are given by Hooke’s law, eqs. (2.4a)
and (2.4b), as Eεr = σr − ν(σθ + σ3) and Eεθ = σθ − ν(σr + σ3), respectively.
Once recast in a matrix form, these relationships are readily inverted to find

{
σr

σθ

}
=

E

1− ν2

[
1 ν
ν 1

]{
εr + νσ3/E
εθ + νσ3/E

}
. (3.50)
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Next, the radial and circumferential strain components are expressed in terms of
the radial displacement component with the help of eqs. (3.37a) and (3.37b) to find

σr − νσ3

1− ν
=

E

1− ν2
(εr + νεθ) =

E

1− ν2

(
dur

dr
+

νur

r

)
, (3.51a)

σθ − νσ3

1− ν
=

E

1− ν2
(εθ + νεr) =

E

1− ν2

(
ur

r
+ ν

dur

dr

)
. (3.51b)

Note that the circumferential displacement component, uθ, vanishes for this problem
featuring cylindrical symmetry.

Finally, the radial and circumferential stress components are introduced into the
radial equilibrium equation (3.39a) to obtain a single equation for the radial displace-
ment component

d2ur

dr2
+

1
r

dur

dr
− ur

r2
= 0. (3.52)

This is now an ordinary differential equation, similar to the Euler-Cauchy differential
equation defined in eq. (3.43). It is, in fact, Navier’s equation for this problem, and it
could have been obtained by expressing eqs. (3.1) in polar coordinates, then imposing
the cylindrical symmetry requirements.

Using the variable transformation r = eξ and proceeding as before yields the
displacement field as

ur = C1r + C2/r, (3.53)

where C1 and C2 are two integration constants. The stress field, eqs. (3.51), becomes

σr − νσ3

1− ν
=

E

1− ν2

[
(1 + ν)C1 − (1− ν)

C2

r2

]
, (3.54a)

σθ − νσ3

1− ν
=

E

1− ν2

[
(1 + ν)C1 + (1− ν)

C2

r2

]
. (3.54b)

The integration constants are evaluated with the help of the boundary conditions
at the inner and outer surfaces of the tube, σr(r = Re) = −pe and σr(r = Ri) =
−pi, to find

EC1

1− ν
=

R2
i pi −R2

epe

R2
e −R2

i

− νσ3

1− ν
, and

EC2

1 + ν
=

(pi − pe)R2
i R

2
e

R2
e −R2

i

. (3.55)

Introducing these constants into eqs. (3.54) yields the stress field as

σr(r) =
R2

i pi −R2
epe

R2
e −R2

i

− 1
r2

(pi − pe)R2
i R

2
e

R2
e −R2

i

,

σθ(r) =
R2

i pi −R2
epe

R2
e −R2

i

+
1
r2

(pi − pe)R2
i R

2
e

R2
e −R2

i

.

(3.56)

It is interesting to note that this stress field is identical to that found for the plane
strain case, see eq. (3.47).
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Note, however, that the axial displacements are different. Introducing the inte-
gration constants, eqs. (3.55), and the axial stress field, eq. (3.49), into eq. (3.53),
yields

ur =
1− 2ν

E

R2
i pi −R2

epe

R2
e −R2

i

r +
1 + ν

E

(pi − pe)R2
i R

2
e

R2
e −R2

i

1
r
. (3.57)

This expression should be compared with the corresponding displacement field for
the plane strain case, see eq. (3.48).

If no end caps are present, the cylinder is not pressurized and σ3 = 0. The analy-
sis presented in this example remains valid, and the stress distributions are still given
by eq. (3.56) and the integration constants by eq. (3.55) with σ3 = 0. Finally, the
axial displacement field becomes

ur =
1− ν

E

R2
i pi −R2

epe

R2
e −R2

i

r +
1 + ν

E

(pi − pe)R2
i R

2
e

R2
e −R2

i

1
r
. (3.58)

Example 3.4. Thin-walled tube in plane stress state
Consider the thin-walled tube of mean radius Rm and thickness t subjected to an
internal pressure pi, as depicted in fig. 3.10. This problem is the limiting case of
example 3.3, where Ri = Rm − t/2 and Re = Rm + t/2, with t/Rm ¿ 1.

Due of the internal pressure, a hoop force N acts in the tube. The free body
diagram of a unit length of the upper part of the tube shown in fig. 3.10 yields the
following equilibrium equation for the forces acting in the vertical direction

2N =
∫ π

0

piRm sin θ dθ = 2piRm, (3.59)

or N = piRm. For thin-walled tubes, it is reasonable to assume that the hoop stresses
are uniformly distributed through the thickness of the wall, leading to N = tσθ,
where σθ the hoop stress. It then follows that

σθ =
Rmpi

t
. (3.60)

It is easy to show that this hoop stress is the average of the distribution predicted
by the more detailed solution derived in example 3.3 for a thick tube under the same
conditions. Indeed, the average of the circumferential stress given in eq. (3.56) is

σ̄θ =
1
t

∫ Re

Ri

[
R2

i pi −R2
epe

R2
e −R2

i

+
1
r2

(pi − pe)R2
i R

2
e

R2
e −R2

i

]
dr =

Ripi

t
. (3.61)

Since Rm ≈ Ri for thin-walled tubes, the two results are equivalent.
The hoop strain, εθ, is easily obtained as εθ = σθ/E = (Rmpi)/(tE) and the ra-

dius of the ring increases by an amount ur = (R2
mpi)/(Et), the radial displacement

of the tube. Here again, this result can be checked by averaging the radial displace-
ment distribution found earlier, see eq. (3.57), to find
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ūr =
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ur dr =
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+
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Fig. 3.10. Thin ring under internal pressure.
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Fig. 3.11. Turbine disk rotating at high angu-
lar velocity Ω.

Example 3.5. Turbine disk at high angular velocity
Consider a homogeneous turbine disk of radius R rotating at high angular velocity
Ω, as depicted in fig. 3.11. Due to the rotational speed of the turbine disk, each point
on the disk is subjected to a centrifugal force ρ(rΩ2) rdrdθ, where ρ is the material
mass density,−rΩ2 the centripetal acceleration of the mass point, and rdrdθ the ele-
ment of area on which the centrifugal force acts. Clearly, this centrifugal force acts in
the radial direction of the polar coordinate system, and hence, the radial equilibrium
equation, eq. (3.39a), must be modified to include a body force term,

σr − σθ + r
dσr

dr
+ ρΩ2r2 = 0. (3.62)

The disk is assumed to be in a state of plane stress, i.e., σ3 = 0, and the stresses
can then be expressed in terms of the displacement field as

σr =
E

1− ν2

(
dur

dr
+

νur

r

)
, σθ =

E

1− ν2

(
ur

r
+ ν

dur

dr

)
. (3.63)

These expressions should be compared with eqs. (3.51).
Introducing the stress components, eq. (3.63), into the equilibrium equation of

the problem, eq. (3.62), leads the governing equation for the radial displacement
component
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d2ur

dr2
+

1
r

dur

dr
− ur

r2
+ (1− ν2)

ρΩ2r

E
= 0. (3.64)

The solution of this equation is

ur = C1r +
C2

r
− (1− ν2)

ρΩ2

E

r3

8
, (3.65)

where the first two terms represent the solution of the homogeneous equation and
the last term is the particular solution associated with the nonhomogeneous term in
the equation. The displacement at the center of the disk, i.e., at r = 0, must remain
finite, and hence, C2 = 0. The remaining integration constant, C1, is determined by
the boundary condition σr(r = 0) = 0 to give

C1 =
3 + ν

8(1 + ν)
(1− ν2)

ρΩ2

E
R2. (3.66)

The stress field then becomes

σr

ρR2Ω2
=

3 + ν

8
(1− r̄2),

σθ

ρR2Ω2
=

3 + ν

8

(
1− 1 + 3ν

3 + ν
r̄2

)
, (3.67)

where r̄ = r/R. Note that the maximum stresses are found at the center of the
disk, where σr/(ρR2Ω2) = σθ/(ρR2Ω2) = (3 + ν)/8. According to von Mises’
criterion, the equivalent stress at that point becomes σeq/(ρR2Ω2) = (3 + ν)/8.
The disk yields when σeq = σy, where σy is the material yield stress. The maximum
speed at which the disk can rotate before centrifugal forces induce yielding is then

Ω =

√
8σy

(3 + ν)ρR2
. (3.68)

Example 3.6. Thin sheet with hole under uniaxial stress
Consider a thin sheet of material featuring a small hole. This problem is an idealiza-
tion of a frequently encountered situation in aircraft structures. For instance, holes
or cutout are common occurrences in aircraft skins to make a place for bolts, riv-
ets, windows or access covers; similarly, bulkheads may have many holes that are
passageways for cables, wires, or hydraulic lines. If the thin sheet is subjected to
in-plane loading, a plane stress distribution will develop in the skin. Intuitively, the
presence of the hole will increase the stress level in the sheet as compared to the
stress level in the absence of a hole. The hole is said to be a stress riser or stress
concentrator. This example will evaluate the stress distribution around the hole to
identify the maximum stress level. The ratio of this maximum stress level to that
observed in the absence of a hole is called the stress concentration factor.

Figure 3.12 shows the configuration considered here. A square plate of side di-
mension b presents a central circular hole of radius Ri, such that Ri/b ¿ 1. The
sheet is subjected to a far field unidirectional stress σa. A Cartesian coordinate sys-
tem is selected with its origin at the center of the hole and axis ı̄2 is aligned with
the direction of the applied stress, σa. Since the hole is circular, it is natural to also
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make use of a polar coordinate system with its origin at the center of the hole; as
shown in fig. 3.12, angle θ is measured from axis ı̄1. Clearly, this problem does not
present the cylindrical symmetry of the previous examples. It will be shown, how-
ever, that the problem can be treated as the superposition of two simpler problems:
an axisymmetric and a non-axisymmetric problem.

i1

i2

r

Ri

Re

sa

s s2 0=

s1 =0

sa

q

q

srtrq

t12 = 0

Fig. 3.12. Thin sheet with central hole of radius Ri subjected to uniaxial stress σ2 = σa; also
shown is the far field circle at r = Re where boundary conditions are applied.

The sheet is in a state of plane stress, and in the absence of body forces, the
governing equation for Airy’s stress function is the homogeneous form of the bi-
harmonic partial differential equation (3.29). The boundary conditions around the
edge of the hole are easily expressed in polar coordinates: both radial and shear
stress components must vanish, σr(r = Ri) = 0 and τrθ(r = Ri) = 0. Because
the circumferential stress, σθ, is not exposed around the inner edge of the circle, no
condition is imposed on this stress component.

To avoid specifying boundary conditions in the Cartesian coordinate system, the
far field stress σa is assumed to act on a circle of radius Re À Ri; this assumption
is consistent with the fact that the dimensions of the plate are much larger than the
radius of the hole, b À Ri, as stated before. This implies σ1(r = Re) = 0, σ2(r =
Re) = σa and τ12(r = Re) = 0.

These boundary conditions are stated in an awkward manner: stress components
in a Cartesian system, σ1, σ2 and τ12, are given at locations specified by polar co-
ordinates r = Re and angle θ is arbitrary. To resolve this discrepancy, the stress
components in the Cartesian system are transformed to their polar counterparts us-
ing the formulas for the rotation of stress components, eqs. (1.49a) and (1.49c), to
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find

σr(r = Re, θ) =
σ1 + σ2

2
+

σ1 − σ2

2
cos 2θ + τ12 sin 2θ =

σa

2
− σa

2
cos 2θ,

τrθ(r = Re, θ) = −σ1 − σ2

2
sin 2θ + τ12 cos 2θ =

σa

2
sin 2θ.

(3.69)
These equations could also be obtained directly from a Mohr’s circle visualization,
or they could be developed directly by expressing the equilibrium conditions of the
triangular differential element depicted in the right portion of fig. 3.12.
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= 0 trq
= sins qa/2 2

Fig. 3.13. The solution of the desired problem is found by superposing the solutions of two
simpler problems: an axisymmetric problem, denoted “problem A” and a non-axisymmetric
problem, denoted “problem B”.

It now becomes possible to split the original problem into two simpler problems,
both expressed in terms of polar coordinates as illustrated in fig. 3.13.

1. The axisymmetric problem, denoted Problem A, is subjected to the following
boundary conditions: σr = τrθ = 0 around the edge of the hole, i.e., at r = Ri,
and σr = σa/2 and τrθ = 0 around the far field circular boundary, i.e., at
r = Re. This problem is axisymmetric because the geometry of the problem
presents cylindrical symmetry and the boundary conditions are independent of
θ.

2. The non-axisymmetric problem, denoted Problem B, is subjected to the follow-
ing boundary conditions σr = τrθ = 0 around the edge of the hole, i.e., for
r = Ri, and σr = −σa/2 cos 2θ and τrθ = σa/2 sin 2θ around the far field cir-
cular boundary, i.e., for r = Re. This problem is not axisymmetric because while
the geometry of the problem does present cylindrical symmetry, the boundary
conditions do depend on θ.

The solution to Problem A is developed in example 3.3. It consists of a thin
cylinder subjected to an external pressure, pe = −σa/2. The stress field is readily
obtained by introducing pi = 0 and pe = −σa/2 eqs. (3.47) to find
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(3.70)
The solution of Problem B is more difficult, and requires the solution of the ho-

mogeneous bi-harmonic equation in polar coordinates given by eq. (3.41). Since the
bi-harmonic operator only contains even derivatives with respect to θ, an approach
based on separation of variables seems appropriate. A solution of the following form
is proposed

φ(r, θ) = η(r) cos 2θ. (3.71)

Substituting this assumed solution into the homogeneous bi-harmonic equation in
polar coordinates, eq. (3.41), leads to the following equation for Airy’s stress func-
tion

∇4φ =
(

d4η

dr4
+

2
r

d3η

dr3
− 9

r2

d2η

dr2
+

9
r3

dη

dr

)
cos 2θ = 0.

Because this expression must be valid for all values θ, the term in parentheses must
vanish, and hence,

d4η

dr4
+

2
r

d3η

dr3
− 9

r2

d2η

dr2
+

9
r3

dη

dr
= 0.

This is another instance of the Euler-Cauchy differential equation first encountered
in section 3.5. Using the same procedure as before, the following solution is found:
η(r) = C1 + C2r

2 + C3r
4 + C4/r2. Airy’s stress function now becomes

φ(r, θ) =
[
C1 + C2r

2 + C3r
4 +

C4

r2

]
cos 2θ.

Next, the stress field is obtained by introducing the stress function into eqs.(3.38)
to find the stress components as

σr =
1
r

∂φ

∂r
+

1
r2

∂2φ

∂θ2
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[
2C2 +

4C1

r2
+
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]
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r

∂2φ

∂r∂θ
=

[
2C2 + 6C3r

2 − 2C1

r2
− 6C4

r4

]
sin 2θ.

The boundary conditions, σr = 0 and τrθ = 0 at r = Ri, yield the following two
equations

σr(r = Ri) = −
[

4
R2

i

C1 + 2C2 +
6C4

R4
i

]
cos 2θ = 0,

τrθ(r = Ri) =
[
− 2

R2
i

C1 + 2C2 + 6R2
i C3 − 6C4

R4
i

]
cos 2θ = 0,

whereas the boundary conditions, σr = −σa/2 cos 2θ and τrθ = σa/2 sin 2θ at
r = Re, lead to
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σr(r = Re) = −
[

4
R2

e

C1 + 2C2 +
6C4

R4
e

]
cos 2θ = −σa

2
cos 2θ,
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R2
e

C1 + 2C2 + 6R2
eC3 − 6C4

R4
e

]
sin 2θ =

σa

2
sin 2θ.

These four algebraic equations are used to determine the four integration con-
stants, C1, C2, C3 and C4. This task is more easily achieved by recasting the equa-
tions in a matrix form as




−4/R2
i −2 0 −6/R4

i

−2/R2
i 2 6R2

i −6/R4
i
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

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

0
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σa/2
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



. (3.72)

Note that the canceling of the trigonometric function of angle θ indicates that the
assumed form of Airy’s stress function, eq. (3.71), is able to satisfy all the boundary
conditions for the particular problem. The solution to this set of algebraic equations
is readily accomplished, but results are long and tedious expressions.

Since the interest is not in solutions for finite values of the outer radius, Re, it is
easier to immediately consider the situation where Re → ∞, or more specifically,
where 1/Re → 0. Applying this to eq. (3.72) results in



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.

The last equation is divided by R2
e before taking the limit to insure that the third term

remained finite. These equations can be solved to yield

C1 = −R2
i

2
σa, C2 =

σa

4
, C3 = 0, C4 =

R4
i

4
σa.

The solutions to Problem A and Problem B can now be combined to yield the
complete solution for the state of stress around the circular hole of radius Ri

σr(r, θ) =
σa

2

[(
1− R2

i

r2

)
+

(
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R2
i

r2
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i
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]
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)
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]
,

τrθ(r, θ) =
σa

2

[
1 + 2

R2
i

r2
− 3

R4
i

r4

]
sin 2θ.

These results show that the stress components decrease in the inverse proportion of
the square of the distance from the center of the hole. As expected, at a large distance
from the hole, the far field uniaxial stress state is recovered, σr = σa/2 (1− cos 2θ),
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Fig. 3.14. Plots of stress state around circular hole in a thin sheet: (a) σr/σa along radii at
θ = 0 and θ = π/2, and (b) σθ/σa around inside edge of hole.

σθ = σa (1 + cos 2θ), and τrθ = σa/2 sin 2θ, which in the Cartesian coordinate
system, corresponds to σ2 = σa and σ1 = τ12 = 0. Figure 3.14(a) shows that the
radial stress component, σr, rapidly approaches its asymptotic values of zero and σa,
along two radial lines corresponding to θ = 0 and 90 degrees, respectively.

Around the edge of the hole, i.e., for r = Ri, the radial and shear stress
components vanish, as required, but the circumferential stress does not: σθ(θ) =
σa(1+2 cos 2θ). Figure 3.14(b) shows the distribution of this hoop stress around the
hole; note the peak values of 3σa at θ = 0 or π, and of−σa at θ = π/2 or 3π/2. The
distribution of hoop stress over the other half of the hole, i.e., for π ≤ θ ≤ 2π, is the
mirror image of that on the upper half of the hole.

Several important conclusions can be drawn from this example. The most sig-
nificant is that the presence of a circular hole in a thin sheet under a uniaxial state
of stress causes the appearance of a peak circumferential stress at the edge of the
hole. This stress component peaks at a level that is 3 times as large as that of the
applied stress, i.e., the hole creates a stress concentration factor of 3. If the sheet is
designed based on a simple yield criterion, σmax < σy, where σy is the yield stress
for the material, the presence of the hole reduces the load carrying capacity of the
sheet by a factor of three. The stress concentration factor is independent of the hole
size; the above analysis just requires the hole diameter to be much smaller than the
dimensions of the sheet. Consequently, no matter how small the hole is, the load car-
rying capability of the panel is reduced by a factor of three. In practice, because the
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hoop stress peaks in a relatively small region, the material will locally yield, and the
load carrying capacity of the sheet will not be reduced as dramatically. If the panel
is subjected to cyclic loads, however, cracks are likely to develop in the high stress
area, possibly reducing the life of the component significantly.

The disturbance in the far field stress caused by the presence of the hole quickly
decays away from the center of the hole, as illustrated in fig. 3.14. This means that the
presence of the hole in “felt” only in a small area. Finally, it is interesting to note that
the hoop stress is actually negative, σθ = −σa, in the area around θ = ±π/2, that
is, in the regions above and below the hole along axis ı̄2. Consequently, secondary
attachments might be made in this area without causing further problems.

The solution presented above is readily generalized to the case where σ1 = σb

and σ2 = 0, simply by replacing σa by σb and θ by θ + π/2 in the above solution.
Indeed, in the above solution, the applied loading direction is arbitrarily selected
to coincide with that of axis ı̄2. The solution for a sheet subjected to the biaxial
state of stress σ1 = σb and σ2 = σa would then be obtained by superposing the two
solutions. For example, if the far field stress is the pure shear stress state, the solution
is obtained by setting σ1 = −τ0 and σ2 = τ0.

Example 3.7. Reinforced hole in a thin panel
In example 3.6, the presence of a hole in a thin panel is shown to cause a considerable
disturbance in the stress field in the panel, and a stress concentration factor appears
around the edge of the hole. In this example, the following question is raised: is it
possible to eliminate this stress concentration by reinforcing the edge of the hole?
Figure 3.15 shows the configuration to be investigated: the panel features a hole of
radius Ri, but this time, a circular ring of cross-sectional area A and thickness t
reinforces the hole. The circular ring that reinforces the hole is called a “boss.”

sa

sa

sa

Ri

t
p

p

Re ® ¥

Free body diagram
for the sheet

Free body diagram
for the boss

Fig. 3.15. A thin panel with a hole subjected to a biaxial state of stress.

The panel is subjected to a biaxial state of stress, σ1 = σ2 = σa. Furthermore,
the dimensions of the panel are assumed to be much larger than the radius of the
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hole. Consequently, the square panel can be replaced by a circular panel of radius
Re → ∞, subjected to an external pressure, pe = −σa. Finally, the boss fits into
the circular hole, and hence, the boss and panel must interact through an unknown
pressure p. Figure 3.15 shows the free body diagram of the panel and boss, sepa-
rately. The circular panel is subjected to an external pressure, pe = −σa, and an
internal pressure, pi = −p, of unknown magnitude. On the other hand, the boss is
a thin ring subjected to an internal pressure of magnitude p. The magnitude of this
unknown pressure will be found by imposing displacement compatibility: the radial
displacements of the boss and hole in which it fits must match.

Because the circular panel is in a state of plane stress, the results developed in
example 3.3 do apply. In particular, the stress field in the panel is given by eqs. (3.56),
and hence σr = −pe− (pi−pe)/r̄2 and σθ = −pe +(pi−pe)/r̄2, where r̄ = r/Ri.
In this case, pe = −σa and pi = −p, leading to the following stress field in the panel

σr = σa − σa − p

r̄2
, σθ = σa +

σa − p

r̄2
. (3.73)

Next, the radial displacement distribution follows from eq. (3.58) as Eur/Ri =
−(1 − ν)per̄ + (1 + ν)(pi − pe)/r̄. Because, pe = −σa and pi = −p, the radial
displacement of the edge of the hole becomes

ur(r = Ri) =
Ri

E
[(1− ν)σa + (1 + ν)(σa − p)] =

Ri

E
[2σa − (1 + ν)p] .

On the other hand, the radial displacement of the boss is evaluated with the
help of eq. (3.62) to find ur = (R2

i p)/(Et). If w is the width of the boss,
its cross-sectional area is then A = wt, and the radial displacement becomes
ur = (R2

i wp)/(EA). Compatibility requires the radial displacement of the hole
in the sheet to be identical to that of the boss, i.e., Ri [2σa − (1 + ν)p] /E =
(R2

i wp)/(EA). This condition yields the interface pressure between the boss and
sheet as

p =
2σa

(1 + ν) + Riw/A . (3.74)

The stress field in the panel is evaluated by introducing the value of this pressure into
eqs. (3.73).

It is now possible to answer the question raised at the beginning of this example:
is it possible to eliminate this stress concentration by reinforcing the edge of the hole
with the boss? A cursory examination of eq. (3.73) reveals that if p = σa, the stress
components in the panel are σr = σθ = σa, i.e., the stress field is identical as that in
the panel without a hole. If p = σa, eq. (3.74) then implies

A =
wRi

1− ν
. (3.75)

In other words, if the cross-sectional area of the boss is given by the above relation-
ship, the stress field in the panel is undisturbed by the presence of the hole: the panel
“does not see” or “does not feel” the presence of the hole. A similar technique is
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used in aircraft fuselages: a boss is placed around the windows of the fuselage so as
to leave the stress field undisturbed to the largest possible extent. Of course, since the
fuselage is subjected to a variety of loading conditions, the boss minimizes the effect
of the window on the fuselage stress distribution without completely eliminating it.

Example 3.8. Thin-walled spherical pressure vessel
The reasoning developed in example 3.4 can readily be extended to the situation of a
thin-walled sphere of radius R and thickness t subjected to an internal pressure p, as
shown in fig. 3.16. This type of configuration is representative of spherical pressure
vessels.

First, the sphere is cut by a horizontal plane passing through its center, to reveal
the free body diagram shown in the figure. Due to the symmetry of the problem,
the pressure acting on the upper half of the sphere will be equilibrated by a hoop
stress, σh, which is uniformly distributed around the circle at the intersection of the
sphere with the plane of the cut. The total upward force generated by the pressure,
πR2p, is equilibrated by the downward force generated by the distributed hoop stress,
2πRtσh, assumed to be uniformly distributed through the thickness of the wall. This
yields the following result

σh =
pR

2t
. (3.76)

Note that the hoop stress is half of that in a pressurized tube of equal radius and
thickness, see eq. (3.76).

R

p

p

sh

sh sh

sh

sh

t

Fig. 3.16. Thin sphere under internal pressure.

Of course, in view of the spherical symmetry of the problem, the orientation
of the plane of the cut is arbitrary. Hence, the hoop stress derived above is acting
on a face with an arbitrary orientation. As shown in fig. 3.16, the stresses acting
on an arbitrary differential element cut from the thin-walled sphere are σh in two
orthogonal directions. Because the shear stress component vanishes, these are the
principal stresses, and hence, σp1 = σp2 = σh. Note that Mohr’s circle then reduces
to a single point at ordinate σh.

For a linearly elastic material, the hoop strain, εh, is obtained from Hooke’s law,
eq. (2.4), as

ε1 = ε2 = εh =
1− ν

2
R

t

p

E
. (3.77)
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The deformation is identical in all directions, due to the spherical symmetry of
the problem. Since the shear strain components vanish, the principal strains are
εp1 = εp2 = εh. The radius of the sphere increases by an amount ∆R =
(1− ν)(pR2)/(2Et).

If the wall thickness is very much smaller than the radius of the sphere, its cur-
vature become unimportant. Hence, it is possible to look at the sphere as a thin, flat
sheet of material subjected to a biaxial state of stress where σa = σh, as depicted in
fig. 3.15.

Pressure vessels must often be drilled to install manifolds that monitor the inter-
nal pressure or to let the pressurized gas or fluid in and out of the vessel. Such situ-
ation is identical to that discussed in example 3.7: a thin panel under a biaxial state
of stress featuring a circular hole. To minimize the effect of the hole on the stress
distribution in the pressure vessel, it is common to reinforce the hole with a circular
ring, as discussed in the example. For the optimum boss design given by eq. (3.75),
the stress distribution in the spherical pressure vessel will remain undisturbed by the
presence of a circular hole.

3.5.1 Problems

Problem 3.1. Navier’s equations
Develop the three Navier equations following the procedure described in section 3.1.1.

Problem 3.2. A solution to Navier’s equations
In principle, Navier’s equations should allow solution for the unknown displacements within
a solid body from which the stresses can be computed using the strain-displacement and
stress-strain equations. However, they are not as useful as expected because it is very diffi-
cult to express the necessary displacement boundary conditions for most practical problems.
Nonetheless a few solutions can be illustrated. Consider a problem with body forces given by:
b1 = −6Gx2x3, b2 = 2Gx3x1, and b3 = 10Gx1x2, and assume displacements given by
u1 = C1x

2
1x2x3, u2 = C2x1x

2
2x3, and u3 = C3x1x2x

2
3. Also assume G = E/2(1 + ν)

and ν = 1/4. Determine the constants, C1, C2, and C3 which allow satisfaction of the Navier
equations. Hint: you will eventually need to solve 3 simultaneous equations.

Problem 3.3. Equilibrium equations in polar coordinates
Derive the plane stress equilibrium equations (one equation in the r and a second in the θ
directions). Figure 3.6 provides the appropriate free body diagram. Make sure when you write
a force equilibrium equation that you multiply all stresses by appropriate areas (assume the
material has a unit thickness). You will need to account for the slight difference (dθ) in the
direction of on opposite sides of the element when writing the equilibrium equations in both
the r and θ directions. You will also need to use Taylor Series to express the differential
changes in σr and σθ in the same manner as is done for rectangular differential areas.

Problem 3.4. Strain compatibility equations in polar coordinates
For plane stress problems presenting cylindrical symmetry, the strain-displacement equations
expressed in polar coordinates are: εr = dur/dr, εθ = ur/r, and γrθ = 0. (1) How many
strain compatibility equations exist for this problem? (2) Derive the strain compatibility equa-
tions, if any.
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Problem 3.5. Thick-walled cylinder under internal pressure
Consider a thick-walled cylinder of internal and external radii Ri and Re, respectively, in a
state of plane strain subjected to an internal pressure pi. (1) Plot the non-dimensional radial
stress, σr/pi, distribution through the thickness of the cylinder. (2) Plot the distribution of non-
dimensional circumferential stress, σθ/pi. (3) Plot the distribution of von Mises’ equivalent
stress, σe/pi. (4) If the yield stress for the material is σy , plot the maximum internal pres-
sure the thick-walled cylinder can carry as a function of ρ = Re/Ri. What is the maximum
pressure pi/σy that can be carried by a very thick cylinder? (5) Plot the distribution of non-
dimensional radial strain, Eεr/pi. (6) Plot the distribution of non-dimensional circumferential
strain, Eεθ/pi. (7) Plot the distribution of non-dimensional radial displacement, Eur/(Ripi).
Present all your results for ρ = 1.5, 2.0 and 3.0; use the radial coordinate r̄ = r/Ri.

Problem 3.6. Thick-walled cylinder under external pressure
Consider a thick-walled cylinder of internal and external radii Ri and Re, respectively, in a
state of plane strain subjected to an external pressure pe. (1) Plot the non-dimensional radial
stress, σr/pe, distribution through the thickness of the cylinder. (2) Plot the distribution of
non-dimensional circumferential stress, σθ/pe. (3) Plot the distribution of von Mises’ equiv-
alent stress, σe/pe. (4) If the yield stress for the material is σy , plot the maximum external
pressure the thick-walled cylinder can carry as a function of ρ = Re/Ri. What is the max-
imum pressure pe/σy that can be carried by a very thick cylinder? (5) Plot the distribution
of non-dimensional radial strain, Eεr/pe. (6) Plot the distribution of non-dimensional cir-
cumferential strain, Eεθ/pe. (7) Plot the distribution of non-dimensional radial displacement,
Eur/(Ripe). Present all your results for ρ = 1.5, 2.0 and 3.0; use the radial coordinate
r̄ = r/Ri.

Problem 3.7. Thick-walled cylinder under internal pressure
Consider a thick-walled cylinder of internal and external radii Ri and Re, respectively, in a
state of plane stress subjected to an internal pressure pi. (1) Plot the non-dimensional radial
stress, σr/pi, distribution through the thickness of the cylinder. (2) Plot the distribution of non-
dimensional circumferential stress, σθ/pi. (3) Plot the distribution of von Mises’ equivalent
stress, σe/pi. (4) If the yield stress for the material is σy , plot the maximum internal pres-
sure the thick-walled cylinder can carry as a function of ρ = Re/Ri. What is the maximum
pressure pi/σy that can be carried by a very thick cylinder? (5) Plot the distribution of non-
dimensional radial strain, Eεr/pi. (6) Plot the distribution of non-dimensional circumferential
strain, Eεθ/pi. (7) Plot the distribution of non-dimensional radial displacement, Eur/(Ripi).
Present all your results for ρ = 1.5, 2.0 and 3.0; use the radial coordinate r̄ = r/Ri.

Problem 3.8. Thick-walled cylinder under external pressure
Consider a thick-walled cylinder of internal and external radii Ri and Re, respectively, in a
state of plane stress subjected to an external pressure pe. (1) Plot the non-dimensional radial
stress, σr/pe, distribution through the thickness of the cylinder. (2) Plot the distribution of
non-dimensional circumferential stress, σθ/pe. (3) Plot the distribution of von Mises’ equiv-
alent stress, σe/pe. (4) If the yield stress for the material is σy , plot the maximum external
pressure the thick-walled cylinder can carry as a function of ρ = Re/Ri. What is the max-
imum pressure pe/σy that can be carried by a very thick cylinder? (5) Plot the distribution
of non-dimensional radial strain, Eεr/pe. (6) Plot the distribution of non-dimensional cir-
cumferential strain, Eεθ/pe. (7) Plot the distribution of non-dimensional radial displacement,
Eur/(Ripe). Present all your results for ρ = 1.5, 2.0 and 3.0; use the radial coordinate
r̄ = r/Ri.



3.5 Problem featuring cylindrical symmetry 135

Problem 3.9. Disk rotating at high speed
A disk of mass density ρ, and inner and outer radii denoted a and b, respectively, is spin-
ning about a fixed point at an angular velocity Ω. (1) Plot the distribution of non-dimensional
radial stress, σr/(ρa2Ω2), through the thickness of the disk. (2) Plot the distribution of non-
dimensional circumferential stress, σθ/(ρa2Ω2). (3) Plot the distribution of non-dimensional
von Mises’ equivalent stress, σe/(ρa2Ω2). Present your stress distributions for b/a = 1.5, 2.0
and 3.0, as a function of r̄ = r/a. (4) First, let the inner radius, a, be fixed. Plot the maximum
allowable non-dimensional angular speed, Ωmax

√
ρa2/σy as a function of b/a ∈ [1.0, 10.0],

i.e., as the outer radius of the cylinder increases. Use von Mises’ criterion to predict yielding,
σy denotes the yield stress. (5) Next, let the outer radius, b, be fixed. Plot the maximum allow-
able non-dimensional angular speed, Ωmax

√
ρb2/σy as a function of a/b ∈ [0.0, 1.0], i.e.,

as the inner radius of the cylinder decreases. Comment on the significance of these last two
results. Hint: the boundary conditions of the problem are σr(r = a) = 0 and σr(r = b) = 0.

Problem 3.10. Two cylinder assembly
Figure 3.17 shows two cylinders that have

a

b

c

Fig. 3.17. Two concentric cylinder assembled
by heat treatment.

been assembled by a process called “shrink-
fitting.” The inner cylinder has nominal in-
ternal and external radii of a and b, respec-
tively, whereas the corresponding quantities
for the external cylinder are b and c, respec-
tively. Assume that the unconstrained ex-
ternal radius of the inner cylinder exceeds
the initially unconstrained internal radius of
the external cylinder by an amount δ, where
δ ¿ b. The two components are assem-
bled by first heating the outer cylinder so
that it expands, slipping the outer cylinder
over the inner, then letting the two components cool down. (1) Find the pressure, p, acting
between the two cylinder after cool down. (2) Find the common radial displacement of the
two cylinder at their interface. Hint: draw a free body diagram of the two cylinders separately.
The internal cylinder is acted upon by an external pressure, p, whereas the external cylinder
carries an internal pressure, p. This pressure can be found by imposing the compatibility of
radial displacement at the interface between the cylinders.

Problem 3.11. Von Mises’ equivalent stress around a hole in thin sheet
Consider a thin panel with a central circular hole of radius Ri subjected to a far field biaxial
state of stress σ1 = σb and σ2 = σa. (1) Evaluate the stress field in the panel. (2) Evaluate the
non-dimensional Von Mises’ equivalent stress σeq/σa, where σeq is defined by eq. (2.36). (3)
Plot the distribution of the equivalent stress for 1 ≤ r̄ ≤ 5, where r̄ = r/Ri, and 0 ≤ θ ≤ 2π.
Plot your results for σb/σa = - 1.0, i.e., when the panel is in a state of pure shear, and for
σb/σa = 1.0. (4) What are the stress concentration factors in each case? Note: use a software
package to generate the three dimensional plots.
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Engineering structural analysis

Solutions of the fifteen governing equations of linear elasticity are not easy to de-
velop for practical problems. Chapter 3 outlined the complexity of the problem and
presented solutions to a few of the simpler practical problems that can be easily
treated. These equations define what is commonly called the linearly elastic theory
of solid mechanics or more simply linear elasticity theory. Engineers and mathe-
maticians have studied these equations for more than two centuries, and their efforts
to develop solutions have led to broad areas of applied mathematics. The range of
useful analytical solutions, however, still remains quite limited, and the problems for
which solutions are available are usually very simple.

To analyze practical structures that are generally more complicated, it is almost
always necessary to make judicious simplifications that reduce the governing equa-
tions to a form that can be solved with modest effort. This approach is widely referred
to as engineering structural analysis or more simply structural analysis. These ef-
forts have produced a rich collection of solutions to practical problems, and structural
analysis is an important part of many areas of engineering. The chapters that follow
treat the subject of structural analysis, but the developments are based on the funda-
mental theory of solid mechanics presented in the first three chapters. This chapter
introduces basic solution processes, and subsequent chapters extend them to a range
of useful structural elements.

4.1 Solution approaches

One of the most direct ways to simplify solid mechanics problems is to re-
duce their dimensionality. The plane stress and plane strain assumptions presented
in sections 1.3 and 1.6, respectively, reduce three-dimensional problems to two-
dimensional problem. In some cases, a problem can be further simplified to a one-
dimensional form. For example, plane stress problems presenting cylindrical sym-
metry involve stress and strain fields that are functions of only the radial variable
when polar coordinates are used to formulate the problem.
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In addition to the simplifications mentioned above, various procedures are avail-
able to solve the resulting governing equations. Depending on the problem, different
solution procedures may require vastly different analytical skills and/or computa-
tional efforts.

In general, the objective of structural analysis is to determine the stress and de-
formation fields that arise from applied loads. Once appropriate simplifications have
been made, two approaches to the solution of the problem are possible.

1. In the first approach, a solution for the stress field is developed based on the equi-
librium equations of the problem (and possibly using the compatibility equa-
tions). Next, the strain field is obtained from the stress field with the help of
the constitutive laws. Finally, the strain-displacement equations are integrated
to obtain the displacement field. As illustrated in example 3.1, this last step is
often very tedious, even for the simplest problem. In addition, because three
displacement components must be determined from the six components of the
strain field, it is often necessary to invoke the auxiliary compatibility equations,
eqs. 1.106. Note that the solution process sequentially moves through the three
groups of equations of elasticity.

2. In the second approach, the solution process invokes the three groups of equa-
tions of elasticity in the reverse order. First, a set of purely kinematic assump-
tions are formulated. Typically, the displacement field of the structure under load
is assumed. Next, the strain-displacement equations are used to evaluate the
strain field, and the constitutive laws then yield the corresponding stress field.
Finally, substitution of the stress components in the equilibrium equations leads
to a complete solution of the problem.

To illustrate these two solution approaches, this chapter examines the simplest,
one-dimensional problems involving a single, direct stress component that can be
either tensile or compressive. A slender, homogeneous prismatic bar subjected only
to axial loads is a structural component that meets these conditions. The analysis of
this type of components and the associated solution procedures are described in the
following sections for a variety of such structures. In the process, the two fundamen-
tal solution procedures described above are examined in more detail, and solutions
are developed for a number of practical cases.

4.2 Bar under constant axial force

Figure 4.1 depicts an idealized problem consisting of an infinitely long, homoge-
neous bar with constant properties along its span and subjected to end loads P . The
first step to the development of an approximate model for this structural component
is to describe its kinematic behavior, i.e., to describe how the component deforms
under load. Since the axial load and physical properties are constant along the span,
the local deformation of the bar must be identical at all points along its span.

Consider now an initially plane cross-section, S , at a point along the span of the
bar as shown in fig. 4.1. All the material particles that form cross-section S before
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deformation will form a new section, S ′, after deformation. The symmetry of the
problem requires the two semi-infinite halves of the deformed bar to be identical,
and therefore, the deformed section, S ′, must remain planar and normal to the axis
of the bar.

P P

n

m

S

Fig. 4.1. Infinitely long bar under end loads.

For the more realistic problem of a bar of finite length, the above conclusions still
hold, except for the portions of the bar near the end points where complex stress dis-
tributions may arise. For instance, if the bar is held in the grips of a testing machine,
complex stress and displacement fields will develop under the grips. Very different
stress and displacement fields will develop in a bar that is loaded by a pin passing
through a hole drilled in the bar. In both cases, however, displacements and stresses
will eventually become uniform through the cross-section, at large distances from
these end zones. The solution developed here is not valid in these end zones, but it
does apply in the portions of the bar that are a good distance from these end zones,
as implied by Saint-Venant’s principle, principle 2 on page 169.

Consider again cross-section nm shown in fig. 4.1. Since the cross-sections of
the bar must remain planar, the axial deformation must be identical at all points of the
section, and the axial strain, ε1, will also be uniform over the cross-section. Clearly,
from the basic definition of extensional strain, it follows that ε1 = e/L, where L
is the length of the bar unaffected by the end regions, and e its change in length
resulting from the applied load.

If the bar is slender, it is reasonable to assume that the direct stress components
in the transverse direction, σ2 and σ3, are much smaller than the component, σ1,
aligned with the applied load. This means that σ2 ≈ 0 and σ3 ≈ 0. Finally, if the
load is not excessive, stress and strain components remain proportional to each other.
Hooke’s law then applies and eq. (2.1) reduces to σ1 = Eε1.

Since the axial stress component, σ1, is assumed to be uniformly distributed over
the cross-section, equilibrium of the section then requires that

σ1 =
P

A , (4.1)

where A is the cross-sectional area of the bar. The elongation of the bar resulting
from the application of the load is now easily found as

e = ε1L =
σ1L

E
=

PL

EA . (4.2)

The above results are valid for both tensile and compressive load. However, in the
case of compressive loads, the equilibrium configuration of the bar might become
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unstable as the load increases, leading to lateral buckling of the bar; this subject is
treated in chapter 14.

Equation (4.2) shows that the elongation of the bar is proportional to the applied
load; this can be emphasized by recasting the equation as e = P/k, where k is the
axial stiffness of the bar given by

k =
EA
L

. (4.3)

Under an axial force, the bar behaves like a simple spring of constant stiffness, k,
subjected to the same load.

One of the most common structural components that can be modeled as a bar
under an axial force is a bar in a truss structure. A truss is a two or three-dimensional
structure consisting of slender bars pinned at their ends to joints, which allow only
axial forces to be transmitted into each member. In chapter 5, the simple model devel-
oped here will be extended to treat a broader class of slender bar problems featuring
anisotropic materials, nonuniform cross-sections, and subjected to distributed axial
loads varying along the bar’s span.

The solution approaches outlined in section 4.1 will now be illustrated for axially
loaded uniform bars in several examples.

Example 4.1. Series connection of axially loaded bars
The simplest example of bars subjected to axial forces is a series of bars connected
in a straight line and subjected to axial forces applied at the bar ends. Figure 4.2
depicts a configuration featuring two bars connected in series; the left bar is clamped
at point A, whereas the second bar is loaded by force P at point C. An axial load,
3P , is applied at the junction point B between the two bars.

For this problem, the axial force equilibrium conditions can be written for each
joint as shown in fig. 4.2. It then follows from equilibrium equations at points B and
C that

FAB = 4P, FBC = P, (4.4)

where FAB and FBC are the axial forces in bar AB and BC, respectively. The sign
convention used here and consistently throughout this book is that a tensile force in
the bar is positive; this is the same convention used for the direct stress components.

A B C

3P

3P

P

P

dB
dC

FAB FBC
RA

k =(E /L)AB ABA k =(E /L)BC BCA

Fig. 4.2. Two bars connected in series and subjected to two loads.

Next, the constitutive law, eq. (4.2), is used to find the extension of each bar as
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eAB =
4P

kAB
and eBC =

P

kBC

where kAB = (EA/L)AB and kBC = (EA/L)BC are the axial stiffnesses of bars
AB and BC, respectively. The notation (EA/L)AB is used as a shorthand notation
for the more cumbersome EABAAB/LAB , where LAB , AAB and EAB denote the
length, cross-sectional area, and Young’s modulus, respectively, for bar AB. Similar
conventions are used for bar BC. Finally, the overall extension of the bar, which
is the displacement of point C, is found from the compatibility condition, dC =
eAB + eBC , to yield

dC = eAB + eBC =
(

4
kAB

+
1

kBC

)
P.

This is a particularly simple example not because two bars only are present,
but rather because the forces in the bars and the reaction force at point A can be
found from equilibrium considerations alone. The deflections then follow immedi-
ately from the force-deformation equations.

Example 4.2. Series connection of axially loaded bars (displacement approach)
Consider now the situation shown in fig. 4.3, which is similar to that depicted in
fig. 4.2, except that both ends of the system, at points A and C, are now fixed and
only the load applied at point B remains. In this case, the problem involves two
reactions forces, RA and RC , and two bar forces, FAB and FBC , for a total of four
unknowns. On the other hand, only three equations of equilibrium can be written,
one at each of the three joints: RA = FAB , FBC −FAB +3P = 0, and RC = FBC .

In contrast with the previous example, the equilibrium equations are no longer
sufficient to determine the bar forces. Such problems are known as hyperstatic sys-
tems, or “statically indeterminate,” or “statically redundant” systems in contrast with
isostatic or “statically determinate” systems, such as that presented in example 4.1.

A B C

3P

3P

dB

FAB FBC

RA RC

k =(E /L)AB ABA k =(E /L)BC BCA

Fig. 4.3. Two bars connected in series with ends fixed.

To find the solution of this problem, deformations must also be considered.
The constitutive laws of the system can be expressed as eAB = FAB/kAB and
eBC = FBC/kBC for bars AB and BC, respectively. Introducing these results into
the equilibrium equation for point B yields

kAB eAB − kBC eBC = 3P. (4.5)
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Finally, the kinematics of the system are used to express bar extensions in terms
of the displacements of points B and C as dB = eAB and dC = eAB + eBC ,
respectively. The displacement at point C, however, must vanish because this point
is clamped, dC = 0, which implies eAB = −eBC and dB = eAB = −eBC .

Introducing these results into eq. (4.5) then yields a single equation for the un-
known displacement at point B, (kAB + kBC) dB = 3P . This is the equilibrium
equation of the problem written in terms of the unknown displacement, dB . This
equation can be solved for the displacement, dB , and the bar elongations can then be
computed as eAB = −eBC = dB = 3P/(kAB + kBC). Back substitution yields the
forces in the bars

FAB = kAB eAB =
3kABP

kAB + kBC
, FBC = −kBC eBC = − 3kBCP

kAB + kBC
. (4.6)

It is interesting to compare these internal forces with those obtained for the iso-
static problem in example 4.2, see eq. (4.4). In the solution of the isostatic problem,
the internal forces only depend on the externally applied loads, whereas in the solu-
tion of the hyperstatic problem, the internal forces depend on the applied loads, as
expected, but also on the stiffness of the structure: indeed, the stiffnesses of the bars,
kAB and kBC , appear in the final answer.

Example 4.3. Series connection of axially loaded bars (force approach)
The problem presented in the previous example, see fig. 4.3, will be analyzed again,
but a different solution procedure will be followed. As noted previously, the problem
involves two reactions forces, RA and RC , and two bar forces, FAB and FBC , for
a total of four unknowns. Only three equations of equilibrium can be written, one at
each of the three joints: RA = FAB , FBC − FAB + 3P = 0, and RC = FBC .

If any one of the four internal forces is known, the three others can be directly
determined from the equilibrium equations. For instance, if FAB is known, all other
internal forces can be readily computed. More formally, the force in bar AB, denoted
R, is assumed to be known. The three equilibrium equations then yield FBC =
R− 3P , RA = R, and RC = R− 3P .

The next step is to substitute these forces into the constitutive equations to deter-
mine the system deformation, i.e., the bar extensions, as

eAB =
FAB

kAB
=

R

kAB
, eBC =

FBC

kBC
=

R− 3P

kBC
.

Next, the strain-displacement equations express the relationship between the sys-
tem deformations and the displacements of points A, B, and C. Figure 4.3 shows that
dA = dC = 0 and dB = eAB , but the compatibility of deformation between the fixed
points A and C also requires eAB + eBC = 0. This compatibility condition provides
the necessary equation to solve for R,

eAB + eBC =
R

kAB
+

R− 3P

kBC
= 0, or R =

3kAB

kAB + kBC
P. (4.7)

Finally, the equilibrium equations yield FAB = R = 3P kAB/(kAB +kBC) and
FBC = R− 3P = −3P kBC/(kAB + kBC). The displacement of point B becomes
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dB = eAB = FAB/kAB . The solution is identical to that found in the previous
example using the displacement approach.

In the force method, the determination of the unknown force, R, is based on the
enforcement of compatibility conditions for system deformations. While this pro-
cess is carried out here in abstract, mathematical terms, a physical description of the
procedure is often helpful in formulating the solution.

In the first step, the system is assumed to be “cut” at a location that reveals the
unknown internal force, R. Since this force acts in bar AB, the cut is made at an
arbitrary point along this bar, for instance at point A, as depicted in fig. 4.4.

A B C

3Pdcut k =(E /L)AB ABA k =(E /L)BC BCA

3P

FAB FBC

R

R

RC

Fig. 4.4. Two bars connected in series with ends fixed and a cut at point A.

In the second step, under the action of the externally applied loads, a relative
displacement of the two sides of the cut, denoted dcut, will develop. Of course, in the
real system this cut does not exist, i.e., dcut = 0. It is convenient to think of force R
as an externally applied load, as illustrated in fig. 4.4. The extensions of the two bars
can be written in terms of the forces as

eAB =
FAB

kAB
=

R

kAB
, eBC =

FBC

kBC
=

R− 3P

kBC
.

In the third step, the compatibility condition is enforced. The displacement at the
cut is the sum of the elongations of the two bars, dcut = eAB +eBC . In this example,
the displacement is positive if the two sides of the cut overlap and negative when a
gap forms between the two sides of the cut. In the actual system, the cut is not present
and the relative displacement at the cut must vanish: dcut = 0. This condition leads
to

dcut = eAB + eBC = R/kAB + (R− 3P )/kBC = 0.

This equation expresses the displacement compatibility at the cut, and it is written in
terms of forces and flexibilities (i.e., the inverse of stiffnesses). The equation can be
solved for the unknown force, R, as

R =
3/kBC

1/kAB + 1/kBC
P =

3kAB

kAB + kBC
P.

It then follows that FAB = R = 3P kAB/(kAB + kBC) and FBC = R − 3P =
−3P kBC/(kAB + kBC), and finally, dB = eAB = FAB/kAB .
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4.3 Hyperstatic systems

The examples treated in the previous section reveal fundamental differences between
two types of systems that are commonly encountered in structural analysis. For some
systems, the number of equations of equilibrium is equal to the total number of un-
known internal forces. Internal forces include reaction forces and forces acting in the
members of the system. Such systems are called statically determinate or isostatic
systems. The term “isostatic,” where “iso” means “the same,” refers to the fact that
the number of equilibrium equations is the same as the number of force unknowns.
For isostatic problems, the unknown forces can be determined from the equations
of equilibrium alone, without using the strain-displacement equations or constitutive
laws. This is a special situation since, in general, the solution of elasticity problems
requires the simultaneous solution of the three fundamental groups of equations: the
equilibrium, strain-displacement, and constitutive equations. A very simple isostatic
system is treated in example 4.1.

For other systems, the total number of unknown internal force and reactions is
larger than the number of equilibrium equations. Such systems are called statically
indeterminate or hyperstatic systems. The term “hyperstatic,” where “hyper” means
“larger,” refers to the fact the number of force unknowns is larger than the number
of equilibrium equations. In this case, the equilibrium equations are not sufficient to
determine the internal forces in the system. The equilibrium equations by themselves
present an infinite number of solutions.

The degree of redundancy, NR, of a system is defined as the number of unknown
internal forces minus the number of equations of equilibrium. For instance, the prob-
lem presented in example 4.2 features four unknown internal forces and three equa-
tions of equilibrium. Hence, its degree of redundancy is NR = 4−3 = 1; the system
is referred to as having a single degree of redundancy or being hyperstatic of order
1. The treatment of hyperstatic systems will require the simultaneous solution of the
three fundamental groups of equations to evaluate all the unknown quantities of the
problem.

The difference between iso- and hyperstatic systems might appear to be rather
technical at first, but it is, in fact, very fundamental. A few of the key differences are
discussed in the following paragraphs.

First, the solution procedure for the two types of systems is different. For isostatic
systems, the equations of equilibrium are written first, then immediately solved for
the unknown internal forces. Indeed, no other equations are needed to evaluate these
forces. It is only when evaluating deformations and displacements that the consti-
tutive laws and then the strain-displacement equations must be invoked. In contrast,
the solution process for hyperstatic problems is somewhat more complex. The equi-
librium equations cannot be solved independently of the other two sets of equations
of elasticity, the strain-displacement equations and the constitutive laws. Clearly, hy-
perstatic problems are inherently more difficult to solve because the three sets of
equations of elasticity shown in fig. 3.1 are now coupled.

Two main approaches are available for the solution of these coupled equations:
the displacement method and the force method, which are presented in examples 4.2
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and 4.3, respectively. These two solution procedures will be more formally developed
in the next section.

A second difference is observed in the nature of the solution for the unknown
internal forces. Compare the expressions given in eqs. (4.4) and (4.6) for the internal
forces of an isostatic and a hyperstatic problem, respectively. For isostatic systems,
internal forces can be expressed in terms of the externally applied loads, whereas
for hyperstatic systems, internal forces depend on the applied loads, as expected, but
also on the stiffness of the structure because the bar stiffnesses, kAB and kBC , ap-
pear in the final answer. This difference reflects the fact that the solution process for
hyperstatic systems requires the use of the material constitutive laws. Consequently,
material stiffness characteristics, such as the Young’s modulus of the material, ex-
plicitly appear in the expressions for the internal forces. In other words, the internal
force distribution in hyperstatic systems depends on the stiffness characteristics of
the structure, whereas for isostatic systems, this distribution is independent of struc-
tural stiffnesses.

The third difference is best explained by considering once again the iso- and
hyperstatic systems treated in examples 4.2 and 4.3, respectively. The hyperstatic
system features two load paths: one load path, bar AB, carries a portion of the ap-
plied load to the ground, i.e., to a fixed support while the other load path, bar BC,
carries the remaining portion of the applied load to the other support. This system is
said to present “dual load paths,” see fig. 4.3. This contrasts with the isostatic prob-
lem that features a single load path: the applied loads are carried back to the single
support at point A through the serially-connected bars AB and BC, see fig. 4.2. In
the hyperstatic system, the equilibrium equations are not sufficient to determine how
much of the load will be carried by load path AB and how much will be carried by
load path BC. In fact, the applied load is split between the two load paths according
to their relative stiffnesses, FAB/FBC = −kAB/kBC , where the minus sign reflects
the sign conventions for the bar internal forces. The stiffer load path will carry more
load than the more compliant one.

Systems with multiple load paths are inherently more damage tolerant than sys-
tems with a single load path. Indeed, if bar AB fails, the single load path system can
no longer carry any load, whereas the dual load path system might still be able to
carry the applied load, assuming that bar BC is designed to safely carry the entire
load in the event of a failure of the other bar.

4.3.1 Solution procedures

Two general approaches are available for the solution of hyperstatic systems. The
first approach is illustrated in example 4.2 and involves the following steps. First,
write the equilibrium equations of the system. Second, use the constitutive laws
to express internal forces in terms of member deformations. Third, use the strain-
displacement equations to express system deformations in terms of displacements.

At this point, all the equations of elasticity have been written: the rest of the
procedure manipulates these equations to obtain the solution of the problem. The
deformations written in terms displacements are introduced in the constitutive laws
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to find the internal forces in terms of displacements, and finally, these internal forces
are introduced into the equilibrium equations to yield the equations of equilibrium
expressed in terms of displacements. Solution of these equilibrium equations then
yield the displacements of the system. Deformations then follow by back substitut-
ing the displacements in the strain-displacement equations; finally, the internal forces
are obtained from the constitutive laws by back substitution of the deformations. This
solution approach is called the displacement method or the stiffness method, because
the governing equations are equilibrium equations written in terms of unknown dis-
placements and component stiffnesses.

The second approach is illustrated in example 4.3 and involves the following
steps. First, write the equilibrium equations of the system. Next, determine the sys-
tem degree of redundancy, NR, which equals the number of unknown internal forces
minus the number of equations of equilibrium. The system is now “cut” at NR lo-
cations. At each of the NR cuts, a redundant force is assumed to act, and a single
relative displacement is defined to measure the relative displacement across the cut.

With the addition of these NR cuts and the specification of the NR redundant
forces, the originally hyperstatic system is transformed into an isostatic system for
which the internal forces can be determined in terms of the applied loads and the NR

redundant forces from the equilibrium equations alone, i.e., the redundant forces are
treated as externally applied loads. Next, the relative displacements at the NR cuts are
determined by first invoking the constitutive laws to yields system deformations in
terms of the applied loads and the NR redundant forces. Finally, the strain displace-
ment equations can be used to find the relative displacements at the NR cuts. The
original hyperstatic system, however, cannot develop these relative displacements
because it has no cuts. These compatibility requirements impose the vanishing of the
relative displacements at the cuts, and this leads to a set of NR equations for the NR

redundant forces. This approach is called the force method or the flexibility method
because the governing equations express compatibility requirements in terms of the
redundant forces and component flexibilities.

The displacement and force methods are general solution procedures that can be
used to solve a wide range of hyperstatic problems. Hence, it is useful to formally
describe these procedures in details. For clarity and simplicity, each step of the pro-
cedures is explained in terms of the structural components and variables encountered
in the analysis of axially loaded bars. In later chapters, the same methods will be
generalized for application to other, more complex structural components and sys-
tems.

4.3.2 The displacement or stiffness method

The displacement method focuses on expressing the governing equilibrium equa-
tions in terms of displacements, and the resulting equations are solved for these
displacements. The forces and moments in the system are then computed from the
displacements using the force-deformation relationships. This can be formalized in
the following steps.
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1. Write the equilibrium equations of the system. Equilibrium conditions express
the vanishing of the sum of the forces and moments acting on the system. This
step typically involves construction of free body diagrams of the various sub-
components of the system, and then formulation of the equilibrium conditions.

2. Use the constitutive laws to express internal forces in terms of member deforma-
tions or strains.

3. Use the strain-displacement equations to express system deformations in terms
of displacements. At this point the three groups of equations of elasticity have
been utilized. The total number of unknowns of the problem should be equal to
the total number of equations.

4. Introduce the deformations-displacements equations derived in step 3 into the
constitutive laws derived in step 2 to find the internal forces in terms of displace-
ments.

5. Introduce the internal forces derived in step 4 into the equilibrium equations
derived in step 1 to yield the equations of equilibrium expressed in terms of
displacements.

6. Solve the equilibrium equations derived in step 5 to find the displacements of the
system.

7. Find system deformations by back-substituting the displacements into the strain-
displacement equations derived in step 3.

8. Find system internal forces by back-substituting the deformations into the con-
stitutive laws derived in step 2.

The displacement method focuses first on determining the displacement of the
system, and system deformations are then obtained by back substituting displace-
ments into the strain-displacement equations. Finally, the internal forces follow from
back-substitution of deformations into the constitutive laws. The number of displace-
ment variable is exactly equal to the number of equilibrium equations. All equilib-
rium equations will involve one or more displacement variables, and hence, the so-
lution for the displacements in step 6 typically requires the solution of a set of linear
equations. If this system of equations is large, computational tools will ease the so-
lution process.

Example 4.4. Hyperstatic three-bar truss. Displacement method solution
The three-bar truss depicted in fig. 4.5 is a very simple system of axially loaded bars
that exhibits all the characteristics of hyperstatic systems. The system is subjected to
a vertical load P applied at point O, where the three bars are pinned together. The
three bars will be identified by the points at which they are pinned to the ground,
denoted points A, B, and C.AA,AB andAC are the cross-sectional areas of bars A,
B, and C, respectively, and EA, EB and EC denote their respective Young’s moduli.

The truss features geometric and material symmetry about vertical axis OB: the
cross-sectional areas of bars A and C are equal, AA = AC , and so are their Young’s
moduli, EA = EC . Consequently, the forces acting in bars A and C, denoted FA and
FC , respectively, are also equal, FA = FC . The vertical displacement of point O is
denoted ∆, and the displacement method focuses on determining this displacement



148 4 Engineering structural analysis

L

A B C

q q

q

O O

P

P D

D

e
c

LA

FA FB F = FC A

Free body
diagram Kinematics

Fig. 4.5. Three bar truss.

first. Due to the symmetry of the problem, the horizontal displacement component
vanishes.

Step 1 of the displacement method described in section 4.3.2 is to derive the
equation of equilibrium of the problem. The free body diagram drawn in fig. 4.5
yields

FB + 2FA cos θ = P. (4.8)

Clearly, the two unknown forces, FA and FB , cannot be determined from this single
equilibrium equation: this is a hyperstatic system of order 1.

Step 2 invokes the constitutive laws to relate the forces in the bars to the corre-
sponding bar deformations as follows

eA = eC =
FALA

(EA)A
=

FAL

(EA)A cos θ
, eB =

FBL

(EA)B
, (4.9)

where eA, eB , and eC are the elongations of the three bars.
Step 3 deals with the last set of equations of elasticity, the strain-displacement

equations. Relating the vertical displacement, ∆, of point O to the elongations of the
bars is a difficult task if ∆ is arbitrarily large; for small displacement, however, i.e.,
when ∆ ¿ L, angle θ changes little during deformation, and the kinematics diagram
in fig. 4.5 shows that eC ≈ ∆ cos θ. It follows that

eA = eC = ∆ cos θ, eB = ∆. (4.10)

All equations of elasticity have now been utilized for this problem. Step 4 is a
purely algebraic step combining eqs. (4.9) and (4.10) to express the internal forces
in terms of displacements to find

FA

(EA)B
=

FC

(EA)B
=

∆

L
k̄A cos2 θ,

FB

(EA)B
=

∆

L
, (4.11)

where k̄A = (EA)A/(EA)B is the non-dimensional stiffness of bar A.
Step 5 is another purely algebraic step combining eqs. (4.8) and (4.11) to express

the single equilibrium condition of the problem in terms of the single displacement
component, ∆, to find
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∆

L
+ 2

∆

L
k̄A cos3 θ =

P

(EA)B
.

Step 6 solves this linear equation for the single displacement component, ∆, to
find

∆

L
=

1
1 + 2k̄A cos3 θ

P

(EA)B
. (4.12)

This relationship can be written as ∆ = P/k, where k is the equivalent vertical
stiffness of the three-bar truss, k =

[
(EA)B + 2(EA)A cos3 θ

]
/L.

In step 7, the deformations of the structure are recovered by introducing the dis-
placement given by eq. (4.12) into the strain-displacement equations, eqs. (4.10), to
find the elongations as

eA

L
=

eC

L
=

cos θ

1 + 2k̄A cos3 θ

P

(EA)B
,

eB

L
=

1
1 + 2k̄A cos3 θ

P

(EA)B
. (4.13)

The final step of the displacement method, step 8, recovers the forces in the bars by
introducing the elongations, given by eq. (4.13) into the constitutive laws, eq. (4.9),
to find

FA

P
=

FC

P
=

k̄A cos2 θ

1 + 2k̄A cos3 θ
,

FB

P
=

1
1 + 2k̄A cos3 θ

. (4.14)

Note that the internal forces in the bars depend on the stiffnesses of the system,
k̄A = (EA)A/(EA)B . In fact, the ratio of the forces in bars A and B is FA/FB =
k̄A cos2 θ, i.e., the ratio of the forces in the two bars is in proportion to the ratio of
their stiffnesses.

Example 4.5. Rigid plate suspended by four elastic cables: displacement method
The hyperstatic system depicted in fig. 4.6 is more complicated than the previous
example, but the same displacement method can be applied. In this example, a rigid
square plate of side dimension ` is supported by four identical elastic cables of length
h, cross-sectional areaA, and Young’s modulus E. A vertical load P is applied to the
rigid plate at point K located by coordinates x1p and x2p as indicated in the figure.
Find the elongations and forces in the four cables.

The complication in this example arises from the kinematics. Because the plate
is assumed to be perfectly rigid, it is easy to understand that the vertical displace-
ments of points A, B, C, and D, denoted ∆A, ∆B , ∆C , and ∆D, respectively, are
not independent. Indeed, any three points uniquely define a plane. For example, the
displacements of points A, B, and C uniquely defined the configuration of the plate,
and the displacement of the fourth point, D, follows. For a square plate it is easy to
show that ∆A + ∆B = ∆C + ∆D is the condition that ensures the infinite rigidity
of the plate.

Step 1 of the displacement method described in section 4.3.2 is to derive the
equations of equilibrium of the problem from the free body diagram shown in fig. 4.6
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Fig. 4.6. A rigid plate supported by four identical elastic cables.

FA + FB + FC + FD = P, (4.15a)

−FA + FB + FC − FD =
2x2p

`
P, (4.15b)

−FA + FB − FC + FD =
2x1p

`
P, (4.15c)

where the first equation corresponds to the equilibrium of forces in the vertical di-
rection, and the next two equations are moment equilibrium equations about axes ı̄1
and ı̄2, respectively. Clearly, the four unknown forces, FA, FB , FC , and FD, cannot
be determined from these three equilibrium equations. This is therefore a hyperstatic
system of order 1.

Step 2 invokes the constitutive laws to relate the forces in the cables to the corre-
sponding system deformations as follows

eA =
FAh

EA , eB =
FBh

EA , eC =
FCh

EA , eD =
FDh

EA , (4.16)

where eA, eB , eC , and eD are the elongations of the four cables. Step 3 deals with
the strain-displacement equations which are particularly simple in this case:

eA = ∆A, eB = ∆B , eC = ∆C , eD = ∆D. (4.17)

All equations of elasticity have now been utilized for this problem.
Step 4 is a purely algebraic step combining eqs. (4.16) and (4.17) to express the

internal forces in terms of displacements to find

FA =
EA
h

∆A, FB =
EA
h

∆B , FC =
EA
h

∆C , FD =
EA
h

∆D. (4.18)

Step 5 is another purely algebraic step combining eqs. (4.15) and (4.18) to ex-
press the equilibrium conditions of the problem in terms of the unknown displace-
ments to yield the first three equations below,



4.3 Hyperstatic systems 151

∆A + ∆B + ∆C + ∆D =
Ph

EA , (4.19a)

−∆A + ∆B + ∆C −∆D =
2x2p

`

Ph

EA , (4.19b)

−∆A + ∆B −∆C + ∆D =
2x1p

`

Ph

EA , (4.19c)

∆A + ∆B −∆C −∆D = 0. (4.19d)

The fourth equation expresses the compatibility condition that defines the infinite
stiffness of the plate, as discussed earlier.

Step 6 involves the solution of the system of linear equations, eqs. (4.19), to find
the displacements of the attachment points of the four cables,

∆A

h
=

1
4

(
1− 2x1p

`
− 2x2p

`

)
P

EA ,

∆B

h
=

1
4

(
1 +

2x1p

`
+

2x2p

`

)
P

EA ,

∆C

h
=

1
4

(
1− 2x1p

`
+

2x2p

`

)
P

EA ,

∆D

h
=

1
4

(
1 +

2x1p

`
− 2x2p

`

)
P

EA .

(4.20)

In step 7, the deformations of the structure are recovered by introducing the dis-
placement into the strain-displacement equations, eqs. (4.17), to find the elongations.
The final step of the displacement method, step 8, recovers the forces in the cables
by introducing the elongations into the constitutive laws, eqs. (4.16), to find

FA

P
=

1
4

(
1− 2x1p

`
− 2x2p

`

)
,

FB

P
=

1
4

(
1 +

2x1p

`
+

2x2p

`

)
,

FC

P
=

1
4

(
1− 2x1p

`
+

2x2p

`

)
,

FD

P
=

1
4

(
1 +

2x1p

`
− 2x2p

`

)
.

(4.21)

Because the stiffness constants of all four cables are identical, the forces in the
cables do not depend on the stiffnesses of the structure. Had the stiffnesses of the
cables been different from each other, the final solution for the forces in the cables
would depend on the relative stiffnesses of the cables.

4.3.3 The force or flexibility method

The force method focuses on the solution for the system internal forces. Compatibil-
ity equations are written in terms of a set of redundant forces. In contrast with the
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displacement method, the forces are determined first, and strains and displacements
are then recovered. The procedure can be formalized in the following steps.

1. Write the equilibrium equations of the system. Equilibrium conditions express
the vanishing of the sum of the forces and moments acting on the system. This
step typically involves the construction of free body diagrams of the various sub-
components of the system and then formulation of the equilibrium conditions.

2. Determine the system degree of redundancy, NR, which equals the number of
unknown internal forces minus the number of equilibrium equations.

3. Cut the system at NR locations and define a single relative displacement for each
of the cuts. With the NR cuts, the originally hyperstatic system is transformed
into an isostatic system.

4. Apply NR redundant forces to the system, each acting along the relative dis-
placement allowed by each of the NR cuts. Express all internal forces of the
system in terms of the applied loads and the NR redundant forces by means
of the equilibrium equations. Note that the choice of where to make the cuts is
somewhat arbitrary, and some choices may lead to simpler solution processes.
The key requirement in making the cuts is that the resulting system must be an
isostatic system, not a mechanism.

5. Use the constitutive laws to express system deformations in terms of NR redun-
dant forces.

6. Use the strain-displacement equations to express the relative displacements at
the NR cuts in terms of the NR redundant forces.

7. Impose the vanishing of the relative displacements at the NR cuts, and use these
NR compatibility equations to solve for the NR redundant forces.

8. Recover system deformations from the constitutive laws and system displace-
ments from the strain-displacement equations.

The force method directly focuses on the determination of the redundant forces.
All internal forces, system deformations and displacements are expressed in terms of
redundant forces. The solution process involves the solution of a linear set of equa-
tions of size NR, the degree of redundancy of the system. This contrasts with the
displacement method that involves the solution of a system of linear equations of
size equal to the number of unknown displacements, ND. Depending on the rela-
tive values of NR and ND, the displacement or force methods can be more or less
convenient to use.

As a final comment, note that while the force method can be applied quite effec-
tively using good engineering judgement and experience, the displacement method
is usually more amenable to automated solution processes using computers.

Example 4.6. Hyperstatic three-bar truss: force method solution
The three-bar truss problem treated in example 4.4 using the displacement method
will now be solved using the force method. The truss is depicted in fig. 4.7, and here
again, it is subjected to a vertical load P applied at point O, where the three bars
are pinned together. The three bars will be identified by the points at which they
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are pinned to the ground at points A, B, and C. AA, AB and AC denote the cross-
sectional areas of bars A, B, and C, respectively, and EA, EB and EC denote their
respective Young’s moduli.

L

A AB BC C

q q

O

O

P P

LA
RSystem

with a cut

cu
t

Fig. 4.7. Three bar truss.

The truss features geometric and material symmetry about vertical axis OB: the
cross-sectional areas of bars A and C are equal, AA = AC , and so are their Young’s
moduli, EA = EC . Consequently, the forces acting in bars A and C, denoted FA and
FC , respectively, are also equal, FA = FC .

Step 1 of the force method described in section 4.3.3 yields a single equation of
vertical equilibrium for the problem based on the free body diagram shown in fig. 4.5

FB + 2FA cos θ = P. (4.22)

Clearly, the two unknown forces, FA and FB , cannot be determined from equilibrium
considerations alone. As required by step 2, the system degree of redundancy is
determined as NR = 2− 1 = 1.

Step 3 calls for cutting the system at a single location because NR = 1. As
depicted in fig. 4.7, bar B is cut for this example, but cutting bars A or C would lead
to a very similar procedure.

Next, in step 4, a single redundant force, R, is applied at the to sides of the cut.
With R treated as a known load, it is now possible to solve the equilibrium eq. (4.22)
for FA and FC as

FA = FC =
(P −R)
2 cos θ

, FB = R. (4.23)

In step 5, bar extensions are expressed in terms of the redundant force, R, using
the constitutive laws, eq. (4.9), leading to

eC

L
=

eA

L
=

FA

(EA)A cos θ
=

(P −R)
2(EA)A cos2 θ

,
eB

L
=

FB

(EA)B
=

R

(EA)B
. (4.24)

Step 6 requires the determination of the relative displacement at the cut, and this
is easily obtained from the strain-displacement equations and kinematics as

dcut =
eA

cos θ
− eB =

(P −R)L
2(EA)A cos3 θ

− RL

(EA)B
.
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Step 7 enforces the vanishing of this relative displacement, dcut = 0. This equa-
tion is then solved for the redundant force R to find

R

P
=

1
1 + 2k̄A cos3 θ

,

where k̄A = (EA)A/(EA)B is the non-dimensional stiffness of bar A. The internal
forces in the bars then follow from eq. (4.23) as FB = R and FA = FC = (P −
R)/(2 cos θ).

In step 8, the bar elongations are recovered from eq. (4.24). As expected, the
results obtained using the force method as presented here match those obtained in
example 4.4 using the displacement method.

Example 4.7. Rigid plate supported by four cables: force method
The force method can also be used to find the forces and deformations in the rigid
plate problem treated in example 4.5. The hyperstatic system is shown again in
fig. 4.8. The square rigid square plate with sides of length ` is supported by four iden-
tical elastic vertical cables of length h, cross-sectional area A, and Young’s modulus
E. A vertical load, P , is applied to the rigid plate at point K located at coordinates
x1p and x2p as indicated in the figure.

The kinematics of the rigid plate require that all four corner points remain in
a plane. Thus, only three of the vertical displacements of points A, B, C, and D,
denoted ∆A, ∆B , ∆C , and ∆D, respectively, are independent, and the fourth can be
computed from the other three. Again, it is easy to show that ∆A +∆B = ∆C +∆D

is the condition that expresses the infinite rigidity of the plate.
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Fig. 4.8. A rigid plate supported by four identical elastic cables.

Step 1 of the force method is to derive the equations of equilibrium of the problem
from the free body diagram shown in fig. 4.6. The vanishing of the sum of the forces
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and moments acting on the rigid plate leads to the equations of equilibrium given
by eqs. (4.15). Clearly, the four unknown forces, FA, FB , FC , and FD, cannot be
determined from those three equilibrium equations. As required by step 2, the system
degree of redundancy is determined as NR = 4− 3 = 1.

Step 3 calls for cutting the system at a single location, since NR = 1. As depicted
in fig. 4.8, cable B is cut in this example, but cutting any one of the four cables would
lead to a very similar procedure.

Next, in step 4, a single redundant force, R, is applied at the to sides of the cut.
With the help of the equation of equilibrium, eq. (4.15), the internal forces in the
cables are expressed in terms of the applied load, P , and the redundant force, R, to
find

FA = R−
(x1p

`
+

x2p

`

)
P, FB = R,

FC =
(

1
2

+
x2p

`

)
P −R, FD =

(
1
2

+
x1p

`

)
P −R.

(4.25)

In step 5, cable extensions are expressed in terms of the redundant force, R, by
introducing the above forces into the constitutive laws, eqs. (4.16), to yield

EAeA

h
= R−

(x1p

`
+

x2p

`

)
P,

EAeB

h
= R,

EAeC

h
=

(
1
2

+
x2p

`

)
P −R,

EAeD

h
=

(
1
2

+
x1p

`

)
P −R.

(4.26)

Step 6 requires determination of the relative displacement at the cut, and step 7
imposes the requirement that it vanish. The condition expressing the infinite rigidity
of the plate is ∆A + ∆B = ∆C + ∆D. If this condition is satisfied, the relative
displacement at the cut must vanish. Because the four cables are fixed at their bases,
their tip displacements are equal to their elongations and hence, eA +eB = eC +eD.
introducing eq. (4.26) into this compatibility equations leads to

R−
(x1p

`
+

x2p

`

)
P + R =

(
1
2

+
x2p

`

)
P −R +

(
1
2

+
x1p

`

)
P −R.

This equation is now solved for the redundant force R to find

R = FB =
1
4

(
1 +

2x1p

`
+

2x2p

`

)
P.

The other internal forces in the cables are then obtained by introducing the redun-
dant force, R, into eqs. (4.25). In step 8, the cable elongations are recovered from
eq. (4.26).

As expected, the results obtained using the force method presented here match
those obtained in example 4.5 using the displacement method. It is interesting to
note that the solution of this problem using the displacement method involves solv-
ing a linear system of four equations for the four unknown displacements of the
cables, whereas the present force method requires the solution of a single compati-
bility equation for the unknown redundant force. In other words, the force method
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requires the solution of a linear system of size equal to the order of redundancy of
the hyperstatic system, whereas the displacement method requires the solution of a
larger linear system of size equal to the number of unknown displacements.

4.3.4 Problems

Problem 4.1. Simple hyperstatic bars - displacement method solution
Three axially loaded bars, each of length L and all constructed from a material of elasticity
modulus E, are arranged as shown in fig. 4.9. Two bars are connected in parallel and one of
these has a cross-sectional area that is twice that of the other. A third bar is connected in series
at the common point. An axial load, P , is applied at the junction of the three bars. Using the
displacement method, determine (1) the displacement, d, of the connecting point between the
three bars and (2) the forces in each of the three bars.

A d

2A

A

L L

P

Fig. 4.9. Three bars in a parallel-series configuration.

Problem 4.2. Simple hyperstatic bars - force method solution
Solve problem 4.1 using using the force method.

Problem 4.3. Prestressed steel bar in an aluminum tube
A steel bar of cross-sectional area As = 800 mm2 fits inside an aluminum tube of cross-
sectional areaAa = 1, 500 mm2. The assembly is constructed in such a way that initially, the
steel bar is prestressed with a compressive force, −P , while the aluminum tube is prestressed
with a tensile load of equal magnitude, P . Next, the prestressed assembly is subjected to a
tensile load F . (1) If no prestress is applied, i.e., if P = 0, find the maximum external load, F ,
that can be applied to the assembly without exceeding allowable stress levels in either material.
(2) Find the optimum prestress level to be applied. This optimum prestress is defined as that
for which the allowable stress is reached simultaneously in both steel bar and aluminum tubes
when subjected to the externally applied force, F . In other words, when optimally prestressed,
both materials are used to their full capacity. (3) What improvement, in percent, is achieved
by using the optimum prestress level as compared to not prestressing the assembly. Use the
following data: Es = 210 and Ea = 73 GPa; the yield stresses for steel and aluminum are
σs

y = 600 and σa
y = 400 MPa, respectively.

Problem 4.4. Square plate supported by four cables
Consider the rigid square plate of side ` supported by four elastic cables each of length h,
cross-sectional area A, and Young’s modulus E, as depicted in fig. 4.10. A vertical load P is
applied at point K, located at a distance d from the center of the plate along the line joining
points A and B. (1) Determine the degree of redundancy of this system. (2) Determine the
forces, FA, FB , FC , and FD , in bars A, B, C, and D, respectively. (3) On one graph, plot the
four non-dimensional forces, FA/P , FB/P , FC/P , and FD/P , as functions of d̄ = d/` for
d̄ ∈ [0, 1/

√
2]. Hint: See example 4.5. Also note the symmetry of the problem with respect to

line AB, which simplifies the moment equilibrium equations.
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Fig. 4.10. Rigid square plate supported by four elastic cables.

Problem 4.5. Square plate supported by four cables
Consider the rigid square plate of side ` supported by four elastic cables each of length h
and Young’s modulus E, as depicted in fig. 4.10. The cross-sectional areas of the cables are
AA, AB , AC , and AD , for cables A, B, C, and D, respectively. A vertical load P is applied
at point K, located at a distance d from the center of the plate along the line joining points
A and B. It is desired that the plate move straight down under the action of the load, i.e.,
∆A = ∆B = ∆C = ∆D = ∆, where ∆A, ∆B , ∆C , and ∆D are the vertical displacements
of points A, B, C, and D, respectively. (1) Determine the degree of redundancy of this system.
(2) Determine the relationship(s) that must be satisfied by the cross-sectional areas of the
cables for the plate to undergo the desired motion. Hints: The relationship between AC and
AD should be obvious from inspection of the problem.

Problem 4.6. Rotor blade hub connection
Figure 4.11 shows a potential design for the attachment of a rotor blade to the rotorcraft hub.
The yoke consists of two separate pieces each of which connects the rotor blade to the hub,
and the spindle also connects the rotor blade to the hub through an elastomeric bearing. As
the rotor blade spins, a large centrifugal force F is applied to the assembly, which can be
idealized as three parallel bars of length L, which connect the blade to the hub. The two bars
modeling the yoke each have an axial stiffness (EA)y , while the spindle has an axial stiffness
(EA)s. The elastomeric bearing is idealized as a very short spring of stiffness kb in series with
the spindle. (1) Calculate and plot the non-dimensional forces in the yoke, Fy/F , and in the
spindle, Fs/F , as a function of the non-dimensional bearing stiffness, 0 ≤ Lkb/(EA)s ≤ 25.
(2) For what value of the stiffness constant kb is all the centrifugal load carried by the yoke?
(3) Find the maximum load that can be carried by the spindle. What is the corresponding value
of kb? (4) For what value on Lkb/(EA)s do the yoke and spindle carry equal loads? Use the
following data: (EA)y/(EA)s = 0.8

4.3.5 Thermal effects in hyperstatic system

It is often the case that hyperstatic systems are more structurally efficient than iso-
static systems. They potentially offer the additional advantage of redundant load
paths. On the other hand, they present important drawbacks; one of them is sensi-
tivity to thermal effects.
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Fig. 4.11. Rotor blade connection to the hub by means of a yoke and spindle.

In isostatic structures, thermal strains simply cause additional deformations of the
system, as implied by the modified constitutive laws that account for thermal strains,
eqs. (2.22). For hyperstatic structures, however, the presence of thermal strains in the
constitutive laws gives rise to additional stresses, called thermal stresses. This effect
can be significant, even when the entire structure experiences a uniform temperature
change, although the effect is usually more pronounced in the presence of tempera-
ture gradients, which result from non-uniform temperature fields, or when different
portions of the structure are subjected to different temperatures.

Example 4.8. Series connected bars subjected to temperature change
Consider the system depicted in fig. 4.12 featuring two bars connected in series and
constrained by rigid walls at points A and C. Load P is applied at point B, and in
addition, both bars are subjected to a temperature change ∆T . Except for this thermal
effect, the problem is identical to that treated in example 4.2.

A B C

P

dB

k =(E /L)AB ABA k =(E /L)BC BCA

DT DT

Fig. 4.12. Two bars connected in series with ends fixed.

The equilibrium equation of the system remains unchanged, FAB − FBC = P ,
and the displacement of point B, dB , is still related to the elongations of the bars
dB = eAB = −eBC . The constitutive equations, however, must now be modified to
account for the thermal strains. In view of eq. (2.22), the total strain in each bar is
the sum of the mechanical and thermal strains, ε = εm + εt, where the mechanical
strain is related to the stress in the bar, εm = σ/E, and the thermal strain depends
on the temperature change, εt = α∆T . The extension in the bar now becomes

eAB = εLAB =
σAB

EAB
LAB + α∆TLAB =

FAB

kAB
+ α∆TLAB .

A similar equation can also be developed for the elongation of the other bar, eBC .
Following the steps of the displacement method, the internal forces are expressed

in terms of deformations, then in terms of displacements, leading to the equilibrium
equation expressed in terms of the displacement as
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(kAB + kBC)dB = P + α∆T [(EA)AB − (EA)BC ] .

The displacement of point B is then

dB =
P

kAB + kBC
+

α∆T [(EA)AB − (EA)BC ]
kAB + kBC

= dm
B + dt

B .

This rather complex result shows that total displacement of point B is the superposi-
tion of the displacement dm

B due to applied mechanical loads, and the displacement
dt

B due to thermal effects. This should not be unexpected, because mechanical and
thermal effects are superposed in the constitutive law.

The internal forces are obtained by substituting the displacement back into the
constitutive laws, to find

FAB =
kAB

kAB + kBC
[P − α∆T (LAB + LBC) kBC ] ,

and
FBC =

kBC

kAB + kBC
[−P − α∆T (LAB + LBC) kAB ] .

It is interesting to consider the case when the two bars are identical, kAB =
kBC = k. The displacement of point B simply becomes dB = P/(2k). In this
case, the thermal displacement vanishes due to the symmetry of the problem, and
the total displacement is due solely to the mechanical loads. The axial forces in
the bars become FAB = P/2 − EAα∆T and FBC = −P/2 − EAα∆T . Due
to the symmetry of the problem, both bars share an equal burden in carrying the
mechanical loads, ±P/2, and are both subjected to the same compressive thermal
stress, EAα∆T .

It is also interesting to consider the impact of thermal stresses on the load carrying
capability of this system. The bars will yield when the yield stress is reached, that
is when FAB = ±σyAAB and when FBC = ±σyABC . In the absence of thermal
effects, the load carrying capacity of the system is then Pmax = 2Aσy, whereas in
the presence of thermal effects, the load carrying capacity becomes Pmax = 2A(σy−
Eα∆T ) = 2Aσ̄y . In other words, in the presence of thermal effects, the effective
yield stress, σ̄y , is the yield stress of the material, σy , reduced by the thermal stress,
Eα∆T .

Example 4.9. Hyperstatic three-bar truss subject to temperature change
The three-bar truss depicted in fig. 4.13 is assembled when all components are at
common temperature T0 and no initial stresses are present in the bars. The three
bars will be identified by the points at which they are pinned to the ground at A,
B, and C. AA, AB and AC denote the cross-sectional areas of bars A, B, and C,
respectively, while EA, EB and EC denote their respective Young’s moduli. The
truss features geometric and material symmetry about the vertical axis OB: the cross-
sectional areas of bars A and C are equal, AA = AC , and so are their Young’s
moduli, EA = EC . Consequently, the forces acting in bars A and C, denoted FA and
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Fig. 4.13. Three bar truss subjected to temperature differentials.

FC , respectively, are also equal, FA = FC . Assume that only bar B is now heated to
a temperature T1 = T0 + ∆T , thus preserving the symmetry of the problem.

Due to the heating, the center bar tries to expand by an amount α(T1 − T0)L =
α∆T L but is prevented from doing so by the other two bars. An equilibrium point
will be reached where the truss expands, although less than the unconstrained bar
would, and internal stresses will appear. Intuitively, bar B will be in compression,
whereas bars A and C will be in tension.

This thermal problem will be treated using the force method. A a similar problem
featuring the same three-bar truss subjected to external loading is treated using the
same approach in example 4.6. The equation of equilibrium for this example is given
by eq. (4.22) and remains valid for the present example: FB + 2FA cos θ = 0. Since
the problem features a single degree of redundancy, a single cut is required. Here
again, bar B is cut and an unknown redundant force, R, is assumed to act at the cut.
The internal forces in the bars are expressed in terms of R, and eqs. (4.23) become
FA = FC = −R/(2 cos θ) and FB = R.

The constitutive laws are now used to express the non-dimensional bar elongation
in terms of the unknown redundant force to find

eC

L
=

eA

L
= − 1

2k̄A cos2 θ

R

(EA)B
,

eB

L
=

R

(EA)B
+ α∆T,

where k̄A = (EA)A/(EA)B is the non-dimensional stiffness of bar A.These ex-
pressions are almost identical to those of eqs.(4.24), except for the thermal strain
terms now contributing to the elongation of bar B. The relative displacement at the
cut is now easily obtained

dcut =
eA

cos θ
− eB =

−L

2k̄A cos3 θ

R

(EA)B
− L

R

(EA)B
− Lα∆T.

The vanishing of this relative displacement implies dcut = 0 and yields the unknown
non-dimensional redundant force as

R

(EA)B
=

FB

(EA)B
= − 2k̄A cos3 θ

1 + 2k̄A cos3 θ
α∆T.

The non-dimensional forces in bars A and B follow from the equilibrium equation as

FA

(EA)B
=

FC

(EA)B
=

k̄A cos2 θ

1 + 2k̄A cos3 θ
α∆T.
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These internal forces, called thermal forces, are proportional to the thermal strain,
α∆T . As expected, the force in bar B is compressive, in contrast with the tensile
forces present in bars A and C. Finally, the vertical displacement of the truss at point
O is given by the elongation of bar B, and this is easily recovered as

dB

L
=

eB

L
=

[
1 + 2(k̄A − 1) cos3 θ

]

1 + 2k̄A cos3 θ
α∆T.

4.3.6 Manufacturing imperfection effects in hyperstatic system

An additional drawback of hyperstatic systems is their sensitivity to dimensional or
manufacturing imperfections. Consider, here again, the three-bar truss depicted in
fig. 4.13. Assume all bars to be at the same temperature, but due to manufacturing
imperfections, bar B was made too long. It is impossible to assemble the system: if
bars A an C are first connected together at point O, bar B is longer than the distance
from point B to O. The only way to assemble the system is to compress bar B to the
right length, pin the three bars together at point O, then release the compression in
bar B. In the final assembly, residual forces will be present; intuitively, it follows that
bar B is left under compression, whereas bars A and C have a residual tensile stress.

It is worth noting the close connection between thermal strain and manufactur-
ing imperfections. In example 4.9, bar B is subjected to a temperature differential
resulting in a thermal elongation Lα∆T . In other words, bar B is now too long by
an amount Lα∆T . This is identical to a manufacturing imperfection where bar B
is too long by an amount µ = Lα∆T . This means that the residual stress due to
thermal effects computed in example 4.9 are identical to the residual stress due to
manufacturing imperfections in the same system, provided that α∆T is replaced by
µ/L in all results of example 4.9.

Example 4.10. Rigid plate supported by four elastic bars
Consider the hyperstatic system depicted in fig. 4.14 in which a rigid square plate of
side ` is supported by four identical elastic bars of length h, cross-sectional area A,
and Young’s modulus E. This example is similar to the previous examples in which
a rigid plate is suspended from four cables, but in this case, the support is provided
by the four bars or legs. Assume that one of the bars is too short by an amount µ due,
for example, to manufacturing imperfections.

Since the plate is assumed to be infinitely rigid, the vertical displacements of
points A, B, C, and D, denoted ∆A, ∆B , ∆C , and ∆D, respectively, are not inde-
pendent. Indeed, three points uniquely define a plane, hence the displacements of
points A, B, and C uniquely define the configuration of the plate, and the displace-
ment of the fourth point, D, follows. As in the previous examples, this constraint can
be expressed for a square plate as, ∆A + ∆B = ∆C + ∆D.

In example 4.5, a similar configuration is considered, but a vertical load is applied
at an arbitrary point on the plate as shown in fig. 4.6. The displacement method is
used to solve the problem, and a similar procedure is used here. In the first step,
the equations of equilibrium of the system are derived from the free body diagram
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Fig. 4.14. A rigid plate supported by four identical elastic bars with a manufacturing imper-
fection.

shown in fig. 4.6, to find eqs. (4.15). Next, the constitutive laws relating the bar
forces to the corresponding deformations are still given by eqs. (4.16). Finally, the
strain displacement equations are still given by eqs. (4.17), except for bar B where,
due to the manufacturing imperfection, ∆B = eB − µ.

The remaining steps of the displacement method closely follow the development
presented in example 4.5 and lead to the following equations of equilibrium written
in terms unknown displacements

∆A + ∆B + ∆C + ∆D = −µ, (4.27a)
−∆A + ∆B + ∆C −∆D = −µ, (4.27b)
−∆A + ∆B −∆C + ∆D = −µ, (4.27c)

∆A + ∆B −∆C −∆D = 0, (4.27d)

where the last equation expresses the infinite stiffness of the plate as discussed earlier.
The solution of this linear system yields the displacements of the corner points as

∆A =
µ

4
, ∆B = −3µ

4
, ∆C = ∆D = −µ

4
. (4.28)

Finally, the bar forces are recovered as

FA = FB =
1
4

µ

h
EA, FC = FD = −1

4
µ

h
EA. (4.29)

These are the residual forces due to manufacturing imperfections. The two opposite
bars A and B are subjected to tension, whereas the two opposite bars C and D are
under compression. The magnitudes of the forces in the four bars are equal and
proportional to the manufacturing imperfection, µ.

Assume now that a vertical load, P , is applied at the center of the plate. The total
forces in the bars are now the superpositions of the forces due to the applied loads, as
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given by eqs. (4.21), and the forces due to the manufacturing imperfection, as given
by eqs. (4.29), to find

FA = FB =
P

4
+

1
4

µ

h
EA, FC = FD =

P

4
− 1

4
µ

h
EA.

In view of the symmetry of the problem, the applied load is carried equally by the
four bars, whereas the manufacturing imperfection put additional loads into bars A
and B, but unloads bars C and D.

The maximum load the structure can carry is Pmax/4 + EAµ/(4h) = Aσy ,
where σy is the material yield stress. Hence, Pmax = 4A [σy − 1/4 E µ/h] =
4Aσ̄y . Due to manufacturing imperfections, the effective yield stress, σ̄y , is the ac-
tual yield stress for the material, σy , reduced by 1/4 E µ/h.

The residual forces are proportional to the magnitude of the manufacturing
imperfections, as expected, but also to the Young’s modulus of the material, see
eqs. (4.29). Hence, the stiffer the system, the more sensitive it will be to manufactur-
ing imperfections.

Example 4.11. Prestress in a bolt
Geometric incompatibility may also be created intentionally; indeed, it is sometimes
desirable to introduce a prestress into a structural member. Consider, for instance,
the prestress created in a bolt when tightened. Typically, a tensile force is created in
the bolt to develop a compressive force acting on the bolted assembly. This situation
is illustrated in fig. 4.15, which depicts a prestressed bolt-sleeve assembly.

Sleeve

Sleeve

Free Body
at right end

Bolt

Bolt

Nut

es

eb

D

L

Fs

Fb

Fig. 4.15. Prestressed bolt-sleeve assembly.

The sleeve is assumed to be a hollow circular cylinder of cross-sectional areaAs

and the bolt has a cross-sectional area Ab; both are of initial length L. The Young’s
moduli of the sleeve and bolt are Es and Eb, respectively. Assume that the nut on
the bolt is turned until the entire assembly is snug, and then, the nut is rotated by an
additional N turns. This will shorten the portion of the bolt between the end plates by
an amount ∆ = pN , where p is the bolt’s thread pitch or distance between successive
threads.
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The analysis follows a procedure similar to that used in example 4.10. The single
equilibrium equation of the system is Fs +Fb = 0, where Fs and Fb are the forces in
the sleeve and bolt, respectively, both assumed positive in tension. The constitutive
equations for the sleeve and the bolt are simply, Fs = kses and Fb = kbeb, where
ks = (EA)s/L and kb = (EA)b/L are the equivalent sleeve and bolt stiffnesses,
respectively.

Let the elongations of the sleeve and bolt be denoted es and eb, respectively, as
illustrated in the lower part of fig. 4.15. Due to the initial tightening of the nut, the
bolt is shortened by an amount ∆ = pN , and hence, displacement compatibility
requires es = eb −∆.

Since only the prestress forces in the bolt and sleeve are to be determined, the
force method provides the most direct solution procedure. Let the sleeve force be the
redundant force in the system, and hence, Fs = R. The equilibrium equation then
implies Fb = −Fs = −R, and substitution into the constitutive equations yields
the sleeve and bolt extensions as es = Fs/ks = R/ks and eb = Fb/kb = −R/kb,
respectively. Finally, introducing these results into the compatibility equation yields
R/ks = −R/kb − ∆. Solving this equation yields R = −kskb/(ks + kb)∆. The
forces in the bolt and sleeve are then

Fs = R = − kskb

ks + kb
∆, and Fb = −R =

kskb

ks + kb
∆,

respectively. As expected, the bolt is in tension while the sleeve is in compression.
From a practical point of view, the desired prestress level, Fs or Fb, would be speci-
fied first, and the required number of turns, N , would then be computed. For instance,
for a prescribed compressive Fs, N = (ks + kb)|Fs|/(pkskb).

4.3.7 Problems

Problem 4.7. Constrained bar at uniform temperature
A uniform aluminum bar is constrained at its two end. If the bar is stress free for a temperature
T0 = 20◦ C, find the compressive stress in the bar if the temperature is raised to value T =
140◦ C. Note: Eal = 73 GPa, αal = 16.5 µ/C.

Problem 4.8. Steel bar inside a copper tube
A steel bar with a 750 mm2 section is placed inside a copper tube with a section of 1250
mm2. The bar and tube have a common length of 0.5 m and are connected at their ends. At
the reference temperature, both elements are stress free. (1) If the assembly is heated up to
80◦ C, find the axial stresses in both elements. Note: Esteel = 210 GPa, αsteel = 12 µ/C;
Ecopper = 120 GPa, αcopper = 17 µ/C.

Problem 4.9. Bolt-sleeve assembly subjected to temperature rise
Consider the sleeve and bolt assembly shown in fig. 4.15, where the bolt is made of stainless
steel, which presents a larger coefficient of thermal expansion than the titanium sleeve. Con-
sequently, under a temperature rise ∆T = 100 C, the bolt will extend more than the sleeve
and will become loose, i.e., a gap will develop between the nut and washer plate. To prevent
this, a pre-stress is applied to the assembly by turning the nut N turns before the temperature
rise. Determine the number of turns N that must be used to create the required pre-stress for
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the following conditions: p = 0.5 mm (bolt thread pitch), L = 100 mm, Ab = 100 mm2,
As = 800 mm2, Eb = 210 GPa, Es = 120 GPa, αb = 18 µ/C, and αs = 8 µ/C.

Problem 4.10. Three-bar truss
Consider the three-bar truss shown in fig. 4.7. The truss is not subjected to any external load,
but due to a manufacturing imperfection, the middle bar is of length L + µ in its unstressed
configuration. (1) Find the forces in bars A, B, and C as a function of the magnitude of the
manufacturing imperfection, µ. (2) Find the displacement of point O as a function of µ.

4.4 Pressure vessels

This section briefly describes the behavior of structures operating under internal pres-
sure such as rings, and cylindrical or spherical pressure vessels. Typically, these thin-
walled structures are designed to contain fluids or gases under pressure. Two partic-
ular geometric shapes, the sphere and the cylinder with hemispherical end caps, are
widely utilized, and for these shapes, a two-dimensional stress state develops in the
thin walls.

4.4.1 Rings under internal pressure

Consider the thin-walled ring or tube of mean radius R and thickness t subjected to
an internal pressure pi, as depicted in fig. 4.16. Due of the internal pressure, a hoop
stress, σh, will develop in the wall. This hoop stress is readily found by equilibrium
consideration: fig. 4.16 shows a free body diagram for the half portion of the ring cut
by a plane passing through the axis of the cylinder, revealing the hoop stress acting in
the wall. The total vertical force per unit length of the ring due to the pressure acting
on its upper half is p2R; this force is equilibrated by the hoop stress. Assuming that
the hoop stress is uniformly distributed through the wall thickness, it follows that

σh =
p2R

2t
=

pR

t
. (4.30)

The hoop stress is sometimes called the circumferential stress.

R
p

sh
sh

t

Fig. 4.16. Thin ring under internal pressure.
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If the material is homogeneous and linearly elastic, the hoop strain, εh, is ob-
tained from Hooke’s law as εh = σh/E = pR/(tE) and the radius of the ring
increases by an amount ∆R = R2p/(Et).

4.4.2 Cylindrical pressure vessels

Consider now a thin-walled pressure vessel consisting of a cylindrical tube of radius
R, length L and thickness t closed by spherical end caps, as depicted in fig. 4.17.
Pressure vessels operate under a multi-axial state of stress that includes a hoop, ax-
ial and radial stress components. The hoop stress is readily found from the same
equilibrium arguments used for the ring; assuming the hoop stress to be uniformly
distributed through the wall thickness, its magnitude then becomes

σh =
pR

t
. (4.31)

The resultant axial force of the pressure loading on the end caps is independent of
their shape and is equal to pπR2. For a thin-walled pressure vessel, the stress along
the axis of the vessel, σa, is assumed to be uniformly distributed through the wall
thickness, and axial equilibrium reveals its magnitude to be

σa =
pπR2

2πRt
=

pR

2t
=

σh

2
. (4.32)

This gives rise to a biaxial stress state where the hoop stress twice as large as the
axial stress.

2R

sh

sa

L

tsh
tsh

p

t

Fig. 4.17. Pressure vessel under internal pressure.

In addition, it should be noted that a radial stress component σr also exists. This
stress acts along the radius of the cylindrical part of the vessel, and it varies from
σr = −p on the internal surface of the vessel to σr = 0 on the external surface. In
most practical designs the ratio R/t is a large quantity and hence σr ¿ σh = 2σa.
Consequently, the radial stress is generally ignored.

If the material can be assumed to behave as a linearly elastic material, Hooke’s
law, eq. (2.4), implies

εh =
σh − νσa

E
=

σh

E

(
1− ν

2

)
, εa =

σa − νσc

E
=

σh

E

(
1
2
− ν

)
.
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Finally, the changes in vessel radial and longitudinal dimensions are

∆R = Rεh =
Rσh

E

(
1− ν

2

)
, ∆L = Lεa =

Lσh

E

(
1
2
− ν

)
,

respectively.
Since the hoop and axial stresses are the only stress components acting on the

vessel, they are the principal stresses, σp1 = σh = pR/t and σp2 = σa = pR/2t.
According to Tresca’s criterion, see eq. (2.29), the yield criterion reduces to pyR/t ≤
σy . This means that the internal pressure for which the yield stress is reached in the
material is py = tσy/R. On the other hand, if von Mises’ criterion is used, see
eq. (2.32), the yield criterion becomes σeq =

√
3/2 pyR/t ≤ σy . The internal

pressure for which the yield stress is reached in the material is py = 2/
√

3 tσy/R.

4.4.3 Spherical pressure vessels

Consider now a thin-walled sphere of radius R and thickness t subjected to an inter-
nal pressure p, as shown in fig. 4.18. This type of configuration is representative of
spherical pressure vessels. To begin, the sphere is cut by a horizontal plane passing
through its center, to reveal the free body diagram shown in the figure. Due to the
symmetry of the problem, the pressure acting on the upper half of the sphere will be
equilibrated by a hoop stress, σh, which is uniformly distributed around the circle at
the intersection of the sphere with the plane of the cut. The total upward force gener-
ated by the pressure, πR2p, is equilibrated by the downward force generated by the
distributed hoop stress, 2πRtσh, where the hoop stress is assumed to be uniformly
distributed through the wall thickness. This yields the following result

σh =
pR

2t
. (4.33)

The hoop stress is half of that in a pressurized tube of equal radius and thickness, see
eq. (4.31).

R

p

p

sh

sh sh

sh

sh

t

Fig. 4.18. Thin sphere under internal pressure.

Of course, in view of the spherical symmetry of the problem, the orientation of
the plane of the cut is arbitrary. Hence, the hoop stress derived above is acting on a
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face with an arbitrary orientation. As shown in fig. 4.18, the stresses acting on an ar-
bitrary differential element cut from the thin-walled sphere are σh in two orthogonal
directions. Since the shear stress component vanish, these are the principal stresses,
and hence, σp1 = σp2 = σh. Mohr’s circle reduces to a single point at ordinate σh.

For a linearly elastic material, the hoop strain, εh, is obtained from Hooke’s law,
eq. (2.4), as

ε1 = ε2 = εh =
1− ν

2
R

t

p

E
. (4.34)

The deformation is identical in all directions, due to the spherical symmetry of
the problem. Since the shear strain components vanish, the principal strains are
εp1 = εp2 = εh. The radius of the sphere increases by an amount ∆R =
(1− ν)(pR2)/(2Et).

4.4.4 Problems

Problem 4.11. Copper ring on a steel shaft
A copper ring is heated to a temperature of 150◦ C and then exactly fits onto a steel shaft at
a uniform temperature of 25◦ C. (1) Find the hoop stress in the ring when the assembly has
cooled down to a uniform temperature of 25◦ C. (2) Find the common temperature at which
both ring and shaft must be brought to if the ring is to slip out of the shaft. Hint: since the
steel cylinder is very stiff, it is reasonable to assume that it is remains rigid as the copper ring
cools down. Of course, under heating, the steel cylinder will expand. Note: αsteel = 12.5µ/C;
Ecopper = 110 GPa, αcopper = 16.5µ/C.

Problem 4.12. Bi-material fly wheel
A fly wheel shown in fig. 4.19 is made of two concen-

Rm

ts

t
l

W

Fig. 4.19. Configuration of the
bi-material fly wheel.

tric ring of metal: the inside ring, of thickness t`, is made
of lead and the outside ring, of thickness ts, is made of
steel. The fly wheel has a radius Rm and t` ¿ Rm,
ts ¿ Rm. It will be assumed that the lead ring provides
little strength and stiffness to the assembly and hence, all
stresses are carried in the steel ring. (1) Find the maxi-
mum angular velocity, Ωmax, the fly wheel can rotate at
if the yield stress in the steel is σy . (2) Find the maximum
kinetic energy that can be stored in the fly wheel. (3) Is
this bi-material design a good concept for a high perfor-
mance fly wheel? Use the following data: density of lead,
ρ` = 11, 300 and of steel, ρs = 7, 700 kg/m3; thickness of lead, t` = 5 and of steel ts = 3
mm; radius of the fly wheel Rm = 250 mm, its width b = 20 mm; yield stress for steel
σy = 800 MPa.

Problem 4.13. Cylindrical versus spherical pressure vessels
Spacecrafts often require pressure vessels to carry fuel under pressure. The question inves-
tigated here is the relative structural performance of cylindrical and spherical pressure ves-
sels. Consider a cylindrical pressure vessel of radius Rc, length Lc and wall thickness tc;
Lc = 2Rc. On the other hand, consider a spherical pressure vessel of radius Rs and wall
thickness ts. The two vessels must carry the same amount of fluid, i.e., must have the same
volume; the two vessels are made of the same material with the yield stress σy , and must
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be able to withstand the same internal pressure. (1) Find the ratio of the structural masses of
the two vessels. (2) For weight sensitive applications such as spacecrafts, is it better to use
cylindrical or spherical pressure vessels?

4.5 Saint-Venant’s principle

An important concept in structural engineering concerns the effects of local loading
and constraint conditions on the stresses and deformations that develop throughout a
structure. An obvious example is a concentrated force, which is assumed to act at a
point on the surface of a structure. Clearly, this will result in an infinite value for the
stresses at the point of application, but yet the reactions and stresses at other parts of
the structure are finite.

Consider a body subjected to a set Self equilibrating
loads

Affected
zone

d

Fig. 4.20. Body subjected to a set of self-
equilibrating loads

of self-equilibrating loads, as depicted
in fig. 4.20. In the vicinity of the ap-
plied loads, internal stresses will arise,
as expected. However, since the net re-
sultant of the applied load vanishes, it
seems reasonable to expect their net ef-
fect to decrease away from their point
of application. In other words, the ef-
fect of a set of self-equilibrating loads
is expected to be localized. Typically,
if the loads are applied over an area of characteristic dimension δ, the affected zone
approximately extends a distance δ in all directions from the point of application.

This behavior has been observed experimentally, and is known as Saint-Venant’s
principle.

Principle 2 (Saint-Venant’s principle) If self-equilibrating loads are applied to a
body over an area of characteristic dimension δ, the internal stresses resulting from
these loads are only significant over a portion of the body of approximate character-
istic dimension δ.

Note that this principle is rather vague, as it deals with “approximate characteristic
dimensions.” It allows qualitative rather that quantitative conclusions to be drawn.

An important application of Saint-Venant’s principle deals with end effects in
bars and beams. In section 4.2, the stress distribution in bars subjected to end loads
is studied. Clearly, the assumed uniform stress distribution over the cross-section of
the bar is only valid far away from the end section of the bar. Consider fig. 4.21
where the end section of a bar of height h is subjected to a concentrated load P . This
concentrated load is statically equivalent to a distributed load p0 = P/h plus a set of
self-equilibrating loads, as depicted on the figure. Saint-Venant’s principle implies
that the self-equilibrating set of loads only affect a small zone of length h near the
end of the bar.
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Fig. 4.21. Bar subjected to an end concentrated load.

According to Saint-Venant’s principle, the stress distribution in the bar, namely
the uniform axial stress distribution of eq. (4.1), is identical whether the bar is sub-
jected to end distributed or concentrated loads, except in the two end zones of length
h. If the end loads are applied as a uniform distribution, the axial stresses in the bar
are uniformly distributed over the cross-section at all sections. On the other hand,
if the end loads are concentrated loads, the axial stresses in the bar are uniformly
distributed over the cross-section only in the central portion of the beam. Near the
end points, a complex state of stress will arise; indeed, the axial stress should grow
to infinity right at the point of application of the concentrated load. These end zones
approximately extend a distance h at either end of the beam. The solution discussed
in section 4.2 is sometimes called the central solution, i.e.. the solution valid in the
central portion of the bar, away from the end zones.



Part II

Beams and thin-wall structures
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Euler-Bernoulli beam theory

A beam is defined as a structure having one of its dimensions much larger than the
other two. The axis of the beam is defined along that longer dimension, and a cross-
section normal to this axis is assumed to smoothly vary along the span or length of
the beam. Civil engineering structures often consist of an assembly or grid of beams
with cross-sections having shapes such as T’s or I’s. A large number of machine parts
also are beam-like structures: lever arms, shafts, etc. Finally, several aeronautical
structures such as wings and fuselages can also be treated as thin-walled beams.

The solid mechanics theory of beams, more commonly referred to simply as
“beam theory,” plays an important role in structural analysis because it provides the
designer with a simple tool to analyze numerous structures. Although more sophisti-
cated tools, such as the finite element method, are now widely available for the stress
analysis of complex structures, beam models are often used at a pre-design stage be-
cause they provide valuable insight into the behavior of structures. Such calculations
are also quite useful when trying to validate purely computational solutions.

Several beam theories have been developed based on various assumptions, and
lead to different levels of accuracy. One of the simplest and most useful of these
theories was first described by Euler and Bernoulli and is commonly called Euler-
Bernoulli beam theory. A fundamental assumption of this theory is that the cross-
section of the beam is infinitely rigid in its own plane, i.e., no deformations occur in
the plane of the cross-section. Consequently, the in-plane displacement field can be
represented simply by two rigid body translations and one rigid body rotation. This
fundamental assumption deals only with in-plane displacements of the cross-section.
Two additional assumptions deal with the out-of-plane displacements of the section:
during deformation, the cross-section is assumed to remain plane and normal to the
deformed axis of the beam. The implications of these assumptions are examined in
the next section.
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5.1 The Euler-Bernoulli assumptions

Figure 5.1 depicts the idealized problem of a long beam with constant properties
along its span subjected only to two bending moments, both of magnitude M , applied
at the ends. This type of loading is often referred to as “pure bending.” The cross-
section of the beam is assumed to be symmetric with respect to the plane of the
figure, and bending takes place in that plane of symmetry.

After deformation

Before deformation

M

M
M

M

MM

A

A

B

B

O O

S´

S

A B

Fig. 5.1. Infinitely long beam under end bending moments.

The bending moment and physical properties are all constant along the beam’s
span. Hence, the deformation of the beam must be identical at all points along its axis
resulting in a constant curvature. This means that the beam deforms into a curve of
constant curvature, i.e., a circle with center O. In the reference configuration, a cross-
section of the beam consists of the ensemble of material particles at the intersection
of the beam with a plane perpendicular to the axis of the beam. Figure 5.1 shows a
small portion of the beam bounded by two cross-sections, denoted S , generated by
two normal planes at points A and B.

Under the action of the bending moment, this segment deforms into a circular
segment with ends defined by the cross-sections S ′ shown in fig. 5.1. After deforma-
tion, the beam is symmetric with respect to any plane perpendicular to its deformed
axis. Because the deformed cross-section must satisfy this symmetry requirement, it
must remain planar and perpendicular to the deformed axis of the beam.

For a more realistic problem, e.g. a finite length beam with specific boundary con-
ditions and applied transverse loads, the bending moment distribution varies along
the span and the symmetry arguments used for the above idealized problem no longer
apply. By analogy, however, the following kinematic assumptions will now be made.

Assumption 1: The cross-section is infinitely rigid in its own plane.
Assumption 2: The cross-section of a beam remains plane after deformation.
Assumption 3: The cross-section remains normal to the deformed axis of the beam.

These assumptions are known as the Euler-Bernoulli assumptions for beams. Ex-
perimental measurements show that these assumptions are valid for long, slender



5.2 Implications of the Euler-Bernoulli assumptions 175

beams made of isotropic materials with solid cross-sections. When one or more of
theses conditions are not met, the predictions of Euler-Bernoulli beam theory can be-
come inaccurate. The mathematical and physical implications of the Euler-Bernoulli
assumptions will now be discussed in detail.

5.2 Implications of the Euler-Bernoulli assumptions

Consider a triad I = (̄ı1, ı̄2, ı̄3) with coordinates x1, x2, and x3. This set of axes is
attached at a point of the beam cross-section; ı̄1 is along the axis of the beam and ı̄2
and ı̄3 define the plane of the cross-section. Let u1(x1, x2, x3), u2(x1, x2, x3), and
u3(x1, x2, x3) be the displacement of an arbitrary point of the beam along directions
ı̄1, ı̄2, and ı̄3 , respectively.

The first Euler-Bernoulli assumption states that the cross-section is un-
deformable in its own plane. Hence, the displacement field in the plane of the cross-
section consists solely of two rigid body translations ū2(x1) and ū3(x1)

u2(x1, x2, x3) = ū2(x1), u3(x1, x2, x3) = ū3(x1). (5.1)

i1
i1
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i2 i2 i2

i3 i3
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- x (x )2 3 1F

F3

F2

Fig. 5.2. Decomposition of the axial displacement field.

The second Euler-Bernoulli assumption states that the cross-section remains
plane after deformation. This implies an axial displacement field consisting of a
rigid body translation ū1(x1), and two rigid body rotations Φ2(x1) and Φ3(x1), as
depicted in fig. 5.2. The axial displacement is then

u1(x1, x2, x3) = ū1(x1) + x3Φ2(x1)− x2Φ3(x1), (5.2)

where the location of the origin for the axis system on the cross-section is as yet
undetermined. Note the sign convention: the rigid body translations of the cross-
section ū1(x1), ū2(x1), and ū3(x1) are positive in the direction of the axes ı̄1, ı̄2,
and ı̄3, respectively; the rigid body rotations of the cross-section, Φ2(x1) and Φ3(x1),
are positive about axes ı̄2 and ı̄3, respectively. Figure 5.3 depicts these various sign
conventions.

The third Euler-Bernoulli assumption states that the cross-section remains nor-
mal to the deformed axis of the beam. As depicted in fig. 5.4, this implies the equality
of the slope of the beam and of the rotation of the section,
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F1

F2F3

Fig. 5.3. Sign convention for the displacements and rotations of a beam.

Φ3 =
dū2

dx1
, Φ2 = −dū3

dx1
. (5.3)

The minus sign in the second equation is a consequence of the sign convention for
the sectional displacements and rotations.

Equations (5.3) can be used to eliminate the sectional rotation from the axial
displacement field. The complete displacement field for Euler-Bernoulli beams is
now

u1(x1, x2, x3) = ū1(x1)− x3
dū3(x1)

dx1
− x2

dū2(x1)
dx1

, (5.4a)

u2(x1, x2, x3) = ū2(x1), (5.4b)
u3(x1, x2, x3) = ū3(x1). (5.4c)

The complete three-dimensional displacement field of the beam can therefore be ex-
pressed in terms of three sectional displacements ū1(x1), ū2(x1), ū3(x1) and their
derivative with respect to x1. This important simplification results from the Euler-
Bernoulli assumptions and allows the development of a one-dimensional beam the-
ory, i.e., a theory in which the unknown displacements are functions of the span-wise
coordinate, x1, alone.

i1
i1

i2

i2 i3

i3

F2 F3

d /dxu3 1
d /dxu2 1

Fig. 5.4. Beam slope and cross-sectional rotation.

The strain field can be evaluated from the displacement field defined by eqs. (5.4)
using eqs. (1.63) and (1.71) to find



5.3 Stress resultants 177

ε2 =
∂u2

∂x2
= 0; ε3 =

∂u3

∂x3
= 0, γ23 =

∂u2

∂x3
+

∂u3

∂x2
= 0, (5.5a)

γ12 =
∂u1

∂x2
+

∂u2

∂x1
= 0, γ13 =

∂u1

∂x3
+

∂u3

∂x1
= 0, (5.5b)

ε1 =
∂u1

∂x1
=

dū1(x1)
dx1

− x3
d2ū3(x1)

dx2
1

− x2
d2ū2(x1)

dx2
1

. (5.5c)

At this point, it is convenient to introduce the following notation for the sectional
deformations, which depend solely on the span-wise variable, x1,

ε̄1(x1) =
dū1(x1)

dx1
, κ2(x1) = −d2ū3(x1)

dx2
1

, κ3(x1) =
d2ū2(x1)

dx2
1

. (5.6)

where ε̄1 is the sectional axial strain, and κ2 and κ3 are the sectional curvature about
the ı̄2 and ı̄3 axes, respectively. With the help of these sectional strains, the axial
strain distribution over the cross-section, eq. (5.5c), becomes

ε1(x1, x2, x3) = ε̄1(x1) + x3κ2(x1)− x2κ3(x1). (5.7)

The vanishing of the in-plane strain field implied by eqs. (5.5a) is a direct con-
sequence of assuming the cross-section to be infinitely rigid in its own plane. The
vanishing of the transverse shearing strain field implied by eqs. (5.5b) is a direct
consequence of assuming the cross-section to remain normal to the deformed axis of
the beam. And finally, the linear distribution of axial strains over the cross-section
expressed by eq. (5.7) is a direct consequence of assuming the cross-section to re-
main plane. Clearly, assuming a strain field of the form eqs. (5.5a), (5.5b), and (5.7)
is the mathematical expression of the Euler-Bernoulli assumptions.

5.3 Stress resultants

The goal of beam theory is to develop a one-dimensional model of the three-
dimensional beam structure involving only sectional quantities, i.e., quantities solely
dependent on the span-wise variable, x1.

In the previous section, the Euler-Bernoulli assumptions are shown to allow de-
scription of the complete three-dimensional displacement field for the beam in terms
of three sectional displacements ū1(x1), ū2(x1), and ū3(x1) and their span-wise
derivatives as expressed in eq. (5.4). Similarly, the complete three-dimensional strain
field given by eqs. (5.5a), (5.5b), and (5.7) is expressed in terms of sectional strains
and curvatures.

In this section, the three-dimensional stress field in the beam will be described in
terms of sectional stresses called stress resultants. These stress resultants are equipol-
lent to (not in equilibrium with) specific components of the stress field.

Three force resultants are defined: the axial force, N1(x1), acting along axis ı̄1 of
the beam, and the transverse shearing forces, V2(x1) and V3(x1), acting along axes
ı̄2 and ı̄3, respectively. They are defined as follows
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N1(x1) =
∫

A
σ1(x1, x2, x3) dA. (5.8)

V2(x1) =
∫

A
τ12(x1, x2, x3) dA, V3(x1) =

∫

A
τ13(x1, x2, x3) dA, (5.9)

where A is the cross-sectional area of the beam.
Next, two moment resultants are defined: the bending moments, M2(x1) and

M3(x1), acting about axes ı̄2 and ı̄3, respectively, defined as

M2(x1) =
∫

A
x3 σ1(x1, x2, x3) dA, (5.10a)

M3(x1) = −
∫

A
x2 σ1(x1, x2, x3) dA. (5.10b)

Note the minus sign in the definition of M3(x1), which is necessary to give a positive
equipollent bending moment about axis ı̄3. The sign convention for the forces and
moments is depicted in fig. 5.5.
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Fig. 5.5. Sign convention for the sectional stress resultants.

In the above definitions, the bending moments are computed with respect to the
origin of the axes. In some cases, however, it will be advantageous to compute the
bending moments about axes parallel to ı̄2 and ı̄3 passing through a specific point
of the cross-section. The bending moments computed about point P of coordinates
(x2p, x3p) on the cross-section are defined as

Mp
2 (x1) =

∫

A
(x3 − x3p) σ1(x1, x2, x3) dA, (5.11a)

Mp
3 (x1) =−

∫

A
(x2 − x2p) σ1(x1, x2, x3) dA. (5.11b)

5.4 Beams subjected to axial loads

Consider a beam subjected to distributed axial loads, p1(x1), and a concentrated
axial load, P1, applied at the end of the beam, for instance, as depicted in fig. 5.6.
The distributed axial loads have units of force per unit length (N/m in the SI system),
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whereas the concentrated axial loads have units of forces (N in the SI system). Under
the effect of these loads, the beam will stretch, creating an axial displacement field,
ū1(x1). Furthermore, axial forces and axial stresses will be generated in the beam.
This section focuses on the determination of these various quantities arising from the
application of given axial loading to the beam. When only axial loads are applied to
a beam, the structure is often called a “bar” rather than a “beam.”

i1

i2

L

P1
p (x )1 1

Fig. 5.6. Beam subjected to axial loads.

5.4.1 Kinematic description

The Euler-Bernoulli assumptions described

i1

i3

i2
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u (x , x , x ) = (x )1 1 2 3 1 1u

Fig. 5.7. Axial displacement distribu-
tion.

above form the basis of the present analysis.
Furthermore, it seems reasonable to assume that
axial loads cause only axial displacement of
the section. The general displacement field de-
scribed by eq. (5.4) then reduces to

u1(x1, x2, x3) = ū1(x1), (5.12a)
u2(x1, x2, x3) = 0, (5.12b)
u3(x1, x2, x3) = 0, (5.12c)

and the corresponding axial strain field is now

ε1(x1, x2, x3) = ε̄1(x1). (5.13)

The axial strain is uniform over the cross-section of the beam. These very simple
results are illustrated in fig. 5.7.

5.4.2 Sectional constitutive law

At this point, the beam is assumed to be made of a linearly elastic, isotropic material
that obeys Hooke’s law, see eqs. (2.4). The stresses acting in the plane of the cross-
section, σ2 and σ3, should remain much smaller than the axial stress component,
σ1: σ2 ¿ σ1 and σ3 ¿ σ1. Consequently, these transverse stress components are
assumed to vanish, σ2 ≈ 0 and σ3 ≈ 0. For this stress state, the generalized Hooke’s
law, eqs. (2.4), reduce to

σ1(x1, x2, x3) = E ε1(x1, x2, x3). (5.14)
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Of course, the constitutive laws for shear stress and shear strain components, see
eqs. (2.9), remain unchanged.

When describing the beam’s kinematics, it is assumed that the cross-section does
not deform in its own plane, and the strains in the plane of the cross-section van-
ish, see eqs. (5.5a). When dealing with the beam’s constitutive laws, the transverse
stress components are assumed to vanish. This is an inconsistency in Euler-Bernoulli
beam theory that uses two contradictory assumptions, the vanishing of both the in-
plane strain and transverse stress components. In view of Hooke’s law, these two
sets of quantities cannot vanish simultaneously. Indeed, if σ2 = σ3 = 0, eqs. (2.4b)
and (2.4c) result in ε2 = −νσ1/E and ε3 = −νσ1/E, which implies that the in-
plane strains do not vanish due to Poisson’s effect. Because this effect is very small,
assuming the vanishing of these in-plane strain components when describing the
beam’s kinematics does not cause significant errors for most problems.

Introducing the axial strain distribution eq. (5.13) yields the axial stress distribu-
tion over the cross-section

σ1(x1, x2, x3) = E ε̄1(x1). (5.15)

The axial force in the beam can be obtained by introducing this axial stress distribu-
tion into eq. (5.8) to find

N1(x1) =
∫

A
σ1(x1, x2, x3) dA =

[∫

A
E dA

]
ε̄1(x1) = S ε̄1(x1). (5.16)

Since the sectional axial strain ε̄1(x1) varies only along the span of the beam, it can
be factored out of the integral over the section. The axial stiffness, S, of the beam is
then defined as

S =
∫

A
E dA. (5.17)

If the section is made of a homogeneous material of Young’s modulus E, the axial
stiffness of the section becomes S = E

∫
A dA = EA.

Relationship (5.16) is the constitutive law for the axial behavior of the beam. It
expresses the proportionality between the axial force and the sectional axial strain,
with a constant of proportionality called the axial stiffness. This constitutive law is
written at the sectional level, whereas Hooke’s law, eq. (5.14), is written at the local,
infinitesimal level.

5.4.3 Equilibrium equations

To complete the formulation, the equilibrium equations must be derived for this prob-
lem. An infinitesimal slice of the beam of length dx1 is depicted in fig. 5.8. In this
figure, the axial force, N1(x1), is shown acting on the face at location x1. Using
a Taylor series expansion, the axial force acting on the face at location x1 + dx1 is
found to be N1+(dN1/dx1)dx1; the remaining terms of the expansion are of higher
differential order.
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Summing up the force acting in the axial direction on the free body diagram
depicted in fig. 5.8 yields the following equilibrium equation

dN1

dx1
= −p1. (5.18)

This equation is a direct consequence

dx1

i1

p (x ) dx1 1 1
N1

N  +

(dN /dx ) dx
1

1 1 1

Fig. 5.8. Axial forces acting on an in-
finitesimal slice of the beam.

of Newton’s law. While the general equilib-
rium equations, eqs. (1.4), express the equi-
librium conditions for a differential element
of a three-dimensional solid, the present
equation expresses the equilibrium of a
slice of the beam of differential length, dx1.

5.4.4 Governing equations

Finally, the governing equation of the problem is found by introducing the axial
force, eq. (5.16), into the equilibrium, eq. (5.18), and recalling the definition of the
sectional axial strain, eq. (5.6),

d
dx1

[
S

dū1

dx1

]
= −p1(x1). (5.19)

This second order differential equation can be solved for the axial displacement field,
ū1(x1), given the axial load distribution, p1(x1).

Two boundary conditions are required for the solution of eq. (5.19), one at each
end of the beam. Typical boundary conditions are:

1. A fixed (or clamped) end allows no axial displacement, i.e.,

ū1 = 0;

2. A free (unloaded) end corresponds to N1 = 0; using eq. (5.16), then leads to

dū1

dx1
= 0;

3. Finally, if the end of the beam is subjected to a concentrated load P1, the bound-
ary condition is N1 = P1, which implies

S
dū1

dx1
= P1.
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5.4.5 The sectional axial stiffness

The axial stiffness, S, of the section characterizes the stiffness of the beam when
subjected to axial loads. If the beam is made of a homogeneous material, Young’s
modulus is identical at all points of the section and can be factored out of integral,
(5.17), to yield

S = E A. (5.20)

On the other hand, if the section is made of several different materials, the axial
stiffness must be computed according to eq. (5.17).
An important case is that of a rectangular

i2

i3

x3

[i+1]

x3

[i]

b

Layer iE
[i]

Fig. 5.9. Cross-section of a beam with var-
ious layered materials.

section of width b made of layered materi-
als of different stiffness moduli, as depicted
in fig. 5.9. It is assumed that the material is
homogeneous within each of the n layers.
In layer i, E[i] is Young’s modulus,A[i] the
cross-sectional area, and x

[i]
3 and x

[i+1]
3 the

coordinates of the bottom and top planes,
defining the layer, respectively. Integration
over the cross-section then yields the axial
stiffness

S =
∫

A
E dA =

n∑

i=1

E[i]

∫

A[i]
dA[i] =

n∑

i=1

E[i]b (x[i+1]
3 − x

[i]
3 ).

This expression clearly shows that the axial stiffness is a weighted average of
the Young’s modulus of the various layers. The weighting factor, x

[i+1]
3 − x

[i]
3 , is the

thickness of the layer.

5.4.6 The axial stress distribution

The determination of the local axial stress, σ1, for a given axial load, p1, is of primary
interest to designers. This can be readily obtained by eliminating the axial strain from
eqs. (5.15) and (5.16) to find

σ1(x1, x2, x3) =
E

S
N1(x1) (5.21)

If the beam is made of a homogeneous material, the axial stiffness is given by
eq. (5.20), and eq. (5.21) then reduces to

σ1(x1, x2, x3) =
N1(x1)
A . (5.22)

The axial stress is uniformly distributed over the section, and its value is independent
of Young’s modulus.
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In contrast, the axial stress distribution for sections made of layers presenting
different stiffness moduli will vary from layer to layer. Indeed, eq. (5.21) becomes

σ
[i]
1 (x1, x2, x3) = E[i] N1(x1)

S
(5.23)

where σ
[i]
1 indicates the axial stress in layer i. This relationship implies that the ax-

ial stress in layer i is proportional to the modulus of that layer. Note that according
to eq. (5.13) the axial strain distribution is uniform over the section, i.e., each layer
is equally strained. Layer with stiffer materials, however, will develop higher ax-
ial stresses. The axial stress distribution for homogeneous and layered sections are
depicted in fig. 5.10.

Section made of
layered material

i1
i1

i3
i3

i2
i2

s1 s1

[i]

Section made of
homogeneous material

Fig. 5.10. Axial stress distribution for sections made of homogeneous and layered materials.

Once the local axial stress is determined, a strength criterion can be applied to
determine whether the structure can sustain the applied loads. Introducing eq. (5.21)
into the strength criterion, eq. (2.28), yields E/S |N1(x1)| ≤ σtens

allow or σcomp
allow .

Because the axial force varies along the span of the beam, this condition must be
checked at all points along the span. In practice, it is convenient to first determine
the maximum tensile and compressive axial force, denoted N tens

1 max and N comp
1 max, re-

spectively, then apply the strength criterion

E

S
|N tens

1 max| ≤ σtens
allow,

E

S
|N comp

1 max| ≤ σcomp
allow . (5.24)

If the axial force is compressive, buckling of the beam becomes another possible
failure mode. The maximum compressive load that a beam can sustain before lateral
buckling occurs is discussed in chapter 14.

If the section consists of layers made of various materials, the strength of each
layer will, in general, be different, and the strength criterion becomes

E[i]

S
|N tens

1 max| ≤ σ
tens[i]
allow ,

E[i]

S
|N comp

1 max| ≤ σ
comp[i]
allow , (5.25)

where σ
tens[i]
allow and σ

comp[i]
allow are the allowable stresses for layer i in tension and com-

pression, respectively. The strength criterion must be checked for each material layer.



184 5 Euler-Bernoulli beam theory

Example 5.1. Beam under a uniform axial load
Consider the uniform, clamped beam of length L subjected to a uniform axial loading
p1(x1) = p0, as depicted in fig. 5.6 . The governing differential equation is given by
eq. (5.19), and for the particular case at hand, this becomes

S
d2ū1

dx2
1

= −p0.

The following boundary conditions apply: ū1 = 0 at the root of the beam, whereas
Sdū1/dx1 = 0 at its tip. The solution of this differential equation is then

ū1 =
p0L

2

S

[(x1

L

)
− 1

2

(x1

L

)2
]

. (5.26)

The axial force is obtained from eq. (5.16) as

N1 = S ε̄1 = S dū1

dx1
= p0L

(
1− x1

L

)
.

This result can also be obtained by direct integration of the equilibrium eq. (5.18).

Example 5.2. Tapered beam under centrifugal load
A helicopter blade of length L is rotating at an angular velocity Ω about the ı̄2 axis, as
depicted in fig. 5.11. The blade is homogeneous and its cross-section linearly tapers
from an area A0 at the root to A1 = A0/2 at the tip. The area can then be written as

A(x1) = A0 + (A1 −A0)
x1

L
= A0

(
1− x1

2L

)
.

Consequently, the axial stiffness varies along the beam span, S(x1) = EA(x1),
where E is Young’s modulus.

W

L

A0

A A1 0= /2

i1

i2

Fig. 5.11. A helicopter blade rotating at an angular speed Ω.

Due to the centrifugal loading associated with the rotation, the blade is subjected
to a distributed load p1(x1) = ρA(x1)Ω2x1, where ρ is the material density. The
governing differential equation for this problem becomes

d
dx1

[
EA0

(
1− x1

2L

) dū1

dx1

]
= −ρA0

(
1− x1

2L

)
Ω2x1;
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with the following boundary conditions: ū1 = 0 at the root of the beam and
Sdū1/dx1 = 0 at its tip. It is convenient to use the non-dimensional span variable,
η = x1/L, to write these equations in a more compact form as [(1− η/2) ū′1]

′ =
−ρΩ2L3(η − η2/2)/E, where the notation (·)′ denotes a derivative with respect to
η. The boundary conditions are ū1 = 0 and ū′1 = 0, at the root and tip of the beam,
respectively. This differential equation can be integrated once, and with the help of
the boundary condition at the tip of the blade becomes

ū′1 =
ρΩ2L3

E

(
1
3
− η2

2
+

η3

6

)

1− η/2
=

ρΩ2L3

3E

[
2 + η − η2 − 1

1− η/2

]
.

A second integration then yields

ū1 =
ρΩ2L3

3E

[
2η +

η2

2
− η3

3
+ 2 ln

(
1− η

2

)]
, (5.27)

where the boundary condition at the root of the blade is used to evaluate the integra-
tion constant.

Finally, the axial force in the blade is readily obtained from eq. (5.16)

N1 = ρA0Ω
2L2

[
1
3
− η2

2
+

η3

6

]
. (5.28)

Note the appearance of a transcendental function, the logarithm function, in the ax-
ial displacement expression. This is due to span-wise variation in axial stiffness. In
practical applications, structures are subjected to complex loading conditions, and
the structural properties vary dramatically along the span. Consequently, the inte-
gration of the governing differential equations becomes increasingly difficult, if not
impossible.

5.4.7 Problems

Problem 5.1. Axial stress in a reinforced box beam
Figure 5.12 depicts an aluminum rectangular box beam of height h = 0.30 m, width b = 0.15
m, flange thickness ta = 12 mm, and web thickness tw = 5 mm. The beam is reinforced
by two layers of unidirectional composite material of thickness tc = 4 mm. The section is
subjected to an axial load N1 = 600 kN. The Young’s moduli for the aluminum and unidirec-
tional composite are Ea = 73 GPa and Ec = 140 GPa, respectively. (1) Find the distribution
of axial stress over the cross-section and sketch the distribution around the perimeter of the
section. (2) Find the magnitude and location of the maximum axial stress in the aluminum
and composite layers. (3) Sketch the distribution of axial strain over the section. How does it
vary over the full cross-section? (4) If the allowable stress for the aluminum and unidirectional
composite are σallow

a = 400 MPa and σallow
c = 1500 MPa, respectively, find the maximum

axial force the section can carry.

Problem 5.2. Axial stress in a reinforced I beam
Figure 5.13 depicts an aluminum I beam of height h = 0.25 m, width b = 0.2 m, flange
thickness ta = 16 mm, and web thickness tw = 12 mm. The beam is reinforced by two layers
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Fig. 5.12. Cross-section of a reinforced rect-
angular box beam.
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Fig. 5.13. Cross-section of a reinforced I
beam.

of unidirectional composite material of thickness tc = 5 mm. The section is subjected to an
axial force N1 = 500 kN. The Young’s moduli for the aluminum and unidirectional composite
are Ea = 73 GPa and Ec = 140 GPa, respectively. (1) Find the distribution of axial stress
over the cross-section and sketch it along the ı̄2 axis. (2) Find the magnitude and location of
the maximum axial stress in the aluminum and composite layers. (3) Sketch the distribution
of axial strain along the ı̄2 axis, and describe how it varies over the entire cross-section. (4)
If the allowable stress for the aluminum and unidirectional composite are σallow

a = 400 MPa
and σallow

c = 1500 MPa, respectively, find the maximum axial force the section can carry.

5.5 Beams subjected to transverse loads

Figure 5.14 shows a beam subjected to a distributed load, p2(x1), and a concentrated
load, P2, applied at the tip of the beam. Both load are applied in the transverse
direction, i.e., in the direction perpendicular to the beam’s axis. The distributed
loads have the units of force per unit length (N/m in the SI system), whereas the
concentrated load have the units of force (N in the SI system). Under the action
of these applied loads, bending moments, transverse shear forces, and axial and
transverse shearing stresses will be generated in the beam. Moreover, the beam will
bend, creating transverse displacement and curvature of the beam axis.

5.5.1 Kinematic description

To simplify the analysis, it is assumed that plane (̄ı1, ı̄2) is a plane of symmetry of
the structure. Since the loads are applied in this plane of symmetry, the response of
the beam will be entirely contained in that plane. The three Euler-Bernoulli assump-
tions discussed in the previous sections are still applicable, and furthermore, it seems
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Fig. 5.14. Beam subjected to transverse
loads.
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Fig. 5.15. Axial displacement distribution on
cross-section.

reasonable to assume that transverse loads only cause transverse displacement and
curvature of the section. The general displacement field, eq. (5.4), then reduces to

u1(x1, x2, x3) = −x2
dū2(x1)

dx1
, (5.29a)

u2(x1, x2, x3) = ū2(x1), (5.29b)
u3(x1, x2, x3) = 0. (5.29c)

This displacement field is depicted in fig. 5.15: it corresponds to a linear distri-
bution of the axial displacement component over the cross-section. The only non-
vanishing strain component from eq. (5.7) is

ε1(x1, x2, x3) = −x2κ3(x1). (5.30)

Here again, this describes a linear distribution of the axial strain over the cross-
section.

5.5.2 Sectional constitutive law

It is assumed that the beam is made of a linearly elastic material. Hooke’s law once
again reduces to eq. (5.14), and the axial stress distribution becomes

σ1(x1, x2, x3) = −Ex2κ3(x1). (5.31)

The sectional axial force, given by eq. (5.8), is evaluated as

N1(x1) =
∫

A
σ1(x1, x2, x3) dA = −

[∫

A
E x2 dA

]
κ3(x1). (5.32)

Because the beam is subjected to transverse loads only, this axial force must vanish
as can be proved by a simple equilibrium argument. On the other hand, the curvature,
κ3(x1), is not zero, and hence, the bracketed term must vanish, i.e.,

∫
AE x2 dA = 0.

This requirement can be written as

x2c =
1
S

∫

A
E x2 dA =

S2

S
= 0, (5.33)
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where x2c is the location of the modulus-weighted centroid of the cross-section. If
the section is made of a homogeneous material, Young’s modulus can be factored
out of the integrals to yield

x2c =
E

∫
A x2 dA

E
∫
A dA =

1
A

∫

A
x2 dA = 0, (5.34)

where x2c is now simply the area center of the section.
These results specify the location of the axis system on the cross-section. Equa-

tion (5.33) implies that the axis system is located at the modulus-weighted centroid
of the section (or at the area center if the beam is constructed of a homogeneous
material).

For a homogeneous material, the material density is also constant over
the section, and hence, the location of the center of mass, x2m =
(ρ

∫
A x2 dA)/(ρ

∫
A dA) = (

∫
A x2 dA)/A = x2c. Clearly, when the section is made

of a homogeneous material, the modulus-weighted centroid, the center of mass, and
the area center all coincide. For simplicity, the terms centroid and modulus-weighted
centroid will be used interchangeably.

The bending moment defined in eq. (5.10) can be evaluated by introducing the
axial stress distribution, eq. (5.31), to find

M3(x1) =
[∫

A
E x2

2dA
]

κ3(x1) = Hc
33 κ3(x1), (5.35)

where the curvature, κ3(x1), is factored out of the integral over the section. The
centroidal bending stiffness about axis ı̄3 is defined as

Hc
33 =

∫

A
E x2

2 dA. (5.36)

The relationship given by eq. (5.35) is the constitutive law for the bending behav-
ior of the beam. It expresses the proportionality between the bending moment and
the curvature, with a constant of proportionality called the bending stiffness (also
referred to as the flexural rigidity). It can be written as

M3(x1) = Hc
33 κ3(x1). (5.37)

Equation (5.37) is generally referred to as the moment-curvature relationship for a
beam.

Finally, it should be noted that both the bending moment and bending stiffness
are computed with respect to axis system (̄ı2, ı̄3) with its origin at the centroid of the
cross-section.

5.5.3 Equilibrium equations

Equilibrium equations are now derived to complete the formulation; an infinitesi-
mal slice of the beam of length dx1 is depicted in fig. 5.16. The bending moment,
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Fig. 5.16. Equilibrium of an infinitesimal slice of the beam.

M3(x1), and transverse shear force, V2(x1), are acting on the face at location x1. The
corresponding quantities acting on the face at location x1 +dx1 have been evaluated
using a Taylor series expansion and higher differential order terms are ignored.

The free body diagram of this infinitesimal slice of the beam yields the following
two equilibrium equations

dV2

dx1
= −p2(x1), (5.38a)

dM3

dx1
+ V2 = 0, (5.38b)

where the first equation expresses vertical force equilibrium and the second expresses
moment equilibrium about point O.

The transverse shearing force, V2, is readily eliminated from these two equilib-
rium equations to obtain a single equilibrium equation,

d2M3

dx2
1

= p2(x1). (5.39)

5.5.4 Governing equations

The governing equation for the transverse deflection of the beam are found by intro-
ducing the moment-curvature relation, eq. (5.37), into the equation of equilibrium,
eq. (5.39), and recalling the expression for the curvature, eq. (5.6), to yield

d2

dx2
1

[
Hc

33

d2ū2

dx2
1

]
= p2(x1). (5.40)

This fourth order differential equation can be solved for the transverse displacement
field, ū2(x1), given the distribution of transverse loading, p2(x1).

Four boundary conditions are required for the solution of eq. (5.40), two at each
end of the beam. Typical boundary conditions are listed here.

1. A clamped end restricts both transverse displacement and rotation of the section.
Since the rotation of the section and the slope of the beam are equal, see eq. (5.3),
it follows that
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ū2 = 0,
dū2

dx1
= 0.

2. A simply supported (or pinned) end requires a zero transverse displacement, but
the slope of the beam is arbitrary. The pin cannot support a bending moment im-
plying a second boundary condition: M3 = 0. Using eq. (5.37) and the definition
of curvature, eq. (5.6), yields M3 = Hc

33 d2ū2/dx2
1 = 0. Thus,

ū2 = 0,
d2ū2

dx2
1

= 0.

3. At a free (or unloaded) end, both bending moment and shear force must van-
ish. In view of eq. (5.38), the vanishing of the shear force implies V2 =
−dM3/dx1 = 0, leading to

d2ū2

dx2
1

= 0, − d
dx1

[
Hc

33

d2ū2

dx2
1

]
= 0.

4. At an end subjected to a concentrated transverse load, P2, the bending moment
must still vanish, but the shear force must equal the applied load, i.e., P2 = V2 =
−dM3/dx1. This leads to the following conditions

d2ū2

dx2
1

= 0, − d
dx1

[
Hc

33

d2ū2

dx2
1

]
= P2.

5. It is quite common for beams to feature end rectilinear springs, as depicted in
fig. 5.17. The spring stiffness constant is denoted k and has units of force per
unit length. Figure 5.17 shows a free body diagram of the spring. The shear
force, V2, acting on the beam’s tip is positive up. Due to Newton’s third law, a
force of magnitude V2 acts down on the spring. Vertical equilibrium of the forces
acting on the spring then yields −V2(L) = k ū2(L), where ū2(L) is the beam’s
tip transverse displacement, measured positive up. The minus sign in front of
the shear force is a consequence of the sign conventions: the displacement is
positive up, while the force is positive down. In view of eq. (5.38), the boundary
conditions at the tip of the beam now become

d
dx1

[
Hc

33

d2ū2

dx2
1

]

x1=L

− k ū2(L) = 0,
d2ū2

dx2
1

= 0,

where the second condition implies the vanishing of the tip bending moment. If
the spring is located at the left end of the beam, the shear force on the spring
will be positive upward and the sign of the second term of the first boundary
condition will become positive. This can be readily verified by drawing a free
body diagram of the system with the proper sign conventions.

6. In other cases, a rotational spring may be acting at the tip of the beam, as shown
in fig. 5.18. The rotational spring stiffness constant is denoted k and has units of
moment per radian. Figure 5.18 also shows a free body diagram of the spring.
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Fig. 5.17. Free body diagram for the beam end linear spring of stiffness constant k.

The bending moment, M3, acting at the beam’s tip is positive counterclockwise.
Due to Newton’s third law, a clockwise bending moment of equal magnitude acts
on the torsional spring. The moment equilibrium equation for the spring now
becomes −M3(L) = k Φ3(L), where Φ3(L) is the rotation of the tip spring.
In view of eq. (5.3), the rotation of the spring equals the slope of the beam,
and hence, −M3(L) = k dū2(L)/dx1. The minus sign in front of the bending
moment is a consequence of the sign conventions: a positive rotation is coun-
terclockwise, while a positive moment is clockwise. The boundary conditions at
the tip of the beam now become

Hc
33

d2ū2

dx2
1

∣∣∣∣
x1=L

+ k
dū2

dx1

∣∣∣∣
x1=L

= 0, − d
dx1

[
Hc

33

d2ū2

dx2
1

]
= 0,

where the second condition implies the vanishing of the tip shear force. If the
spring is located at the left end of the beam, the bending moment on the spring
will be positive counterclockwise and the sign of the second term of the first
boundary condition will become negative. This can be readily verified by draw-
ing a free body diagram of the system with the proper sign conventions.

Fig. 5.18. Free body diagram for a beam with end rotational spring of stiffness constant k.

5.5.5 The sectional bending stiffness

The bending stiffness, Hc
33, of the section characterizes the stiffness of the beam

when subjected to bending. If the beam is made of a homogeneous material Young’s
modulus can be factored out of the definition of the bending stiffness, eq. (5.36), to
yield

Hc
33 = E Ic

33, (5.41)

where
Ic
33 =

∫

A
x2

2 dA. (5.42)

Ic
33 is a purely geometric quantity known as the area second moment of the section

computed about the area center.
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On the other hand, if the section is made of several different materials, the bend-
ing stiffness must be computed according to eq. (5.36). An important case is that of
a rectangular section of width b made of layered materials of different stiffnesses,
as depicted in fig. 5.9. Assuming the material to be homogeneous within each layer
with a Young modulus, E[i], in layer i, the bending stiffness becomes

Hc
33 =

∫

A
Ex2

2 dA =
n∑

i=1

E[i]

∫

A[i]
x2

2 dA[i].

When the integration is carried out for the rectangular areas, this expression reduces
to

Hc
33 =

b

3

n∑

i=1

E[i]
[
(x[i+1]

2 )3 − (x[i]
2 )3

]
. (5.43)

The bending stiffness is a weighted average of the Young’s moduli of the various
layers. The weighting factor,

[
(x[i+1]

2 )3 − (x[i]
2 )3

]
, strongly biases the average in

favor of the outermost layers, for which x
[i+1]
2 and x

[i]
2 are large, whereas the layers

near the centroid, where x
[i+1]
2 and x

[i]
2 are nearly zero, contribute little to the overall

bending stiffness.

Example 5.3. The four-point bending test
The bending stiffness of a beam can be computed from the geometry of the cross-
section and the properties of the constituent materials, see eq. (5.41) for a beam made
of a homogeneous, isotropic material, or eq. (5.43) for a beam made of composite
materials. However, it is possible to directly measure the bending stiffness of a beam
using a test setup that will subject a portion of the beam to pure bending.

The four-point bending test set-up depicted in fig. 5.19 accomplishes this over
the test section between the inner supports. The load, P , applied by the testing ma-
chine is transmitted to the test sample through two rollers; the applied load is reacted
underneath the test sample by two additional rollers. In view of the symmetry of the
configuration, each of the four roller carries a load P/2. The test section of the beam
is subjected to a bending moment M3 = Pd/2, where d is the distance between the
rollers.

P
d d

Strain gauges

et

eb

Test
sample

Test section

h

Fig. 5.19. Configuration of the four-point bending test.

The deformation of the test sample can be measured by two strain gauges, located
one on top, the other on the bottom of the sample, as shown in fig. 5.19. Let εt and
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εb be the strain measurements at the top and bottom locations, respectively. In view
of eq. (5.30), these strains are related to the curvature of the beam: εt = −x2tκ3

and εb = −x2bκ3, where x2t and x2b are the x2 coordinates of the locations of
the top and bottom gauges, respectively. Subtracting these two relationships yields
κ3 = (εb − εt)/h, where h = x2t − x2b is the depth of the beam.

The test procedure is as follows. The assembly is placed in the testing machine
and a load P of increasing magnitude is applied. For each loading level, the corre-
sponding deformation is measured by the strain gauges. The raw test data consists
of loading levels, Pi, i = 1, 2, . . . , n, where n is the number of data points, and the
corresponding strains, εti and εbi. From this raw data, the curvature of the beam is
computed, κ3i = (εbi− εti)/h, and the corresponding bending moment is evaluated,
M3i = Pid/2. This computed data is then plotted with the curvature, κ3i, along the
abscissa and bending moment, M3i, along the ordinate.

If the applied load remains moderate, the behavior of the beam is expected to
be linear, i.e., a linear relationship should be observed between bending moment
and curvature, as expressed by eq. (5.37). The slope of the experimentally obtained
moment versus curvature curve should yield the bending stiffness of the beam. This
experimental technique can be used for beams made of homogeneous materials, or
for complex constructions involving many layers of composite materials (although
the relationship between εb and εt and κ3 will depend on the location of the sectional
centroid).

5.5.6 The axial stress distribution

The determination the local axial stress, σ1, for a given transverse load, p2(x1), is
often of great interest to designers who must assure that this stress does not exceed
an allowable value. This can be readily obtained by eliminating the curvature from
eqs. (5.31) and (5.37) to find

σ1(x1, x2, x3) = −E x2
M3(x1)

Hc
33

. (5.44)

If the beam is made of a homogeneous material, the bending stiffness is given by
eqs. (5.41) and eq. (5.44) then reduces to

σ1(x1, x2, x3) = −x2
M3(x1)

I33
. (5.45)

This result shows that the axial stress is linearly distributed over the section, and
is independent of Young’s modulus. For a positive bending moment, the maximum
tensile axial stress is found at the point of the section the farthest below the cen-
troid, i.e., at the point with the largest negative value of x2, whereas the maximum
compressive axial stress is found at the point on the section the farthest above the
centroid, i.e., at the point for which x2 is maximum.

In contrast, the axial stress distribution for sections with various layers of ma-
terials will be linear only within each layer and will present a discontinuity at the
interfaces. Indeed, eq. (5.44) becomes
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σ
[i]
1 (x1, x2, x3) = −E[i]x2

M3(x1)
Hc

33

. (5.46)

According to eq. (5.30), the axial strain distribution is linear over the section, in
contrast with the axial stress distribution, which is piece-wise linear. The axial stress
distributions for homogeneous and layered sections are contrasted in fig. 5.20.

i2

i3

i3
i1i1

i2

Section made of
homogeneous material

Section made of
layered material

s1 s1

[i]

Fig. 5.20. Axial stress distributions in homogeneous and layered sections.

Once the local axial stress is determined, a strength criterion can be applied to
determine whether the structure can sustain the applied loads. If a positive posi-
tive bending moment is applied, combining the strength criterion, eq. (2.28), and
eq. (5.44) leads to |xmax

2 |EM3/Hc
33 ≤ σcomp

allow and |xmin
2 |EM3/Hc

33 ≤ σtens
allow. The

strength criterion becomes

|xmax
2 |

Hc
33

E|Mmax
3 | ≤ σcomp

allow ,
|xmin

2 |
Hc

33

E|Mmax
3 | ≤ σtens

allow,

where |Mmax
3 | is the maximum positive bending moment in the beam and

|xmax
2 |

Hc
33

E|Mmin
3 | ≤ σtens

allow,
|xmin

2 |
Hc

33

E|Mmin
3 | ≤ σcomp

allow ,

where |Mmin
3 | is absolute value of the minimum negative bending moment in the

beam. If the section is such that |xmin
2 | = |xmax

2 |, and/or if the material presents
equal tensile and compressive strengths, one or more of these four strength criteria
might become redundant.

Of course, if the section consists of layers made of various materials, the strength
of each layer will, in general, be different. Furthermore, the maximum stress does not
necessarily occur at the points with the largest distance to the centroid, as illustrated
in fig. 5.20. In such a case, the axial stress must be computed at the top and bottom
locations of each ply, and then, the strength criterion is applied.

5.5.7 Rational design of beams under bending

The axial stress distribution of a beam under bending is given by eq. (5.31). The axial
stress clearly vanishes anywhere along axis ı̄3 of the beam, which passes through
the section’s centroid. This line on the cross-section is called the neutral axis of
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the beam. Consequently, the material located near the neutral axis carries almost no
stresses and contributes little to the overall load carrying capability of the beam.

A similar conclusion can be drawn from examining the expression for the bend-
ing stiffness, eq. (5.36): the integrand vanishes along the neutral axis. This means
that the material located near the neutral axis contributes little to the bending stiff-
ness of the beam. Clearly, the rational design of a beam under bending calls for the
removal of the material located at and near the neutral axis and its relocation away
from that axis where it will contribute more significantly to the bending stiffness.

Consider first a beam made of homogeneous material.

Rectangular
section

“Ideal” section

h

h/2

h/2

b

b

d

d

Fig. 5.21. A rectan-
gular section, and the
ideal section.

Two different cross-sections are depicted in fig. 5.21: the first
section is a rectangle of width b and height h, and the second
is composed of two flanges each of width b and height h/2
separated by a distance 2d. Both sections have the same mass
per unit span m = bhρ where ρ is the material density. The
second section is an idealization since no material connects
the two flanges. In practical designs, a thin web would be
used to keep the two flanges in their respective positions.

The ratio of the bending stiffnesses of the two sections,
denoted Hideal and Hrect, for the ideal and rectangular sec-
tions, respectively, is

Hideal

Hrect
=

E 2
[
b(h/2)3

12
+

bh

2
d2

]

E
bh3

12

=
1
4

+ 12
(

d

h

)2

.

When d À h the bending stiffness of the ideal section is
much larger than that of the rectangular section. Indeed, for
d/h = 10, Hideal/Hrect ≈ 12(d/h)2 = 1200.

The ratio of the maximum axial stresses in the two sections, denoted σmax
rect and

σmax
ideal for the rectangular and ideal sections, respectively, is found as

σmax
rect

σmax
ideal

=
E

h

2
M3 Iideal

IrectE

(
d +

h

4

)
M3

=

1
4

+ 12
(

d

h

)2

1
2

+ 2
(

d

h

) . (5.47)

For d/h = 10, σmax
rect /σmax

ideal ≈ 6(d/h) = 60. If the same material used for the two
sections, the ideal section can carry a 60 times larger bending moment, although the
two beams have the same amount of material (and therefore the same weight).

This example shows that the rational design of a beam in bending calls for a
section with the largest possible height, and the concentration of all the material as
far as possible from the neutral axis. In practical situations the ideal section cannot
be used. A web is necessary to connect the two flanges resulting in what is called an
“I beam” design, as shown in fig. 5.13. The maximum height of the section is often
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limited by other design considerations. Furthermore, as the height of the section
increases, it becomes prone to instabilities such as web and flange buckling.

Example 5.4. Simply supported beam under a uniform load
Consider a simply supported, uniform beam of length L subjected to a uniform trans-
verse loading p2(x1) = p0, as depicted in fig. 5.22. Determine the deflected shape of
the beam, and the bending moment and shear force distributions. This information
will enable a designer to determine if the beam deflections are acceptable and, from
the bending moment distribution, find the peak stresses value and compare it with
the specified limit design value.

For this problem, since the bending stiffness is uniform along the span of the
beam, the governing equation, eq. (5.40), reduces to

Hc
33

d4ū2

dx4
1

= p0.

i2 i1

p0p0

p L/20 L

M3

x1
V2

Fig. 5.22. Simply supported beam under a uniform transverse load.

The boundary conditions, ū2 = Hc
33d

2ū2/dx2
1 = 0 at the beam’s root and ū2 =

Hc
33d

2ū2/dx2
1 = 0 at its tip, express the vanishing of the transverse displacement and

bending moment at the two end supports. The solution of this differential equation is

ū2 =
p0L

4

24Hc
33

[(x1

L

)
− 2

(x1

L

)3

+
(x1

L

)4
]

. (5.48)

The bending moment distribution is then computed from eq. (5.37)

M3 = −p0L
2

2
x1

L

(
1− x1

L

)
. (5.49)

As expected, the bending moment is maximum at mid-span, Mmax
3 = p0L

2/8. The
same result can be obtained from simple statics considerations. The axial stress at any
point in the beam can then be obtained from the formulæ developed in section 5.5.

A simpler solution of this problem can be obtained directly from equilibrium
considerations. This problem is isostatic because all forces and moments can be de-
termined solely from the equilibrium equations. A simple free body diagram of the
beam reveals that the reaction forces at the ends of the beam are p0L/2. The bending
moment distribution then follows from the free body diagram shown in fig. 5.22 as
M3 = −x1p0L/2+ p0x

2
1/2, which, as expected, is identical to eq. (5.49). The beam
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moment-curvature relation, eq. (5.37), and the relation between the curvature and
second derivative of the transverse displacement, eq. (5.6), can be used to find

Hc
33

d2ū2

dx2
1

= M3(x1). (5.50)

For the present case, this equation can be integrated directly to yield

ū2(x1) =
p0L

4

24Hc
33

[
−2

(x1

L

)3

+
(x1

L

)4
]

+ C1x1 + C2,

where C1 and C2 are two integration constants which must be determined from two
boundary conditions, one at each end of the beam. The transverse displacement must
vanish at either end of the beam, ū2(0) = ū2(L) = 0, leading to

ū2 =
p0L

4

24Hc
33

[(x1

L

)
− 2

(x1

L

)3

+
(x1

L

)4
]

,

which is identical to eq. (5.48) above.
This alternative solution approach is easier to develop because it involves the

solution of a second order differential equation, rather than a fourth order equation.
This alternative solution, however, is only possible because this particular problem is
isostatic, i.e., the bending moment distribution can be determined from equilibrium
considerations alone.

Example 5.5. Simply supported beam with concentrated load: approach 1
Consider now a simply supported, uniform beam of length L subjected to a concen-
trated load P acting at a distance αL from the left support, as depicted in fig. 5.23.

First, the solution of this problem might seem to be very similar to that pre-
sented in the previous example: the governing differential equation of the problem is
d4ū2/dx4

1 = 0, and the boundary conditions are ū2 = d2ū2/dx2
1 = 0 at both root

and tip of the beam. But this approach cannot be possibly right, because the applied
load P does not even appear in the governing equations!

i2

i1

aL
P

P
V2

L

V2

R

dx1

M3

L
M3

R

Fig. 5.23. Simply supported beam with one concentrated load.

The concentrated load, P , should normally appear in the statement of boundary
conditions for the beam, but it is applied at an arbitrary location along the span of
the beam, not at the ends. Hence, it is necessary to “create” a new set of boundary
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conditions at the point of application of the load. The beam is separated into two
portions, one portion to the left of the applied load, the other to its right. For each of
the two portions, the governing differential equation of the problem is d4ū2/dx4

1 =
0, which integrates to

ūL
2 = A + Bx1 + Cx2

1 + Dx3
1, and ūR

2 = E + Fx1 + Gx2
1 + Kx3

1,

for the left and right portions of the beam, respectively.
The two solutions include 8 integration constants: A, B, C, and D, for the left

portion of the beam and E, F , G, and K, for its right portion to be determined to
complete the solution process. The boundary conditions at the two ends of the beam
are still ū2 = d2ū2/dx2

1 = 0 at x1 = 0 and L. Imposing these conditions leads to

ūL
2 = Bx1 + Dx3

1, and ūR
2 = F (x1 − L) + K(x3

1 − 3Lx2
1 + 2L3).

Four boundary conditions are imposed and four integration constant are deter-
mined. Clearly, the determination of the remaining four integration constants requires
an additional four boundary conditions, which must be expressed at x1 = αL, the
common end of the two beam portions. Because two different governing equations
are written for the two portions of the beam, the left and right solutions are, as yet,
unrelated: continuity conditions must be applied at x1 = αL. First, the displacement
and slope of the beam must be continuous at this point: ūL

2 (αL) = ūR
2 (αL) and

dūL
2 (αL)/dx1 = dūR

2 (αL)/dx1. Furthermore, inspection of the free body diagram
of the differential element located under the applied load depicted in fig. 5.23, reveals
two equilibrium conditions: ML

3 (αL) = MR
3 (αL) and−V L

2 (αL)+P +V R
2 (αL) =

0. These four continuity conditions will be used to evaluate the remaining integra-
tions constants, B, D, F , and K.

The two equilibrium conditions yield the following two algebraic equations for
the integration constants D and K: 6DαL = 6K(αL − L) and 6DHc

33 + P −
6KHc

33 = 0. This leads to D = −(1 − α)P/(6Hc
33), and K = αP/(6Hc

33). Next,
the continuity conditions for displacements and slope imply

B + 3Dα2L2 =F + K(3α2L2 − 6αL2) and

αL + Dα3L3 =F (αL− L) + K(α3L3 − 3α2L3 + 2L3).

Introducing the values for the constants found above, the last two continuity condi-
tions become

[
1 −1
α 1− α

]{
B/L2

F/L2

}
=

P

6Hc
33

{ −3α2

2α(1− α2)

}
.

Finally, the solution of this linear system yields B = α(2− α)(1− α)PL2/(6Hc
33)

and F = α(2 + α2)PL2/(6Hc
33). The deflected shape of the beam is now found as

ū2(η) =
PL3

6Hc
33

{
−(1− α)η3 + α(2− α)(1− α)η, 0 ≤ η ≤ α,

α(η3 − 3η2) + α(2 + α2)η − α3, α < η ≤ 1,
(5.51)
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where the solutions for the left and right portions of the beam are indicated by their
range of validity, 0 ≤ η ≤ α and α < η ≤ 1, respectively, and η = x1/L is the
non-dimensional span variable.

The bending moment distribution then follows

M3(η) = PL

{
−(1− α)η, 0 ≤ η ≤ α,

−α(1− η), α < η ≤ 1.
(5.52)

Finally, the shear force distribution is computed from the bending moment distribu-
tion to find

V2(η) = P

{
(1− α), 0 ≤ η ≤ α,

−α, α < η ≤ 1.
(5.53)

At η = α, the shear force presents a discontinuity that is equal to the applied con-
centrated load at that point, as expected from the vertical equilibrium condition at
x1 = αL.

Clearly, the presence of a concentrated load at an arbitrary point along the span
of the beam considerably complicates the solution process: the problem must be
split into two independent sub-problems, thereby creating a common “end point” for
the two sub-problems where the applied load is introduced as a boundary condition.
Continuity conditions must then be applied to enforce continuity conditions at the
connection point.

Example 5.6. Simply supported beam with concentrated load: approach 2
Consider, once again, a simply supported, uniform beam of length L subjected to
a concentrated load P acting at a distance αL from the left support, as depicted in
fig. 5.24.

To avoid the complexity of the approach presented in the previous example, basic
statics arguments are used determine the reaction forces at the two end points. A free
body diagram of the entire beam reveals that these forces are (1−α)P and αP , at the
left and right end supports, respectively. Next, fig. 5.24 shows the free body diagram
of a portion of the beam extending from the left support to a location 0 ≤ x1 ≤ αL
and yields the bending moment distribution, M3 = −(1−α)Px1 = −(1−α)PLη,
where η = x1/L is the non-dimensional variable along the span of the beam. Simi-
larly, fig. 5.24 also shows a free body diagram of a piece of the beam extending from
location αL ≤ x1 ≤ L to the right support; moment equilibrium of this free body
diagram leads to M3 = −αP (L − x1) = −αPL(1 − η). These results are identi-
cal to those found in eq. (5.52). The present process is much more expeditious: the
bending moment distributions are readily obtained from equilibrium considerations
alone. Here again, however, it is necessary to obtained distinct solutions for the left
and right portions of the beam.

Next, the bending moment-curvature relationship, eq. (5.50), can be integrated
twice to yield the displacement field as

ū2(η) =
PL3

Hc
33

{
−(1− α)η3/6 + C1η + C2, 0 ≤ η ≤ α,

−α
(
η2/2− η3/6

)
+ C3η + C4, α ≤ η ≤ 1.
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Fig. 5.24. Simply supported beam with one concentrated load.

where C1, C2, C3 and C4 are four integration constants to be evaluated from the
boundary conditions.

Because the beam is simply supported at the two ends, ū2(0) = ū2(1) = 0, and
furthermore, at η = α, both displacement and slope of the beam must be continuous.
These four conditions are sufficient to determine the four integration constants to
yield the following solution for the deflected shape of the beam

ū2(η) =
PL3

6Hc
33

{
−(1− α)η3 + α(2− α)(1− α)η, 0 ≤ η ≤ α,

α(η3 − 3η2) + α(2 + α2)η − α3, α < η ≤ 1.

As expected, the solution is identical to that found earlier, see eq. (5.51). Clearly, the
present solution approach, based on the determination of the bending moment distri-
bution from equilibrium considerations, is much more expeditious than the approach
presented in the previous example.

Example 5.7. Cantilevered beam under uniform load
Consider now a cantilevered beam with a uniformly distributed transverse load, p0, as
shown in fig. 5.25. The first approach to this problem is to solve the governing differ-
ential equation of the problem, d4ū2/dx4

1 = p0/Hc
33, with the geometric boundary

conditions ū2 = dū2/dx1 = 0 at the root of the beam and equilibrium boundary
conditions, M3 = V2 = 0 at the tip of the beam.

p0

i1

i2

L

p0

p L0

M3

x1

p L /20

2

V2

Fig. 5.25. Cantilevered beam under a uniform load.

The solution of the differential equation is ū2 = A + Bx1 + Cx2
1 + Dx3

1 +
p0x

4
1/(24Hc

33), where the last term represent the particular solution for the non-zero
right-hand side of the governing equation. The geometric boundary conditions at the
root of the beam imply A = B = 0, and the solution reduces to ū2 = Cx2

1 +
Dx3

1 + p0x
4
1/(24Hc

33). Imposing the vanishing of the shear force at the tip of the
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beam leads to D = −p0L/(6Hc
33), and the vanishing of the bending moment at the

same location gives C = p0L
2/(4Hc

33). The final solution is

ū2(x1) =
p0L

4

24Hc
33

(
6η2 − 4η3 + η4

)
, (5.54)

where η = x1/L is the non-dimensional variable along the span of the beam.
This problem is isostatic, therefore, the root reaction force and moment can be

determined from equilibrium considerations alone. The free body diagram of a por-
tion of the beam shown in fig. 5.25 then yields the bending moment distribution in
the beam

M3(x1) =
p0L

2

2
− p0Lx1 +

p0x
2
1

2
.

Introducing this result into the bending moment-curvature relationship, eq. (5.50),
and integrating twice yields the solution

ū2(x1) =
1

Hc
33

(
p0L

2

4
x2

1 −
p0L

6
x3

1 +
p0

24
x4

1

)
+ C1x1 + C2,

where C1 and C2 are integration constants to be determined from the boundary con-
ditions, ū2(0) = dū2(0)/dx1 = 0, to find the deflected shape of the beam as

ū2(x1) =
p0L

4

24Hc
33

(
6η2 − 4η3 + η4

)
.

Of course, this result matches that found earlier.

Example 5.8. Cantilevered beam under concentrated load
Consider a cantilevered, uniform beam of length L subjected to a concentrated load
P acting at a distance αL from the left support, as depicted in fig. 5.26.

aL
P

i1

i2

L

M3

x1

P

V2

aLP

Fig. 5.26. Cantilevered beam under a concentrated load.

The bending moment distribution is readily obtained from simple equilibrium
considerations. A free body diagram of the entire beam reveals that at the left sup-
port, the clamping force is P and the clamping moment αLP . Next, the equilibrium
condition for a free body diagram of a piece of the beam extending from the left
support to a location 0 ≤ η ≤ α, as shown in fig. 5.26, yields M3 = PL(α − η),
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where η = x1/L is the non-dimensional variable along the span of the beam. Simi-
larly, a free body diagram of a piece of the beam extending from the left support to a
location α ≤ η ≤ 1 leads to M3 = 0.

The bending moment-curvature relationship, eq. (5.50), for each segment of the
beam can be integrated twice to yield the displacement field as

ū2(η) =
PL3

6Hc
33

{
η2(3α− η), 0 ≤ η ≤ α,

α2(3η − α), α < η ≤ 1.
(5.55)

The integration process involves a total of four integration constants that are evalu-
ated from the boundary conditions: at the left support, the beam displacement and
slope must vanish; at η = α, both displacement and slope must be continuous.
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p ( )d2 m m
m

Fig. 5.27. Cantilevered beam under transverse loading.

This example suggests an approach to the computation of the deflection of a can-
tilevered beam subjected to a distributed loading, p2(η), depicted in fig. 5.27. First,
a differential component of force, p2(µ)dµ, acting at a non-dimensional distance
µ from the left support is considered as a concentrated load applied at location µ.
Equation (5.55) is used to evaluate the corresponding displacement field

ū2(η) =
p2(µ)dµL4

6Hc
33

{
η2(3µ− η), 0 ≤ η ≤ µ,

µ2(3η − µ), µ < η ≤ 1.

Because the governing equation for beam transverse displacement, eq. (5.40), is
a linear differential equation, the principle of superposition applies. This means that
the displacement fields generated by two distinct loading conditions can be super-
posed to find the displacement field of the beam under the combined loading. In this
case, the displacements generated by each differential loading component, p2(µ)dµ,
can be superposed to find the displacement of the beam under the distributed load.
The following integral yields the displacement field

ū2(η) =
L4

6Hc
33

[∫ η

0

p2(µ)µ2(3η − µ) dµ +
∫ 1

η

p2(µ)η2(3µ− η) dµ

]
,

where the integrals are used to sum up the contributions over 0 ≤ µ ≤ η and η ≤
µ ≤ 1.
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The displacement field of the cantilevered beam under an arbitrary loading dis-
tribution, p2(µ), can be obtained from the above expression by performing the indi-
cated integrals. For instance, the displacement of a cantilevered beam under a uni-
form transverse loading p0 becomes

ū2(η) =
p0L

4

6Hc
33

[∫ η

0

µ2(3η − µ) dµ +
∫ 1

η

η2(3µ− η) dµ

]
.

Integration then yields the desired displacement solution ū2(η) = p0L
4(η4 − 4η3 +

6η2)/(24Hc
33). This solution is exactly the same as the solution developed for a

uniformly loaded cantilevered beam in the previous example.

Example 5.9. The flexibility matrix: experimental determination
All the examples detailed thus far have focused on analytical solutions that predict
a beam’s transverse displacement field given the applied loads. In practice, however,
these predictions must be validated through structural testing. For instance, to assess
the structural behavior of an aircraft wing of length L, the following test, depicted
in fig. 5.28, could be performed. The wing is cantilevered from a support structure
and is subjected to various transverse loads, P1, P2, and P3 applied at span-wise
locations α1L, α2L, and α3L, respectively. During the test, the displacements at
those same points are monitored by means of displacement gauges, which measure
the corresponding transverse displacements, denoted ∆1, ∆2, and ∆3, respectively.

i2

i1

a1L a2L a3L

P2P1 P3

D1 D2 D3

Fig. 5.28. Cantilevered wing under three concentrated loads.

Consider now the following test sequence. First, a single load is applied at lo-
cation α1L; this corresponds to a loading P1, P2 = P3 = 0. The corresponding
displacements are recorded and denoted ∆11, ∆21, ∆31. Next, a single load is ap-
plied at location α2L; this corresponds to a loading P2, P1 = P3 = 0, and the
corresponding displacements are ∆12, ∆22, ∆32. Finally, a single load is applied at
location α3L; this corresponds to a loading P3, P1 = P2 = 0, and the corresponding
displacements are ∆13, ∆23, ∆33.

Let q1, q2, and q3, denote the transverse displacements of the wing at locations
α1L, α2L, and α3L, respectively. For each of the three loading cases, the experi-
mental data can be presented in the following manner,




q1

q2

q3



 =





∆11/P1

∆21/P1

∆31/P1



 P1,





q1

q2

q3



 =





∆12/P2

∆22/P2

∆32/P2



P2,





q1

q2

q3



 =





∆13/P3

∆23/P3

∆33/P3



P3.

(5.56)
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At this point it is convenient to introduce the concept of influence coefficient,
ηij = ∆ij/Pj , which is the displacement at location αiL, when a single unit load,
Pj = 1, is applied at location αjL. For the first loading case, q1 = (∆11/P1)P1 =
η11P1. With the help of the influence coefficients, eqs. (5.56) can be restated as





q1

q2

q3



 =





η11

η21

η31



P1,





q1

q2

q3



 =





η12

η22

η32



P2,





q1

q2

q3



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The influence coefficients are readily obtained from the experimental measurements:
the measured displacements are divided by the magnitude of the known applied load.
The first loading case provides three measurements, ∆11, ∆21, and ∆31, which, after
division by the magnitude of the applied load, P1, give the influence coefficients
appearing in the first equations. Each one of the three loading case gives one set of
influence coefficients.

At this point, it is assumed that the wing behaves in a linearly elastic manner
and therefore, the principle of superposition applies. If the three loading cases are
combined, the resulting deflections can be obtained by adding eqs. (5.57). The result
can be summarized in a single matrix relationship as





q1

q2

q3



 =




η11 η12 η13

η21 η22 η23

η31 η32 η33








P1

P2

P3



 = F





P1

P2

P3



 , F =




η11 η12 η13

η21 η22 η23

η31 η32 η33


 , (5.58)

where F is the 3 × 3 flexibility matrix and the displacements, qi, are those resulting
from the superposition of the three loading cases. The flexibility matrix simply stores
the influence coefficients in an orderly manner.

The process described above can be generalized to a situation where single loads
are applied in sequence at N locations, αiL, i = 1, 2, . . . , N , and the corresponding
displacements, ∆ij , are measured; ∆ij corresponds to the displacement at location
αiL, when a single load, Pj , is applied at location αjL. As before, the influence
coefficient are ηij = ∆ij/Pj and eq. (5.58) becomes

q = F Q, (5.59)

where array q =
{
q1, q2, . . . , qN

}T stores the N displacements at locations, αiL,
i = 1, 2, . . . , N , resulting from the application of N loads at the same locations, and
stored in array Q =

{
P1, P2, . . . , PN

}T
. The flexibility matrix, F , now becomes

an N ×N matrix, and the N2 measurements, ∆ij , determine the N2 entries of this
matrix: indeed, the (i, j) entry of the flexibility matrix is F (i, j) = ηij = ∆ij/Pj . If
a detailed study of structural behavior is necessary, displacements must be measured
at a large number of points along the wing; of course, the cost of the experiment
rapidly increases because the number of required measurements increases like N2.

Example 5.10. The flexibility matrix: analytical determination
The developments presented in example 5.9 focus on the determination of the flexi-
bility matrix based on experimental measurements. It is also possible to give closed
form analytical expressions for each entry of the flexibility matrix.
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Consider the cantilevered wing subjected to concentrated transverse loads at lo-
cations α1L, α2L, and α3L, as depicted in fig. 5.28. The first loading case, P1,
P2 = P3 = 0, corresponds to the cantilevered beam problem treated in exam-
ple 5.8. The displacements at location α1L, α2L, and α3L, denoted ∆11, ∆21, ∆31,
respectively, can be expressed as ∆11 = ū2(η = α1), ∆21 = ū2(η = α2), and
∆31 = ū2(η = α3). Equation (5.55) then gives the transverse displacement field at
these points as

∆11 =
P1L

3

6Hc
33

2α3
1, ∆21 =

P1L
3

6Hc
33

α2
1(3α2 − α1), ∆31 =

P1L
3

6Hc
33

α2
1(3α3 − α1).

The influence coefficients are then found by dividing the corresponding displace-
ments by P1. Equation (5.55) can be used in a similar manner to find the displace-
ments corresponding to the other two loading conditions, P2, P1 = P3 = 0, and P3,
P1 = P2 = 0.

Collecting all the results then yields a closed form solution for the flexibility
matrix, see eq. (5.58), as

F =
L3

6Hc
33




2α3
1 α2

1(3α2 − α1) α2
1(3α3 − α1)

α2
1(3α2 − α1) 2α3

2 α2
2(3α3 − α2)

α2
1(3α3 − α1) α2

2(3α3 − α2) 2α3
3


 . (5.60)

Flexibility matrices corresponding to a larger number of locations, say αiL, i =
1, 2, . . . , N , are easily obtained by simple index manipulation of the above result.
Although the above expression is complex, each entry of the flexibility matrix can
be directly measured by a simple test, as discussed in example 5.9.

Example 5.11. Clamped-simply supported beam under uniform load
A beam subjected to a uniform loading p0 is clamped at one end and is simply sup-
ported at the other, as depicted in fig. 5.29.

p0

i1

i2

L

F

FCut

Fig. 5.29. Clamped - simply supported beam under uniform load.

First, this problem will be solved with the help of eq. (5.40). Since the bending
stiffness is constant, the governing equation of the problem is Hc

33d
4ū2/dx4

1 = p0.
The necessary four boundary conditions for this problem are ū2 = dū2/dx1 = 0 at
the beam’s root and at its tip, ū2 = d2ū2/dx2

1 = 0. The solution of the differential
equation is

ū2(x1) =
p0

24Hc
33

x4
1 +

1
6
C1x

3
1 +

1
2
C2x

2
1 + C3x1 + C4,
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where the first term represents the particular solution associated with the non-
vanishing right-hand side of the equation. The four integration constants, C1, C2,
C3, and C4 are then determined with the help of the boundary conditions to yield

ū2(η) =
p0L

4

48Hc
33

(
2η4 − 5η3 + 3η2

)
, (5.61)

where η = x1/L is the non-dimensional variable along the span of the beam.
The bending moment is evaluated using the moment-curvature relation,

eq. (5.50), to find M3(η) = p0L
2
[
4η2 − 5η + 1

]
/8. Finally, the transverse shear

force is found by using eq. (5.38) as V2(η) = −p0L [8η − 5] /8.
This problem is hyperstatic: the reaction forces cannot be determined from equi-

librium considerations alone. Indeed, for this two dimensional problem, statics pro-
vides two equations of equilibrium, but the problem involves three unknown reac-
tions: a vertical force and a moment at the clamped end of the beam, and a vertical
force at the simple support.

Using the nomenclature of section 4.3, the system is hyperstatic of order 1. Two
solution methods are developed for hyperstatic problems: the displacement and force
methods, see sections 4.3.2 and 4.3.3, respectively.

The force method provides a very expeditious approach to the solution of this
problem. The system is cut at the simple support, as shown in fig. 5.29, and an un-
known reaction force, F , is applied at the two sides of the cut. The problem is now
transformed into a cantilevered beam subjected to a uniform loading, p0, and a tip
load, F . The solution is readily obtained by superposing the displacement field cor-
responding to these these two loadings to find

ū2(η) =
p0L

4

24Hc
33

(
6η2 − 4η3 + η4

)
+

FL3

6Hc
33

[
η2(3α− η)

]
,

where the first term represents the contribution of the uniform loading, see eq. (5.54),
and the second term that of the tip concentrated load, see eq. (5.55).

The compatibility equation at the cut implies the vanishing of the beam’s tip
deflection, ū2(η = 1) = 0, which leads to p0L

4(6 − 4 + 1)/(24Hc
33) + FL3(3 −

1)/(6Hc
33) = 0. Solving this equation yields the reaction force at the support

F = −3p0L

8
, (5.62)

and finally, the displacement field becomes

ū2(η) =
p0L

4

24Hc
33

(
6η2 − 4η3 + η4

)− 3
8
p0L

L3

6Hc
33

[
η2(3α− η)

]

=
p0L

4

48Hc
33

(
2η4 − 5η3 + 3η2

)
.

In this approach, the solution is obtained in an efficient manner using the force
method together with known solutions to elementary problems. Solutions to complex
problems can often be constructed in this way from solutions to simpler problems.
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Example 5.12. Simply supported beam with concentrated loads
Consider a simply supported, uniform beam of length L subjected to two concen-
trated loads acting at a distance αL from the end supports, as depicted in fig. 5.30.
This problem presents discontinuities in the transverse shear force distribution due
the presence of the concentrated loads and for this reason, the solution will be derived
from the moment-curvature relationship, eq. (5.37).

i2 i1

aL aL
P P

Fig. 5.30. Simply supported beam with two concentrated loads.

The bending moment distribution can be readily obtained from simple equilib-
rium considerations. A free body diagram of the entire beam reveals that the reaction
forces at the end supports must each equal P . Next, the equilibrium condition for a
free body diagram of a piece of the beam extending from the left support to a loca-
tion 0 < x1 < αL yields M3 = −Px1. Similarly, a free body diagram of a segment
of the beam extending from the left support to a location αL < x1 < L/2 leads to
M3 = P (x1 − αL)− Px1 = −PαL.

The bending moment-curvature relationship, eq. (5.37), is now integrated twice
to yield

Hc
33ū2(x1) =

{
−Px3

1/6 + C1x1 + C2, 0 ≤ x1 ≤ αL,

−αLPx2
1/2 + C3x1 + C4, αL < x1 ≤ L/2,

where C1, C2, C3 and C4 are four integration constants. Two of these constants can
be determined from the boundary conditions: the simple support at the root implies
ū2(0) = 0, and the symmetry condition at mid-span requires dū2/dx1(L/2) = 0.
The other two integration constants are found by imposing the continuity of the dis-
placement and slope at x1 = αL. The transverse displacement distribution becomes

ū2(η) =
PL3

6Hc
33

{
3(α− α2)η − η3, 0 ≤ η ≤ α,

−α3 + 3αη − 3αη2, α < η ≤ 1/2.
(5.63)

The shear force distribution then follows from eqs. (5.38b) and (5.37)

V2(η) = P

{
−1, 0 ≤ η ≤ α,

0, α < η ≤ 1/2.

This result can be easily verified: the portion of the beam between the two concen-
trated loads is subjected to a constant bending moment αLP , and hence, the shear
force vanishes. At x1 = αL the shear force jumps from V2 = P , immediately to
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the left, to V2 = 0, immediately to the right of the applied concentrated force. The
magnitude of this jump is of course equal to the force applied at that point.

The problem can also be solved using the governing differential equation,
eq. (5.40). However, two separate problems must be solved: one for 0 ≤ x1 ≤ αL,
and another for αL < x1 ≤ L/2. The integration of these two, fourth order equa-
tions will generate a total of eight integration constants to be determined from four
boundary conditions, and four continuity conditions at x1 = αL. The boundary con-
ditions at the root are ū2(0) = 0 and d2ū2/dx2

1(0) = 0, corresponding to the van-
ishing of the displacement and bending moment; at mid-span, dū2/dx1(L/2) = 0
and d3ū2/dx3

1(L/2) = 0, corresponding to the symmetry conditions of vanishing
slope and shear force. At x1 = αL, continuity of displacement, slope and bend-
ing moment is required together with the enforcement of a jump in shear force. The
approach used in this example is clearly less laborious.

Example 5.13. Simply supported beam with two elastic spring supports
A simply supported beam of span L is also supported by two spring of stiffness
constant k located at stations x1 = αL and (1− α)L, and is subjected to a uniform
transverse loading p0, as depicted in fig. 5.31.

i1

i2

p0

aL aL

k k

Fig. 5.31. Simply supported beam with two elastic spring supports.

First, the springs are replace by two unknown forces, F , acting downward at
x1 = αL and (1 − α)L. The transverse displacement distribution is then readily
obtained by superposing the displacement field for a beam under uniform loading and
that of a beam under two concentrated forces, see eqs. (5.48) and (5.63), respectively,
to find

ū2(η) =





p0L
4

24Hc
33

(
η − 2η3 + η4

)− FL3

6Hc
33

[
3(α− α2)η − η3

]
, 0 ≤ η ≤ α,

p0L
4

24Hc
33

(
η − 2η3 + η4

)− FL3

6Hc
33

(−α3 + 3αη − 3αη2
)
, α < η ≤ 1

2 ,

where η = x1/L if the non-dimensional coordinate along the beam span. The un-
known force, F , acts on the spring, and hence F = kū2(α).

Introducing the above expression for ū2(αL) provides an additional equation to
evaluate the non-dimensional force in the spring

F

p0L
=

1
4

k̄(α4 − 2α3 + α)
6 + k̄(3α2 − 4α3)

=
1
4

p̄, (5.64)
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where k̄ = kL3/Hc
33 is the non-dimensional spring stiffness constant and p̄ =

k̄(α4− 2α3 + α)/[6 + k̄(3α2− 4α3)] the non-dimensional load fraction. The trans-
verse displacement distribution now becomes

ū2(η) =
p0L

4

24Hc
33

{
η4 − (2− p̄) η3 + [1− 3p̄(α− α2)] η, 0 ≤ η ≤ α,

η4 − 2η3 + 3αp̄ η2 + (1− 3αp̄) η + α3p̄, α < η ≤ 1/2.

(5.65)
The bending moment distribution then follows from eq. (5.37)

M3(η) =
p0L

2

2

{
η2 − (1− p̄/2) η, 0 ≤ η ≤ α,

η2 − η + αp̄/2, α < η ≤ 1/2.
(5.66)

Finally, the shear force distribution is obtained from eq. (5.38)

V2(η) =
p0L

2

{
2η − (1− p̄/2), 0 ≤ η ≤ α,

2η − 1, α < η ≤ 1/2.
(5.67)

As anticipated, this distribution presents a discontinuity due to the concentrated
forces the springs apply to the beam. Indeed, the shear forces immediately to the left
and right of the spring located at η = α, denoted F2l and F2r, respectively are such
that F2r − F2l = p̄p0L/4 = F .

Example 5.14. Simply supported beam on an elastic foundation
The last example deals with a simply supported beam of length L subjected to a
uniform transverse load p0, as depicted in fig. 5.32. The beam is supported by an
elastic foundation of distributed stiffness constant k.

For this problem, the governing equation is Hc
33d

4ū2/dx4
1 = p2(x1), and the

boundary conditions are ū2 = d2ū2/dx2
1 = 0 at both root and tip of the beam.

The total applied load p2(x1) = p0 − k ū2(x1), where the first term accounts for
the applied load, and the second corresponds to the distributed restoring force of the
elastic foundation.

p0

i1

i2

Elastic foundation k

L

Fig. 5.32. Simply supported beam on an elastic foundation.

The governing equation can be recast as

ū′′′′2 +
kL4

Hc
33

ū2 =
p0L

4

Hc
33

,
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where η = x1/L is the non-dimensional span-wise variable, and (·)′ denotes a
derivative with respect to η. The boundary conditions become ū2 = ū′′2 = 0 at
both η = 0 and η = 1.

This is a non-homogeneous differential equation and its solution consists of the
sum of a homogeneous and particular solution. The solution of the homogeneous
equation is of the form ū2(η) = exp(zη), which yields the characteristic equation,
z4 + kL4/Hc

33 = 0, with roots

z = ± 4

√
kL4

4Hc
33

(1± i) = ±β (1± i),

where i =
√−1.

The general solution of the differential equation now becomes ū2(η) =
A exp[β(1+ i)η]+B exp[β(1− i)η]+C exp[−β(1+ i)η]+D exp[−β(1− i)η]+
p0L

4/(4β4Hc
33), where A, B, C, and D are four integration constants. The particular

solution is simply ū2 = p0/k = p0L
4/(4β4Hc

33). Using the relationships between
the exponential function with imaginary and real exponents, and the trigonometric
and hyperbolic functions, respectively, the complete solution can be recast as

ū2 = C1 cosh βη cos βη + C2 cosh βη sin βη

+ C3 sinh βη cos βη + C4 sinh βη sin βη +
p0L

4

k̄Hc
33

,
(5.68)

where C1, C2, C3, and C4 form a different set of integration constants, and the non-
dimensional elastic foundation stiffness is k̄ = kL4/Hc

33.
A set of transcendental functions is now defined as

b1(βη) = cosh βη cosβη, b2(βη) = cosh βη sin βη,

b3(βη) = sinh βη cos βη, b4(βη) = sinh βη sin βη.
(5.69)

In terms of these functions, the solution becomes ū2 = C1b1(βη) + C2b2(βη) +
C3b3(βη) + C4b4(βη) + p0L

4/(k̄Hc
33). A property of the newly defined transcen-

dental functions is that their derivatives can be expressed as

b′1 = β(b3 − b2),
b′2 = β(b1 + b4),
b′3 = β(b1 − b4),
b′4 = β(b3 + b2),

b′′1 = −2β2b4,
b′′2 = +2β2b3,
b′′3 = −2β2b2,
b′′4 = +2β2b1,

b′′′1 = −2β3(b3 + b2),
b′′′2 = +2β3(b1 − b4),
b′′′3 = −2β3(b1 + b4),
b′′′4 = +2β3(b3 − b2),

;

b′′′′1 = −4β4b1

b′′′′2 = −4β4b2,
b′′′′3 = −4β4b3,
b′′′′4 = −4β4b4.

(5.70)

The four integration constants appearing in eq. (5.68) are evaluated using the four
boundary conditions to find

ū2 =
p0L

4

Hc
33

1
k̄

{
[1− b1(βη)]− B̄ [sin β b2(βη)− sinh β b3(βη)]

}
, (5.71)

where B̄ = (cosh β− cosβ)/(sin2 β +sinh2 β)). The bending moment distribution
now follows from eq. (5.37) as
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M3 = p0L
2 2β2

k̄

{
b4(βη)− B̄ [sinhβ b2(βη) + sin β b3(βη)]

}
. (5.72)

This example clearly demonstrate that the solution of beam problems can rapidly
become quite difficult. The simple addition of an elastic foundation to the beam
significantly complicates the solution process, which often becomes unmanageable
when realistic structural problems are considered.

5.5.8 Problems

Problem 5.3. Bending of reinforced box beam
Figure 5.12 depicts an aluminum rectangular box beam of height h = 0.30 m, width b = 0.15
m, flange thickness ta = 12 mm, and web thickness tw = 5 mm. The beam is reinforced
by two layers of unidirectional composite material of thickness tc = 4 mm. The section is
subjected to an axial force N1 = 600 kN and bending moment M3 = 120 kN·m. The Young’s
moduli for the aluminum and unidirectional composite are Ea = 73 GPa and Ec = 140
GPa, respectively. (1) Compute the axial and bending stiffnesses of the cross-section. (2) Find
the distribution of axial stress over the cross-section and sketch it along the perimeter of the
section. (3) Find the magnitude and location of the maximum axial stress in the aluminum
and composite layers. (4) Assume the applied loads grow in a proportional manner, i.e. the
applied loads are λN1 and λMc

3 . If the allowable stress for the aluminum and unidirectional
composite are σallow

a = 400 MPa and σallow
c = 1500 MPa, respectively, find the maximum

loading factor, λMax. (5) Sketch the distribution of axial strain along the perimeter of the
cross-section, and describe its distribution over the entire cross-section.

Problem 5.4. Bending of reinforced I beam
Figure 5.13 depicts an aluminum I beam of height h = 0.25 m, width b = 0.2 m, flange
thickness ta = 16 mm, and web thickness tw = 12 mm. The beam is reinforced by two layers
of unidirectional composite material of thickness tc = 5 mm. The section is subjected to an
axial force N1 = 250 kN and bending moment M3 = 200 kN·m. The Young’s moduli for the
aluminum and unidirectional composite are Ea = 73 GPa and Ec = 140 GPa, respectively.
(1) Compute the axial and bending stiffnesses of the cross-section. (2) Find the distribution of
axial stress over the cross-section. Sketch it along the ı̄2 axis. Sketch it across the tops of both
flanges. (3) Find the magnitude and location of the maximum axial stress in the aluminum
and composite layers. (4) Assume the applied loads grow in a proportional manner, i.e. the
applied loads are λN1 and λM3. If the allowable stress for the aluminum and unidirectional
composite are σallow

a = 400 MPa and σallow
c = 1500 MPa, respectively, find the maximum

loading factor, λMax. (5) Sketch the distribution of axial strain along the ı̄2 axis, and describe
its distribution over the entire cross-section.

Problem 5.5. Various short questions
(1) Is it possible to use Euler-Bernoulli assumptions for a beam bent in such a manner that the
material it is made out of goes into the plastic deformation range? Why? (2) Is it possible to
use Euler-Bernoulli assumptions for a beam made of a laminated composite material? Why?
(3) Consider a simply supported beam with a mid-span elastic spring, subjected to a uniform
transverse loading p0. Which one of the following quantities will present a discontinuity at
mid-span: beam transverse deflection, beam slope, bending moment, and/or transverse shear
force? Why? (4) Consider a cantilevered beam of length L, under a uniform transverse loading
p0. Does the root bending moment depend on the material Young’s modulus? (5) Consider a
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beam of length L, cantilevered at both ends and subjected to a uniform transverse loading
p0. Does the mid-span transverse deflection depend on the material Young’s modulus? (6)
Consider a beam of length L, cantilevered at both ends and subjected to a uniform transverse
loading p0. Does the mid-span bending moment depend on the material Young’s modulus?
Explain your answers to all the above questions; a YES/NO answer is not valid.

Problem 5.6. Bending of reinforced solid section beam
A rectangular cross-section made of a material of Young’s modulus E1 is reinforced by thin
top and bottom plates made of a material of Young’s modulus E2, as depicted in fig. 5.33.
M3 is the bending moment applied to the section. E2/E1 = 2; d/h = 0.96. (1) Plot
the non-dimensional axial strain distribution Hc

33ε1/(M3h) versus 2x2/h. (2) Plot the non-
dimensional axial stress distribution Hc

33σ1/(M3E2h) versus 2x2/h.
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Fig. 5.33. Reinforced rectangular cross-
section.
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Fig. 5.34. Cross-section of a reinforced rect-
angular box beam.

Problem 5.7. Box beam with strain gauges
A cantilevered beam of length L is subjected to axial and transverse loads. Figure 5.34 depicts
the cross-section of the beam: an aluminum rectangular box of height h = 0.30 m, width
b = 0.15 m, flange thickness ta = 12 mm, and web thickness tw = 5 mm. The beam
is reinforced by two layers of unidirectional composite material of thickness tc = 4 mm.
The Young’s moduli for the aluminum and unidirectional composite are Ea = 73 GPa and
Ec = 140 GPa, respectively. At a station along the span of the beam, an experimentalist has
measured the axial strains on the top and bottom flanges of the beam as εtop = −2560µ and
εbot = 3675µ, respectively. Find the bending moment and axial force acting at that station.

Problem 5.8. Cantilever with tip support and rotational spring
Consider a cantilevered beam of span L and bending stiffness Hc

33 with a tip support and a
rotational spring of stiffness constant k, as depicted in fig. 5.35. (1) Find and plot the transverse
displacement distribution of this beam under a uniform transverse load p0. (2) Find and plot
the distribution of bending moment in the beam. (3) Find the location and magnitude of the
maximum bending moment in the beam as a function of k̄ = kL/Hc

33. (4) Discuss your
results when k̄ → 0 and k̄ →∞.
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Fig. 5.35. Cantilevered beam with tip support
and torsional spring.
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Fig. 5.36. Simply supported beam with mid-
span spring featuring a clearance ∆.

Problem 5.9. Simply supported beam with mid-span spring
Consider the uniform beam with simply supported ends as depicted in fig. 5.36. A spring
of stiffness constant k is acting at mid-span, k̄ = kL3/Hc

33. A uniform load p0 is acting
over the beam span of length L. The unstressed length of the spring is such that it fall a
distance ∆ short of reaching the beam, ∆̄ = ∆Hc

33/(p0L
4). (1) Find and plot the transverse

displacement distribution for this beam. (2) Find and plot the corresponding distribution of
bending moment. (3) What value of ∆̄ that will minimize the maximum bending moment in
the beam. Hint: replace the spring by an unknown force, F , acting at mid-span. This force can
then be evaluated by equating the beam mid-span displacement with that of the spring. Use
the following values for the plots: k̄ = 600, ∆̄ = 2.0 10−3.

Problem 5.10. Cantilever beam with tip rotational spring
The uniform cantilevered beam of bending stiffness Hc

33 and length L depicted in fig. 5.37
features a tip rotational spring of stiffness constant k. Due to manufacturing imperfections,
the spring applies a restoring moment on the beam that is proportional to (dū2/dx1 − θ0),
where θ0 represents the imperfection magnitude. (1) Find the magnitude and location of the
maximum bending moment in the beam due to the imperfection in the structure. (2) Plot the
maximum bending moment LMmax

3 /(θ0H
c
33) as a function of the non-dimensional spring

constant k̄ = kL/Hc
33. Explain your result in physical terms.

i2

i1L

k q0

Fig. 5.37. Cantilevered beam with tip tor-
sional spring.
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P
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i1

i2

k

Fig. 5.38. Cantilevered beam with tip spring.

Problem 5.11. Cantilever beam with tip spring
Consider the cantilevered beam of length L with a tip spring of stiffness k depicted in fig. 5.38.
The beam is subjected to a uniform transverse load, p0, and a tip concentrated load, P . (1)
Write the governing differential equation and associated boundary conditions for this problem.

Problem 5.12. Bending of beam with nonuniform bending stiffness
A simply supported beam of span L is subjected to forces of magnitude P located at stations
x1 = αL and (1 − α)L, as depicted in fig. 5.39. The beam has a bending stiffness H0 and
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is reinforced in its central portion where its bending stiffness is H1. (1) Find the transverse
displacement field. (2) Plot the non-dimensional transverse displacement, H0ū2(η)/L3. Use
H1/H0 = 20 and α = 0.2. (3) Plot the non-dimensional bending moment, M3(η)/(PL). (4)
Plot the non-dimensional shear force, V3(η)/P .

i2

i1
H0 H0

H1

aL aLP P

L

Fig. 5.39. Simply supported beam with vary-
ing bending stiffness.

L

i2
i1

p0

k

Fig. 5.40. Cantilevered beam under uniform
load with a root spring.

Problem 5.13. Cantilever beam with uniform load and tip spring
The uniform cantilevered beam of bending stiffness Hc

33 and length L depicted in fig. 5.40 fea-
tures a root spring of stiffness constant k and is subjected to a uniform distributed load, p0. (1)
Find the transverse displacement distribution of the beam as a function of the non-dimensional
spring constant, k̄ = kL3/Hc

33. (2) Determine the location and magnitude of the maximum
bending moment in the beam. (3) Plot the maximum bending moment, Mmax

3 /(p0L
2) as a

function of k̄. Explain your result in physical terms.

Problem 5.14. Flexibility matrix of a simply supported beam
The concept of flexibility matrix is introduced in examples 5.9 and 5.10 for a cantilevered
beam. (1) Determine the flexibility matrix for the simply supported beam depicted in fig. 5.24.
The closed form expression of the flexibility matrix corresponding to concentrated loads ap-
plied at three locations, α1L, α2L, and α3L should be derived.

Problem 5.15. Experimental estimation of the bending stiffness
The procedure for the experimental determination of the flexibility matrix is described in ex-
ample 5.9 for the cantilevered beam depicted in fig. 5.28. Table 5.1 lists the displacements
measured on a cantilevered beam of uniform bending stiffness, Hc

33, under three loading cases.
The first column of this table lists the displacements at locations α1L, α2L, and α3L for
P1 = 1.5 kN, P2 = P3 = 0. The next two columns list the corresponding data for P2 = 1.0
kN, P1 = P3 = 0 and P3 = 0.5 kN, P1 = P2 = 0, respectively. (1) Determine the experi-
mental flexibility matrix of the system. (2) Determine the bending stiffness, Hc

33, of the beam.
HINT: the analytical expression for the flexibility matrix is given by eq. (5.60). The bending
stiffness of the beam can be determined by equating any entry of the analytical and experi-
mentally determined flexibility matrices. The most accurate strategy is to use all nine entries
to form a set of over-determined equations to be solved using a least-squares approach, see
section A.2.10. Use the following data: L = 15 m, α1 = 0.25, α2 = 0.50, and α3 = 0.75.

Problem 5.16. Bending of two crossed simply supported beams
The lower beam depicted in fig. 5.41 is of length 2L and is simply supported at both ends.
The upper beam of length L + a is cantilevered at the root, supported by the lower beam at
point A, and subjected to a uniform transverse loading, p0. Both upper and lower beams have
a uniform bending stiffness H0. (1) Find the exact solution for the transverse deflection of the
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Table 5.1. Measured displacements for the three loading cases. Load are measured in kN,
displacements in mm.

P1 = 1.5 P2 = 1.0 P3 = 0.5

∆1 10.9 18.3 14.6
∆2 27.7 59.1 51.1
∆3 43.1 104. 98.5

lower beam under a mid-span concentrated load. Show that the lower beam can be replaced by
a concentrated spring of stiffness constant keq = 6H0/L3. (2) Find the exact solution of the
problem from the solutions of the governing differential equations and associated boundary
conditions for both upper and lower beams. Replace the interaction between the beams by a
force X , yet unknown. The magnitude of this force is found by equating the displacements of
the upper and lower beams at point A. (3) Plot the distribution of transverse displacement for
both beams. Use L/a = 2. (4) Plot the distribution of bending moment for both beams. (5)
Plot the distribution of shear force for both beams.

A

L L

L

a

Upper
beam

Lower
beam

B

i2

i3

i1

p0

Fig. 5.41. Two beam assembly under trans-
verse load.

a
L

i2

i1

p0

k

Fig. 5.42. Cantilevered beam with concen-
trated spring.

Problem 5.17. Cantilever beam with uniform load and spring
The cantilevered beam depicted in fig. 5.42 is of length L, uniform bending stiffness Hc

33, and
is subjected to a uniform distributed load p0. A concentrated spring of stiffness constant k is
connected to the beam at a distance a from its root. (1) Find the solution of the problem. It
will be convenient to define the non-dimensional spring constant k̄ = kL3/Hc

33. (2) Plot the
distribution of transverse displacement for the beam. Use L/a = 3 and k̄ = 100. (3) Plot the
distribution of bending moment for the beam. (4) Plot the distribution of shear force for the
beam. (5) Find the value of k̄ that will minimize the maximum bending moment in the beam.

Problem 5.18. Two simply supported beams interconnected by two springs
Figure 5.43 depicts a system consisting of two simply supported beams connected by two
elastic springs of stiffness constant k. The upper and lower beam have the same bending
stiffness, Hc

33, and the upper beam is subjected to a uniform load distribution, p0. (1) Solve
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this problem: determine the deflection and bending moment distributions in the upper and
lower beams, and the force in the connecting springs. (2) Plot the displacements for the upper
and lower beams on the same graph. (3) Plot the bending moments for the upper and lower
beams on the same graph. (4) Find the spring constant, k̄opt, that will minimize the maximum
bending moments in both upper and lower beams. Plot k̄opt = k̄opt(α). Hint: it will be
convenient to replace the interconnecting springs by forces of unknown magnitude acting on
the upper and lower beams, then enforcing a compatibility condition. Use the following data
for the plots: α = 0.3, k̄ = kL3/Hc

33 = 10, 100, 1000.

i1

i2

p0

k k

aL aL

Fig. 5.43. Simply supported beam connected
by spring.

i1

i2

L

aL

PA

Fig. 5.44. Cantilevered beam with intermedi-
ate support.

Problem 5.19. Two cantilever beams with intermediate support
The cantilevered beam depicted in fig. 5.44 is subjected to a tip load P . The tip of a second
cantilevered beam contacts the first at point A. The lower and upper beams have a uniform
bending stiffness Hc

33 and are of length L and αL, respectively. (1) Find the displacement
fields for the two beams. (2) Plot the distribution of transverse displacement, bending moment,
and shear force for both beams. Use α = 1/2. (3) Find the magnitude and location of the
maximum bending moment in the beams. Plot these quantities as a function of α.

Problem 5.20. Two simply supported beams with intermediate support
The two simply supported beam shown in fig. 5.45 are connected by an intermediate roller
located a distance αL from the left support. The upper beam is subjected to a uniform loading
p0. Both beams have a uniform bending stiffness, Hc

33. (1) Find the displacement fields for
the two beams by solving of the governing differential equations and associated boundary
conditions. (2) Plot the distribution of transverse displacement, bending moment, and shear
force for both beams. Use α = 1/3. (3) Find the magnitude and location of the maximum
bending moment in the beams. Plot these quantities as a function of α.

i1

i2

L
aL

p0

Fig. 5.45. Superposed simply supported
beams.

i1i2

P

Elastic foundation k

L

bL

Fig. 5.46. Beam with elastic foundation sub-
jected to a concentrated load.
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Problem 5.21. Simply supported beam on elastic foundation
Consider the simply supported beam of length L depicted in fig. 5.46. The beam rests on an
elastic foundation of stiffness constant k and is subjected to a concentrated load, P , acting at
a distance βL from the left support. (1) Find the displacement field for the beam by solving
of the governing differential equation and associated boundary conditions. It is convenient to
define k̄ = kL4/Hc

33. (2) Plot the distribution of transverse displacement, bending moment,
and shear force for the beams. Use β = 1/2 and k̄ = 8× 103.

5.6 Beams subjected to combined axial and transverse loads

In earlier sections, Euler-Bernoulli beam theory is developed separately for two dis-
tinct loading cases: beams under axial loads and beams under transverse loads, see
sections 5.4 and 5.5, respectively. Based on equilibrium considerations, it is also
shown in section 5.5.2 that it is convenient to locate the origin of the axes system at
the centroid of the beam’s cross-section. In fact, all the developments presented thus
far assume that the origin of the axes is located at the centroid of the cross-section.

This section will generalize the theory developed thus far in two important ways:
first, beams under combined axial and transverse loading will be considered, and
second, the origin of the axes will not be located at the centroid.

5.6.1 Kinematic description

The starting point is a displacement field that combines the axial and transverse
displacement fields found in beams subjected to axial and transverse loads, see
eqs. (5.12) and (5.29), respectively,

u1(x1, x2, x3) = ū1(x1)− (x2 − x2c)
dū2(x1)

dx1
, (5.73a)

u2(x1, x2, x3) = ū2(x1), (5.73b)
u3(x1, x2, x3) = 0, (5.73c)

where x2c is the location of the centroid. The origin of the axis system is not lo-
cated at the cross-section’s centroid, however ū1 is still the axial displacement of the
centroid.

The corresponding strain field combines the characteristics of the fields associ-
ated with beams subjected to axial and transverse loads, see eqs. (5.13) and (5.30),
respectively,

ε1(x1, x2, x3) = ε̄1(x1)− (x2 − x2c)κ3(x1). (5.74)

5.6.2 Sectional constitutive law

It is assumed that the beam is made of a linearly elastic material. As discussed in
sections 5.4.2 and 5.5.2, Hooke’s law then reduces to (5.14), and the axial stress
distribution becomes
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σ1(x1, x2, x3) = E ε̄1(x1)− E(x2 − x2c)κ3(x1). (5.75)

The axial force in the beam in now evaluated using eq. (5.8) to find

N1 =
∫

A
[E ε̄1(x1)− E(x2 − x2c)κ3(x1)] dA

=
[∫

A
E dA

]
ε̄1(x1)−

[∫

A
E(x2 − x2c) dA

]
κ3(x1).

The first bracketed term is the axial stiffness of the beam, S, as defined by eq. (5.17).
The second bracketed term can be shown to vanish,

∫

A
E(x2 − x2c) dA =

∫

A
Ex2 dA− x2c

∫

A
E dA = S2 − Sx2c = 0, (5.76)

where the last equality follows from the definition of the location of the centroid, see
eq. (5.33). The axial force equation now reduces to N1 = Sε̄1.

Next, the beam’s bending moment with respect to the centroid, M c
3 , is evaluated

with the help of eq. (5.11) to find

M c
3 = −

∫

A
(x2 − x2c) [E ε̄1(x1)− E(x2 − x2c)κ3(x1)] dA

= −
[∫

A
E(x2 − x2c) dA

]
ε̄1(x1) +

[∫

A
E(x2 − x2c)2 dA

]
κ3(x1),

The first bracketed term vanishes in view of eq. (5.76). The second bracketed terms
is the beam’s bending stiffness, Hc

33, computed with respect to the centroid. The
previous equation now reduces to M c

3 = Hc
33κ3.

In summary, the sectional constitutive laws reduce to N1 = Sε̄1 and M c
3 =

Hc
33κ3, which are identical to eqs. (5.16) and (5.37), respectively. Although the beam

is subjected to combined axial and transverse loading, it is possible to derive de-
coupled sectional constitutive laws: one equation relates the axial force to the axial
strain, the other the bending moment to the curvature. To achieve this decoupling,
two crucial steps are required: first, the displacement field must be in the form of
eq. (5.73), where x2c is the location of the centroid, and second, the bending moment
must be evaluated with respect to the centroid. The centroid thus plays a crucial role
in decoupling the axial and bending responses of beams.

5.6.3 Equilibrium equations

To complete the formulation, the equilibrium equations must be derived for the
combined problem. An infinitesimal slice of the beam of length dx1 is depicted in
fig. 5.47.

This figure shows the axial force, N1, shear force, V2, and bending moment, M3,
acting on the face at location x1. The corresponding quantities acting on the face at
location x1 + dx1 are obtained from a Taylor series expansion and terms of higher
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Fig. 5.47. Axial forces acting on an infinitesimal slice of the beam.

differential order are neglected in the expansion. Summation of the forces acting on
the free body diagram in the horizontal direction yields the following equilibrium
equation, dN1/dx1 = −p1, which is identical to eq. (5.18). The vertical equilibrium
equation is dV2/dx1 = −p2, which is identical to eq. (5.38a). Finally, equilibrium
of moments expressed about the centroid leads to

dM3

dx1
+ V2 = (x2a − x2c)p1, (5.77)

which should be compared with eq. (5.38b) obtained earlier. If the axial distributed
load, p1(x1), is not applied at the centroid, it generates a moment (x2a − x2c)p1,
where x2a is the coordinate of the point of application of the axial load and
(x2a − x2c) its moment arm with respect to the centroid.

5.6.4 Governing equations

The governing equations for a beam subjected to combined axial and transverse loads
are found by manipulating the equations developed in the previous sections to yield

d
dx1

[
S

dū1

dx1

]
= −p1(x1), (5.78a)

d2

dx2
1

[
Hc

33

d2ū2

dx2
1

]
= p2(x1) +

d
dx1

[(x2a − x2c)p1(x1)] . (5.78b)

The first equation is identical to eq. (5.19), which describes the behavior of beams
subjected to axial loads. The second equation is almost identical to eq. (5.40), which
describes the behavior of beams subjected to transverse load. In the formulation de-
veloped in section 5.5, the beam is subjected to transverse loads only, and hence, the
last term on the right-hand side of eq. (5.78b) does not appear in eq. (5.40).

The equations describing the behavior of beams under combined axial and trans-
verse loads are decoupled, i.e., one equation, eq. (5.78a), can be solved to find the
axial displacement field, ū1(x1), and the other, eq. (5.78b), can be independently
solved to find the transverse displacement field, ū2(x1).
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The term “decoupled” used in the previous paragraph can be misleading because
it is often used to describe distinct concepts. In the previous paragraph, the term
“decoupled” is used in a mathematical sense to indicate that eq. (5.78a) is a single
equation in a single unknown, ū1(x1), whereas eq. (5.78b) is also a single equation
for a single unknown, ū2(x1). The two equations can be solved independently of
each other, they are “decoupled.”

On the other hand, the term “decoupling” is also used in a more physical sense.
As implied by the presence of the axial load, p1(x1), on the right-hand side of both
eqs. (5.78a) and (5.78b), axial loads generate both axial and transverse displacement
of the beam. If the axial load is not applied at the centroid, i.e., if x2a − x2c 6= 0,
the beam bends. Hence the following statement: if axial loads are applied at the
centroid, extension and bending are “decoupled,” whereas when not applied at the
centroid, extension and bending are “coupled.”

Example 5.15. Bi-material cantilevered beam
Consider the bi-material cantilevered beam of length L with the rectangular cross-
section shown in fig. 5.48. The beam is constructed by bonding together two strips of
materials, each of width b and height h/2. The two materials, denoted material A and
B, have Young’s moduli Ea and Eb, respectively. The beam is subjected to a tip axial
load, P , applied at the geometric center of the section and a tip bending moment, Q.
It is convenient to select the origin of the axes at the geometric center of the section,
rather than at the centroid.

The axial stiffness of the section is S = (Ea + Eb)bh/2, and the location of the
centroid is given by x2cS = Ea(bh/2)(h/4) + Eb(bh/2)(−h/4), or

x2c

h
=

Ea − Eb

4(Ea + Eb)
.

Depending on the relative stiffnesses of the two materials, the centroid could be
located above or below the geometric center of the section, as illustrated in fig. 5.48.

The beam’s bending stiffness with respect to the centroid is then

Hc
33 = Ea

[
b(h/2)3

12
+

bh

2

(
h

4
− x2c

)2
]

+ Eb

[
b(h/2)3

12
+

bh

2

(
h

4
+ x2c

)2
]

=
bh3

96
E2

a + E2
b + 14EaEb

Ea + Eb
.

The axial problem is solved first. The governing equation is d2ū1/dx2
1 = 0; the

boundary conditions are ū1 = 0 at the beam’s root and Sdū1/dx1 = P at the beam’s
tip. The solution of this problem is

ū1(η) =
PL

S
η,

where η = x1/L is the non-dimensional variable along the beam’s span.
Next, the bending problem is solved. The governing equation is d4ū2/dx4

1 = 0;
the boundary conditions are ū1 = dū1/dx1 = 0 at the beam’s root and M c

3 =
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Fig. 5.48. Cantilevered bi-material beam under tip loads.

Q + x2cP , V2 = 0 at the beam’s tip. Because the tip axial load is not applied at the
centroid, it generates a tip bending moment, x2cP , with respect to the centroid. The
solution of this problem is

ū2(η) =
(Q + x2cP )L2

2Hc
33

η2.

Note that both tip moment and tip force generate a transverse displacement. In the
presence of the tip axial force alone, the tip transverse displacement is

ūtip
2 = 12

Ea − Eb

E2
a + E2

b + 14EaEb

P

b

(
L

h

)2

.

If materials A and B are identical, Ea − Eb = 0 and the tip transverse displacement
vanishes. Indeed, if the two materials are identical, the centroid is at the geometric
center of the cross-section, and the tip axial force generates no bending moment
about the centroid. The tip axial force generates only axial displacements.
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Three-dimensional beam theory

In the previous chapter, Euler-Bernoulli theory is developed for beams under axial
and transverse loads. The analysis is limited, however, to deformations of the beam
in plane (̄ı1, ı̄2). This behavior can be observed, for instance, when the cross-section
of the beam presents a plane of symmetry and the only applied loads are acting in
this plane.

In numerous practical applications, the beam’s cross-section presents no partic-
ular symmetries and is instead of arbitrary shape. In addition, the applied loads may
act along several distinct directions and not just in plane (̄ı1, ı̄2). Consider an aircraft
wing: the cross-section is of a complex shape involving curved skins and two or more
spars, and the wing is subjected lift and drag forces. In the case of a helicopter blade,
large centrifugal forces generated by the rotation of the blade are also present. Sim-
ilarly, machine components often operate in a complex, three-dimensional loading
environment.

Figure 6.1 shows a beam of arbitrary cross-sectional shape subjected to a com-
plex three-dimensional loading. This loading consists of distributed and concentrated
axial and transverse loads, as well as distributed and concentrated moments. The ax-
ial and transverse distributed loads, p1(x1), p2(x1), and p3(x1) act along directions,
ı̄1, ı̄2, and ı̄3, respectively. The same convention is used for the concentrated loads
P

[k]
1 , P

[k]
2 , and P

[k]
3 , but in this case it is necessary to add a second index to iden-

tify the kth concentrated load in the direction specified by the first index: P
[2]
3 is

the second concentrated force acting along axis ı̄3. Distributed moments, q2(x1) and
q3(x1), acting about axes ı̄2 and ı̄3, respectively, can be introduced in a similar man-
ner. Concentrated moments Q

[k]
2 and Q

[k]
3 act about the same axes.

Figure 6.1 depicts concentrated forces and moments acting at the tip of the beam,
but in practical situations, such concentrated loads could be applied at any span-
wise location. The notation used in this text for the various loads is summarized in
table 6.1. The subscript indicates the direction of the loading component. If multiple
concentrated loads are applied, a second subscript might be used to keep track of
individual concentrated loads.
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Fig. 6.1. Beam with arbitrary three-dimensional loading.

Table 6.1. Loading components acting on the beam.

Loading Type Notation Units
Distributed loads p1(x1), p2(x1), p3(x1) N/m

Concentrated loads P
[k]
1 , P

[k]
2 , P

[k]
3 N

Distributed moments q2(x1), q3(x1) N.m/m
Concentrated moments Q

[k]
2 , Q

[k]
3 N.m

This three-dimensional loading is general, with an important exception: no tor-
sional loads are applied, and the transverse loads are assumed to be applied in such
a manner that the beam will bend without twisting. This important restriction will
be removed in a later chapter after the study of the torsional behavior of beams. As
mentioned earlier, the cross-section of the beam is of arbitrary shape. The origin of
the axes has not yet been specified, and the orientation of axes ı̄2 and ı̄3 within the
plane of the section is arbitrary, as depicted in fig. 6.1.

6.1 Kinematic description

The development of the three-dimensional beam theory starts with the three Euler-
Bernoulli assumptions discussed in section 5.1. These assumptions are of a purely
kinematic nature and are shown to imply the following displacements field

u1(x1, x2, x3) = ū1(x1) + x3Φ2(x1)− x2Φ3(x1), (6.1a)
u2(x1, x2, x3) = ū2(x1), (6.1b)
u3(x1, x2, x3) = ū3(x1). (6.1c)

where the origin of the axis system on the cross-section is not yet specified. The
corresponding strain field is shown to be

ε2 = 0; ε3 = 0; γ23 = 0, (6.2a)
γ12 = 0; γ13 = 0, (6.2b)

ε1(x1, x2, x3) = ε̄1(x1) + x3 κ2(x1)− x2 κ3(x1). (6.2c)
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6.2 Sectional constitutive law

Assume now that the beam is made of linearly elastic, isotropic material for which
the stress-strain relationships are adequately described by Hooke’s law, eq. (5.14).
Because the cross-section does not deform in its own plane, the stress components,
σ2 and σ3, acting in the plane of the section are far smaller than the axial stress
component, σ1, and Hooke’s law is shown to reduce to eq. (5.14). The axial stress
distribution is found by introducing eq. (6.2c) into eq. (5.14) to find

σ1(x1, x2, x3) = E [ε̄1(x1) + x3 κ2(x1)− x2 κ3(x1)] (6.3)

The axial force, N1, is now evaluated by introducing this axial stress distribution
into eq. (5.8) to find

N1(x1) =
∫

A
σ1 dA =

∫

A
Eε̄1 dA+

∫

A
Ex3κ2 dA−

∫

A
Ex2κ3 dA

=
[∫

A
E dA

]
ε̄1 +

[∫

A
Ex3 dA

]
κ2 −

[∫

A
Ex2 dA

]
κ3

=S ε̄1(x1) + S3 κ2(x1)− S2 κ3(x1),

(6.4)

where the following sectional stiffness coefficients are defined

S =
∫

A
E dA; S2 =

∫

A
Ex2 dA; S3 =

∫

A
Ex3 dA. (6.5)

The bending moments, M2 and M3, acting about axes ı̄2 and ı̄3, respectively, are
evaluated by introducing the axial stress distribution eq. (6.3) into eq. (5.11) to find

M2 =
∫

A
x3σ1 dA =

∫

A
x3Eε̄1 dA+

∫

A
Ex2

3κ2 dA−
∫

A
Ex2x3κ3 dA

=
[∫

A
Ex3 dA

]
ε̄1 +

[∫

A
Ex2

3 dA
]

κ2 −
[∫

A
Ex2x3 dA

]
κ3

=S3 ε̄1(x1) + H22 κ2(x1)−H23 κ3(x1),

(6.6)

and

M3 =−
∫

A
x2σ1 dA = −

∫

A
x2Eε̄1 dA−

∫

A
x2Ex3κ2 dA+

∫

A
Ex2

2κ3 dA

=−
[∫

A
Ex2 dA

]
ε̄1 −

[∫

A
Ex2x3 dA

]
κ2 +

[∫

A
Ex2

2 dA
]

κ3

=− S2 ε̄1(x1)−H23 κ2(x1) + H33 κ3(x1),
(6.7)

where the following additional sectional stiffness coefficients are defined

H22 =
∫

A
E x2

3 dA; H33 =
∫

A
E x2

2 dA; (6.8)
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H23 =
∫

A
E x2x3 dA. (6.9)

The axial stiffness, S, is found in section 5.4 to characterize the axial stiffness
of the beam and in section 5.5 the bending stiffness, H33, is found to characterize
the bending behavior of the beam about axis ı̄3. The bending stiffness H22 plays the
same role, but for bending about axis ı̄2. A new bending stiffness coefficient, H23, is
called the cross bending stiffness.

Equations (6.4), (6.6) and (6.7) can be rewritten in a more compact matrix form
as follows 




N1(x1)
M2(x1)
M3(x1)



 =




S S3 −S2

S3 H22 −H23

−S2 −H23 H33








ε̄1(x1)
κ2(x1)
κ3(x1)



 . (6.10)

These equations express a general linear relationship between the sectional stress
resultants and the sectional strains. Thus, they are the constitutive laws for the cross-
section of the beam, and the matrix on the right hand side of eq. (6.10) is called the
sectional stiffness matrix. Clearly, these equations are fully coupled: all of the sec-
tional strains affect the values of each of the sectional stress resultants. For example,
the axial force N1(x1) is not proportional only to the axial strain ε̄1(x1), nor are the
bending moments proportional only to curvatures. Instead, the behavior is fully cou-
pled through the sectional coupling stiffness coefficients S2, S3 and H23 that appear
in the off-diagonal entries of the sectional stiffness matrix. This means that an axial
force, N1, will appear as a result of an axial strain, ε̄1, but also in the presence of
curvatures, κ2 or κ3. Similarly, a bending moment appears as a result of either the
κ2 or κ3 curvatures, but also in the presence of an axial strain, ε̄1.

A general formulation of three dimensional Euler-Bernoulli beam theory can be
developed based on the constitutive laws of eq. (6.10). Unfortunately, this leads to
complex governing differential equations for the problem and this approach will not
be pursued further. Rather, it will be shown that the sectional constitutive laws can
be simplified by selecting the axis system appropriately. Indeed, in the formulation
developed thus far, the origin of the axis system is arbitrary, and although the ori-
entation of axis ı̄1 is along the axis of the beam, the orientations of axes ı̄2 and ı̄3
within the plane of the cross-section are also arbitrary.

More specifically, the origin of the axis system can be selected to coincide with
the centroid of the section, i.e.,

x2c =
1
S

∫

A
E x2 dA =

S2

S
= 0; x3c =

1
S

∫

A
E x3 dA =

S3

S
= 0, (6.11)

where the sectional coefficients, S2 and S3, are defined in eq. (6.5). The sectional
constitutive laws, eq. (6.10), reduces to a partially uncoupled form





N1(x1)
M2(x1)
M3(x1)



 =




S 0 0
0 Hc

22 −Hc
23

0 −Hc
23 Hc

33








ε̄1(x1)
κ2(x1)
κ3(x1)



 . (6.12)
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The bending stiffness coefficient, H22, H33, and H23, are now replaced by their
counterparts, Hc

22, Hc
33, and Hc

23, evaluated with respect to the centroid of the cross-
section.

It is important to note that these partially uncoupled equations show that the axial
force N1 is now related to only the axial strain ε̄1 and that the bending moments are
related to the curvatures κ2 and κ3 only. This decoupling of the axial and bending
behavior results from locating the origin of the axis system the centroid of the
cross-section, rather than at an arbitrary point of the section. The two bending mo-
ments and corresponding curvatures, however, are still coupled due to the presence
of the stiffness coefficient, Hc

23.
For most problems, the forces and moments are specified and it is required to find

the resulting displacements and internal stresses. The sectional constitutive equa-
tions, eqs. (6.12), must therefore be inverted and solved for the sectional strain, ε̄1,
and curvatures, κ2 and κ3, in terms of stress resultants, N1, M2 and M3. This results
in 




ε̄1(x1)
κ2(x1)
κ3(x1)



 =




1/S 0 0
0 Hc

33/∆H Hc
23/∆H

0 Hc
23/∆H Hc

22/∆H








N1(x1)
M2(x1)
M3(x1)



 , (6.13)

where ∆H = Hc
22H

c
33 −Hc

23H
c
23.

The axial stress can now be found by substituting these results into eq. (6.3) to
find

σ1 = E

[
N1

S
+ x3

Hc
33M2 + Hc

23M3

∆H
− x2

Hc
23M2 + Hc

22M3

∆H

]
, (6.14)

or, with minor rearrangements,

σ1 = E

[
N1

S
− x2H

c
23 − x3H

c
33

∆H
M2 − x2H

c
22 − x3H

c
23

∆H
M3

]
. (6.15)

This is a key result because it relates the axial stress distribution to the stress resul-
tants which are, in turn, functions of the applied loads.

6.3 Sectional equilibrium equations

To complete the theory, equilibrium equations must also be derived. Consider an
infinitesimal slice of the beam of length dx1 as depicted in fig. 6.2. The axial force,
N1, acts on the face at span-wise location x1. A Taylor’s series expansion is then
used to express this axial force at location x1 + dx1. Higher order differential terms
are neglected, leading to the contribution shown in fig. 6.2. Summing all the forces
in the axial direction yields the axial equilibrium equation

dN1

dx1
= −p1(x1). (6.16)
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A similar approach can be applied to transverse force and moment equilibrium.
The left portion of fig. 6.3 depicts the transverse loads and bending moments act-
ing on an infinitesimal slice of the beam, focusing on plane (̄ı1, ı̄2) in the left figure.
Summation of the forces acting along axis ı̄2 gives the transverse equilibrium equa-
tion

dV2

dx1
= −p2(x1). (6.17)

Summation of the moments taken about the centroidal axis ı̄3 yields

dM3

dx1
+ V2 = −q3(x1) + x2ap1(x1), (6.18)

where the last term arises because the line of
p (x )dx1 1 1

N  +

(dN /dx )dx
1

1 1 1

N1

dx1

i1

Fig. 6.2. Free body diagram for the
axial forces.

action of the axial load, p1(x1), passes through
a point of coordinates (x2a, x3a). In general,
there is no reason to believe that x2a = x3a =
0, i.e., that the line of action of the applied ax-
ial load passes through the origin of the axis
system, which is selected to coincide with the
centroid of the section. For instance, if the axial
load is the centrifugal force acting on the cross-
section of a spinning beam, this axial load will be applied at the center of mass of
the section, which might not coincide with its centroid.

Similarly, the right portion of fig. 6.3 depicts the transverse loads and bending
moments acting on an infinitesimal slice of the beam, but now focusing on plane
(̄ı1, ı̄3). Summing the forces along axis ı̄3 gives the second transverse equilibrium
equation

dV3

dx1
= −p3(x1), (6.19)

and summing the moments about the centroidal axis ı̄2 leads to

dM2

dx1
− V3 = −q2(x1)− x3ap1(x1), (6.20)

where x3a defines the location at which the axial force p1 acts on the cross-section.
The shear forces, V2 and V3, can be eliminated from the equilibrium equations by

taking a derivative of eqs. (6.20) and (6.18), then introducing eqs. (6.19) and (6.17),
respectively, to yield the equilibrium equations

d2M2

dx2
1

= −p3(x1)− d
dx1

[x3ap1(x1) + q2(x1)], (6.21a)

d2M3

dx2
1

= p2(x1) +
d

dx1
[x2ap1(x1)− q3(x1)]. (6.21b)
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V2 V3V  + dV /dx  dx2 2 1 1 V  + dV /dx  dx3 3 1 1q (x )dx3 1 1 q (x )dx2 1 1

dx1 dx1

p (x )dx2 1 1

p (x )dx1 1 1

p (x )dx3 1 1

p (x )dx1 1 1

x2a
x3a

M  + dM /dx  dx3 3 1 1 M  + dM /dx  dx2 2 1 1
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Fig. 6.3. Free body diagram for the transverse shear forces and bending moments. Left figure:
view of the (̄ı1, ı̄2) plane; right figure: view of the (̄ı1, ı̄3) plane;

6.4 Governing equations

The governing equations for the beam transverse displacement field can be formu-
lated as second order differential equations by introducing eqs. (5.6) into the sec-
tional constitutive laws, eqs. (6.12) to find

Hc
23

d2ū2

dx2
1

+ Hc
22

d2ū3

dx2
1

= −M2(x1),

Hc
33

d2ū2

dx2
1

+ Hc
23

d2ū3

dx2
1

= M3(x1).
(6.22)

These differential equations can be used to solve for the beam transverse displace-
ment field when the bending moments, M2(x1) and M3(x1), are known. For iso-
static problems, the bending moment distribution can be expressed in terms of the
externally applied loads based on equilibrium considerations alone.

For hyperstatic problems, another approach is necessary. Fourth order differential
equations are obtained by introducing the sectional constitutive laws, eqs. (6.12),
into the equilibrium equations, eqs. (6.16), (6.21a), and (6.21b), and then using the
definition of the sectional strains, eq. (5.6), to find

d
dx1

[
S

dū1

dx1

]
= −p1, (6.23a)

d2

dx2
1

[
Hc

33

d2ū2

dx2
1

+ Hc
23

d2ū3

dx2
1

]
= p2 +

d
dx1

[x2ap1 − q3], (6.23b)

d2

dx2
1

[
Hc

23

d2ū2

dx2
1

+ Hc
22

d2ū3

dx2
1

]
= p3 +

d
dx1

[x3ap1 + q2]. (6.23c)

These are second and fourth order, ordinary differential equations and their so-
lution requires specification of a number of boundary conditions on ū1, ū2, and ū3.
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Using the beam example shown in fig. 6.1, the boundary conditions at the root of the
beam are purely geometric,

ū1 = ū2 = ū3 = 0,
dū2

dx1
=

dū3

dx1
= 0, (6.24)

which correspond to zero displacements and slopes at the clamped end. At the tip of
the beam, the boundary conditions deal with the applied tip shear and axial loads,
and bending moments

N1 = P1, M3 = Q3 − x2aP1, M2 = Q2 + x3aP1, V2 = P2, V3 = P3. (6.25)

These boundary conditions must now be expressed in terms of the displacement com-
ponents, ū1, ū2, and ū3. Introducing the sectional constitutive laws, eq. (6.12), into
eq. (6.25) and using the definition of the sectional strains, eq. (5.6), yields the bound-
ary conditions expressed in terms of displacements as

S
dū1

dx1
= P1,

Hc
33

d2ū2

dx2
1

+ Hc
23

d2ū3

dx2
1

= Q3 − x2aP1,

Hc
23

d2ū2

dx2
1

+ Hc
22

d2ū3

dx2
1

= −Q2 − x3aP1, (6.26)

− d
dx1

[
Hc

33

d2ū2

dx2
1

+ Hc
23

d2ū3

dx2
1

]
= P2 − [x2ap1 − q3]L,

− d
dx1

[
Hc

23

d2ū2

dx2
1

+ Hc
22

d2ū3

dx2
1

]
= P3 − [x3ap1 + q2]L.

In summary, the governing equations of the problem are in the form of the three
coupled differential equations (6.23a), (6.23b), and (6.23c) for the three sectional dis-
placements ū1, ū2, and ū3. The equations are second order in the axial displacement
ū1, and fourth order in the transverse displacements ū2, and ū3. There are ten asso-
ciated boundary conditions, five at each end of the beam, as specified in eqs (6.24)
and (6.26). Boundary conditions corresponding to various end configurations can be
easily derived, as described in section 5.5.4.

6.5 Decoupling the three-dimensional problem

The governing equations described in the previous section form a set of coupled dif-
ferential equations, and as such, are more difficult to solve than the bending problems
presented in chapter 5. The axial behavior, eq. (6.23a), is decoupled from the bend-
ing behavior governed by eqs. (6.23b) and (6.23c), hence, these two problems can be
handled separately. The bending equations (6.23b) and (6.23c), however, are coupled
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and must be solved simultaneously. Stated in another way, the coupling between the
two bending equations means that loads applied along axis ı̄2 will not only cause
deflection in that direction but can also produce deflection along axis ı̄3.

The theory developed in the previous section requires the axis system to be cen-
troidal, that is that axis ı̄1 passes through the centroid of the cross-section. Although
this choice decouples the axial behavior from bending, if an axial force is not ap-
plied at the centroid, it will contribute to the bending problem: see the terms x2ap1

and x3ap1, in eqs. (6.23b) and (6.23c), respectively. Similar contributions appear in
the boundary conditions.

An important case of axial forces not applied at the centroid is found in air vehi-
cles such as helicopters. The large centrifugal force generated by the rotation of the
blade is an axial force applied at the sectional center of mass, which is, in general,
distinct from its centroid. In such a case, p1(x1) is the distributed centrifugal force
applied on the blade, and (x2a, x3a) the coordinates of the sectional center of mass
in a centroidal axis system. If a non-centroidal axis system is chosen, the resulting
equations are considerably more complicated to solve, and in addition, the results are
harder to understand and interpret.

6.5.1 Definition of the principal axes of bending

The question to be raised in this section is whether the governing equations can
be further simplified by a judicious choice of the orientation of the centroidal axis
system. The coupling between displacement components ū2 and ū3 in eqs. (6.23b)
and (6.23c) arises from the presence of the cross bending stiffness coefficient, Hc

23,
defined in eq. (6.9). This term can be made to vanish by an appropriate choice of the
orientation or rotation of axes ı̄2 and ı̄3, within the plane of the cross-section. The
principal centroidal axes of bending are defined as a set of axes with their origin at
the centroid of the section and for which

Hc
23 =

∫

A
Ex2x3 dA = 0. (6.27)

The actual procedure for determining the orientation of the principal centroidal
axes of bending is described in section 6.6. The result is a new axis system, I∗ =
(̄ı∗2, ı̄

∗
3), that is rotated about the axis of the beam, ı̄1, i.e., leaving the axis of the beam

unchanged, ı̄1 = ı̄∗1. The notation (·)∗ will be used to indicate quantities resolved in
the new reference frame.

In this frame of reference, the constitutive laws for the cross-section, eq. (6.13),
take the following, fully decoupled form

ε̄∗1 =
N∗

1

S∗
, κ∗2 =

M∗
2

Hc∗
22

, κ∗3 =
M∗

3

Hc∗
33

. (6.28)

The corresponding axial stress distribution, eq. (6.3), becomes

σ∗1 = E

[
N∗

1

S∗
+ x∗3

M∗
2

Hc∗
22

− x∗2
M∗

3

Hc∗
33

]
, (6.29)

which is considerably simpler than eq. (6.14).
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6.5.2 Decoupled governing equations

The use of the principal centroidal axis of bending also simplifies the governing
equations of the problem, eqs. (6.23a) to 6.23c, which now decouple into three inde-
pendent equations that describe the axial and bending behaviors of the beam. With
reference to the particular beam configuration illustrated in fig. 6.1, three indepen-
dent problems are now defined.

The axial problem

The axial problem is governed by eq. (6.23a), which now takes on the following form

d
dx∗1

[
S∗

dū∗1
dx∗1

]
= −p∗1. (6.30)

For the problem shown in fig. 6.1, the boundary conditions are as follows: ū∗1 = 0 at
the root of the beam, whereas at its tip, S∗dū∗1/dx∗1 = P ∗1 . This extensional problem
is identical to that discussed in section 5.4. Note that S = S∗ since the axial stiffness
remains unaffected by a rotation of axes ı̄2 and ı̄2 about axis ı̄1.

The first bending problem

The bending problem reduces to two independent equations. The first of these,
eq. (6.23b), takes the following form

d2

dx∗21

[
Hc∗

33

d2ū∗2
dx∗21

]
= p∗2 +

d
dx∗1

[x∗2ap∗1 − q∗3 ], (6.31)

which describes bending in plane (̄ı∗1, ı̄∗2). This differential equation is subject to the
following boundary conditions at the beam’s root ū∗2 = 0 and dū∗2/dx∗1 = 0 and at
its tip,

Hc∗
33

d2ū∗2
dx∗21

= Q∗
3 − x∗2aP ∗1 , − d

dx∗1

[
Hc∗

33

d2ū∗2
dx∗21

]
= P ∗2 − [x∗2ap∗1 − q∗3 ].

The second bending problem

Finally, eq. (6.23c) takes the following form

d2

dx∗21

[
Hc∗

22

d2ū∗3
dx∗21

]
= p∗3 +

d
dx∗1

[x∗3ap∗1 + q∗2 ], (6.32)

which describes bending in plane (̄ı1, ı̄∗3). The differential equation is subject to the
following boundary conditions at the beam’s root ū∗3 = 0 and dū∗3/dx∗1 = 0 and at
its tip,
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Hc∗
22

d2ū∗3
dx∗21

= −Q∗
2 − x∗3aP ∗1 , − d

dx∗1

[
Hc∗

22

d2ū∗3
dx∗21

]
= P ∗3 − [x∗3ap∗1 + q∗2 ].

Note that the two bending problems are identical problems written in the two
orthogonal planes defined by the principal centroidal axes of bending. Each bending
problem is identical to the bending problems discussed in section 5.5. It is clear that
the rotation of the axes to the principal directions takes place about axis ı̄1. Hence,
ı̄∗1 = ı̄1, x∗1 = x1, and ū∗1 = ū1. The notational difference is made to emphasize
the fact that all quantities in the decoupled equations are resolved along the principal
centroidal axes of bending.

6.6 The principal centroidal axes of bending

Consider an arbitrary set of axes, I = (̄ı2, ı̄3),

Centroid i2

i2

*

i3

*

i3

x2

x2

*

x3

* x3

P

a

Fig. 6.4. Rotation of the axes of the
cross-section.

with their origin at the centroid of the section,
as depicted in fig. 6.4. Next, a new set of axes,
I∗ = (̄ı∗2, ı̄

∗
3), is defined by rotating the first set

of axes by an angle α. Let (x2, x3) and (x∗2, x
∗
3)

denote the coordinates of point P resolved in co-
ordinate systems I and I∗, respectively.

Coordinate transformations are discussed in
appendix A.3.4, and the two sets of coordinates,
(x2, x3) and (x∗2, x

∗
3), are related by eq. (A.43).

The centroidal bending stiffnesses in system I∗
can be computed using eq. (6.8) to find

Hc∗
22 =

∫

A
E (−x2 sin α + x3 cos α)2 dA,

Hc∗
33 =

∫

A
E (x2 cosα + x3 sin α)2 dA,

Hc∗
23 =

∫

A
E (x2 cosα + x3 sin α)(−x2 sin α + x3 cos α) dA.

Expanding these expressions, and noting that centroidal axes are being used, gives

Hc∗
22 = Hc

22 cos2 α + Hc
33 sin2 α− 2Hc

23 sin α cos α, (6.33a)

Hc∗
33 = Hc

22 sin2 α + Hc
33 cos2 α + 2Hc

23 sin α cos α, (6.33b)

Hc∗
23 = (Hc

22 −Hc
33) sin α cos α + Hc

23(cos2 α− sin2 α). (6.33c)

With the help of basic double-angle trigonometric identities, these expressions can
be rewritten as
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Hc∗
22 =

Hc
22 + Hc

33

2
+

Hc
22 −Hc

33

2
cos 2α−Hc

23 sin 2α; (6.34a)

Hc∗
33 =

Hc
22 + Hc

33

2
− Hc

22 −Hc
33

2
cos 2α + Hc

23 sin 2α; (6.34b)

Hc∗
23 = +

Hc
22 −Hc

33

2
sin 2α + Hc

23 cos 2α. (6.34c)

Note the very close similarity between these equations, expressing the relation-
ship between bending stiffnesses in two different coordinate system and eqs. (1.49)
expressing the relationship between stress components in two different coordinate
systems, or eqs. (1.94) expressing the relationship between strain components in two
different coordinate systems. This is due to the fact that bending stiffnesses, stress
components, and strain components, all form second order tensors. The components
of second order tensors under an axis rotation all behave in the same manner, as
expressed by eqs. (6.34), (1.49), or (1.94).

By definition (6.27), the principal centroidal axes of bending are such that H∗c
23 =

0. Equation (6.34c) yields the following equation for the orientation of the principal
axes

tan 2α∗ =
2Hc

23

Hc
33 −Hc

22

. (6.35)

This equation presents two solutions, α∗ and α∗ + π/2, corresponding to two mutu-
ally orthogonal principal centroidal axes directions. The maximum bending is found
about one direction, and the minimum about the other. To define these orientations
unequivocally, it is convenient to separately define the sine and cosines of angle 2α∗

as follows
sin 2α∗ =

Hc
23

∆
and cos 2α∗ =

Hc
33 −Hc

22

2∆
, (6.36)

where

∆ =

√(
Hc

33 −Hc
22

2

)2

+ (Hc
23)2. (6.37)

This result is equivalent to eq. (6.35), but it gives a unique solution for α∗ because
both the sine and cosine of the angle are known. The minimum and maximum bend-
ing stiffnesses, denoted Hc∗

22 and Hc∗
33 , respectively, act about the directions α∗ and

α∗ + π/2, respectively. These minimum and maximum bending stiffnesses, called
principal centroidal bending stiffnesses, are evaluated by introducing the orientation
of the principal axes, eq. (6.36), into eqs. (6.34a) and (6.34b), to find

Hc∗
22 =

Hc
33 + Hc

22

2
−∆; Hc∗

33 =
Hc

33 + Hc
22

2
+ ∆. (6.38)

In summary, the orientation of the principal centroidal axes of bending is ob-
tained according to the following procedure.
1. Compute the centroid of the section using the definition, eq. (6.11);
2. Compute the bending stiffnesses in this axis system using eqs. (6.8) and (6.9);
3. Compute the orientation of the principal axes of bending using eq. (6.36);
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4. Compute the principal bending stiffnesses using eq. (6.38).

It is interesting to note that the principal axes of bending are axes about which the
bending stiffnesses are extremal: minimum about ı̄∗2, and maximum about ı̄∗3. Indeed,
the bending stiffness is expressed in terms of α∗ in eq. (6.34a): the minimum value
of Hc∗

22(α∗) occurs when its derivative with respect to α∗ vanishes

dHc∗
22

dα∗
=

Hc
33 −Hc

22

2
2 sin 2α∗ −Hc

23 2 cos 2α∗ = 0. (6.39)

This condition is identical to eq. (6.35). Similarly, the value of α∗ which maximizes
Hc∗

33(α∗) is the same value determined by eq. (6.35). In summary, the principal axes
of bending are such that H∗c

23 vanishes, and the corresponding bending stiffnesses are
extremal.

6.6.1 The bending stiffness ellipse

It is noted in the previous section that
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Fig. 6.5. The bending stiffness ellipse of a
cross-section.

bending stiffnesses, stress components,
and strain components, all form sec-
ond order tensors, and the compo-
nents of second order tensors under an
axis rotation all behave in the same
manner, as expressed by eqs. (6.34),
(1.49), or (1.94). Hence, it should not
come as a surprise that Mohr’s circle
representation of stress components,
as presented in section 1.3.6, or of
strain components, as presented in sec-
tion 1.6.4, can also be used to represent
the bending stiffness components.

Bending stiffness components, however, afford another representation that is
more informative than Mohr’s circle. Figure 6.5 shows the arbitrarily shaped cross-
section of a beam with its principal centroidal axes of bending, ı̄∗2 and ı̄∗3; point C is
located at the centroid of the cross-section. An ellipse, called the bending stiffness el-
lipse, with semi-axes

√
Hc∗

33 and
√

Hc∗
22 is constructed with its center at the centroid

of the section and its axes aligned with the principal centroidal axes of bending.
By construction, the equation of this ellipse is

x∗22

Hc∗
22

+
x∗23

Hc∗
33

= 1. (6.40)

Consider now an arbitrary axis system, I = (̄ı2, ı̄3), where ı̄2 forms an angle α with
respect to axis ı̄∗2. Let point A be located at the intersection of axis ı̄2 with the bending
stiffness ellipse. The coordinates of point A are x∗2 = r cosα and x∗3 = r sin α, where
r is the length of segment CA. Since point A is on the bending stiffness ellipse, it



236 6 Three-dimensional beam theory

follows that eq. (6.40) can be rewritten as r2(cos2 α/Hc∗
33 + sin2 α/Hc∗

22) = 1, and
hence,

r2 =
Hc∗

22Hc∗
33

Hc∗
22 cos2 α + Hc∗

33 sin2 α
=

Hc∗
22Hc∗

33

Hc
22

,

where the last equality results from eq. (6.33a). A fundamental property of an ellipse
is that the product of the lengths of segments TE and CA equals the product of
the lengths of the semi-axes, i.e., r TE =

√
Hc∗

22Hc∗
33 . Introducing the value of r

computed above leads to
TE2 = Hc

22. (6.41)

The interpretation of this result is as follows: the bending stiffness of the
cross-section about an arbitrary axis ı̄2 equals the square of the distance between
this axis and the tangent to the bending stiffness ellipse that is parallel to ı̄2. As axis
ı̄2 rotates around the centroid, the bending stiffness ellipse provides a convenient
visualization of the variation of the bending stiffness about this axis.

6.7 The neutral axis

If the cross-section of the beam is made of a homogeneous material, the axial stress
distribution varies linearly over the cross-section. Indeed, the axial stress distribution
described by eq. (6.14) is the equation of a plane with terms in x2, x3, and an in-
dependent term. The same observation can be made by considering the distribution
of axial stress expressed in principal centroidal axes of bending, see eq. (6.29). If
the material Young’s modulus is a function of position over the cross-section, i.e., if
E = E(x2, x3), as would be the case for a beam made of layered composite material,
the axial stress distribution over the cross-section is no longer linear.

For sections made of homogeneous material, three distinct types of the axial
stress distribution are possible over the cross-section.

1. If the axial force, N1, has a sufficiently large tensile (positive) value, the axial
stress is tensile over the entire cross-section.

2. If the axial force, N1, has a sufficiently large compressive (negative) value, the
axial stress is compressive over the entire cross-section.

3. If the axial force, N1, assumes an intermediate value or vanishes, the axial stress
will vanish along a straight line intersecting the boundaries of the cross-section;
the axial stress will be tensile on one side of this line and compressive on the
other. The locus of zero axial stress is a straight line called the neutral axis.

Figure 6.6 illustrates the concept of the neutral axis, which divides the cross-
section into two regions, one subjected to compressive stresses, the other to tensile
stresses. Along the neutral axis, the axial stress vanishes, while along lines parallel to
the neutral axis, the axial stress is constant. Consequently, axial stresses will increase
or decrease most rapidly when moving along the direction perpendicular to the neu-
tral axis: the maximum axial stress gradient direction is normal to the neutral axis. It
then follows that the extremal values of the axial stress are found at the points of the
cross-section that are at the largest perpendicular distance from the neutral axis, as
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Fig. 6.6. Neutral axis on a cross-section: left portion, axial force is preset, right portion, the
axial force vanishes. Along the red lines, the axial stresses remain constants.

illustrated in fig. 6.6. The neutral axis is an important concept that helps with visual-
izing the axial stress field over a cross-section subjected to axial forces and bending
moments. It also facilitates the determination of the locations of the extremal axial
stresses on the cross-section.

The neutral axis is a straight line, and its equation is readily found by imposing
the vanishing of the axial stress in eq. (6.14) to find

N1

S
+

Hc
33M2 + Hc

23M3

∆H
x3 − Hc

23M2 + Hc
22M3

∆H
x2 = 0. (6.42)

Clearly, this is the equation of a line in the plane of the cross-section for a given axial
force, N1, and bending moments, M2 and M3. The slope of this line is found as

tanβ =
x3

x2
=

Hc
23M2 + Hc

22M3

Hc
33M2 + Hc

23M3
. (6.43)

It is often convenient to work with the principal centroidal axes of bending. In that
case, the equation of the neutral axis is found by imposing the vanishing of the axial
stress in eq. (6.29) to find

N∗
1

S∗
+ x∗3

M∗
2

Hc∗
22

− x∗2
M∗

3

Hc∗
33

= 0. (6.44)

The slope of the neutral axis is simply tanβ∗ = x∗3/x∗2 = (Hc∗
22M∗

3 )/(Hc∗
33M∗

2 ).
As illustrated in fig. 6.6, when the axial force vanishes, the neutral axis passes

through the origin of the axis system, which coincides with the centroid of the sec-
tion.

Example 6.1. Relationship between the bending stiffness ellipse and the neutral
axis
Consider a cross-section of arbitrary shape subjected to a bending moment of mag-
nitude M , as depicted in fig. 6.7. Axes ı̄∗1 and ı̄∗2 are the principal centroidal axes
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of bending of the cross-section and the bending stiffness ellipse, as defined in sec-
tion 6.6.1, has also been drawn on the figure. The bending moment vector is oriented
at an angle γ∗ with axis ı̄∗2. Find the location of the neutral axis and of the maximum
axial stresses in the section.

i2

*

i3

*

A

C

M

Neutral
axis

Extremal
stress point

Extremal
stress point

b
*

g
*

Tangent to
ellipse at A

Tangent to
ellipse at B

B

D

E
F G

Fig. 6.7. Cross-section subjected to a bending moment, M .

Since axes ı̄∗1 and ı̄∗2 are the principal centroidal axes of bending of the
cross-section, the distribution of axial stress is given by eq. (6.29) as σ∗1/E =
x∗3 M∗

2 /Hc∗
22 − x∗2 M∗

3 /Hc∗
33 . Clearly, M∗

2 = M cos γ∗ and M∗
3 = M sin γ∗,

leading to the following distribution of axial stress, σ∗1/E = M(x∗3 cos γ∗/Hc∗
22 −

x∗2 sin γ∗/Hc∗
33). The orientation of the neutral axis is

tanβ∗ =
x∗3
x∗2

=
Hc∗

22

Hc∗
33

tan γ∗.

This result implies that angles γ∗ and β∗ are, in general, not equal. Two notable
exceptions exist: if γ∗ = 0 or π/2, β∗ = 0 or π/2, respectively. Because the selected
axes are principal centroidal axes of bending, γ∗ = 0 or π/2 implies that the bending
moment is applied about one of the principal centroidal axes of bending directions,
and its direction then coincides with that of the neutral axis. The other exception is
when Hc∗

22 = Hc∗
33 , in which case any axis system with its origin at the centroid is a

principal centroidal axis of bending system.
In summary, the direction of the neutral axis coincides with that of the applied

bending moment if and only if the applied bending moment acts about a principal
centroidal axes of bending direction.

The equation of the bending stiffness ellipse is given by eq. (6.40), and it is easy
to show that the equation of the tangent to the ellipse at one of its points, A, with
coordinates (x2A, x3A), is x∗2x2A/Hc∗

33 + x∗3x3A/Hc∗
22 = 1. Now, let points A and

B be the intersections of the normal to the moment vector with the bending stiffness
ellipse, as shown in fig. 6.7. The coordinates of point A become x2A = −AC sin γ∗
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and x3A = AC cos γ∗, and the equation of the tangent to the ellipse at point A
becomes x∗2 sin γ∗/Hc∗

33 +x∗3 cos γ∗/Hc∗
22 = 1/AC. Clearly, the slope of this tangent

is
x∗3
x∗2

=
Hc∗

22

Hc∗
33

tan γ∗.

The slope of this tangent is identical to that of the neutral axis. Hence, the neutral
axis is parallel to the tangent to the bending stiffness ellipse at point A.

The orientation of the neutral axis as the orientation of the applied bending mo-
ment vector changes is now easily visualized. First, let the direction of the applied
bending moment coincide with the principal direction ı̄∗2, i.e., γ∗ = 0. The neutral
axis is parallel to the tangent to the ellipse at points D or E, i.e., it coincides with
axis ı̄∗2. Similarly, if the direction of the applied bending moment coincides with the
principal direction ı̄∗3, the neutral axis coincides again with ı̄∗3. If the bending stiffness
ellipse is very elongated, i.e., if Hc∗

33 À Hc∗
22 , very rapid variations of the orientation

of the neutral axis must be expected because of the very rapid variation of the tangent
to the bending stiffness ellipse about points F or G.

Finally, as explained in section 6.7, the orientation of the neutral axis gives the
direction of the maximum axial stress gradient and the location of the maximum
axial stress in the cross-section, as illustrated in fig. 6.7.

Example 6.2. Maximum bending moments for rectangular section
Consider a solid rectangular section of width b and height h subjected to an axial
force, N1, and bending moments, M2 and M3, as depicted in fig. 6.8. If the material
has a yield strain εy , find the yield envelope for the section. In view of the symmetry
of the cross-section, the axes shown in fig. 6.8 are the principal centroidal axes of
bending.
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C D
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- (| | - | |)ey 1e

M3

^

M2

^

b

h

Neutral
axis

Fig. 6.8. Left figure: neutral axis for a rectangular section. Right figure: yield envelope for the
rectangular section under combined bending moment and axial force.

First, assume that no axial force is applied to the section and that the applied
bending moments give the neutral axis depicted in fig. 6.8. The extremal axial
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stresses will occur at the largest normal distance from the neutral axis, i.e., at the
corners of the section, points B and D. Note that for 0 < β∗ < π/2, points B and D
remain the locations of the extremal stresses. On the other hand, for−π/2 < β∗ < 0,
the extremal axial stresses will occur at the other two corners of the section, points
A and C. Note that β∗ = 0 or β∗ = π/2 are special cases: the extremal stresses
are found along edge AB and CD or BC and DA, respectively. If an axial force
is present, a uniform axial stress is added to the axial stress distribution due to the
bending moments, but this does not affect the location of the extremal axial stresses.
Clearly, yielding will initiate at one of the four corner points A, B, C, or D.

In view of eq. (6.29), the non-dimensional axial stress distribution can be written
as

σ1

E
=

N1

S
+

M2

Hc
22

x3 − M3

Hc
33

x2

=
N1

S
+

hM2

2Hc
22

2x3

h
− bM3

2Hc
33

2x2

b
= ε̄1 + M̄2x̄3 − M̄3x̄2,

where M̄2 = hM2/(2Hc
22) and M̄3 = bM3/(2Hc

33) are the non-dimensional bend-
ing moment, and x̄2 = 2x2/b and x̄3 = 2x3/h the non-dimensional coordinates.

The yield criterion is σ1/E = εy , which must be applied at points A, B, C, and
D, because the extremal stresses occur at those locations. These four yield conditions
are summarized as

|M̄2 − M̄3| = |εy| − |ε̄1|, |M̄2 + M̄3| = |εy| − |ε̄1|.

These conditions correspond to four line segments in the bending moment plane
(M̄2, M̄3) that define the diamond-shaped zone shown in fig. 6.8. The inside of the
diamond corresponds to safe loading conditions, and the material starts to yield for
loading conditions falling on the edges of the diamond. As the axial force and hence,
axial strain increases, the size of the diamond shrinks, which indicates that smaller
bending moments can be applied. When ε̄1 = εy , the material yields under the axial
force alone, and no bending moments can be applied.

6.8 Evaluation of sectional stiffnesses

The determination of the orientation of the principal centroidal axes of bending re-
quires the computation of sectional stiffnesses. This section presents a number of
tools that will ease this task.

6.8.1 The parallel axis theorem

The bending stiffness of a section are sometimes to be computed with respect to two
axis systems that are parallel to each other, but have a different origin, as illustrated
in fig. 6.9. The bending stiffnesses of the section with respect to axes ı̄2 and ı̄c2 will
be denoted H22 and Hc

22, respectively; Hc
22 is called the centroidal bending stiffness.
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The parallel axis theorem relates the distinct bending stiffnesses computed with re-
spect to parallel axes, one of them centroidal. Let d3 be the distance between the
parallel axes, ı̄2 and ı̄c2.

Bending stiffness H22 is given by eq. (6.8) as

H22 =
∫

A
E (d3 + xc

3)
2 dA,

where xc
3 is the coordinate of a point of the section measured in the centroidal system,

(̄ıc2, ı̄
c
3). Expanding this result then leads to

H22 = d2
3

[∫

A
E dA

]
+ 2d3

[∫

A
E xc

3 dA
]

+
[∫

A
E (xc

3)
2 dA

]
.

The first bracketed term is the axial stiffness of the section, S, see eq. (6.5); the
second bracketed term vanishes because axis ı̄c2 is centroidal, see eq. (6.5); finally,
the last bracketed term is the centroidal bending stiffness defined by eq. (6.8). Hence,
the result simplifies to H22 = Sd2

3 + Hc
22. A similar process can be applied to the

bending stiffness H33 and cross bending stiffness H23 to find

H22 = Hc
22 + Sd2

3; H33 = Hc
33 + Sd2

2; (6.45)

and
H23 = Hc

23 + Sd2d3. (6.46)

Because the second term on the right hand side of eqs. (6.45), called the “trans-
port term,” is strictly positive, it follows that H22 > Hc

22 and H33 > Hc
33, that is, the

bending stiffness always increases when moving away from the centroid. In other
words, the minimum bending stiffness is obtained when computed with respect to
the centroid. On the other hand, the second term on the hand side of eq. (6.46) can be
positive or negative: cross bending stiffnesses can increase or decrease when moving
away from the centroid.
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Fig. 6.10. Thin-walled rectangular section.
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6.8.2 Thin-walled sections

Many beam sections involved aerospace structures are thin-walled sections, and this
fact simplifies the evaluation of the bending stiffnesses. Consider the homogeneous,
thin-walled rectangular box beam shown in fig. 6.10. Due to the symmetry of the
section, the axes indicated on the figure are principal centroidal axes of bending. The
inner and outer heights are hi and ho, respectively, whereas the inner and outer width
are bi and bo, respectively. The thickness of the flange, tf , and web, tw, are written
as tf = (ho − hi)/2 and tw = (bo − bi)/2, respectively. The height, h, and width,
b, of the section, as measured from mid-wall lines are now h = (ho + hi)/2 and
b = (bo + bi)/2.

These dimensions are the average height and width of the section. The bending
stiffness of the section with respect to axis ı̄2 can be computed by subtracting the
bending stiffness of the inner rectangular area from that of the outer rectangular area
to find

Hc
22 = E

(
boh

3
o

12
− bih

3
i

12

)
, (6.47)

where E is the material Young’s modulus. This expression can be rewritten in terms
of the average dimensions and wall thicknesses by noting that bo = b + tw, bi =
b− tw, ho = h + tf , and hi = h− tf , to find

Hc
22 =

E

12
[
(b + tw)(h + tf )3 − (b− tw)(h− tf )3

]
. (6.48)

Expanding the cubic power and regrouping terms then yields

Hc
22 =

E

12

{
6bh2tf

[
1 +

1
3

(
tf
h

)2
]

+ 2h3tw

[
1 + 3

(
tf
h

)]}
. (6.49)

If the wall thickness is small, i.e., tf/h ¿ 1, this term is negligible compared to
unity, and the bending stiffness reduces to

Hc
22 ≈ E

[
2
twh3

12
+ 2btf

(
h

2

)2
]

. (6.50)

The first term represents the bending stiffnesses of the left and right webs, computed
with the average height h, whereas the last term gives the contribution of the top and
bottom flanges using their average width b.

To better understand the meanings of these terms, consider the calculation of
Hc

22 directly from the individual components of the section. First, compute bending
stiffness of the left and right webs about their centroids: twh3/12 for each web.
Next the contributions of the flanges are added: (bt3f/12 + btfh2/4) for each flange;
the first term represents the bending stiffness of the flange with respect to its own
centroid, and the second term is the transport term according to the parallel axis
theorem, eq. (6.45). Adding up the contributions of the various components yields
the bending stiffness of the section as
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Hc
22 = E

[
2
twh3

12
+ 2

(
bt3f
12

+ btf

(
h

2

)2
)]

.

If the wall thicknesses satisfy the thin-wall assumption, i.e., tf/h ¿ 1, terms con-
taining higher powers of the wall thickness can be ignored, and the result is identical
to that shown in eq. (6.50) above. A similar reasoning can be used to evaluate the
bending stiffness, Hc

33.

6.8.3 Triangular area equivalence method

Consider the homogeneous triangular area depicted in fig. 6.11. It can be shown that
all area moment calculations can be performed based on lumping the area of the
triangle, A, at three points located at the midpoint of each side of the triangle. In
other words, the triangular area is replaced by three concentrated areas, each of area
A/3, located at the midpoint of each side of the triangle, as illustrated on the figure.
The area moment are evaluated based on these lumped areas to find

I22 =
A
3

3∑

i=1

x2
3i, I33 =

A
3

3∑

i=1

x2
2i, I23 =

A
3

3∑

i=1

x2ix3i. (6.51)
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An important special case is the rectangular area which, as shown in fig. 6.12,
can be decomposed into two triangular areas, each with one-half of the area of the
rectangle. This yields an equivalent lumped model for the rectangle with lumped
areas at the midpoints of each of its sides and a fifth at its center. A very useful
result is obtained by letting the width of the rectangle decrease to a vanishingly small
value while retaining the height and area (in other words, the thin-wall assumption).
This case is shown on the right side of fig. 6.12. Now, the representation collapses
to a one-dimensional line with lumped areas of A/6 at each end and 2A/3 at the
midpoint. This is a particularly useful representation for computing the centroids,
area moments and bending stiffnesses for thin-walled sections.
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6.8.4 Useful results

Thin rectangular strip

The left portion of fig. 6.13 shows a thin rectangular strip of thickness t and height
h where t ¿ h. The centroid of this strip is located at distances d2 and d3 from axes
ı̄3 and ı̄2, respectively. The bending stiffnesses of this strip are approximated as

H22 = E

(
th3

12
+ htd2

3

)
, H33 = E htd2

2, H23 = E htd2d3. (6.52)

These results are obtained by first computing the bending stiffness in the principal
centroidal axes of the thin strip, then using the parallel axis theorem to translate
the bending stiffnesses to the required axis. Terms containing higher powers of the
thickness are neglected.

Rotated thin rectangular strip

Similar results can be obtained for the same rectangular strip rotated of an angle, α,
with respect to the ı̄2 axis shown in the right portion fig. 6.13

H22 = E

(
th3

12
sin2 α + htd2

3

)
, H33 = E

(
th3

12
cos2 α + htd2

2

)
,

H23 = E

(
th3

12
sin α cos α + htd2d3

)
= E

(
th3

24
sin 2α + htd2d3

)
.

(6.53)
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Fig. 6.13. A thin rectangular strip.

Example 6.3. Bending stiffness of a trapezoidal section - Approach 1
Consider the trapezoidal section shown on the left in fig. 6.14. Because axis ı̄2 is an
axis of symmetry of the section, the centroid of the section is located along axis, i.e.,
x3c = 0, and axis ı̄2 is a principal centroidal axis of bending. Using eqs. (6.52) and
(6.53), the centroidal bending stiffness about axis ı̄2 becomes

Hc
22 = E

[
t(2h1)3

12
+

t(2h2)3

12
+ 2

t`3

12
sin2 α + 2t`(

h1 + h2

2
)2

]
, (6.54)
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where ` = [b2 + (h2 − h1)2]1/2 is the length of the upper and lower flanges. The
first two terms represent the contribution of the two webs evaluated with the help of
eq. (6.52), whereas the last two terms give the contribution of the flanges obtained
from eq. (6.53). It is clear that sin α = (h2 − h1)/`, and after simplification, the
bending stiffness becomes

Hc
22 =

2Et

3
[
h3

1 + h3
2 + `(h2

1 + h2
2 + h1h2)

]
. (6.55)

The bending stiffness about axis ı̄3 can be evaluated in a similar fashion. Note
that the location of the centroid, x2c, must be calculated first, because this quantity
is required to evaluated Hc

33.

Example 6.4. Bending stiffness of a trapezoidal section - Approach 2
The problem treated in the previous examples can also be approached using the tri-
angle area equivalence method depicted in the right part of fig. 6.12. Specifically,
each straight segment of the cross-section is represented by three lumped areas lo-
cated at the ends and midpoint of each segment. Figure 6.14 shows the thin-walled
trapezoidal section and its lumped equivalent. Using the lumped areas, it follows that
a calculation of Hc

22 will require areas A1, A2, A3, A5, A6, A7; areas A4 and A8

are at a vanishing distance from axis ı̄2 and hence, do not appear in the computation
of the bending stiffness Hc

22. The other areas are A1 = A7 = 1/6 (2h2t + `t),
A2 = A6 = 2/3 `t and A3 = A5 = 1/6 (2h1t + `t), leading to

Hc
22 = 2E

[
1
6
(2h1t + `t)h2

1 +
2
3
`t(

h1 + h2

2
)2 +

1
6
(2h2t + `t)h2

2

]
,

=
Et

3
[
2h3

1 + 2h3
2 + `(h2

1 + h2
2) + `(h1 + h2)2

]

=
2Et

3
[
h3

1 + h3
2 + `(h2

1 + h2
2 + h1h2)

]
,

which is identical to eq. (6.55).
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Fig. 6.14. Trapezoidal thin-walled section and lumped representation.
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Example 6.5. Principal centroidal axes of an “L” shaped section
Consider the thin-walled, “L” shaped cross-section of a beam made of a homoge-
neous material of Young modulus E, as shown in fig. 6.15. Let b = 0.25 m , h = 0.1
m, and t = 2.3 mm. For convenience, a set of axes (̄ı2, ı̄3) is defined, which is aligned
with the flanges and has its origin at their intersection, point A; clearly, this axis sys-
tem is not centroidal. The axial stiffness of the section is S = Et(b + h) and the lo-
cation of the centroid is then computed using eqs. (6.11), to find x2c = b2/[2(b+h)]
and x3c = h2/[2(b + h)]. A set of centroidal axes (̄ıc2, ı̄

c
3) parallel to the flanges are

shown in fig. 6.15.
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Fig. 6.15. Thin-walled, L shaped cross-section.

Next, the centroidal bending stiffnesses are computed with the help of the parallel
axis theorem, eq. (6.45), as

Hc
22 = E

[
th3

12
+ ht

(
h

2
− x3c

)2

+ bt x2
3c

]
=

Eth3

3

[
1− 3h

4(b + h)

]
,

and

Hc
33 = E

[
tb3

12
+ bt

(
b

2
− x2c

)2

+ ht x2
2c

]
=

Etb3

3

[
1− 3b

4(b + h)

]
.

Although the centroidal axes (̄ıc2, ı̄
c
3) are convenient to use because they are par-

allel to the flanges, they are not principal axes. Indeed, the cross bending stiffness,
computed based on the parallel axis theorem, eq. (6.46), is

Hc
23 = Eth x2c

[
−

(
h

2
− x3c

)]
+ Etb

[
−

(
b

2
− x2c

)]
x3c = − Etb2h2

4(b + h)
.

Using the numbers given above, the bending stiffnesses are evaluated as

Hc
22

E
= 0.655× 10−6m4,

Hc
33

E
= 6.04× 10−6m4,

Hc
23

E
= −1.12× 10−6m4.

The orientation of the principal centroidal axes then follows from eqs. (6.36)

sin 2α∗ =
Hc

23

∆
= −0.3826; cos 2α∗ =

Hc
33 −Hc

22

2∆
= 0.9239. (6.56)
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where ∆/E =
√

(Hc
33 −Hc

22)2/4 + (Hc
23)2 = 2.917 × 10−6 m4. Angle 2α∗ is in

the fourth quadrant, and hence, α∗ = −11.25 deg. Finally, the principal centroidal
bending stiffness are evaluated based on eq. (6.38) to find Hc∗

22/E = 432.8 × 10−9

m4 and Hc∗
33/E = 5.940× 10−6 m4. The bending stiffness is minimum with respect

to axis ı̄∗c2 and maximum with respect to axis ı̄∗c3 .

6.8.5 Problems

Problem 6.1. Various questions on three-dimensional beam theory
(1) For a particular cross-section, the centroidal bending stiffnesses have been computed as
Hc

22, Hc
33, and Hc

23. Next, the bending stiffnesses are computed about a set of parallel axes
with their origin at an arbitrary point D and found to be Hd

22, Hd
33, and Hd

23. Is it possible to
find a point D such that Hd

22 < Hc
22? Why? (2) For a particular cross-section, the centroidal

bending stiffnesses have been computed as Hc
22, Hc

33, and Hc
23. Next, the bending stiffnesses

are computed about a set of parallel axes with their origin at an arbitrary point D and found
to be Hd

22, Hd
33, and Hd

23. Is it possible to find a point D such that Hd
23 < Hc

23? Why? (3)
Consider a uniform cantilevered beam subjected to a uniform transverse loading distribution
p0n̄, where n̄ is a unit vector perpendicular to the axis of the beam, ı̄1. Under what condition
will the transverse deflection of the beam be oriented in the direction of n̄? (4) For a particular
cross-section, the principal centroidal bending stiffnesses have been computed as Hc∗

22 and
Hc∗

33 , Hc∗
22 ≤ Hc∗

33 . Next, the bending stiffnesses are computed about a set of non-principal
axes, ı̄2, ı̄3 where axis ı̄2 is at an arbitrary angle α with respect to ı̄∗2, and found to be Hc

22,
Hc

33, and Hc
23. Is it possible to find an angle α such that Hc

22 < Hc∗
22 . Why? (5) A uniform

cantilevered beam is subjected to a tip axial force. The beam is made of a homogeneous
material. Under what condition will the strain distribution over the cross-section be uniform?

Problem 6.2. Axial stresses in a circular cross-section
Consider a solid circular section of radius R subjected to an axial force, N1, and bending
moments, M2 and M3. If the material has a yield strain εy , find the yield envelope for the
section.

Problem 6.3. Three-dimensional bema theory
In section 5.6, the governing equations for a beam subjected to combined axial and trans-
verse loads were developed. The origin of the axis system was located at an arbitrary point,
i.e., it was not coincident with the centroid of the cross-section. (1) Generalize the displace-
ment field given by eq. (5.73) to accommodate general, three-dimensional deformations. (2)
Find the corresponding strain field. (3) Develop the sectional constitutive laws. (4) Derive the
equilibrium equations of the problem. (5) For the problem depicted in fig. 6.1, provide the
governing equations and associated boundary conditions. (6) Clearly defined all the sectional
stiffness coefficients appearing in your developments.

Problem 6.4. Principal axes of bending of a “Z” section
A beam made of a homogeneous material features the “Z” cross-section depicted in fig. 6.16.
(1) Find the location of the centroid. (2) Find the bending stiffnesses in a coordinate system
parallel to that shown on the figure, but with its origin at the centroid. (3) Find the orientation
of the principal axes of bending. (4) Find the principal centroidal bending stiffnesses, Hc∗

22 ,
Hc∗

33 . Use a/t = 10.
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Fig. 6.16. “Z” shaped cross-section of a
beam.
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Fig. 6.17. Thin rectangular cross-section.

Problem 6.5. Neutral axis of a “Z” section
A beam made of a homogeneous material features the “Z” cross-section depicted in fig. 6.16.
If a bending moment M2 is applied to the section, find the equation of the neutral axis.

Problem 6.6. Stresses in a thin-walled rectangular cross-section
A beam made of a homogeneous material features the thin-walled rectangular cross-section
depicted in fig. 6.17, with h/t = 12. A bending moment M is applied to the section and its
axis is oriented at an angle γ with respect to axis ı̄2. (1) Compute the axial stresses at points
A and B. (2) On one graph, plot the non-dimensional stresses at points A and B, denoted
σ

(A)
1 (γ)/σ

(A)
1 (γ = 0) and σ

(B)
1 (γ)/σ

(B)
1 (γ = 0), respectively, for γ ∈ [0, π/2]. (3) Let

σy be the yield stress for the material. Plot the non-dimensional maximum bending moment
the section can carry, 6Mmax/(th2σy), as a function of γ ∈ [−π/2, π/2]. Comment on your
results.

6.9 Summary of three-dimensional beam theory

Solving a three-dimensional beam problem involves determining the three compo-
nents of displacement field of the beam, ū1(x1), ū2(x1), and ū3(x1) and the axial
stress distribution, σ1(x1, x2, x3), over the cross-section.

A solution for the displacement field can be developed by following either of two
equivalent approaches described below.

2 Deflection calculation: approach 1
1. Compute the location of the centroid using eq. (6.11).
2. Select a set of axes I = (̄ı1, ı̄2, ı̄3), for which the ı̄1 axis lies along the sec-

tional centroids and project all applied loads along these axes.
3. Compute the sectional stiffness coefficients eqs. (6.5), (6.8), and (6.9).
4. Solve the axial problem (6.23a) and the two coupled bending differential

equations (6.23b) to 6.23c, subjected to the boundary conditions (6.24) and
(6.26).

2 Deflection calculation: approach 2
1. Compute the location of the centroid using eq. (6.11).
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2. Compute the orientation of the principal centroidal axes of bending I∗ =
(̄ı∗1, ı̄

∗
2, ı̄

∗
3), and the principal bending stiffnesses according to the procedure

described in section 6.6.
3. Project all applied load along the principal centroidal axes of bending.
4. Solve the axial problem (6.30) and two uncoupled bending problems (6.31)

and (6.32), subjected to the appropriate boundary conditions.

The two approaches will give identical results. The unknowns of the problem in
the first approach are the displacement components ū1, ū2, and ū3 along an arbitrary
set of centroidal axes, whereas the displacement components ū∗1, ū∗2, and ū∗3 along
the principal centroidal axes of bending are the unknown of the second approach. The
solution of the axial and two coupled differential equations of the first approach is,
in general, quite difficult to obtain. In the second approach, additional work, namely
the computation of the principal axes of bending orientation, is initially required. The
solution phase then reduces to solving three decoupled differential equations.

Once the axial force and bending moment distributions are evaluated, the axial
stress distribution is easily obtained. It is also possible to carry out the stress cal-
culation using either the original centroidal axes or the principal centroidal axes of
bending.

2 Axial stress calculation: approach 1
1. Compute the location of the centroid using eq. (6.11).
2. Select an axis system set of axes I = (̄ı1, ı̄2, ı̄3), for which the ı̄1 axis lies

along the section centroids and project all applied loads along these axes.
3. Compute the sectional stiffness coefficients eqs. (6.5), (6.8), and (6.9).
4. Determine the bending moments, M2(x1) and M3(x1), at a particular axial

location, x1, and use either eq. (6.15) or (6.14) to compute the axial stress,
σ1 at any location on the cross-section.

2 Axial stress calculation: approach 2
1. Compute the location of the centroid using eq. (6.11).
2. Compute the orientation of the principal centroidal axes of bending I∗ =

(̄ı∗1, ı̄
∗
2, ı̄

∗
3), and the principal bending stiffnesses according to the procedure

described in section 6.6.
3. Project all applied load along the principal centroidal axes of bending.
4. Determine the bending moments, M∗

2 (x1) and M∗
3 (x1), at a particular axial

location, x1, and use eq. (6.29) to compute the axial stress, σ1 at any location
on the cross-section.

If the geometry of the cross-section is more easily expressed in axis system I,
approach 1will be more expeditious.

To demonstrate the use of these approaches for three-dimensional beams, a sim-
ple problem will be solved using both approaches, and the results will be shown to
be identical.

Example 6.6. Bending of a Z section - Approach 1
Consider a thin-walled cantilevered beam subjected to a uniform transverse load, p0,
as depicted in fig. 6.18. The beam is clamped at the root and is unrestrained at the
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tip. The beam is thin walled, i.e., t/a ¿ 1, and its “Z” shaped cross-section is made
of a homogeneous material with a Young’s modulus E. In approach 1, the solution
will be developed in the axes aligned with the cross-section.

i3

i3

i2

i1

i2

p0

2a t

a

AB
a

Fig. 6.18. Thin-walled cantilevered beam under a uniform transverse load.

Displacement calculations

A centroidal axis system is used with axis ı̄3 aligned vertically as shown in fig. 6.18.
This axis system makes it easy to locate different points on the cross-section. The first
step is to compute the location of the centroid using eq. (6.11). Since the material is
homogeneous, the location of the centroid is identical to that of the center of mass of
the section and is located on the vertical web, midway between the upper and lower
flanges. Axis system I = (̄ı1, ı̄2, ı̄3) is located at the centroid, as shown in fig. 6.18.
The next step is to compute the various sectional stiffnesses. The axial stiffness is
computed first using eq. (6.5) to find S = E [at + 2at + at] = 4atE. The bending
stiffnesses are computed from eq. (6.8)

Hc
22 = E

[(
at3

12
+ at a2

)
+

t(2a)3

12
+

(
at3

12
+ at a2

)]
≈ 8a3tE

3
;

Hc
33 = E

[(
ta3

12
+ at

a2

4

)
+

2a(t)3

12
+

(
ta3

12
+ at

a2

4

)]
≈ 2a3tE

3
,

where the thin wall approximation, t/a ¿ 1, is used to simplify the results. Finally,
the cross bending stiffness is obtained from eq. (6.9),
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Hc
23 = E

[
at

(
−a

2

)
(−a) + 2at(0)(0) + at

(a

2

)
(a)

]
= a3tE.

Although the selected centroidal axis system conveniently describes the geometry
of the problem, it does not coincide with the principal axes of bending, which are
characterized by a vanishing cross bending stiffness.

The fourth step of this approach is the solution of the governing equations. The
axial and two bending governing equations can be written as

S
d2ū1

dx2
1

= 0, Hc
33

d4ū2

dx4
1

+ Hc
23

d4ū3

dx4
1

= 0, Hc
23

d4ū2

dx4
1

+ Hc
22

d4ū3

dx4
1

= p0.

The boundary conditions at the root are purely geometric and are given by eqs. (6.24),
which specify that the axial displacement and the transverse displacements and
slopes must all vanish.

The boundary conditions at the tip are a bit more complicated. Since no axial
force is applied, the axial boundary condition at the tip requires N1 = 0 or N1 =
Sdū1/dx1 = 0, which implies dū1/dx1 = 0 at x1 = L. Similarly, at the tip of the
beam, the two bending moments must vanish, M2(L) = M3(L) = 0, and hence

[
Hc

23

d2ū2

dx2
1

+ Hc
22

d2ū3

dx2
1

]

x1=L

=
[
Hc

33

d2ū2

dx2
1

+ Hc
23

d2ū3

dx2
1

]

x1=L

= 0.

Finally, the shear forces must also vanish at the beam’s tip, V2(L) = V3(L) = 0,
leading to

[
−Hc

33

d3ū2

dx3
1

−Hc
23

d3ū3

dx3
1

]

x1=L

=
[
Hc

23

d3ū2

dx3
1

+ Hc
22

d3ū3

dx3
1

]

x1=L

= 0.

The axial equation is decoupled from the two bending equations. Its solution for
homogeneous boundary conditions is the trivial solution, ū1 = 0, which means that
there is no axial displacement of the beam’s centroid.

The two bending equations are coupled, but a simple algebraic manipulation
yields two uncoupled equations for this problem

d4ū2

dx4
1

= − Hc
23p0

Hc
22H

c
33 −Hc

23H
c
23

= − 9p0

7a3tE
,

d4ū3

dx4
1

=
Hc

33p0

Hc
22H

c
33 −Hc

23H
c
23

=
6p0

7a3tE
.

The boundary conditions can be decoupled in a similar manner to yield ū2 =
dū2/dx1 = 0 and ū3 = dū3/dx1 = 0, at x1 = 0 and dū2

2/dx2
1 = dū3

2/dx3
1 = 0

and dū2
3/dx2

1 = dū3
3/dx3

1 = 0 at x1 = L. Solving these two decoupled, fourth order
differential equations gives the solution of the problem

ū2(x1) = − 3p0L
4

56a3tE

(
η4 − 4η3 + 6η2

)
, (6.57)
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ū3(x1) =
p0L

4

28a3tE

(
η4 − 4η3 + 6η2

)
, (6.58)

where η = x1/L is the non-dimensional variable along the beam’s span. The dis-
placements at the tip of the beam are ūtip

2 = −9/56 p0L
4/(a3tE) and ūtip

3 =
6/56 p0L

4/(a3tE).

Bending stress calculation

The axial stress due to bending, σ1, can be computed from eqs. (6.14) or (6.15), but
eq. (6.14) is preferable because the coordinates of a point on the section, (x2, x3),
explicitly appear in this equation. For this problem, the stress resultants are obtained
from equilibrium considerations as M2 = p0L

2(1 − η)2/2, N1 = 0 and M3 = 0,
and hence,

σ1(η, x2, x3) =
E

Hc
22H

c
33 −Hc

23H
c
23

[−x2H
c
23M2(η) + x3H

c
33M2(η)]

=
9E

7(a3tE)2

[
−x2(a3tE) + x3

(
2
3
a3tE

)]
M2(η)

=
3

7a3t
(−3x2 + 2x3)

p0L
2

2
(1− η)2.

A number of conclusions can be drawn from this result.

1. Axial stresses vary along the span of the beam because they depend on η.
Stresses are maximum where M2(η) is a maximum, i.e., at the root of the beam.

2. For this loading case, it is possible to define the neutral axis of the section. Set-
ting σ1 = 0, yields the equation for the neutral axis: −3x2 + 2x3 = 0. The
neutral axis is a line in the plane of the cross-section that makes a 56◦ angle with
axis ı̄2. Axial stresses are positive on one side of this axis and negative on the
other.

3. Axial stresses vary over the cross-section of the beam, i.e., they depend on x2

and x3. At any given span-wise location, extremum axial stresses are found in
non-dimensional form at points A (x2 = a, x3 = a) or B (x2 = 0, x3 = a), see
fig. 6.18:

σ
(A)
1 a2t

M2(x1)
= −3

7
,

σ
(B)
1 a2t

M2(x1)
=

6
7
.

The maximum magnitude is found at point B.

Example 6.7. Bending of a Z section - approach 2
In this example, the same problem treated in the previous example will be solved in
the principal axes.
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Displacement calculation

The first step of this second approach is once again the computation of the location of
the centroid using eq. (6.11); it is located on the web, midway between the flanges.
The next step is computation of the orientation of the principal centroidal axes of
bending. Equation (6.36) yields

sin 2α∗ =
a3tE

a3tE
√

2
=

1√
2
, cos 2α∗ = − a3tE

a3tE
√

2
= − 1√

2
.

Thus, the principal axis of bending ı̄∗2 is oriented at an angle α∗ = 67.5◦ with respect
to axis ı̄2, as shown in fig. 6.19. The principal centroidal bending stiffnesses are found
from eq. (6.38)

Hc∗
22 =

5a3tE

3
− a3tE

√
2 =

(
5
3
−
√

2
)

a3tE, Hc∗
33 =

(
5
3

+
√

2
)

a3tE.

i   u3 3,

i    u3 3

* *
,

i   u2 2,

i    u2 2

*
,
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p sin 67.5
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p cos 67.5
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o

a*=67.5
o

a*

Fig. 6.19. The principal axes of bending for the thin walled section.

The applied load is now projected along the directions of the principal axes of
bending to find

p∗2 = p0 sin 67.5◦, p∗3 = p0 cos 67.5◦.

The last step consists of the solution of three independent problems. As in the first
approach, the extensional problem yields ū∗1 = 0. The two decoupled bending prob-
lems are

Hc∗
33

d4ū∗2
dx∗41

= p0 sin 67.5◦, Hc∗
22

d4ū∗3
dx∗41

= p0 cos 67.5◦.

subjected to the following boundary conditions at the root ū∗2 = dū∗2/dx∗1 = 0,
ū∗3 = dū∗3/dx∗1 = 0 and at the tip d2ū∗2/dx∗21 = d3ū∗2/dx∗31 = 0, d2ū∗3/dx∗21 =
d3ū∗3/dx∗31 = 0. The solution of these two decoupled equations is:

ū∗2(η) =
p0 sin 67.5◦

Hc∗
33

L4

24
(
η4 − 4η3 + 6η2

)
, (6.59)

ū∗3(η) =
p0 cos 67.5◦

Hc∗
22

L4

24
(
η4 − 4η3 + 6η2

)
. (6.60)
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The corresponding non-dimensional deflections at the tip of the beam become

ū∗2tipa3tE

p0L4
=

sin 67.5◦

8(5/3 +
√

2)
= 0.0375,

ū∗3tipa3tE

p0L4
=

cos 67.5◦

8(5/3−√2)
= 0.1895.

To compare the results obtained with approaches 1 and 2, their respective predic-
tions must be expressed in the same axis system. Displacement components ū2 and
ū3 obtained with approach 1 and given by eqs. (6.57) and (6.58), respectively, are
the displacement components of along axes ı̄2 and ı̄3, respectively, whereas the dis-
placements components ū∗2 and ū∗3 obtained with approach 2 and given by eqs. (6.59)
and (6.60), respectively, are the displacement components along the principal cen-
troidal axes of bending ı̄∗2 and ı̄∗3, respectively. These two results describe identical
displacements of the beam. Indeed, fig. 6.19 shows that the two sets of displacement
are related through the following transformations: ū∗2 = ū2 cos 67.5◦ + ū3 sin 67.5◦

and ū∗3 = −ū2 sin 67.5◦ + ū3 cos 67.5◦. Using these equations to compute the non-
dimensional tip displacements yields

ū∗2tipa3tE

p0L4
=

(
− 9

56
cos 67.5◦ +

3
28

sin 67.5◦
)

= 0.0375,

ū∗3tipa3tE

p0L4
=

(
9
56

sin 67.5◦ +
3
28

cos 67.5◦
)

= 0.1895,

which agree exactly with the above results.

Bending stress calculation

The axial stress due to bending, σ∗1 , is now computed using eq. (6.29) where N∗
1 = 0.

The bending moment components, M∗
2 and M∗

3 , about axes ı̄∗2 an ı̄∗2, respectively,
are related to their counterparts, M2 and M3, about axes ı̄2 and ı̄3, respectively,
as M∗

2 (η) = M2(η) cos 67.5◦ and M∗
3 (η) = −M2(η) sin 67.5◦. The axial stress

distribution becomes

σ∗1at3

M2
= x∗3

cos 67.5◦

(5/3−√2)
+ x∗2

sin 67.5◦

(5/3 +
√

2)
.

To reconcile these results with those obtained with approach 1, it is necessary
to perform a coordinate transformation between the coordinate x∗2 and x∗3 of a point
on the cross-section expressed in the principal centroidal axes of bending, I∗ =
(̄ı∗2, ı̄

∗
3), to the counterparts in coordinate system I = (̄ı2, ı̄3): x∗2 = x2 cos 67.5◦ +

x3 sin 67.5◦ and x∗3 = −x2 sin 67.5◦ + x3 cos 67.5◦.
For instance, at point A, x2 = a, x3 = a, and the axial stress becomes

σ∗A1 a2t

M2(η)
=

[
(cos 67.5◦ + sin 67.5◦) sin 67.5◦

5/3 +
√

2

+
(− sin 67.5◦ + cos 67.5◦) cos 67.5◦

5/3−√2

]
= −0.43.
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Similarly, at point B, x2 = 0, x3 = a, and the axial stress follows as

σ∗B1 a2t

M2
=

sin2 67.5◦

5/3 +
√

2
+

cos2 67.5◦

5/3−√2
= 0.86.

As expected, these results are identical to those obtained using approach 1.

6.9.1 Discussion of the results

Although the applied load acts in the ı̄3 direction only, the beam displaces along
both axes ı̄3 and ı̄2. In fact, the tip displacement component along axis ı̄2 is larger
than that along axis ı̄3. This is due to the fact that bending in planes (̄ı1, ı̄2) and
(̄ı1, ı̄3) is coupled, as expressed by the coupled governing equations (6.23a), (6.23b),
and (6.23c).

This behavior is more easily understood when considering the results of the sec-
ond approach expressed in the principal centroidal axes of bending. Indeed, the bend-
ing behavior of the beam along the principal axes of bending is decoupled. This
means that load p∗2, applied along axis ı̄∗2, produces a displacement along axis ı̄∗2
only. Similarly, load p∗3, applied along axis ı̄∗3, produces a displacement along axis
ı̄∗3 only. The displacement along axis ı̄∗2 is fairly small because the bending stiffness,
Hc∗

33 , that characterizes bending about axis ı̄∗3 is maximum. On the other hand, the
displacement along axis ı̄∗3 is large because the bending stiffness, Hc∗

22 , that char-
acterizes bending about axis ı̄∗2 is minimum. The resulting displacement, ū∗3, when
resolved along the axes ı̄2 and ı̄3, has the expected upward component, together with
a leftward component. This explains the negative sign of the ū2 in eq. (6.57).

6.10 Problems

Problem 6.7. Sectional bending stiffness
Consider the solid cross-section depicted in fig. 6.20. (1) Determine the location of the cen-
troidal of the section. (2) Compute the sectional centroidal bending stiffnesses. (3) Determine
the orientation of the principal centroidal axes of bending. (4) Compute the principal centroidal
bending stiffnesses.

Problem 6.8. Beam with and “L” shaped cross-section
The “L” shaped cross-section beam shown in fig. 6.21 is subjected to a bending moment of
magnitude Mb, which is acting in the direction indicated in the figure. Create and use a spread-
sheet to accomplish the following tasks. Make your spreadsheet general so that different di-
mensions can be entered into the spreadsheet along with different values for the load and its
orientation. The spreadsheet outputs should be in clearly labeled cells. (1) Determine the cen-
troid location. (2) Determine the axial and bending stiffnesses in the centroidal axis system
Ic = (̄ıc2, ı̄

c
3) indicated on the figure. (3) Using this axis system, compute the orientation of

the neutral axis and compute magnitude and location of the maximum axial stress, |σmax
1 |. (4)

Find the orientation of the principal centroidal axes of bending, Ic∗ = (̄ıc∗2 , ı̄c∗3 ). (5) Using
these axes, determine the magnitude and location of the maximum axial stress. Verify that this
is the same result as in step 3. Use the following data: h = 150 mm, b = 100 mm, th = 10
mm, tb = 14 mm, θ = 30 degrees, and Mb = 10 kN·m.
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Fig. 6.21. “L” shaped cross-section.

Problem 6.9. Beam with “C” shaped cross-section
The “C” shaped cross-section beam shown in fig. 6.22 is subjected to a bending moment
of magnitude Mb, which is acting in the direction indicated in the figure. Create and use a
spreadsheet to accomplish the following tasks. Make your spreadsheet general so that different
dimensions can be entered into the spreadsheet along with different values for the load and
its orientation. The spreadsheet outputs should be in clearly labeled cells. (1) Determine the
centroid location. (2) Determine the axial and bending stiffnesses in the centroidal axis system
Ic = (̄ıc2, ı̄

c
3) indicated on the figure. (3) Using this axis system, compute the orientation of

the neutral axis and compute magnitude and location of the maximum axial stress, |σmax
1 |. (4)

Find the orientation of the principal centroidal axes of bending, Ic∗ = (̄ıc∗2 , ı̄c∗3 ). (5) Using
these axes, determine the magnitude and location of the maximum axial stress. Verify that this
is the same result as in step 3. Use the following data: ta = 15 mm, tb = 30 mm, ba = 30
mm, bb = 40 mm, tw = 20 mm, and h = 100 mm, θ = −45 degrees, and Mb = 20 kN·m.
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Fig. 6.22. “C” shaped cross-section.
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Fig. 6.23. “Z” shaped cross-section.

Problem 6.10. Beam with “Z” section
The “Z” shaped cross-section beam shown in fig. 6.23 is subjected to a bending moment
of magnitude Mb, which is acting in the direction indicated in the figure. Create and use a
spreadsheet to accomplish the following tasks. Make your spreadsheet general so that different
dimensions can be entered into the spreadsheet along with different values for the load and
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its orientation. The spreadsheet outputs should be in clearly labeled cells. (1) Determine the
centroid location. (2) Determine the axial and bending stiffnesses in the centroidal axis system
Ic = (̄ıc2, ı̄

c
3) indicated on the figure. (3) Using this axis system, compute the orientation of

the neutral axis and compute magnitude and location of the maximum axial stress, |σmax
1 |. (4)

Find the orientation of the principal centroidal axes of bending, Ic∗ = (̄ıc∗2 , ı̄c∗3 ). (5) Using
these axes, determine the magnitude and location of the maximum axial stress. Verify that this
is the same result as in step 3. Use the following data: h = 95 mm, ba = 30 mm, bb = 50
mm, tw = 20 mm, ta = 15 mm, and tb = 30 mm, θ = −45 degrees, and Mb = 10 kN·m.

Problem 6.11. Thin-walled “L” section
Consider the thin-walled, “L” shaped cross-section of a beam as shown in fig. 6.15. Let b =
0.25 m , h = 0.1 m, and t = 2.5 mm. (1) Find the location of the centroid of the section. (2)
Find the orientation of the principal centroidal axes of bending.

Problem 6.12. Beam with “T” shaped cross-section
The “T” shaped cross-section beam shown in fig. 6.24 is subjected to a bending moment
of magnitude Mb, which is acting in the direction indicated in the figure. Create and use a
spreadsheet to accomplish the following tasks. Make your spreadsheet general so that different
dimensions can be entered into the spreadsheet along with different values for the load and
its orientation. The spreadsheet outputs should be in clearly labeled cells. (1) Determine the
centroid location. (2) Determine the axial and bending stiffnesses in the centroidal axis system
Ic = (̄ıc2, ı̄

c
3) indicated on the figure. (3) Using this axis system, compute the orientation of

the neutral axis and compute magnitude and location of the maximum axial stress, |σmax
1 |. (4)

Find the orientation of the principal centroidal axes of bending, Ic∗ = (̄ıc∗2 , ı̄c∗3 ). (5) Using
these axes, determine the magnitude and location of the maximum axial stress. Verify that this
is the same result as in step 3. Use the following data: h = 140 mm, b = 120 mm, th = 12
mm, tb = 10 mm, and a = 15 mm, θ = −45 degrees, and Mb = 10 kN·m.
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Fig. 6.24. “T” shaped cross-section.
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Problem 6.13. Thin-walled “Z” section
A beam is made of a homogeneous material of Young’s modulus, E, and has the unsymmet-
ric, thin-walled cross-section shown in fig 6.25. (1) Compute the centroidal stiffnesses in the
coordinate system indicated on the figure. (2) Compute the orientation of the neutral axis for
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the loading case where M2 6= 0, M3 = 0. (3) Using the orientation of the neutral axis, deter-
mine the points on the section where the bending stress will have the maximum positive and
negative values.

Problem 6.14. Thin-walled inverted “V” section
A thin-walled beam of length L and with cross-section shown in fig. 6.26 is simply supported
at both ends and carries a distributed loading, p0, acting upwards. (1) Find the maximum
direct stress due to bending and where it acts. (2) Sketch the distribution of axial stress on the
cross-section of the beam where the maximum bending stress acts.
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Fig. 6.26. Inverted “V” shaped cross-section.
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Fig. 6.27. BoxZ shaped cross-section.

Problem 6.15. Thin-walled cantilever beam with Box-Z section
A thin-walled cantilevered beam of length L and elastic modulus E is constructed with a cross-
section shown in fig. 6.27. A vertical load P is applied at the tip of the beam. (1) Determine the
axial stress acting at the root of the cantilever at point A and B. (2) Determine the deflection
of the tip using the given centroidal axes. (3) Determine the tip deflection using the principal
axes of bending, and show that they are equivalent to the results obtained in (2). Hint: this
is a numerically tedious problem, and use of a spreadsheet or computer program can be very
effective.

Problem 6.16. Cantilevered beam with a “T” shaped cross-section
Consider the cantilevered beam of length L with a thin-walled “T” cross-section as depicted
in fig. 6.28. A tip axial load P acts at the left edge of the top flange. A transverse tip load R
acts in the plane of the tip cross-section in the direction indicated on the figure. (1) Find the
principal centroidal axes of bending, ı̄∗1, ı̄∗2 and ı̄∗3, of the cross-section. (2) Write the three
uncoupled equations governing this problem and the corresponding boundary conditions. (3)
Compute all the stiffness constants appearing in the equations, but do not solve the problem.

Problem 6.17. Cantilevered beam with “Z” shaped cross-section
Figure 6.29 depicts a cantilevered beam with a thin-walled “Z” shaped cross-section subjected
to an axial load P applied at point A located at the lower left corner of the cross-section. (1)
Determine the location of centroid of the section and locate the axis system at this point (with
axis ı̄3 parallel to the web). (2) Determine the bending stiffnesses Hc

22, Hc
33, and Hc

23 for
the centroidal axis system. (3) Determine the orientation of the principal axes of bending, ı̄∗2
and ı̄∗3, and the principal centroidal bending stiffnesses Hc∗

22 , Hc∗
33 . (4) Solve this problem in

the centroidal coordinate system to determine the lateral displacements of the cross-section,
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Fig. 6.28. Cantilevered beam with “T”
shaped section under tip axial loads.
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Fig. 6.29. Cantilevered beam with “Z”
shaped section under tip axial load.

ū2(x1) and ū3(x1). (5) Solve this problem in the coordinate system defined by the principal
axes of bending to determine the lateral displacements, ū∗2(x1) and ū∗3(x1). (6) Show that the
two above solutions are identical. (7) Find the two components of displacement at the point of
application of the load P which can be in non-dimensional terms as Ebū2/P and Ebū3/P ,
respectively. (8) Find the axial stress distribution at the root of the beam. Plot this distribution
along the web and flanges. Where does the maximum axial stress occur? Express this as a
non-dimensional stress b2σ1/P . Use the following data: L = 10b, h = 2b and t = b/10.

Problem 6.18. Cantilevered beam with a “U” shaped cross-section
Consider the cantilevered beam of length L with a thin-walled “U” shaped cross-section as
depicted in fig. 6.30. A tip axial load, P , acts at the lower right corner of the section. Two
transverse tip loads, both of magnitude R, act down in the plane of the tip cross-section. (1)
Find the principal centroidal axes of bending, ı̄∗1, ı̄∗2 and ı̄∗3, of the cross-section. (2) Write
the three uncoupled equations governing this problem and the corresponding boundary condi-
tions. (3) Compute all the stiffness constants appearing in the equations, but do not solve the
problem.
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Fig. 6.30. Cantilevered beam with “U” shaped section under tip axial loads.
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Torsion

In the previous chapters, the behavior of beams subjected to axial and transverse
loads is studied in detail. In chapter 6, a fairly general, three dimensional loading
is considered, with one important restriction: the beam is assumed to bend without
twisting. Twisting, however, is often present in structures, and in fact, many important
structural components are designed to carry torsional loads primarily.

Power transmission drive shafts are a prime example of structural components
designed to carry a specific torque. Such components are designed with solid or thin-
walled circular cross-sections. Numerous other structural components are designed
to carry a combination of axial, bending, and torsional loads. For instance, an aircraft
wing must carry the bending and torsional moments generated by the aerodynamic
forces.

The behavior of structural components under torsional loads is the subject of this
chapter. The focus is on long prismatic structures similar to the beams treated in the
two previous chapters. When a long prismatic structure is subjected to torsion, it is
often referred to as a “bar” rather than a “beam,” but the two terms are often used
interchangeably.

7.1 Torsion of circular cylinders

Consider an infinitely long, homogeneous, solid or hollow circular cylinder sub-
jected to end torques, Q1, of equal magnitude and opposite directions, as depicted in
fig. 7.1. The cross-section of the cylinder can be a circle of radius R, or a circular
annulus of inner and outer radii, Ri and Ro, respectively.

This problem is characterized by two types of symmetries. First, a cylindrical
symmetry about axis ı̄1: any rotation of the cylinder or tube about axis ı̄1 leaves
both the structure and the loading unchanged, and hence, the solution must remain
unchanged. Second, as illustrated in fig. 7.2, the cylindrical structure is symmetric
with respect to any plane, P , passing through axis ı̄1. Depicted on this figure are two
points, A and B, both on a circle, C, of radius r < R. The plane of symmetry, P , is
selected to be normal to the line segment joining these two points. Along circle C,
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shear stresses will develop stemming from the application of torque Q1. Because of
the circular symmetry of the system, this shear stress must be of constant magnitude
along circle C, and tangent to it at all points. While the structure is symmetric with
respect to plane P , the loading is antisymmetric with respect to the same plane.
Consequently, the solution must be antisymmetric with respect to plane P .

i2

i2
i2

i1

i3

i3

i3

R

Circular
cylinder

Circular
annulusRi

Ro

Q1 Q1

Fig. 7.1. Circular cylinder subjected to end torques.
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Fig. 7.2. A plane of symmetry, P ,
of the circular cylinder.

First, consider the axial displacement components at points A and B, denoted uA
1

and uB
1 , respectively. The cylindrical symmetry of the problem implies that uA

1 =
uB

1 . On the other hand, the antisymmetry of the problem with respect to plane P
implies uA

1 = −uB
1 . The only solution consistent with these two requirements is

uA
1 = uB

1 = 0. Because points A and B are arbitrary points on the cross-section, the
axial displacement must vanish at all points of the cross-section: the cross-section
does not warp out-of-plane.

Next, consider the in-plane displacements of the same two points. The only dis-
placement field that is compatible with the cylindrical symmetry of the problem is
a rigid body rotation of the cross-section about its own center. It is easy to show
that this rigid body rotation also presents the required antisymmetry about any plane
passing through axis ı̄1.

In summary, for a circular cylinder or annulus, each cross-section rotates about
its own center like a rigid disk. This is the only deformation compatible with the
symmetries of the problem.

7.1.1 Kinematic description

Since the only deformation induced by torsion in a circular cylinder or annulus con-
sists of rigid body rotation of each cross-section, its motion is fully described by a
rotation angle, Φ1, as shown in fig. 7.3. This rotation brings an arbitrary point A of
the reference configuration to point A′ in the deformed configuration. Figure 7.3 also
shows polar coordinates r and α that define the position of point A. As usual, dis-
placement, and rotations are assumed to remain small, and hence, the distance from
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A to A′ can be approximated as r dΦ1, as shown in the figure. The sectional in-plane
displacement field can then be written as the projection of this displacement vector
along directions ı̄2 and ı̄3, respectively, to find

u2(x1, r, α) = −rΦ1(x1) sin α, u3(x1, r, α) = rΦ1(x1) cos α. (7.1)

Because the cross-section does not deform out of its own plane, the axial displace-
ment field must vanish, i.e., u1(x1, x2, x3) = 0.

The out-of-plane displacement
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Fig. 7.3. In-plane displacements for a circular
cylinder. The cross-section undergoes a rigid
body rotation.

field describing the torsional de-
formation of the circular cylinder
becomes

u1(x1, x2, x3) = 0, (7.2)

whereas the in-plane displacement field
given by eq. (7.1) becomes

u2(x1, x2, x3) = −x3Φ1(x1),
u3(x1, x2, x3) = x2Φ1(x1),

(7.3)

where the following transformation
from polar to Cartesian coordinates is
used: x2 = r cos α and x3 = r sin α.

Using the strain-displacement rela-
tionships, the corresponding strain field is now obtained as

ε1 =
∂u1

∂x1
= 0, (7.4)

ε2 =
∂u2

∂x2
= 0, ε3 =

∂u3

∂x3
= 0, γ23 =

∂u2

∂x3
+

∂u3

∂x2
= 0, (7.5)

γ12 =
∂u1

∂x2
+

∂u2

∂x1
= −x3 κ1(x1), γ13 =

∂u1

∂x3
+

∂u3

∂x1
= x2 κ1(x1), (7.6)

where the sectional twist rate is defined as

κ1(x1) =
dΦ1

dx1
. (7.7)

The sectional twist rate, κ1, measures the deformation of the circular cylinder. Note
that a constant twist angle implies a rigid body rotation of the cylinder about its axis,
but no deformation.

The axial strain field, eq. (7.4), vanishes because the section does not warp out-
of-plane, and the in-plane strain field, eq. (7.5), vanishes because the in-plane motion
of the section is a rigid body rotation. Under torsion, the only non-vanishing strain
components are the out-of-plane shearing strains given by eq. (7.6).
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This strain field is not easily visualized in rectangular coordinates because the
Cartesian strain components, γ12 and γ13, act in planes (̄ı1, ı̄2) and (̄ı1, ı̄3), respec-
tively. In view of the cylindrical symmetry of the problem at hand, it is more natural
to describe this strain field in the polar coordinate system, (r, α), shown in fig. 7.3.
In this axis system, the corresponding strain components are γr1 and γα1, where the
second index refers to axis ı̄1. For simplicity, however, these strain components will
be simply denoted γα and γr.

The relationship between the Cartesian and polar strain components can be ex-
pressed using eq. (1.81) for a rotation, α, about axis ı̄1, so that ı̄∗1 = ı̄1, ı̄∗2 = ı̄r, and
ı̄∗3 = ı̄α. In this case, `1 = 1, `2 = `3 = 0 and m1 = 0, m2 = cos α, m3 = sinα
and n1 = 0, n2 = − sin α, n3 = cos α. Using these direction cosines, eq. (1.81)
then yields

γr = γ12 cos α + γ13 sin α, γα = −γ12 sin α + γ13 cosα. (7.8)

Introducing the Cartesian shear strain components, eqs. (7.6), leads to

γr(x1, r, α) = 0, γα(x1, r, α) = r κ1(x1). (7.9)

The only non-vanishing strain component is
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Fig. 7.4. Visualization of out-of-plane
shear strain in polar coordinates.

the circumferential shearing strain component,
γα, which is proportional to the twist rate, κ1,
and varies linearly from zero at the center of
the section to its maximum value, Rκ1, along
the outer edge of the cylinder. It is of course in-
dependent of circumferential variable α, as re-
quired by the cylindrical symmetry of the prob-
lem.

This strain component is depicted in fig. 7.4.
Each circular cross-section retains its circular
shape and experiences no in-plane or out-of-

plane deformation: two adjacent sections experience a small differential rotation,
dΦ1, which gives rise to the circumferential shearing strain γα. As illustrated in
fig. 7.4, the shearing strain is readily obtained as γα = r dΦ1/dx1 = rκ1, in agree-
ment with eq. (7.9).

7.1.2 The stress field

Let the cylinder be made of a linearly elastic material that obeys Hooke’s law,
eq. (2.9). In view of the strain field, eq. (7.6), the only non-vanishing stress com-
ponents are

τ12 = −Gx3 κ1(x1), τ13 = Gx2 κ1(x1), (7.10)

where G is the shear modulus of the material. Once again, polar coordinates are more
convenient to use in visualizing the stress field, which is obtained from eq. (7.9) and
Hooke’s law as
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τr(x1, r, α) = 0, τα(x1, r, α) = Gr κ1(x1), (7.11)

where τr and τα are the radial and circumferential shear stress components, respec-
tively.

The distribution of the circumferential shear stress over the cross-section is
shown in fig. 7.5. Two characteristics of this distribution should be noted. First, at
all points, the shear stress acts in the circumferential direction, and the component
in the radial direction vanishes. Second, the magnitude of the stress varies linearly
along the radial direction: it is zero at the center and maximum at the largest radius.
This implies that the central region of the bar does not experience very high stress
values and is not very effective in resisting torsion. The peak stresses is reached at
the outer radius of the bar.
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Fig. 7.5. Distribution of circumferential shearing stress over the cross-section.

7.1.3 Sectional constitutive law

The torque acting on the cross-section at a given span-wise location is readily ob-
tained by integrating the circumferential shear stress, τα, multiplied by the moment
arm, r, over the circular cross-section to find

M1(x1) =
∫

A
ταr dA. (7.12)

Introducing the circumferential shear stress, eq. (7.11) then yields

M1(x1) =
∫

A
Gr2κ1(x1) dA =

[∫

A
Gr2 dA

]
κ1(x1) = H11 κ1(x1), (7.13)

where the torsional stiffness of the section is defined as

H11 =
∫

A
Gr2 dA. (7.14)

Relationship (7.13) is the constitutive law for the torsional behavior of the beam. It
expresses the proportionality between the torque and the twist rate, with a constant of
proportionality, H11, called the torsional stiffness. Formula (7.14) is true for circular
cross-sections only.
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If the section is made of a homogeneous material of shear modulus G, the tor-
sional stiffness then becomes H11 = GJ , where J =

∫
A r2 dA is the purely ge-

ometric integral known as the area polar moment. The entire theory is developed
for bars with circular cross-sections, and therefore this expression for the torsional
stiffness is valid for circular cross-sections only.

7.1.4 Equilibrium equations

The equations of equilibrium associated with

i1

dx1

M1

M  +

(dM /dx ) dx
1

1 1 1

q (x ) dx1 1 1

Fig. 7.6. Torsional loads acting on an
infinitesimal slice of the bar.

the torsional behavior can be obtained by con-
sidering the infinitesimal slice of the cylinder
of length dx1 depicted in fig. 7.6. Using a Tay-
lor series expansion, the moment acting on the
right-hand face is M1(x1 + dx1) = M1(x1) +
(dM1/dx1)dx1, where higher order differen-
tial terms have been neglected. Summing all the
moments acting about axis ı̄1 then yields the
torsional equilibrium equation

dM1

dx1
= −q1. (7.15)

7.1.5 Governing equations

Finally, the governing equation for the torsional behavior of circular cylinders is ob-
tained by introducing the torque, eq. (7.13), into the equilibrium condition, eq. (7.15)
and recalling the definition of the twist rate, eq. (7.7), to find

d
dx1

[
H11

dΦ1

dx1

]
= −q1. (7.16)

This second order differential equation can be solved for the twist distribution,
Φ1(x1), given the applied torque distribution, q1(x1).

Two boundary conditions involving the rotation, Φ1, or the twist rate, κ1, are re-
quired for the solution of eq. (7.16), one at each end of the cylinder. Typical boundary
conditions are as follows.

1. A fixed (or clamped) end allows no rotation, i.e., Φ1 = 0.
2. A free (unloaded) end corresponds to M1 = 0, which, for eq. (7.13), can be

expressed as κ1 = dΦ1/dx1 = 0.
3. Finally, if the end of the cylinder is subjected to a concentrated torque, Q1, the

boundary condition is M1 = Q1, which becomes H11 dΦ1/dx1 = Q1.
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7.1.6 The torsional stiffness

The torsional stiffness of the section, H11, characterizes the stiffness of the cylinder
when subjected to torsion. If the cylinder is made of a homogeneous material, the
shear modulus is identical at all points of the cross-section and can be factored out
of eq. (7.14), which is then easily evaluated in polar coordinates

H11 = G

∫ 2π

0

∫ R

0

r2 rdrdα =
π

2
GR4. (7.17)

For a circular tube the second integral extends from the inner radius, Ri, to the outer
radius, Ro, to find

H11 = G

∫ 2π

0

∫ Ro

Ri

r2 rdrdα =
π

2
G(R4

o −R4
i ). (7.18)

A common situation of great practical importance is that of a thin-walled circular
tube. Let the mean radius of the tube be Rm = (Ro + Ri)/2, and the wall thickness
t = Ro − Ri. The thin wall assumption implies t/Rm ¿ 1. The torsional stiffness
of the thin-walled tube then becomes

H11 =
π

2
G(R2

o + R2
i )(Ro + Ri)(Ro −Ri) ≈ 2πGR3

mt. (7.19)

Consider now a thin-walled circular tube consisting of N concentric layers of
different materials through the thickness of the wall, as depicted in fig. 7.7. Assuming
the material to be homogeneous within each layer, the torsional stiffness becomes

H11 =
π

2

N∑

i=1

G[i]
[
(R[i+1])4 − (R[i])4

]
,

where G[i] is the shear modulus in layer i. For a thin-walled tube, each layer will be
thin, and the above approximation can be used once again to find

H11 = 2π

N∑

i=1

G[i]t[i]
(

R[i+1] + R[i]

2

)3

. (7.20)

The torsional stiffness is the weighted average of the shear moduli of the various
layers. The weighting factor, t[i]

[
(R[i+1] + R[i])/2

]3
, strongly biases the average in

favor of the outermost layers.

7.1.7 Measuring the torsional stiffness

In the previous section, the torsional stiffness of a circular cylinder is computed from
the geometry of the cross-section and the properties of the constituent materials. For
example, eq. (7.17) gives the torsional stiffness for a cylinder made of a homoge-
neous, isotropic material, while eq. (7.20) gives the stiffness for a thin-walled tube
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Fig. 7.7. Thin-walled tube made of layered
materials.
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Fig. 7.8. Configuration of the test to deter-
mine the torsional stiffness.

made of composite materials. It is possible to experimentally measure the torsional
stiffness of a cylinder using the torsional test set-up depicted in fig. 7.8. The torque,
Q1, is applied to the test sample by a torsional testing machine.

The deformation of the test section can be measured by the chevron strain gauge
shown in fig. 1.24. Two strain gauges oriented at ±45 degree angles with respect to
the axis of the cylinder, as shown in fig. 7.8, yield the shear strain at the outer surface
of the cylinder. In view of eq. (1.102), γ12 = e+45 − e−45, where e+45 and e−45 are
the extensional strain measurements along these two directions. Using eq. (7.9), this
shear strain can be related to the twist rate of the cylinder: γ12 = γα = Rκ1, where
R is the radius of the cylinder. It then follows that κ1 = (e45 − e−45)/R.

The test procedure is as follows. The circular cylinder is placed in the torsional
testing machine and a torque Q1 of increasing magnitude is applied. For each load-
ing level, the corresponding deformation is measured by the strain gauges. The raw
test data consists of loading levels, Q1i, i = 1, 2, . . . , n, where n is the number of
data points, and the corresponding strains, ε45i and e−45i. From this raw data, the
deformation of the cylinder is computed, κ1i = (e45i − e−45i)/R. This computed
data is then plotted in the following manner: deformation, κ1i, along the abscissa and
torque, Q1i, along the ordinate.

If the applied load remains small, the behavior of the cylinder is expected to
be linear as expressed by eq. (7.13), i.e., a linear relationship should be observed
between torque and twist rate. Hence, the slope of the experimentally obtained Q3i

versus κ1i curve should yield the torsional stiffness of the cylinder. Note that this
experimental technique is valid for cylinders made of homogeneous materials, or for
complex constructions involving many layers of concentric composite materials, as
long as the cylindrical symmetry of the sample is maintained.

7.1.8 The shear stress distribution

The local circumferential shear stress can be related to the sectional torque by elim-
inating the twist rate between eqs. (7.11) and (7.13) to find

τα = G
M1(x1)

H11
r. (7.21)
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where G is the shear modulus at the location where the stress is computed.
The shear strain defined by eq. (7.9) increases linearly from zero at the center

of the circular section to a maximum value at the outer radius. As discussed in sec-
tion 7.1, this linear distribution of shear strain is a direct consequence of the symme-
tries of the problem, and is independent of the bar’s constituent materials. If the bar
is made of a homogeneous material, the linear distribution of shear strains results in a
linear distribution of shear stresses, as implied by eq. (7.21) and depicted in fig. 7.5.
On the other hand, if the section is made of concentric layers of distinct material as
depicted in fig. 7.7, the shear stress in layer i, denoted τ

[i]
α , is still given by eq. (7.21)

as τ
[i]
α = G[i](M1/H11) r. Within each layer, the shear stress distribution is still

linear, but discontinuities might appear at the interface between the various layers.
The maximum shear stress in a section of homogeneous material occurs at the

largest value of r, i.e., at the outer edge of the cylinder. For a circular cylinder, the
torsional stiffness is given eq. (7.17) and the magnitude of maximum shear stress
becomes

τmax
α =

2M1(x1)
πR3

. (7.22)

For a circular tube, the torsional stiffness is given eq. (7.18), and the magnitude of
maximum shear stress is

τmax
α =

2RoM1(x1)
π(R4

o −R4
i )

. (7.23)

Finally, for a thin-walled circular tube, the shear stress distribution becomes nearly
uniform through-the-thickness of the wall,

τmax
α ≈ M1(x1)

2πR2
mt

. (7.24)

Similarly, the shear stress distribution in a tube made of thin concentric layers of
various materials will be nearly uniform within each layer

τ [i]
α ≈ G[i] R

[i+1] + R[i]

2
M1(x1)

H11
, (7.25)

where the torsional stiffness, H11, is given by eq. (7.20).
Once the local shear stress is determined, a strength criterion is applied to de-

termine whether the structure can sustain the applied loads. For a cylindrical bar,
combining the strength criterion, eq. (2.28) and the shear stress distribution given
by eq. (7.21) yields GR|M1(x1)|/H11 ≤ τallow, where τallow is the allowable shear
stress for the material. Since the torque varies along the bar’s span, this condition
must be checked at all points along the span. In practice, it is convenient to first
determine the maximum torque, denoted Mmax

1 , then apply the strength criterion

GR

H11
|Mmax

1 | ≤ τallow. (7.26)

If the section consists of layers made of various materials, the strength of each
layer will, in general, be different, and the strength criterion becomes
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G[i]R[i+1]

H11
|Mmax

1 | ≤ τ
[i]
allow, (7.27)

where τ
[i]
allow is the allowable shear stresses for layer i. The strength criterion must be

checked for each material layer.

7.1.9 Rational design of cylinders under torsion

The shear stress distribution in a cylinder subjected to torsion is shown in fig. 7.5.
Clearly, the material near the center of the cylinder is not used efficiently because
the shear stress becomes small in the central portion of the cylinder. A far more effi-
cient design is the thin-walled tube. Indeed, the shear stress becomes nearly uniform
through-the-thickness of the wall, and all the material is used at full capacity.

For a homogeneous, thin-walled tube, the mass of material per unit span is µ =
2πRmtρ, where ρ is the material density, Rm the mean radius, and t the thickness.
The torsional stiffness, eq. (7.19), now becomes

H11 = 2πGR3
mt =

µ

ρ
GR2

m.

Consider two thin-walled tubes made of identical materials, with identical masses
per unit span, but with mean radii, Rm and R′m, respectively, and thicknesses t and
t′, respectively. Because the mass per unit span are equal, the thicknesses of the two
tubes will be in inverse proportion of their radii, t/t′ = R′m/Rm. The ratio of their
torsional stiffnesses, denoted H11 and H ′

11, respectively, is

H11

H ′
11

=
(µ/ρ)GR2

m

(µ/ρ)GR′2m
=

(
Rm

R′m

)2

. (7.28)

For two tubes of equal mass, the torsional stiffness increases with the square of the
mean radius.

When subjected to identical torques, the ratio of the shear stresses in the two
tubes, denoted τα and τ ′α, respectively, becomes

τα

τ ′α
=

GM1Rm/H11

GM1R′m/H ′
11

=
RmH ′

11

R′mH11
=

R′m
Rm

. (7.29)

For two tubes of equal mass, the shear stress is inversely proportional to the mean
radius.

The ideal structure to carry torsional loads is a thin-walled tube with a large mean
radius, because this yields the highest torsional stiffness and lowest maximum shear
stress for a given mass of material and applied torque. In specific applications, limits
will be placed on how large the mean radius can be. Furthermore, very thin-walled
tubes can become unstable through a phenomenon called torsional buckling. This
type of instability puts a limit on how thin the wall can be.
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7.1.10 Problems

Problem 7.1. Torsion of a bimetallic bar
A circular bar is constructed by bonding an aluminum shell around a solid steel cylinder. The
radius of the steel cylinder is RS = 10 mm, and the outer radius of the aluminum shell is
RA = 20 mm. The overall length of the bar is given by L = 1 m, and a torque T = 1
kN·m is applied at the ends. The shear moduli for the aluminum and steel are GA = 28 GPa
and GS = 76 GPa, respectively. (1) Find the maximum shear stress in the steel and in the
aluminum. (2) Determine the total twist angle of the bar. (3) Determine the torsional stiffness.
(4) Find the allowable torque for a safety factor of 2 when the yield stresses for both materials
is 300 MPa.

Problem 7.2. Torsion of a circular bar with hollow segment
The cylindrical bar shown in fig. 7.9 consists of two segments; the left segment is clamped
at point R, Φ1(0) = 0. The left segment of length L is a solid circular bar of radius RO ,
while the right segment of length L is a hollow circular bar of inner radius Ri. A moment Q1

is applied at point T. (1) Determine the twist angle at point T. (2) Determine the equivalent
torsional stiffness, H , for the complete bar, defined as H = Φ1(2L)/Q1. (3) Determine ratio
of maximum shear stress in the two sections.

LL

RO

Rii1

F1(0) F1(L) F1(2L)

R M T

Fig. 7.9. Circular bar with hollow segment.

Problem 7.3. Torsion of a circular bar with hollow segment
The cylindrical bar shown in fig. 7.9 consists of two segments, clamped at point R and T,
Φ1(0) = Φ1(2L) = 0. The left segment of length L is a solid circular bar of radius RO , while
the right segment of length L is a hollow circular bar of inner radius Ri. A moment Q1 is
applied at point M. (1) Determine the torque carried in each segment. (2) Determine the twist
angle at point M. (3) Determine the equivalent torsional stiffness, H , at point M, defined as
H = Φ1(L)/Q1. (4) Determine the maximum shear stress in each segment.

Problem 7.4. Torsion of a hollow bar
A circular bar of radius R = 200 mm is replaced by a hollow bar of inner and outer radii Ri

and Ro, respectively, with R0/Ri = 2. If the two bars are made of the same material and can
carry the same maximum torque, determine (1) the outer radius of the hollow bar, Ro, and (2)
the mass ratio for the hollow and solid bars.

7.2 Torsion combined with axial force and bending moments

An aircraft propeller is connected to a homogeneous, circular shaft. The engine ap-
plies a torque to the shaft resulting in the shear stress distribution described in sec-
tion 7.1.8. On the other hand, the propeller creates a thrust that generates a uniform



272 7 Torsion

axial stress distribution over the cross-section. If the torque acts alone, the yield cri-
terion is τ < τy . If the axial force acts alone, the corresponding criterion is σ < σy .
The question is now: what is the proper strength criterion to be used when both
axial and shear stresses are acting simultaneously? The yield criteria developed in
section 2.3 will be used to answer this question.

Propeller shaft under torsion and thrust

Consider an aircraft propeller connected to a homogeneous, circular shaft of radius
R. The engine applies a torque M1 to the shaft and the propeller exerts a thrust N1;
the corresponding stresses are

τ =
2M1

πR3
, and σ =

N1

πR2
. (7.30)

Clearly, the shaft is in a state of plane stress, and Tresca’s criterion, eq. (2.31), re-
quires the following inequalities to hold∣∣∣∣∣∣

1
2

N1

πR2
±

√
1
4

(
N1

πR2

)2

+ 4
(

M1

πR3

)2
∣∣∣∣∣∣
≤ σy,

2

√
1
4

(
N1

πR2

)2

+ 4
(

M1

πR3

)2

≤ σy.

if the material is to be free of yielding. Of these three conditions, the last is the most
stringent, and hence, Tresca’s yield criterion corresponds to an ellipse,

(
N1

πR2σy

)2

+ 16
(

M1

πR3σy

)2

= 1.

Figure 7.10 shows the geometric interpretation of the criterion. The structure behaves
in a linearly elastic manner under combined loadings represented by points inside
an ellipse drawn in the non-dimensional load space. The non-dimensional torque is
M1/(πR3σy) and the non-dimensional axial force is N1/(πR2σy).

If the von Mises criterion, eq. (2.36), is applied instead, the material will behave
in a linearly elastic manner when the following condition is satisfied

[(
N1

πR2

)2

+ 3
(

2M1

πR3

)2
]1/2

≤ σy.

Here again, the criterion is conveniently recast into a non-dimensional form as
(

N1

πR2σy

)2

+ 12
(

M1

πR3σy

)2

≤ 1.

where the terms in parentheses are non-dimensional loading components defined
earlier. Figure 7.10 shows this ellipse in the non-dimensional loading space. As
expected, the predictions of Tresca’s and von Mises’ criteria differ most when the
loading primarily generates shear stresses, i.e., along the applied torque axis, see
section 2.3.3.
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Fig. 7.10. Yield envelopes predicted by Tresca’s and von Mises’ criteria plotted in the non-
dimensional loading space.

Shaft under torsion and bending

Consider now a circular shaft subjected to both bending and torsion, as would occur,
for instance, in a cantilever shaft with a loaded tip pulley. Let M3 and M1 be the
applied bending moment and torque, respectively. The corresponding axial and shear
stress components are

σ =
4M3r

πR4
, and τ =

2M1r

πR4
, (7.31)

respectively. The maximum values occur at the same location on the cross-section at
the upper or lower edge where σ = 4M3/πR3 and τ = 2M1/πR3. Clearly, the shaft
is in a state of plane stress, and Tresca’s criterion, eq. (2.31), requires the following
inequalities to hold

∣∣∣∣∣∣
2M3

πR3
±

√(
2M3

πR3

)2

+ 4
(

M1

πR3

)2
∣∣∣∣∣∣
≤σy,

2

√(
2M3

πR3

)2

+ 4
(

M1

πR3

)2

≤σy,

if the material is to be free of yielding. Of these three conditions, the last is the most
stringent, and hence, Tresca’s yield criterion corresponds to an ellipse

16
(

M3

πR3σy

)2

+ 16
(

M1

πR3σy

)2

= 1.

Figure 7.11 shows the geometric interpretation of the criterion. The structure be-
haves in a linearly elastic manner for combined loadings represented by points inside
an ellipse drawn in the non-dimensional loading space defined by non-dimensional
torque, M1/(πR3σy), and non-dimensional bending moment, M3/(πR3σy).
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If von Mises’ criterion, eq. (2.36), is applied instead, the material will behave in
a linearly elastic manner when the following condition is satisfied

[(
4M3

πR2

)2

+ 3
(

2M1

πR3

)2
]1/2

≤ σy

Here again, the criterion is conveniently recast into a non-dimensional form as

16
(

M3

πR3σy

)2

+ 12
(

M1

πR3σy

)2

≤ 1,

Figure 7.11 shows this ellipse in the non-dimensional loading space.

Fig. 7.11. Yield envelopes predicted by Tresca’s and von Mises’ criteria plotted in the non-
dimensional loading space.

7.2.1 Problems

Problem 7.5. Pressure vessel subjected to combined loading
Consider the pressure vessel subjected to an internal pressure pi and an external torque Q, as
depicted in fig. 7.12. The pressure vessel is of radius R and wall thickness t. Use von Mises
criterion to compute the failure envelope in the non-dimensional loading space defined by
Q/(tR2σallow) and piR/(tσallow).

Problem 7.6. Pressure vessel subjected to combined loading
The experimental set-up depicted in fig. 7.13 is aimed at studying the behavior of materials
under complex stress states. A thin-walled pressure vessel of radius R = 11 mm and thickness
t = 2.0 mm is subjected to an internal pressure pi. At the same time, a normal force, N , and a
torque, Q, are applied to the sample. In a specific experiment, the applied normal force is N =
16 kN and the internal pressure pi = 20 MPa. The applied torque is slowly increased. The first
permanent deformations are observed at the outer surface of the sample when Q = 120 N·m.
(1) Find the yield stress for the material if it is assumed to follow von Mises’ yield criterion.
(2) Find the yield stress for the material if it is assumed to follow Tresca’s yield criterion.
(3) Find and plot the yield surface in the space defined by the three loading components, the
internal pressure, the applied axial force, and the applied torque.
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t

2R pi

Q Q

Fig. 7.12. Pressure vessel subjected to an ex-
ternal torque.

t

2R pi

Q Q

N N

Fig. 7.13. Pressure vessel subjected to inter-
nal pressure, external torque and axial force.

Problem 7.7. Beam with circular section under bending and torsion
Consider a cantilevered beam of length L = 1 m with a circular cross-section of inner radius
Ri = 45 mm and outer radius Ro = 50 mm. The beam is subjected to a tip torque Q = 7
kN·m and a tip transverse load P . Find the maximum allowable transverse load Pmax if the
allowable stress for the material is σallow = 450 MPa. Note: for a hollow circular section,
Hc

22 = Hc
33 = πE(R4

o −R4
i )/4.

7.3 Torsion of bars with arbitrary cross-sections

The theory of torsion presented in the two previous sections is valid for bars with
circular cross-sections only. In this section, the theory of torsion will be generalized
to bars presenting cross-sections of arbitrary shape.

7.3.1 Introduction

When analyzing the torsional behavior of circular cylinders, the circular symmetry
of the problem leads to the conclusion that each cross-section rotates about its own
center like a rigid disk. If this type of deformation is assumed to remain valid for
a bar of arbitrary cross-section, the displacement field, eqs. (7.2) and (7.3), and the
corresponding strain field, eqs. (7.4) to (7.6), will also describe the kinematics of bars
with arbitrary sections. The only remaining stress component are the circumferential
shear stress given by eq. (7.11).

Unfortunately, this assumption can lead to grossly erroneous results because the
solution it implies violates the equilibrium equations of the problem along the edge of
the section. Consider, for instance, torsion of the rectangular bar depicted in fig. 7.14.
The circumferential shear stress, τα, given by eq. (7.11), is shown at an edge of
the section, and it is resolved into its Cartesian components, τ12 and τ13. In view
of the principle of reciprocity of shear stresses, eq. (1.5), the existence of a stress
component, τ13, acting on the cross-section of the bar implies the existence of a shear
stress component of equal magnitude acting on the orthogonal face, which happens
to be the outer surface of the bar. Since the outer surface of the bar is stress free, the
shear stress component, τ13, must vanish on both faces. Consequently, the only shear
stress component that can exist along the edge is component, τ12, which is parallel
to the edge. This reasoning can be applied to any point along the edge of the section,
and consequently, at any point along the edge of the bar’s section, the shear stress
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Fig. 7.14. Shearing stresses along the edge of
a rectangular section.
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C D

Fig. 7.15. Four points on a rectangular cross-
section.

must be tangent to the edge. This condition is satisfied by the shear stress distribution
acting on the circular section depicted in fig. 7.5, but the same circumferential shear
stress distribution is not correct for the rectangular section shown in fig. 7.14.

As discussed in section 7.1, the symmetries associated with a circular cylinder
imply that the bar’s cross-section does not warp out-of-plane. No such conclusion can
be reached for the rectangular section shown in fig. 7.15, because it presents fewer
symmetries than the circular section. Indeed, the rectangular section is symmetric
with respect to planes (̄ı1, ı̄2) and (̄ı1, ı̄3), but does not present the circular symmetry
about axis ı̄1 characteristic of a circular section. Since the section is symmetric with
respect to plane (̄ı1, ı̄2) but the torsional loading is antisymmetric with respect to
the same plane, the solution must be antisymmetric with respect to this plane, i.e.,
uA

1 = −uB
1 and uC

1 = −uD
1 , where uA

1 , uB
1 , uC

1 and uD
1 , are the axial displacement

components at points A, B, C, and D, respectively. Similarly, the antisymmetry of
the solution with respect to plane (̄ı1, ı̄3) implies uA

1 = −uD
1 and uB

1 = −uC
1 .

Combining the results then leads to uA
1 = −uB

1 = uC
1 = −uD

1 , which does not
imply the vanishing of axial displacement at any of these points.

The same reasoning can be repeated for any set of four points symmetrically lo-
cated with respect to the two planes of symmetry of the section. It follows that while
the axial displacement field does present symmetries for the rectangular section, it
does not vanish; in other words, the section warps out-of-plane. In general, bars of
arbitrary shaped cross-sections will warp, in contrast with circular sections which
do not.

7.3.2 Saint-Venant’s solution

The solution to the problem of torsion of a bar with a cross-section of arbitrary shape
was first given by Saint-Venant. The solution process provides a good application of
basic elasticity theory and at the same time yields results of practical importance.
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Kinematic description

Consider a solid bar with a cross-section of arbitrary shape. The area of the cross
section is denoted A, while its outer contour is defined by curve C. The bar is of
infinite length and is subjected to end torques. A closer look at the problem and
experimental tests reveal that for a bar with an arbitrary section, each cross-section
rotates like a rigid body, and warps out of its own plane. This type of deformation is
described by the following assumed displacement field

u1(x1, x2, x3) = Ψ(x2, x3) κ1(x1), (7.32a)
u2(x1, x2, x3) = −x3Φ1(x1), u3(x1, x2, x3) = x2Φ1(x1). (7.32b)

The in-plane displacement field, eq. (7.32b), describes a rigid body rotation of
the cross-section, similar to the case for the circular cylinder, see eq. (7.3). The out-
of-plane displacement field does not vanish, however. Instead, it is assumed to be
proportional to the twist rate, κ1, and has an arbitrary variation over the cross-section
described by the unknown warping function, Ψ(x2, x3). This warping function will
be determined by enforcing equilibrium conditions for the resulting shear stress field.
It will be further assumed that the twist rate is constant along the axis of the bar,
i.e., κ1(x1) = κ1. This restriction results in what is known as the uniform torsion
problem.

The strain field

Given the assumed displacement field defined by eqs. (7.32a) and (7.32b), the as-
sociated strain field can be evaluated based on the strain-displacement relationships,
eqs. (1.63) and (1.71), to find

ε1 = Ψ(x2, x3)
dκ1

dx1
= 0, (7.33a)

ε2 = 0, ε3 = 0, γ23 = 0, (7.33b)

γ12 =
(

∂Ψ

∂x2
− x3

)
κ1, γ13 =

(
∂Ψ

∂x3
+ x2

)
κ1. (7.33c)

The vanishing of the axial strain, eq. (7.33a), is a direct consequence of the uni-
form torsion assumption, whereas the vanishing of the in-plane strains, eq. (7.33b)
stems from the rigid body rotation assumption for the in-plane displacement field,
eq. (7.32b). The only non-vanishing strain components, γ12 and γ13, depend on the
partial derivatives of the unknown warping function.

The stress field

For bars made of a linearly elastic, isotropic material, Hooke’s law, eqs. (2.4) and
(2.9), is assumed to apply. The stress field is then found from the strain field as
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σ1 = 0, (7.34a)
σ2 = 0, σ3 = 0, τ23 = 0, (7.34b)

τ12 = Gκ1

(
∂Ψ

∂x2
− x3

)
, τ13 = Gκ1

(
∂Ψ

∂x3
+ x2

)
. (7.34c)

Equilibrium equations

This stress field must satisfy the general equilibrium equations, eqs. (1.4), at all
points of the section. Neglecting body forces, and in view of eq. (7.34b), two of the

to
∂τ12

∂x2
+

∂τ13

∂x3
= 0. (7.35)

Introducing eqs. (7.34c), it follows that the warping function must satisfy the follow-
ing partial differential equation

∂2Ψ

∂x2
2

+
∂2Ψ

∂x2
3

= 0. (7.36)

at all points of the cross-section.
The relevant boundary conditions can be
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Fig. 7.16. Equilibrium condition
along the outer contour C.

developed by requiring the satisfaction of the
equilibrium conditions along the outer edge of
the section that defines curve C. Figure 7.16
shows a portion of the outer contour, C, and
a curvilinear variable, s, that measures length
along this curve.

As illustrated in fig. 7.14, the normal com-
ponent of shear stress must vanish at all points
along C, i.e.,

τn = 0, (7.37)

whereas the component of shear stress, τs, tan-
gent to the contour does not necessarily vanish. In terms of Cartesian components,
the normal component of shear stress, see fig. 7.16, is

τn = τ12 sin β + τ13 cos β = τ12

(
dx3

ds

)
+ τ13

(
−dx2

ds

)
= 0. (7.38)

Introducing eq. (7.34c) then yields the following boundary condition for the warping
function (

∂Ψ

∂x2
− x3

)
dx3

ds
−

(
∂Ψ

∂x3
+ x2

)
dx2

ds
= 0. (7.39)

The warping function, Ψ(x2, x3), is the solution of the following partial differ-
ential equation and associated boundary conditions,

three equilibrium equations are identically satisfied and the remaining one reduces
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∂2Ψ

∂x2
2

+
∂2Ψ

∂x2
3

= 0, over A, (7.40a)
(

∂Ψ

∂x2
− x3

)
dx3

ds
−

(
∂Ψ

∂x3
+ x2

)
dx2

ds
= 0, along C. (7.40b)

This particular kind of partial differential equation is called Laplace’s equation, and
solution of this problem is rather complicated in view of the complex boundary con-
dition that must hold along C.

Prandtl’s stress function

An alternative formulation of the problem that leads to simpler boundary conditions
is found by introducing a stress function, φ, proposed by Prandtl. This function,
φ(x2, x3), is defined as

τ12 =
∂φ

∂x3
, τ13 = − ∂φ

∂x2
. (7.41)

This shear stress field automatically satisfies the local equilibrium equation, as can
be verified by introducing eq. (7.41) into eq. (7.35).

Next, the shear stresses, τ12 and τ13, expressed in terms of the warping function
by eq. (7.34c) must equal their counterparts expressed in terms of Prandtl’s stress
function by eq. (7.41) to find

τ12 = Gκ1

(
∂Ψ

∂x2
− x3

)
=

∂φ

∂x3
, τ13 = Gκ1

(
∂Ψ

∂x3
+ x2

)
= − ∂φ

∂x2
. (7.42)

The warping function can be eliminated by taking a partial derivative of the first
equation with respect to x3 and a partial derivative of the second with respect to x2.
Subtracting these two equations then yields a single partial differential equation for
Prandtl’s stress function,

∂2φ

∂x2
2

+
∂2φ

∂x2
3

= −2Gκ1. (7.43)

The boundary conditions along C follow from eqs. (7.38) and (7.41)

τn =
∂φ

∂x3

dx3

ds
+

∂φ

∂x2

dx2

ds
=

dφ

ds
= 0. (7.44)

which implies a constant value of φ along curve C. If the section is bounded by sev-
eral disconnected curves, the stress function must be a constant along each individual
curve, although the value of the constant can be different for each curve. For solid
cross-sections bounded by a single curve, the constant value of the stress function
along that curve may be chosen to vanish because this choice has no effect on the
resulting stress distribution.

The stress function is the solution of the following partial differential equation
and associated boundary condition
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∂2φ

∂x2
2

+
∂2φ

∂x2
3

= −2Gκ1, on A, (7.45a)

dφ

ds
= 0, along C. (7.45b)

This partial differential equation is no longer homogeneous, a form referred to as
Poisson’s equation. The advantage of this formulation is that the boundary condition
is much simpler than that obtained for the warping function, see eq. (7.40b).

Sectional equilibrium

The differential equations for the warping and stress functions are found from local
equilibrium consideration. Global equilibrium of the section must also be verified.
For a solid section bounded by a single contour, the resultant shear forces acting on
the section are

V2 =
∫

A
τ12 dA =

∫

x2

∫

x3

∂φ

∂x3
dx2dx3 =

∫

x2

[∫

x3

∂φ

∂x3
dx3

]
dx2 = 0,

and

V3 =
∫

A
τ13 dA =

∫

x2

∫

x3

− ∂φ

∂x2
dx2dx3 = −

∫

x3

[∫

x2

∂φ

∂x2
dx2

]
dx3 = 0,

where the last equalities follow from selecting a zero value for the stress function
along the contour C. This is the expected result because no shear forces are applied.

The total torque acting on the section is

M1 =
∫

A
(x2τ13 − x3τ12) dA =

∫

A

(
−x2

∂φ

∂x2
− x3

∂φ

∂x3

)
dA. (7.46)

Integrating by parts then yields

M1 = 2
∫

A
φ dA−

∫

x3

[x2φ]x2
dx3 −

∫

x2

[x3φ]x3
dx2. (7.47)

For solid cross-sections bounded by a single curve, the constant value of the
stress function along that curve may be chosen as zero, and the boundary terms
disappear, leading to the simple result

M1 = 2
∫

A
φ dA. (7.48)

The applied torque equals twice the “volume” under the stress function. This formula
applies only to solid cross-sections bounded by a single curve. Indeed, if the section
is bounded by several disconnected curves, the stress function equals a different con-
stant along each individual curve, and the boundary terms no longer vanish. For such



7.3 Torsion of bars with arbitrary cross-sections 281

sections, the applied torque should be evaluated with the help of eq. (7.46) rather
than (7.48).

In summary, the stress distribution in a bar of arbitrary cross-section subjected to
uniform torsion can be obtained by evaluating either the warping or stress function
from eqs. (7.40) or (7.45), respectively. The stress field then follows from eqs. (7.34c)
or (7.41), respectively. Since all governing equations are satisfied, this represents an
exact solution of the problem.

Saint-Venant’s solution procedure is an example of the semi-inverse solution
technique. The displacement field is assumed to be of the form given by eqs. (7.32).
It is shown, however, that based on this displacement field, all equations of elasticity
are satisfied, and hence the assumed displacement field must be the exact solution of
the problem.

Example 7.1. Torsion of an elliptical bar
Consider a bar with an elliptical cross-section as shown in fig. 7.17. The equation
for curve C defining the section is (x2/a)2 + (x3/b)2 = 1. A stress function of the
following form is assumed

φ = C0

[(x2

a

)2

+
(x3

b

)2

− 1
]

,

where C0 is an unknown constant. The boundary condition, eq. (7.45b), is clearly
satisfied since φ = 0 along C. Substituting this in the governing differential equation,
eq. (7.45), leads to the following equation for constant C0: C0(2/a2 + 2/b2) =
−2Gκ1, or C0 = −a2b2Gκ1/(a2 + b2). The stress function then becomes

φ = − a2b2

a2 + b2

[(x2

a

)2

+
(x3

b

)2

− 1
]

Gκ1. (7.49)

i2

i3

A
b

a

B

A

C

Fig. 7.17. A bar with an elliptical cross-section.

The torque can now be computed from eq. (7.48) to find

M1 = − 2a2b2

a2 + b2
Gκ1

∫

A

[(x2

a

)2

+
(x3

b

)2

− 1
]

dA = G
πa3b3

a2 + b2
κ1 = H11κ1,

where
∫
A dA = πab,

∫
A x2

2 dA = πa3b/4, and
∫
A x2

3 dA = πab3/4 are the
ellipse’s area and second moments of area about axes ı̄2 and ı̄3, respectively. The
torsional stiffness of the elliptical section is
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H11 = G
πa3b3

a2 + b2
. (7.50)

Using these results, the stress function can be expressed in terms of the applied
torque

φ = −M1

πab

[(x2

a

)2

+
(x3

b

)2

− 1
]

.

The stress distribution then follows from eqs. (7.41),

τ12 = − 2x3

πab3
M1, τ13 =

2x2

πa3b
M1.

The maximum shear stresses occur for the extreme values of x2 and x3, which are
found along the section’s boundary. The shear stress distributions along axes ı̄2 and
ı̄3 are shown in fig. 7.18a: the maximum stresses are found points B and A as τB

12 =
−2M1/(πab2) and τA

13 = 2M1/(πa2b), respectively. The maximum shear stress
occurs at the end of the minor axis of the ellipse, i.e., at point B, where

|τmax| = 2M1

πab2
.

(b) Shear stress vectors and contours(a) Shear stress distributions along the axes

t
13

t
12

i2

i3

A A

B B

i2

i3

A
C C

Fig. 7.18. Shear stress distribution for an elliptical cross-section.

Figure 7.18b shows the shear stress vectors over the cross-section; as required by
the principle of reciprocity of shear stresses, eq. (1.5), the shear stress vectors along
curve C are tangent to this curve.

Finally, the warping function can be obtained by integrating eq. (7.42). Substi-
tuting the calculated stress function, eq. (7.49), into these equations yields

∂Ψ

∂x2
= −a2 − b2

a2 + b2
x3,

∂Ψ

∂x3
= −a2 − b2

a2 + b2
x2.

Integrating the first equation with respect to x2 and the second with respect to x3

yields Ψ = −x2x3(a2 − b2)/(a2 + b2) + f(x3), and Ψ = −x2x3(a2 − b2)/(a2 +
b2) + g(x2), respectively. These two solutions are equal only if f(x3) = g(x2) = 0,
which implies Ψ = −(a2 − b2)/(a2 + b2) x2x3. Equation (7.32a) now yields the
warping displacement as

u1(x2, x3) = −κ1
a2 − b2

a2 + b2
x2x3. (7.51)
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Note that the elliptic cross-section presents two planes of symmetry, planes
(̄ı1, ı̄2) and (̄ı1, ı̄3). As discussed in section 7.3.1, this implies that the warping dis-
placement must be antisymmetric with respect to these two planes. The left portion
of fig. 7.19 depicts the warping displacement with a contour plot immediately be-
low it. A separate contour plot is shown in the right portion of the same figure. As
expected for an antisymmetric function, the warping displacement vanishes along
axes ı̄2 and ı̄3, and is of equal magnitude but opposite signs at points symmetrically
located with respect to axes ı̄2 and ı̄3.
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Fig. 7.19. Warping distribution for an elliptic cross-section.

For a = b = R, the bar with an elliptical section becomes a circular cylinder of
radius R. The torsional stiffness for the elliptical section reduces to eq. (7.17), and
the maximum shear stress to eq. (7.22). Finally, the warping function vanishes, and
this is fully consistent with the symmetry arguments made for the circular cylinder
proving that the warping displacement must vanish.

Example 7.2. Torsion of a thick cylinder
Consider a circular tube of inner radius Ri and outer radius Ro made of a homoge-
neous, isotropic material of shear modulus G, as shown in fig. 7.20. Note that this
section is bounded by two curves, Ci and Co, as shown on the figure, that denote the
inner and outer circles bounding the section.

The stress function for this problem is assumed to be in the following form:
φ = Cr2, where r2 = x2

2 + x2
3 and C is an unknown constant. The values of the

stress function along curves Ci and Co are φi = CR2
i and φo = CR2

o, respectively.
Since C, Ri and Ro are constants, this implies that the boundary conditions on the
stress function, given by eq. (7.45b), are satisfied: dφi/dsi = dφo/dso = 0, where si

and so are curvilinear variables along Ci and Co, respectively. Note that the boundary
condition requires φ to be constant along curves Ci and Co, but this does not imply
that φi = 0, or φo = 0, or φi = φo.

Introducing the assumed stress function into the governing partial differential
equation (7.45) yields 2C + 2C = −2Gκ1. Hence, the stress function becomes
φ = −Gκ1r

2/2. This represents the exact solution of the problem, because the stress
function satisfies the governing partial differential equation and boundary conditions.
The shear stress distribution then follows from eq. (7.41) as τ12 = −Gκ1x3 and
τ13 = Gκ1x2. The torque generated by this shear stress distribution is evaluated
with the help of eq. (7.46) to find
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t
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i3

R0

Ri

Rm

Co

Ci

Fig. 7.20. Cross-section of a circular tube.

M1 =
∫ 2π

0

∫ Ro

Ri

(x2τ13 − x3τ12) rdrdα =
∫ 2π

0

∫ Ro

Ri

Gκ1(x2
2 + x2

3) rdrdα

=
π

2
Gκ1(R4

o −R4
i ) = H11κ1,

where the Cartesian to polar coordinate transformation relationships, x2 = r cosα
and x3 = r sin α are used. Using eq. (7.48) to evaluate the torque will yield incorrect
results, as can be easily verified. This is because eq. (7.48) is derived assuming a
solid cross-section bounded by a single curve; this is not the case for the present
thick tube that is bounded by two curves, Ci and Co.

The torsional stiffness of the thick tube is H11 = πG(R4
o−R4

i )/2, which matches
the previously obtained result, eq. (7.18). It is left to the reader to show that the stress
field obtained from the stress function matches that found in section 7.1.2.

7.3.3 Saint-Venant’s solution for a rectangular cross-section

The formulation of the uniform torsion problem for bars of arbitrary cross-sectional
shape is treated in section 7.3.2 and requires the solution of a partial differential equa-
tion for either the warping function, or the stress function, see eq. (7.40) or (7.45),
respectively. Except for very simple geometries, such as the elliptical section treated
in the previous example, the exact solution of the problem is arduous.

Two solutions of the uniform torsion problem for a rectangular cross-section are
presented in this section. First, an approximate solution based on the co-location
approach, then an exact solution based on Fourier series expansion.

Approximate solution

Consider a bar with a rectangular cross-section of width a and height b depicted in
fig. 7.21. The following expression will be assumed for the stress function

φ(η, ζ) = C0

(
η2 − 1

4

)(
ζ2 − 1

4

)
,

where C0 is an unknown constant, η = x2/a is the non-dimensional coordinate
along axis ı̄2, and ζ = x3/b that along axis ı̄3, as shown in fig. 7.21. This choice of
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the stress function implies that φ(η = ±1/2, ζ) = 0 and φ(η, ζ = ±1/2) = 0, i.e.,
φ vanishes along the edge, C, of the section, as required by the boundary conditions
of the problem, eq. (7.45b).

i2

i3

a

b

C

A
B

+1/2

+1/2

-1/2

A h

z

B

-1/2

Fig. 7.21. Bar with a rectangular cross-section.

Using the chain rule for partial derivatives, ∂/∂x2 = ∂/∂η (∂η/∂x2), where
∂η/∂x2 = 1/a; a similar expression holds for ∂/∂x3. Substituting the assumed
stress function into the governing partial differential equation, eq. (7.43), then leads
to 2C0(ζ2 − 1/4)/a2 + 2C0(η2 − 1/4)/b2 = −2Gκ1. This result shows that the
assumed solution does not satisfy the partial differential equation.

A number of methods are available to construct approximate solutions, but one of
the simplest is to satisfy this equation only a specific points of the cross-section, an
approach called the co-location method. In this case, the governing partial differential
equation will be satisfied at the center of the section, (η, ζ) = (0, 0), which implies
−C0/(2a2)−C0/(2b2) = −2Gκ1. Solving for C0 yields C0 = 4Gκ1a

2b2/(a2+b2).
The stress function now becomes

φ(η, ζ) =
4a2b2Gκ1

a2 + b2

(
η2 − 1

4

)(
ζ2 − 1

4

)
.

For this section bounded by a single curve, the externally applied torque is given
by eq. (7.48) as

M1 = 2
∫

A
φ dA =

a2b2Gκ1

2(a2 + b2)

∫

A

(
η2 − 1

4

)(
ζ2 − 1

4

)
dA =

2
9

a3b3Gκ1

a2 + b2
.

This result reveals the torsional stiffness, H11 = M1/κ1. The non-dimensional tor-
sional stiffness, H̄11 = H11/(ab3G), then becomes

H̄11 =
H11

ab3G
=

2
9

1
1 + (b/a)2

. (7.52)

The stress function can be be expressed in terms of the applied torque as φ =
18M1(η2−1/4)(ζ2−1/4)/(ab). The shear stress field now follows from eqs. (7.41)
as

τ12 =
1
b

∂φ

∂ζ
=

36M1

ab2

(
η2 − 1

4

)
ζ; τ13 = −1

a

∂φ

∂η
= −36M1

a2b
η

(
ζ2 − 1

4

)
.
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Open form exact solution using a Fourier series

Consider once again the bar with a rectangular cross-section of width a and height
b, as depicted in fig. 7.21. A Fourier series expansion of the stress function will be
assumed as the solution of the problem,

φ(η, ζ) =
∞∑

i=odd

∞∑

j=odd

Cij cos iπη cos jπζ,

where η = x2/a, ζ = x3/b, and Cij are unknown coefficients.
First, it is verified that this assumed solution satisfies the boundary conditions of

the problem, eq. (7.45b). Indeed, at η = ±1/2, cos(iπη) = cos(±iπ/2) = 0 for
all odd values of i; similarly, φ vanishes at ζ = ±1/2 for all odd values of j. The
function φ does not vanish along the boundaries for even values of i or j, and this is
why only odd values of i and j are included in the expression for the stress function.

Substituting the above expression into the governing partial differential equation,
eq. (7.43), yields

∞∑

i=odd

∞∑

j=odd

Cij

[(
iπ

a

)2

+
(

jπ

b

)2
]

cos iπη cos jπζ = 2Gκ1.

This forms a set of equations for the unknown coefficients, Cij . The evaluation
of these coefficients relies on the orthogonality properties of cosine functions. The
above equation is first multiplied by cosmπη cos nπζ, where m and n are arbitrary
odd integers, then integrated over the cross-section to yield

∞∑

i=odd

∞∑

j=odd

Cij

[(
iπ

a

)2

+
(

jπ

b

)2
][∫ 1/2

−1/2

cosmπη cos iπη dη

]

[∫ +1/2

−1/2

cos nπζ cos jπζ dζ

]
= −2Gκ1

[∫ 1/2

−1/2

cos mπη dη

][∫ 1/2

−1/2

cos nπζ dζ

]
.

The bracketed integrals can be evaluated in closed form with the help of eqs. (A.46b)
and (A.47) and vanish when m 6= i or n 6= j, thus eliminating the summations. The
remaining terms are

Cmn

[(mπ

a

)2

+
(nπ

b

)2
]

1
4

=
8

mnπ2
(−1)(m−1)/2(−1)(n−1)/2Gκ1.

Solving for the unknown coefficients, Cmn, then yields the stress function as

φ(η, ζ) =
32Gκ1

π2

∞∑

i=odd

∞∑

j=odd

(−1)(i+j−2)/2

ij
[
(iπ/a)2 + (jπ/b)2

] cos iπη cos jπζ. (7.53)

Since the section is bounded by a single curve, the externally applied torque is
given by eq. (7.48)
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M1 =
28

π6
ab3Gκ1

∞∑

i=odd

∞∑

j=odd

1
(ij)2 [i2(b/a)2 + j2]

= H11κ1,

from which it follows that the non-dimensional torsional stiffness is

H̄11 =
H11

ab3G
=

28

π6

∞∑

i=odd

∞∑

j=odd

1
(ij)2 [i2(b/a)2 + j2]

. (7.54)

Although in the form of a doubly infinite series, this expression for the torsional
stiffness converges rapidly. For a bar with a square cross-section, a = b, the torsional
stiffness obtained using the double sine series is H̄11 = 0.140577. Considering only
a single term in the series, i = j = 1, results in H̄11 = 28 [1/2] /π6 = 0.133, a
5% error. The four term series generated by i and j taking values of 1 and 3 yields
H̄11 = 28 [1/2 + 1/90 + 1/90 + 1/1458] /π6 = 0.139, a 1% error.

f

Fig. 7.22. Stress function, φ.

Fig. 7.23. Distribution of shear stress over
cross-section. The arrows represent the shear
stresses; the contours represent constant val-
ues of the stress function φ.

The shear stress field now follows from eqs. (7.41) as

τ12 = − 25

π3

bG

H11
M1

∞∑

i=odd

∞∑

j=odd

(−1)(i+j−2)/2

i [i2(b/a)2 + j2]
cos

iπx2

a
sin

jπx3

b
, (7.55a)

τ13 =
25

π3

b2G

aH11
M1

∞∑

i=odd

∞∑

j=odd

(−1)(i+j−2)/2

j [i2(b/a)2 + j2]
sin

iπx2

a
cos

jπx3

b
. (7.55b)

Here again, the results are in the form of a double sine series that is tedious to evalu-
ate but converges rapidly. The stress function and shear stress distributions are shown
in fig. 7.22 and 7.23, respectively, for a = 4 and b = 2. For the shear stress plot, the
shear stress components, τ12 and τ13, are converted into stress vectors and repre-
sented by arrows whose lengths are proportional to their magnitude.

Comparison of solutions

The Fourier series solution developed in the previous section converges to the ex-
act solution to the problem as the number of terms used in the series increases. In
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practice, nearly exact solutions can be obtained by using a large but finite number of
terms in all series; this will be referred to as the exact solution. The solution obtained
from the co-location approach will be referred to as the approximate solution.

First, the non-dimensional torsional
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Fig. 7.24. Non-dimensional torsional stiffness,
H̄11, versus aspect ratio, a/b. Exact solution:
solid line; approximate solution: dashed line.

stiffness, H̄11, evaluated using the co-
location method and Fourier series ap-
proaches, see eqs. (7.52) and (7.54), re-
spectively, are compared in fig. 7.24.
Both solutions are in fair agreement
for aspect ratios near unity, but the ap-
proximate solution significantly under-
predicts the stiffness for higher aspect
ratios. For a very thin strip, a/b → ∞,
H̄11 = 1/3 = 0.333 for the exact so-
lution, but H̄11 = 2/9 = 0.222 for the
approximate solution, a 33% error.

The maximum values of the shear
stress components, τ12 and τ13, are

found at points B and A, respectively, at the middle of the two sides, see fig. 7.21.
The approximate solution gives ab2|τB

12|/M1 = 4.5 and ab2|τA
13|/M1 = 4.5 b/a.

The exact solution is obtained from the series in eqs. (7.55). Figures 7.25 and 7.26
show the shear stresses at points B and A, respectively, as a function of the aspect ra-
tio, a/b. The maximum shear stress occurs at point B, the mid-point of the section’s
long side. For a thin strip, ab2|τB

12|/M1 = 3.
Large discrepancies are observed between the two solutions. The approximate

solution obtained with the co-location method is not good enough to accurately esti-
mate the stress distribution in the section.

Fig. 7.25. Non-dimensional shear stress at
point B versus aspect ratio a/b. Exact solu-
tion: solid line; approximate solution: dashed
line.

Fig. 7.26. Non-dimensional shear stress at
point A versus aspect ratio a/b. Exact solu-
tion: solid line; approximate solution: dashed
line.
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7.3.4 Problems

Problem 7.8. Bar with circular section and semi-circular keyway
Consider a circular shaft of radius a with a semi-circular keyway of radius b, as depicted in
fig. 7.27. The shaft is subjected to torsion. A stress function of the following form will be used

φ = A(x2
2 + x2

3 − 2ax2)

[
1− b2

(x2
2 + x2

3)

]
,

where A is an unknown constant. (1) Verify that the proposed stress function satisfies the
required boundary conditions. (2) Determine the stress function for this problem, i.e., find the
value of constant A. (3) Find the shear stress distribution τr = τr(α) and τα = τα(α) along
the contour Ca of the shaft. (4) Find the shear stress distribution τr = τr(β) and τβ = τβ(β)
along the contour Cb of the keyway. (5) Let τN = Gκ1a be the shaft maximum shear stress in
the absence of keyway. Find limb→0 τA

α /τN and limb→0 τB
β /τN . Comment on your results.

A
B

a
b

t
b trtr

t
a

i2

i3

a

b

Ca

Cb

Fig. 7.27. Circular shaft with a circular keyway.

Problem 7.9. Torsion of bar with rectangular cross-section
A exact solution for the torsion of a bar with a rectangular cross-section depicted in fig. 7.21 is
developed in section 7.3.3 using an open double trigonometric series. It is possible to develop
a somewhat more efficient solution by assuming a trigonometric series solution in only one
direction and an unknown function, gn(η), in the other. Consider the following single open
series expansion for the stress function

φ(η, ζ) =

∞∑
n=odd

gn(η) cos αnζ,

where gn(η) are unknown functions, αn = nπ/2, η = 2x2/a is the non-dimensional coordi-
nate along axis ı̄2, and ζ = 2x3/b is the non-dimensional coordinate along axis ı̄3. Following
the same approach used in section 7.3.3 and making use of the orthogonality of cosine func-
tions, show that eq. (7.43) reduces to the following ordinary differential equations for gn(η)

g′′n − β2
ngn = −Ga2κ1

αn
(−1)(n−1)/2, for n=odd

where βn = αna/b, along with the boundary conditions 0 = gn(η = ±1). Next, solve these
equations, and after substituting in the above expression for φ(η, ζ), show that
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φ(η, ζ) = b2Gκ1

∞∑
n=odd

(−1)(n−1)/2

α3
n

[
1− cosh βnη

cosh βn

]
cos αnζ

From this result, show that the non-dimensional torsional stiffness can be written as

H̄11 =
H11

Gab3
= 2

∞∑

n=odd

[
1

α4
n

− tanh βn

α4
nβn

]
=

1

3
− 2

1

a/b

∞∑

n=odd

tanh βn

α5
n

.

Note that
∑∞

n=odd 1/n4 = π4/96, and hence, 2
∑∞

n=odd 1/α4
n = 1/3. For a thin rectangular

strip, a/b →∞ and H̄11 → 1/3. Finally, show that the shear stress at point B is given by

ab2|τB |
M1

=
2

H̄11

∞∑
n=odd

[
1

α2
n

− 1

α2
n cosh βn

]
=

1

H̄11
− 2

H̄11

∞∑

n=odd

1

α2
n cosh βn

.

Note that
∑∞

n=odd 1/n2 = π2/8, and hence, 2
∑∞

n=odd 1/α2
n = 1. The shear stress compo-

nent at point A is given by

ab2|τA|
M1

=
2

H̄11

∞∑
n=odd

[
(−1)(n−1)/2

α2
n

− (−1)(n−1)/2 1− tanh βn

α2
n

]

=
0.742454

H̄11
− 2

H̄11

∞∑

n=odd

(−1)(n−1)/2 1− tanh βn

α2
n

.

Note that
∑∞

n=odd(−1)(n−1)/2/n2 = 0.91596, which is known as Catalan’s constant. This
particular arrangement of the equations for H̄11 and τA is done so that the series expressions
can be more easily evaluated as a function of the sectional aspect ratio, a/b, as it approaches
large values (at which tanh βn → 1); in both cases the second term in the equations ap-
proaches zero. Note also the very fast convergence of all the series involved in this solution
due to the powers of αn appearing in the denominators.

7.4 Torsion of a thin rectangular cross-section

The torsion of a thin rectangular strip is an important problem that will form the
basis for the analysis of beams with thin-walled cross-sections. An exact solution for
the limiting case of a very thin rectangular strip can be easily developed. Consider
the thin rectangular strip shown in fig. 7.28, where b is the long dimension of the
cross-section, taken along axis ı̄3, and t the thickness of the strip. If the thickness is
much smaller than the length, i.e., if t ¿ b, it is reasonable to assume that both stress
function and associated shear stress distributions will be nearly constant along axis
ı̄3. This will imply that ∂φ/∂x3 ≈ 0.

The term ∂2φ/∂x2
3 that appears in the governing equation for the stress func-

tion, eq. (7.43), now vanishes, and this governing equation reduces to the following
ordinary differential equation,

d2φ

dx2
2

= −2Gκ1. (7.56)
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This equation is easily integrated to find φ(x2) = −Gκ1x
2
2 + C1x2 + C2, where

C1 and C2 are two integration constants. The boundary condition, eq. (7.45b), re-
quires that φ(x2 = ±t/2) = 0, which implies C1 = 0 and C2 = Gκ1t

2/4. The
stress function then becomes

φ(x2) = −Gκ1

(
x2

2 −
t2

4

)
. (7.57)

b >>t
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Fig. 7.28. Thin rectangular strip under tor-
sion.
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Fig. 7.29. Warping function for a thin rectan-
gular strip.

The resulting torque is computed using eq. (7.48), to find

M1 = 2
∫

A
φ dA = −2Gκ1

∫ t/2

−t/2

(
x2

2 −
t2

4

)
b dx2 =

1
3
Gκ1bt

3.

This result reveals the torsional stiffness of the section, H11 = M1/κ1, as

H11 =
1
3
Gbt3. (7.58)

The shear stress distribution now follows from eq. (7.41) as

τ12 =
∂φ

∂x3
= 0, τ13 = − ∂φ

∂x2
= 2Gκ1x2 =

6M1

bt3
x2. (7.59)

This distribution is depicted in the right portion of fig. 7.28. The maximum shear
stress occurs all along the long edges of the section, where x2 = ±t/2, and is of
magnitude |τmax| = 3M1/(bt2).

The warping function, Ψ , can be determined by substituting the stress function
solution, eq. (7.57), into eq. (7.42) to find two partial differential equations

∂Ψ

∂x2
=

1
Gκ1

∂φ

∂x3
+ x3 = x3,

∂Ψ

∂x3
= − 1

Gκ1

∂φ

∂x2
− x2 = x2,

the solutions of which are Ψ = x3x2 + f(x3) and Ψ = x2x3 + g(x2), respectively;
f(x3) and g(x2) are two arbitrary functions. Because the problem must have a unique
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solution, the two expressions for Ψ must be equal. This is only possible if f(x3) =
g(x2) = 0, leaving the warping function as Ψ = x2x3. The axial displacement,
u1(x2, x3), can be determined by substituting this result into eq. (7.32a) to find

u1(x2, x3) = Ψ(x2, x3)κ1 = κ1x2x3. (7.60)

As discussed in section 7.3.1, the warping function for a rectangular section
must be antisymmetric with respect to both axes ı̄2 and ı̄3. The above solution does
indeed satisfy this antisymmetry requirement, as illustrated in fig. 7.29.

7.5 Torsion of thin-walled open sections

The results presented in the previous section are readily extended to thin-walled open
sections of arbitrary shape. The solution developed for the thin rectangular strip is
based on the assumption that the gradient of the stress function vanishes in the di-
rection tangential to the thin wall; for the thin rectangular strip shown in fig. 7.28,
this means along axis ı̄3. Of course, had the thin strip been rotated by 90 degrees, the
gradient of the stress function would have been assumed to vanish along axis ı̄2.

i2

i3

R
t

C

Fig. 7.30. Semi-circular thin-walled open
section.

tmax

tmax

i2

i3

C

Fig. 7.31. Thin-walled open section com-
posed of several curved.

More generally, the gradient of the stress function should vanish along the local
tangent to the section’s thin wall, and the corresponding shear stress distribution will
then be linear through the wall thickness. For thin-walled open sections, the geometry
of the cross-section can be represented by an open curve, C, drawn along the wall’s
mid-thickness, as illustrated in fig. 7.30 for a semi-circular, thin-walled section.

The developments of the previous section still apply to a generally curved, thin-
walled open section, and by extension of eq. (7.58), the torsional stiffness of such
section becomes

H11 = G
`t3

3
, (7.61)

where ` is the length of curve C and t the wall thickness. For instance, the torsional
stiffness of the semi-circular section shown in fig. 7.30 is H11 = G πRt3/3.
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For the thin rectangular section, the shear stress τ12 vanishes, leaving τ13 as the
sole shear stress component, see eq. (7.59). For the present problem, the only non-
vanishing stress component is the tangential shear stress, τs, acting in the direction
tangent to curve C. Here again, the shear stress is not uniform across the thickness,
but instead, varies linearly from zero at the midline to maximum positive and nega-
tive values at the opposite edges of the wall, a distance ±t/2 from the midline. At
these points, the magnitude of the shear stress is

τmax
s = Gt κ1. (7.62)

The maximum shear stress can also be expressed in terms of the applied torque as

τmax
s =

3M1

`t2
. (7.63)

A more general thin-walled open section could be composed of a number of
straight and curved segments, such as the situation illustrated in fig. 7.31. In this
case, the torsional stiffness of the cross-section is the sum of the torsional stiffnesses
of the individual segments and can be expressed as,

H11 =
∑

i

H
(i)
11 =

1
3

∑

i

Gi`it
3
i , (7.64)

where Gi, `i and ti are the shear modulus, length and thickness of the ith segment, re-
spectively. The shear stress along the edge of each segment is still given by eq. (7.62),
where κ1 is the twist rate of the cross-section. Hence, the maximum shear stress will
be found in the segment featuring the largest thickness

τmax
s = Gtmax

M1

H11
, (7.65)

where tmax is the thickness of the segment with the largest thickness.
Warping of a thin-walled open section is more complex and involves not only the

warping behavior of a thin rectangular strip described in section 7.4 and defined by
eq. (7.60), but it also includes a much larger warping of the overall cross-section. The
warping of open thin-walled sections will be described in chapter 8 in section 8.7.

Example 7.3. Torsion of thin-walled section
Consider, as an example, the C-channel shown in fig. 7.32. The torsional stiffness of
the section is given by eq. (7.64) as

H11 =
G

3
(
bt3f + ht3w + bt3f

)
=

G

3
(
ht3w + 2bt3f

)
. (7.66)

The tangential shear stresses at the outer edges of the wall are given by eq. (7.62)
as τw = Gtwκ1 = GtwM1/H11 and τf = Gtfκ1 = GtfM1/H11, for the stresses
in the web and flanges, respectively. The maximum shear stress will be found in the
segment featuring the maximum thickness.
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7.5.1 Problems

Problem 7.10. Torsional stiffness of a section with variable thickness
Figure 7.32 depicts the cross-section of a thin-walled beam with different thicknesses. For this
problem, assume that tw = t and tf = 2t. (1) Find the torsional stiffness of the section. (2)
Find the magnitude and location of the maximum shear stress if the section is subjected to a
torque Q. (3) Sketch the distribution of shear stress through the thickness of the wall for the
two regions with different thicknesses.

Problem 7.11. Torsional stiffness of a C-section
Consider the thin-walled, C-section of a beam depicted in fig. 7.32. The dimensions of the
section are b = 20 mm, h = 50 mm, tw = 4 mm and tf = 5 mm. (1) Find the torsional
stiffness of the section. (2) Compute the maximum shear stress in the section due to an applied
torque Q. (3) Indicate the location of the maximum shear stress. (4) Sketch the distribution of
shear stress through the thickness of the wall. The shear modulus for the material is G = 30
GPa and the applied torque is Q = 120 N·m.

i2

i3

h

b

tf

tf
tw

Fig. 7.32. A thin-walled C-channel section
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t

Fig. 7.33. Semi-circular open cross-section.

Problem 7.12. Torsional stiffness of a semi-circular section
Figure 7.33 depicts the thin-walled, semi-circular open cross-section of a beam. The wall
thickness is t, and the material Young’s and shear moduli are E and G, respectively. (1) Find
the torsional stiffness of the section. (2) Find the distribution of shear stress due to an applied
torque Q. (3) Indicate the location and magnitude of the maximum shear stress, Rt2τmax/Q.

Problem 7.13. Torsional stiffness of an “H” shaped cross-section
Figure 7.34 depicts the cross-section of a thin-walled beam with what is sometimes called an
“H” shaped cross-section. For this problem, assume that h1 = b/2 and h2 = b/4. (1) Find
the torsional stiffness of the section. (2) Find the magnitude and location of the maximum
shear stress if the section is subjected to a torque Q. (3) Sketch the distribution of shear stress
through the thickness of the wall.

Problem 7.14. Torsional stiffness of a “Y” shaped cross-section
Figure 7.35 depicts the “Y” shaped cross-section of a thin-walled beam. The horizontal leg
of the cross-section has a thickness 2t, whereas the other two legs are of thickness t. (1)
Determine the torsional stiffness of the section. (2) Determine the magnitude and location of
the maximum shear stress if a torque Q is applied to the beam. (3) Sketch the shear stress
distribution through the wall thickness.
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Fig. 7.34. “H” cross-section of a thin-walled
beam.
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Fig. 7.35. “Y” cross-section of a thin-walled
beam.
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Thin-walled beams

Typical aeronautical structures involve light-weight, thin-walled, beam-like struc-
tures that must operate in a complex loading environment where combined axial,
bending, shearing, and torsional loads are present. These structures may consist of
closed or open sections, or a combination of both. A closed cross-section is one for
which the thin wall forms one or more closed paths; in the opposite case, it is an
open section. This distinction has profound implications for the structural response
of the beam, most importantly when it comes to shearing and torsion.

In the analysis of thin-walled beams, the specific geometric nature of the beam
consisting of an assembly of thin sheets will be exploited to simplify the problem’s
formulation and solution process. Figures 8.1 to 8.4 show different types of thin-
walled cross-sections. Figure 8.1 shows a beam with a closed section, as opposed to
the open section of fig. 8.2. A combination of both types depicted in fig. 8.3 is also
possible. Finally, multi-cellular sections such as shown in fig. 8.4 are very common
in aeronautical constructions.

8.1 Basic equations for thin-walled beams.

The geometry of the section is described by a curve, C, drawn along the mid-
thickness of the wall, see figs. 8.1-8.4. A curvilinear variable, s, measuring length
along this contour is defined with an arbitrary origin. This variable defines an ori-
entation along C at all points. Of course, this orientation can be chosen arbitrarily.
The wall thickness, t(s), can vary from point to point along the contour. For multi-
cellular sections, a number of different curves are used to completely describe the
section, and a corresponding number of curvilinear variables define the length and
orientation of these various curves.

8.1.1 The thin wall assumption

In thin-walled beams, the wall thickness is assumed to be much smaller than the
other representative dimensions of the cross-section. Considering fig. 8.1, this means
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Fig. 8.1. Thin-walled beam with a closed,
single cell section.
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Fig. 8.2. Thin-walled beam with an open sec-
tion.
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Fig. 8.3. Thin-walled beam with open and
closed components.

C1
C3C2

s1

s2

s3

Fig. 8.4. Thin-walled beam with a multi-
cellular section.

t(s)
b

¿ 1,
t(s)
h

¿ 1, or
t(s)√

b2 + h2
¿ 1. (8.1)

Of course, for beam theory to be a reasonable approximation to the structural behav-
ior, the thin-walled beam must also be long, i.e.,

√
b2 + h2/L ¿ 1.

8.1.2 Stress flows

As discussed in sections 5.4.2 and 5.5.2, the stress components acting in the plane
of the cross-section are assumed to be negligible as compared to other stress com-
ponents. This implies that σ2 ¿ σ1 and σ3 ¿ σ1 and furthermore, τ23 ¿ τ12 and
τ23 ¿ τ13; it is then assumed that the only non-vanishing stress components are the
axial stress, σ1, and the transverse shear stresses, τ12 and τ13.

Given the geometry of thin-walled beams described in the previous section, it
is not convenient to work with the Cartesian components of transverse shear stress,
rather, it is preferable to resolve the shear stress into its components parallel and
normal to C, denoted τs and τn, respectively, as illustrated in fig. 8.5. The relationship
between these two sets of stress components is

τn = cosα τ12 + sin α τ13 = τ12
dx3

ds
− τ13

dx2

ds
, (8.2a)

τs = − sin α τ12 + cos α τ13 = τ12
dx2

ds
+ τ13

dx3

ds
, (8.2b)
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where basic trigonometric relationships for triangle PQR reveal that cos α = dx3/ds
and sin α = −dx2/ds, and where the negative sign results from the sign convention
for the curvilinear variable, s.

Using the principle of reciprocity of shear
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dx2

dx3

P(x , x )2 3

C

P

ds

R

t
12

t
13

t
n

t
s

aa

a

Tangent

to C

Fig. 8.5. Geometry of a differential
element of the wall.

stresses, eq. (1.5), the normal shear stress com-
ponent, τn, must vanish at the two edges of the
wall because the outer surfaces of the beam are
stress free. Furthermore, since the wall is very
thin, no appreciable magnitude of this shear
stress component can build up within the struc-
ture. As a result, it is assumed that τn van-
ishes through the wall thickness. The only non-
vanishing shear stress component is the tangen-
tial shear stress component, τs, which is taken
to be positive in the direction of s.

Inverting relations (8.2a) and (8.2b) yields
τ12 = τn cos α − τs sin α and τ13 = τn sin α + τs cosα. Because the normal shear
stress component vanishes, i.e., τn ≈ 0, the Cartesian components of stress can be
expressed as

τ12 ≈ τs
dx2

ds
, τ13 ≈ τs

dx3

ds
. (8.3)

Finally, because the wall is very

i2
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i1

sC

t
s

s
1

Fig. 8.6. Uniform distributions of axial and
shear stresses across the wall thickness.

thin, it seems reasonable to assume
that the non-vanishing stress compo-
nent, τs, is uniformly distributed across
the wall thickness. Figure 8.6 shows
the axial and shear stress components
through the thickness of the wall.

It is customary to introduce the
concept of stress flows defined as

n(x1, s) = σ1(x1, s)t(s), (8.4a)
f(x1, s) = τs(x1, s)t(s), (8.4b)

where n is the axial stress flow or axial flow, and f is the shearing stress flow or
shear flow taken positive in the direction of s. Using these definitions, instead of
integrating a stress over an area to compute a force, it is only necessary to integrate
a stress flow along curve C. This will greatly simplify subsequent developments.

8.1.3 Stress resultants

The definitions of stress resultant in thin-walled beams are identical to those given in
section 5.3 for beams with solid sections. Due to the thin wall assumption, integration
over the beam’s cross-sectional area reduces to an integration along curve C. An
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infinitesimal area of the cross-section, dA, can now be written as dA = tds, and the
axial force, eq. (5.8), becomes

N1(x1) =
∫

A

σ1 dA =
∫

C
σ1 tds =

∫

C
n ds, (8.5)

where the definition of the axial flow, eq. (8.4a), is used. The bending moments are
found from eqs. (5.10) using a similar process

M2(x1) =
∫

C
n x3 ds, M3(x1) = −

∫

C
n x2 ds. (8.6)

The shear forces acting along axes
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Fig. 8.7. Geometry of a differential element of
the wall.

ı̄2 and ı̄3 can be calculated from
the corresponding shear stress compo-
nents, τ12 and τ13, respectively, using
eqs. (5.9) to find

V2(x1) =
∫

C
f

dx2

ds
ds, (8.7a)

V3(x1) =
∫

C
f

dx3

ds
ds, (8.7b)

where eq. (8.3) and the definition of the
shear flow, eq. (8.4b), are used.

The torque computed about the origin, O, of the axis system can be expressed in
the form of a vector cross product,

MO(x1) =
∫

C
rP × f ds,

where rP = x2 ı̄2 + x3 ı̄3 is the position vector of point P, see fig. 8.7. An increment
in the curvilinear coordinate, s, can be written as ds = dx2 ı̄2+dx3 ı̄3, and the torque
about the origin then becomes

MO(x1) =
∫

C
(x2dx3 − x3dx2)f ı̄1 =

∫

C

(
x2

dx3

ds
− x3

dx2

ds

)
f ı̄1 ds.

Further inspection of fig. 8.7 reveals that the perpendicular distance from the
origin, O, to point, P0, on the tangent to curve C at point P, denoted ro, is

ro = x2 cos α + x3 sin α = x2
dx3

ds
− x3

dx2

ds
. (8.8)

The magnitude of the torque evaluated with respect to the origin of the axes finally
becomes

M1O(x1) =
∫

C
fro ds. (8.9)
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This result expresses the familiar formula for evaluating moments: the torque equals
the magnitude of the force times the perpendicular distance from the point about
which it is computed to the line of action of the force.

It will also be necessary to evaluate the torque about an arbitrary point of the
cross-section, say point K, with coordinates (x2k, x3k), as shown in fig. 8.7, to find

M1k(x1) =
∫

C
frk ds, (8.10)

where rk is the perpendicular distance from point K to the line of action of the shear
flow, f as shown in fig. 8.7. This distance is evaluated by replacing x2 and x3 in
eq. (8.8) by (x2 − x2k) and (x3 − x3k), respectively, to find

rk = (x2 − x2k) cosα + (x3 − x3k) sin α = ro − x2k
dx3

ds
+ x3k

dx2

ds
. (8.11)

8.1.4 Sign conventions

Consider the thin wall segment depicted in
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Fig. 8.8. Thin wall component.

fig. 8.8 extending from point P to point Q, lo-
cated at distances a and b from origin O of the
axis system, respectively. For this simple case,
curve C is the straight line segment, PQ. As-
sume one analyst selects variable s describing
curve C from point P to point Q, whereas an-
other analyst selects variable s′ describing the
same curve from point Q to point P.

An important sign convention is chosen for the shear flow: the shear flow is posi-
tive in the direction of the curvilinear variable s. This is an arbitrary sign convention,
because the positive direction of the curvilinear coordinate is itself chosen arbitrarily.
For the first analyst (using variable s), a positive shear flow is oriented from point P
to point Q, whereas for the other (using variable s′), a positive shear flow is oriented
from point Q to point P.

The geometry of curve C is described by its coordinates, x2(s) and x3(s), which
are functions of the curvilinear variable s. In this case, curve C is simply a straight
line, and its coordinates are

x2(s) = a
(
1− s

`

)
, x3(s) = b

s

`
,

where ` =
√

a2 + b2 is the length of segment PQ. Using eq. (8.8), the perpendicular
distance from the origin, O, to the tangent to curve C, denoted ro, becomes

ro = x2
dx3

ds
− x3

dx2

ds
= a

(
1− s

`

) b

`
− b

s

`

(
−a

`

)
=

ab

`
. (8.12)

For the other analyst, the geometry of curve C is described in terms the curvilinear
variable s′, and its coordinates are
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x2(s′) = a
s′

`
, x3(s′) = b

(
1− s′

`

)
.

The perpendicular distance, from the origin, O, to the tangent to curve C, denoted r′o,
now becomes

r′o = x2
dx3

ds′
− x3

dx2

ds′
= a

s′

`

(
−b

`

)
− b

(
1− s′

`

)
a

`
= −ab

`
. (8.13)

Because the two analysts describe the geometry of curve C in two different man-
ners, the perpendicular distance from the origin, O, to the tangent to curve C is differ-
ent. This distance becomes an algebraic quantity, i.e., its sign depends on the selected
direction of the curvilinear variable. Comparing eq. (8.12) to eq. (8.13), it is clear that
r′o(s

′) = −ro(s).
Figure 8.9 shows a thin-walled, closed
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Fig. 8.9. Sign conventions for the shear
flow, f(s).

section of arbitrary shape. Here again, one
analyst selects variable s describing curve C
in the counterclockwise direction, whereas
another analyst selects variable s′ describ-
ing curve C in the clockwise direction. The
sign convention for the torque, M1, is indi-
cated on the figure and is defined as positive
for a positive rotation about axis ı̄1 accord-
ing to the right-hand rule, see fig. 5.3. The
sign convention for the torque is indepen-
dent of the choice of the curvilinear vari-
able.

Let f(s) and r0(s) be the shear flow and
normal distance associated with the choice of the curvilinear variable s, whereas
f ′(s′) and r′0(s

′) are the corresponding quantities associated with the choice of the
curvilinear variable s′. Assuming that the shear flow arising from the application
of a torque is physically oriented in the counterclockwise direction as indicated in
fig. 8.9, it then follows that f > 0 whereas f ′ < 0, with f ′ = −f . Furthermore,
The normal distance from point O to the tangent to curve C at point P is such that
r′o(s

′) = −ro(s).
The sign of both the shear flow and the normal distance are determined

by the choice of direction for the curvilinear coordinate: f ′(s′) = −f(s) and
r′o(s

′) = −ro(s). The resulting torque, however, is unaffected by this choice:
M1O =

∫
C fro ds =

∫
C f ′r′o ds′ because fro = f ′r′o. It is left to the reader to

verify that the definition of the transverse shear forces, eq. (8.7), remains unaffected
by the choice of the direction of the curvilinear variable.

8.1.5 Local equilibrium equation

Figure 8.10 shows a differential element of the thin-walled beam. The dimensions of
the differential element are dx1 along the axis of the beam, and ds along curve C.
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The axial and shear flows are acting on the faces at x1 and s, and a Taylor’s series
expansion is used to evaluate the axial and shear flows on the opposite faces. The
shear flow is positive in the increasing direction of the curvilinear variable, s. Body
forces are neglected for this differential element of the thin-walled beam. Summing
up all the forces acting on this free-body diagram along axis ı̄1 yields

−n ds +
(

n +
∂n

∂x1
dx1

)
ds− f dx1 +

(
f +

∂f

∂s
ds

)
dx1 = 0.

After simplification, the equilibrium condition becomes

∂n

∂x1
+

∂f

∂s
= 0. (8.14)

This local equilibrium equation implies that any change in axial stress flow, n,
along the beam axis must be equilibrated by a corresponding change in shear flow,
f , along curve C that defines the cross-section.
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Fig. 8.10. Equilibrium of a differen-
tial element of the wall.
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Fig. 8.11. Thin-walled beam subjected to axial forces
and bending moments.

8.2 Bending of thin-walled beams

Consider a thin-walled beam subjected to axial forces and bending moments, as
shown in fig. 8.11. Axes ı̄2 and ı̄3 are located at the centroid of the cross-section.
The Euler-Bernoulli assumptions discussed in section 5.1 are equally applicable to
the bending of thin-walled beams with either open or closed cross-sections. Hence,
assuming a displacement field in the form of eq. (6.1) results in the strain field given
by eqs. (6.2a) to eq. (6.2c), and the distribution of axial stresses given by eq. (6.15)
follows

σ1 = E

[
N1

S
− x2H

c
23 − x3H

c
33

∆H
M2 − x2H

c
22 − x3H

c
23

∆H
M3

]
, (8.15)
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where ∆H = Hc
22H

c
33 − (Hc

23)
2. Using eq. (8.4a), the axial flow distribution over

the cross-section now becomes

n(x1, s) = E(s)t(s)
[
N1(x1)

S
− x2(s)Hc

23 − x3(s)Hc
33

∆H
M2(x1)

−x2(s)Hc
22 − x3(s)Hc

23

∆H
M3(x1)

]
.

(8.16)

8.2.1 Problems

Problem 8.1. Sign conventions
Verify that the definition of the transverse shear forces, eq. (8.7), remains unaffected by the
choice of the direction of the curvilinear variable.

Problem 8.2. Thin-walled “Z” shaped cross-section beam
Figure 8.12 shows the cross-section of a thin-walled, “Z” shaped beam skewed at an angle
α with respect to axis ı̄2. (1) Find the centroidal bending stiffnesses. (2) For M2 = M0 and
M3 = 0, find the neutral axis orientation with respect to axis ı̄2. (3) Determine the location
and magnitude of the maximum axial stress. Use b = h/2 and sin α = 4/5.
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Fig. 8.12. “Z” shaped cross-section.
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Fig. 8.13. “Z” shaped cross-section.

Problem 8.3. Thin-walled “Z” shaped cross-section beam
Figure 8.13 shows the cross-section of a thin-walled, “Z” shaped beam skewed at an angle
α with respect to axis ı̄2. (1) Find the centroidal bending stiffnesses. (2) For M2 = M0 and
M3 = 0, find the neutral axis orientation with respect to axis ı̄2. (3) Determine the location
and magnitude of the maximum axial stress. Use b = h/2 and sin α = 4/5.

Problem 8.4. Thin-walled “L” shaped cross-section beam
Figure 8.14 shows a thin-walled beam with an “L” shaped cross-section. The cantilevered
beam is of length L = 48 in and carries a tip load, P = 200 lbs, applied along axis ı̄3.
(1) Determine the location of the centroid. (2) Find the centroidal bending stiffnesses. (3)
Determine the orientation of the neutral axis. (4) Determine the axial stress distribution over
the cross-section. Find the location and magnitude of the maximum axial stress. Use b = h =
2.0 in, tb = th = 0.100 in and E = 10.6× 106 psi.
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Fig. 8.14. “L” shaped cross-section.
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Fig. 8.15. Box-Z shaped cross-section.

Problem 8.5. Thin-walled “Box-Z” shaped cross-section beam
A cantilevered beam of length L is constructed with the thin-walled cross-section shown in
fig. 8.15. A concentrated load, P , is applied at the tip of the beam and acts along axis ı̄3.
(1) Determine the location of the centroid. (2) Find the centroidal bending stiffnesses. (3)
Determine the axial stress acting in the root section at points A and B. (4) Determine the
vertical and horizontal components of the deflection at the tip using the given centroidal axes
shown in the figure. Use b = c = a/2.

Problem 8.6. Thin-walled angle section
A beam of length L with the thin-walled cross-section shown in fig. 8.16 is simply supported
at both ends and carries a transverse distributed loading, p0, acting along axis ı̄2 at point C.
(1) Determine the location of the centroid. (2) Find the centroidal bending stiffnesses. (3) Find
the location and magnitude of the maximum axial stress. (4) Sketch the distribution of axial
stress over the cross-section for the section where the maximum bending moment occurs.
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Fig. 8.16. Angled “L” shaped cross-section.

i2

i3

a

b

b

?

Fig. 8.17. Horizontal “V” section with verti-
cal flanges.

Problem 8.7. Thin-walled “V” shaped cross-section beam
A beam of length L with the thin-walled cross-section shown in fig. 8.17 is simply supported
at both ends and carries a transverse distributed loading, p0, acting along axis ı̄2 at point C.
(1) Determine the location of the centroid. (2) Find the centroidal bending stiffnesses. (3) Find
the location and magnitude of the maximum axial stress. (4) Sketch the distribution of axial
stress over the cross-section for the section where the maximum bending moment occurs.
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Problem 8.8. Skewed “I” shaped cross-section
A cantilevered beam of length L is constructed with the thin-walled, skewed “I” shaped cross-
section shown in fig. 8.18. The wall thickness for both flanges and web is a constant, t. Axis
ı̄2 is an axis of symmetry of the section. A concentrated load, P , is applied at the tip of the
beam and acts along axis ı̄3. (1) Determine the location of the centroid. (2) Find the centroidal
bending stiffnesses. (3) Determine the axial stress acting in the root section at points A, B, and
C.

t
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Fig. 8.18. Skewed “I” shaped cross-section.
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Fig. 8.19. Semi-circular open cross-section.

Problem 8.9. Thin-walled semi-circular cross-section beam
A beam of length L with the thin-walled, semi-circular cross-section shown in fig. 8.19 is
simply supported at both ends and carries a transverse distributed loading, p0, acting along
axis ı̄2 at point B. (1) Determine the location of the centroid. (2) Find the centroidal bending
stiffnesses. (3) Find the location and magnitude of the maximum axial stress. (4) Sketch the
distribution of axial stress over the cross-section for the section where the maximum bending
moment occurs. Note: It is more convenient to work with the angle θ as a variable describing
the geometry of the section: s = Rθ, ds = Rdθ.

Problem 8.10. Thin-walled semi-circular cross-section with flanges
A beam of length L with the thin-walled, semi-circular cross-section with flanges shown in
fig. 8.20 is simply supported at both ends and carries a transverse distributed loading, p0,
acting along axis ı̄2 at point C. (1) Determine the location of the centroid. (2) Find the cen-
troidal bending stiffnesses. (3) Find the location and magnitude of the maximum axial stress.
(4) Sketch the distribution of axial stress over the cross-section for the section where the max-
imum bending moment occurs.

Problem 8.11. Thin-walled C-channel with variable thickness
A beam of length L with the thin-walled, C-channel cross-section shown in fig. 8.21 is simply
supported at both ends and carries a transverse distributed loading, p0, acting along axis ı̄2 at
point C. (1) Determine the location of the centroid. (2) Find the centroidal bending stiffnesses.
(3) Find the location and magnitude of the maximum axial stress. (4) Sketch the distribution
of axial stress over the cross-section for the section where the maximum bending moment
occurs.
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Fig. 8.21. C-channel with variable flange
thickness.

8.3 Shearing of thin-walled beams

In most practical cases, the bending moments considered in the previous section are
accompanied by transverse shear forces, which give rise to shear flow distributions
over the cross-section. This distribution is evaluated by introducing the axial flow
given by eq. (8.16) into the local equilibrium equation, eq. (8.14), to find

∂f

∂s
= −Et

[
1
S

dN1

dx1
− x2H

c
23 − x3H

c
33

∆H

dM2

dx1
− x2H

c
22 − x3H

c
23

∆H

dM3

dx1

]
. (8.17)

The sectional equilibrium equations, eqs. (6.16), (6.18), and (6.20), are introduced
for the moment derivatives, and to simplify this expression, it is further assumed that
the distributed axial loads, p1, and moments, q2 and q3, are zero, to find

∂f

∂s
= −E(s)t(s)

[
−x2H

c
23 − x3H

c
33

∆H
V3 +

x2H
c
22 − x3H

c
23

∆H
V2

]
. (8.18)

Integration of this differential equation then yields the shear flow distribution
arising from shear forces, V2 and V3, as

f(s) = c−
∫ s

0

Et

[
−x2H

c
23 − x3H

c
33

∆H
V3 +

x2H
c
22 − x3H

c
23

∆H
V2

]
ds, (8.19)

where c is an integration constant corresponding to the value of the shear flow at
s = 0. The procedure to determine this integration constant depends on whether the
cross-section is open or closed. Because the bending stiffnesses and shear forces are
functions of variable x1 alone, they can be factored out of the integral, leading to

f(s) = c +
Q3(s)Hc

23 −Q2(s)Hc
33

∆H
V3 − Q3(s)Hc

22 −Q2(s)Hc
23

∆H
V2, (8.20)

where the stiffness static moments, also called stiffness first moments, are defined as

Q2(s) =
∫ s

0

Ex3(s) tds; Q3(s) =
∫ s

0

Ex2(s) tds. (8.21)

These integrals are the static moments for the portion of the cross-section from s = 0
to s, and thus, Q2 and Q3 are functions of s.
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8.3.1 Shearing of open sections

For open sections, the principle of reciprocity of shear stresses, eq. (1.5), implies the
vanishing of shear flow at the end points of curve C. Indeed, if a shear flow does exist
at those points, a non-vanishing shear stress must also act along the lateral edge of
the beam, which is assumed to be stress free. For instance, the shear flow at points
A and D of the cross-section of the C-channel depicted in fig. 8.24 must vanish,
because edges AE and DF are stress free. If the origin of the curvilinear coordinate,
s, is chosen to be located at such a stress free edge, the integration constant, c, in
eq. (8.20) must vanish.

The shear flow distribution over the open cross-section of a thin-walled beam
subjected to transverse shear forces can be determined using the following procedure.

1. Compute the location of the centroid of the cross-section and select a set of
centroidal axes, ı̄1 and ı̄2, at this point; compute the sectional centroidal bending
stiffnesses Hc

22, Hc
33 and Hc

23. If desired, principal centroidal axes of bending
may also be used, in which case Hc

23 = 0.
2. Select suitable curvilinear coordinates, s, that describe the geometry of the cross-

section. It will often be simpler to define several curvilinear coordinates to de-
scribe the entire contour, C, of the cross-section.

3. Evaluate the first stiffness moments as functions of position, s, along contour, C,
of the cross-section, using eqs. (8.21).

4. The shear flow distribution, f(s), then follows from eq. (8.20).

8.3.2 Evaluation of stiffness static moments

The stiffness static moments, Q2 and Q3, defined by eqs. (8.21), are key to the eval-
uation of the shear flow distribution over thin-walled cross-sections. Consider the
homogeneous, thin-walled rectangular strip oriented at an angle, α, with respect to
axis ı̄2 as depicted in fig. 8.22. The stiffness static moment, Q2(s), is readily com-
puted as

Q2(s) =
∫ s

0

Ex3 tds = E

∫ s

0

(d3 + s sin α) tds = E st (d3 +
s

2
sin α). (8.22)

This result can be interpreted as follows: the stiffness static moment is the stiffness
static moment of a portion of the strip from 0 to s and equals the product of Young’s
modulus times the area, st, times the value of the coordinate, x3 = d3 + s/2 sinα,
which is the coordinate of the centroid of the local area, st (i.e., at the area mid-
point).

A similar result can be obtained for the other stiffness static moment,

Q3(s) = E st (d2 + s/2 cos α), (8.23)

and can be interpreted in the same manner. Note that since the strip is made of a
homogeneous material, Young’s modulus factors out of the integral; hence, Q2(s) =
E

∫ s

0
x3 tds, where

∫ s

0
x3 tds represents the area static moment of the strip.
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Fig. 8.22. Stiffness static moments for a thin-
walled rectangular strip at an angle α.

i2

i3

d2 d3

t

s
q

R

Fig. 8.23. Stiffness static moments for a thin-
walled circular arc.

Consider next the thin-walled homogeneous circular arc of radius R depicted in
fig. 8.23. Length along the arc is measured by the curvilinear coordinate s, but in
view of the circular geometry of the problem, it is preferable to work with angle θ.
Noting that ds = Rdθ, eq. (8.21) yields

Q2(s) =
∫ s

0

Ex3 tds = Et

∫ θ

0

(d3 + R sin θ) Rdθ = EtR2

(
d3

R
θ + 1− cos θ

)
.

(8.24)
A similar development yields Q3(s) = EtR2[(1 + d2/R)θ − sin θ].

The key insight here is that the stiffness static moment of any arbitrary area with
a given Young’s modulus, E, is simply the product of the modulus, the area, and the
distance to the area centroid. In other words, Q2 = EAx3c or Q3 = EAx2c, where
x2c and x3c are the distances to the centroid of the area, A. This result is essentially
a statement of the parallel axis theorem, see section 6.8.1, applied to stiffness static
moments, but in this case, the result is only the transport term because the static
moment about the area centroid itself is zero by definition.

8.3.3 Shear flow distributions in open sections

The calculation of the shear flow in thin-walled open cross-sections will now be
illustrated using several examples.

Example 8.1. Shear flow distribution in a C-channel
Evaluate the distribution of shear flow over the thin-walled C-channel1 shown in
fig. 8.24. The section has a uniform thickness, t, a vertical web height, h, a flange
width, b, and is subjected to a vertical shear force, V3, at the specific span-wise
location where the shear flow is to be computed. The origin of the axes on the section
is placed at the centroid, which is located at a distance d = b/(2 + h/b) to the right
of the web’s mid-point. Because the section is symmetric about axis ı̄2, these axes
are principal centroidal axes of bending, i.e., Hc

23 vanishes.
Because the section is subjected to the shear force V3 only, the shear flow distri-

bution, given by eq. (8.20), reduces to

1 This cross-section is referred to with various names: a “C” section, a channel section, or a
C-channel.
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Fig. 8.24. Cantilevered beam with a C-channel cross-section.

f(s) = c− Q2(s)
Hc

22

V3, (8.25)

where the bending stiffness is easily evaluated as

Hc
22 = E

[
th3

12
+ 2bt

(
h
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)2
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= E

(
h3

12
+

bh2
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Fig. 8.25. Distribution of shear flow over the C-channel cross-section.

To simplify the algebra, the curvilinear coordinate describing the cross-section’s
geometry is broken into three parts: s1 across the upper flange, s2 down the vertical
web, and s3 across the lower flange, as depicted in fig. 8.25. For the section’s upper
flange, eq. (8.25) yields the shear flow distribution as

f(s1) = c1 − Q2(s1)
H22

V3 = 0− Ets1h/2
Hc

22

V3 = −Ehts1

2
V3

Hc
22

, (8.26)

where the stiffness static moment, Q2(s), for the thin rectangular strip is evaluated
with the help of eq. (8.22). The integration constant, c1, vanishes because the shear
flow must vanish at point A, where s1 = 0.
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Next, consider the section’s vertical web. Equation (8.22) yields the stiffness
static moment as Q2(s2) = Ets2(h − s2)/2, and the corresponding shear flow dis-
tribution then follows from eq. (8.25) as

f(s2) = c2 − h− s2

2
ts2

EV3

Hc
22

= −1
2

[bh + s2(h− s2)]
tEV3

Hc
22

. (8.27)

The integration constant, c2, is evaluated by enforcing the continuity of the shear
flow: f(s2 = 0) = f(s1 = b), leading to c2 = −hb/2 EV3/Hc

22.
Finally, eq. (8.22) yields the stiffness static moment of the lower flange, where

x3 = −h/2, as Q2(s3) = −E ts3 h/2. The corresponding shear flow then follows
from eq. (8.25) as

f(s3) = c3 +
E ts3 h/2

Hc
22

V3 =
hs3

2
tEV3

Hc
22

, (8.28)

where the integration constant, c3, vanishes because f(s3 = 0) = 0.
The present solution also satisfies the shear flow continuity condition at point C,

although this condition is not explicitly enforced. Indeed, the above results imply
f(s2 = h) = −1/2 bhtEV3/Hc

22 and f(s3 = b) = 1/2 bhtEV3/Hc
22, i.e., f(s2 =

h)+f(s3 = b) = 0. Note the algebraic nature of shear flows: the two shear flow add
up to zero because curvilinear variables s2 and s3 both converge towards point C.

The shear flow distribution along the cross-section is plotted in the right portion
of fig. 8.25. In this plot, the shear flow direction is indicated by arrows along the
section contour and the magnitude of the shear flow is represented by the curve
plotted along the contour; the shear flow’s magnitude is proportional to the distance
from the contour line to the curve, measured in the direction perpendicular to the
cross-section contour. In the vertical web, the shear flow varies parabolically, and
its algebraic value is negative, see eq. (8.27). Because the curvilinear coordinate,
s2, is positive down while the shear flow is negative, it implies that the shear flow
and associated shear stresses are actually pointing up the vertical web; this physical
direction of the shear flow is indicated by the arrows in fig. 8.25.

The shear flow has certain characteristics that deserve further discussion. First,
the shear flows in the upper and lower flanges are linearly distributed along the
flanges and vanish at the edges. Second, the shear flow in the vertical web varies
in a quadratic manner. Finally, the maximum shear flow is found at the mid-point of
the vertical web, and its magnitude is indicated in fig. 8.25.

Example 8.2. Shear flow continuity conditions
In the previous example, shear flow continuity conditions are imposed at point B and
C of the C-channel depicted in fig. 8.24. The continuity condition can be obtained
from simple equilibrium arguments: consider the free-body diagram of the two-wall
joint, where two walls are connected at point J, as illustrated in fig. 8.26. This rep-
resents the configuration of the present problem at point B. Due to the principle of
reciprocity of shear stresses, eq. (1.5), the shear flows acting in the plane of the cross-
section must be equilibrated by shear flows acting on orthogonal faces. Equilibrium
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of forces acting along the beam’s axis then yields −f1 + f2 = 0, or f1 = f2, i.e., the
shear flow must be continuous at the junction of the upper flange and vertical web,
f(s1 = b) = f(s2 = 0).

Figure 8.26 also illustrates the situation at the edge of the wall, labeled point E.
Due to the principle of reciprocity of shear stresses, the shear flow at the edge of the
wall must vanish, because the orthogonal face is a stress free edge of the beam.

f1
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f1

f1f = 0

f = 0edge

f2

f2

f2

f2

f3 f3
åf = 0i

JJE

Two-wall
joint

Three-wall
joint

Wall edge

Fig. 8.26. Equilibrium condition at the junction of two or more thin walls.

Finally, fig. 8.26 depicts a more elaborate three-wall joint configuration, where
multiple walls are connected together at point J. Equilibrium of forces acting along
axis ı̄1 of the beam yields −f1 − f2 − f3 = 0, or more generally,

∑
fi = 0. (8.29)

This simple equilibrium argument implies that the sum of the shear flows con-
verging to a joint must vanish. In practical applications of eq. (8.29), the shear flows
must be interpreted as algebraic quantities: each shear flow is positive in the direction
of the corresponding curvilinear coordinate. For instance, application of eq. (8.29)
to the two-wall configuration illustrated in fig. 8.26 yields (+f1) + (−f2) = 0, or
f1 = f2, as expected. Equation (8.29) applies at wall joints and edges; in the former
case, the sum extends over all walls connected at the joint, whereas in the latter case,
the sum reduces to a single term, enforcing the vanishing of the shear flow at the
wall’s edge.

Example 8.3. Shear flow distribution in a C-channel
The choice of the curvilinear coordinates is entirely arbitrary as long as each point of
the cross-sectional contour is uniquely defined. For the C-channel treated in exam-
ple 8.1, fig. 8.27 shows an alternative definition of the curvilinear variable: s1 now
runs across the lower flange, s2 up the vertical web, starting from its mid-point, and
s3 across the upper flange, starting at point B. As in the previous example, eq. (8.25)
defines the shear flow; in the lower flange, it leads to

f(s1) = 0 +
thb

2

(s1

b

) EV3

Hc
22

, (8.30)

where the term s1/b is the non-dimensional length across the lower flange.
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Fig. 8.27. Distribution of shear flow over the C-channel cross-section for an alternative defi-
nition of the curvilinear variable.

For the vertical web, eq. (8.22) yields the stiffness static moment as Q2 =
E s2t s2/2, and eq. (8.25) then leads to the following shear flow distribution

f(s2) = c2 − s2
2t

2
EV3

Hc
22

=
hbt

2
EV3

Hc
22

+
h2t

8

[
1−

(
2s2

h

)2
]

EV3

Hc
22

, (8.31)

where the integration constant is evaluated with the joint equilibrium condition,
eq. (8.29). At point C, f(s1 = b) = f(s2 = −h/2), leading to hbt/2 EV3/Hc

22 =
c2 − h2t/8 EV3/Hc

22.
Finally, the shear flow distribution along the upper flange is found in a similar

manner

f(s3) = c3 − Q2

Hc
22

V3 = c3 − E s3t h/2
Hc

22

V3 =
hbt

2

(
1− s3

b

) EV3

Hc
22

. (8.32)

Here again, the integration constant is determined from the joint equilibrium con-
dition, eq. (8.29). At point B, f(s2 = h/2) = f(s3 = 0), which implies
hbt/2 EV3/Hc

22 = c3. Equilibrium requires the shear flow to vanish at s3 = b; this
condition is satisfied by the present solution, although it is not explicitly enforced.

The overall distribution of shear flow for this alternative formulation is shown in
fig. 8.27; it is, of course, identical to that found in example 8.1. For either approach,
the maximum shear flow occurs at the web’s mid-point and is

fmax =
EV3h

2t

8Hc
22

(
1 +

4b

h

)
. (8.33)

While the results found here are physically identical to those found in exam-
ple 8.1, sign differences will occur because of the different choices for the curvilin-
ear variable, s. For instance, the shear flow distribution over the vertical web, see
eqs. (8.27) and (8.31), are of opposite sign, reflecting the opposite choices for the
direction of the curvilinear variable s2, see fig. 8.25 and 8.27. Similar remarks can
be made concerning the shear flow distributions in the upper and lower flanges.
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Example 8.4. Shear flow distribution in an open triangular section - A
Figure 8.28 shows a thin-walled, homogeneous section in the shape of a triangle
open at point A and subjected to a vertical shear force, V3. The opening at point A
is simply a small cut in the wall that does not affect the dimensions of the cross-
section. The width and height of the section are specified in multiples of the wall
thickness, and to simplify the computations, the upper and lower halves are right
triangles, whose side lengths have ratios 5:12:13.
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distribution
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Fig. 8.28. Thin-walled, open triangular section

Since axis ı̄2 is an axis of symmetry, the axes depicted on the figure are principal
axes of bending, i.e., Hc

23 = 0. It is also readily verified that the origin of the cen-
troidal axes is located as shown in fig. 8.28. The bending stiffness of the section can
be computed using the triangle area equivalence method developed in section 6.8.3
as

Hc
22 = 2E

[(
2
3
39t2

)(
15t

2

)2

+
(

30t2

6
+

39t2

6

)
(15t)2

]
= 8100 Et4, (8.34)

where it is noted that the section’s upper flange is of length 39t.
The curvilinear coordinate, s, along the cross-section is broken into three com-

ponents starting at point A: s1 runs down the lower flange, s2 up the vertical web,
starting from its mid-point, and s3 along the upper flange, starting from point A, as
shown in fig. 8.28.

From eq. (8.20), the shear flow distribution in the section’s lower flange simplifies
to f(s1) = c1 − Q2(s1)V3/Hc

22. Equation (8.22) yields the stiffness static moment
as Q2(s1) = −E s1t s1/2 sin α, where α is the angle between the upper flange and
axis ı̄2, with sin α = 15/39. The shear flow distribution then becomes

f(s1) = 0 +
5
26

s2
1t

EV3

Hc
22

=
13
360

( s1

39t

)2 V3

t
, (8.35)

where the integration constant is evaluated from the condition that f(s1 = 0) = 0.
The non-dimensional variable s1/39t is used to simplify the expression; it runs from
0 at point A to 1 at point C.
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Next, the stiffness static moment for the section’s vertical web is Q2(s2) =
E s2t s2/2, and the corresponding shear flow distribution becomes

f(s2) = c2 − 1
2
s2
2

tEV3

Hc
22

=
13
360

V3

t
+

1
72

[
1−

( s2

15t

)2
]

V3

t
, (8.36)

where the integration constant, c2, is evaluated using the joint equilibrium condition,
eq. (8.29), at point C: f(s1 = 39t) = f(s2 = −15t).

Finally, due to symmetry, the shear flow distribution along the upper flange is
identical to that along the lower flange, except for a change in sign due to the change
in sign of x3,

f(s3) = − 13
360

( s3

39t

)2 V3

t
. (8.37)

Although not explicitly enforced, the joint equilibrium condition at point B is satis-
fied by the present solution; indeed, f(s2 = 15t) + f(s3 = 39t) = 0.

Figure 8.28 shows the computed shear flows distributions over the cross-section.
The magnitude of the shear flow is represented by the curve plotted along the cross-
sectional contour where the shear flow is proportional to the normal distance from
the contour to the curve and where the direction of the shear flow is indicated by the
arrows.

Example 8.5. Shear flow distribution in an open triangular section - B
The thin-walled triangular section of height h and width b treated in the previous
example is considered again, but the section is now open at point B, the vertical
web’s mid-point, as illustrated in fig. 8.29.

First, the bending stiffness of the section is evaluated with the help of eq. (6.53)
to find

Hc
22 = E

th3

12
+ 2E

[
t`3

12
sin2 α + t`

(
h

4

)2
]

=
Et`h2

6
(1 + sinα),

where ` is the length of the flange (note that h/2 = ` sin α). This expression should
be compared with eq. (8.34) found using the triangle area equivalence method; it
is left to the reader to show that the two expressions are identical. In view of the
symmetry of the problem, the axes shown on the figure are principal centroidal axes
of bending. The centroid’s location along axis ı̄2 will not be required to evaluate the
shear flow distribution, and hence, its computation is omitted.

The shear flow distribution generated by a vertical shear force, V3, will be com-
puted by directly integrating the governing differential equation, rather than using
the stiffness static moment defined in eq. (8.22). For this problem, eq. (8.18) reduces
to

df

ds
= − Et

Hc
22

x3V3 = − 6
`h2(1 + sinα)

x3V3. (8.38)

For convenience, the section is broken into four straight segments and a curvilinear
variable is defined along each segment, as shown in fig. 8.29.
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Fig. 8.29. Thin-walled, open triangular section.

For the upper part of the vertical web defined by s1, x3 = s1, and integration of
eq. (8.38) leads to

f(s̄1) = − 6
`h2(1 + sinα)

s2
1

2
V3 = − 3s̄2

1

4(1 + sin α)
V3

`
,

where s̄1 = 2s1/h is the non-dimensional variable along the vertical web.
For the upper flange defined by s2, x3 = h/2− s2 sin α, and eq. (8.38) yields

f(s̄2) = − 6
`h2(1 + sinα)

(
hs2

2
− s2

2/2 sin α

)
V3 + c2

= −3(s̄2 − s̄2
2/2)

1 + sin α

V3

`
− 3

4(1 + sinα)
V3

`
,

where s̄2 = s2/` is the non-dimensional curvilinear variable along the top flange.
Integration constant, c2, is evaluated by enforcing the joint equilibrium condition,
eq. (8.29). At point C, f(s̄1 = 1) − f(s̄2 = 0) = 0. Due to the symmetry of the
section, f(s̄3) = −f(s̄1) and f(s̄4) = −f(s̄2), where f(s̄3) and f(s̄4) are the shear
flow distributions in the lower part of the vertical web and lower flange, respectively.

The net force resulting from the shear flow distribution in the upper part of the
web is found by integration as

R1 =
∫ h/2

0

f1 ds1 = − 3
4(1 + sin α)

V3

`

h

2

∫ 1

0

s̄2
1 ds̄1 = − sinα

4(1 + sinα)
V3.

Similarly, the net force resulting from the shear flow distribution in the upper flange
is

R2 =
∫ `

0

f2 ds2 = − 2 + 3 sinα

4 sin α(1 + sinα)
V3.

The net force resultants in the lower part of the section are found by symmetry:
R3 = −R1 and R4 = −R2. The shear flow resultants for the section’s four segments
are shown in fig. 8.29.

It is interesting to point out the counter-intuitive result that the shear flow dis-
tribution in the vertical web is pointing down, although the applied vertical shear
force is pointing up. Indeed, R1 < 0 and R3 > 0, while s1 is pointing up
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and s3 is pointing down. To understand this result, it is necessary to consider the
equilibrium of the entire section. First, summing all forces along axis ı̄2 yields
R2 cosα + R4 cosα = 0; this is expected because no external shear force is ap-
plied along this axis. Second, summation of all forces in the vertical direction gives
R1−R3−R2 sin α+R4 sin α = 2R1−2R2 sin α = V3, as can be verified by using
the previously determined values of R1 and R2. This result is also expected: the re-
sultant force in the vertical direction is equal to the externally applied shear force, V3.
The shear flow distributions in the upper and lower flanges have a net contribution in
the upward vertical direction that overcomes the downward contribution of the shear
flow in the vertical web to equilibrate the externally applied vertical shear force, V3.

8.3.4 Problems

Problem 8.12. Thin-walled “Z” shaped cross-section beam
Consider the thin-walled “Z” shaped cross-section beam shown in fig. 8.12. (1) Determine the
shear flow distribution in the section under a vertical shear force, V3. (2) Verify that all joint
and edge equilibrium conditions, eq. (8.29), are satisfied. (3) Find the magnitude and location
of the maximum shear stress. Use b = h/2 and sin α = 4/5.

Problem 8.13. Thin-walled skewed “Z” shaped cross-section beam
Consider the thin-walled skewed “Z” shaped cross-section beam shown in fig. 8.13. (1) Deter-
mine the shear flow distribution in the section under a vertical shear force, V3. (2) Verify that
all joint and edge equilibrium conditions, eq. (8.29), are satisfied. (3) Find the magnitude and
location of the maximum shear stress. Use b = h/2 and sin α = 4/5.

Problem 8.14. Thin-walled “L” shaped cross-section beam
Consider the thin-walled “L” section beam shown in fig. 8.14. (1) Determine the location of
the centroidal axes and compute the centroidal bending stiffnesses. (2) Determine the shear
flow distribution in the section under a vertical shear force, V3. (3) Verify that all joint and
edge equilibrium conditions, eq. (8.29), are satisfied. (4) Find the magnitude and location of
the maximum shear stress. Use th = tb = t and h = 2b.

Problem 8.15. Thin-walled angle section beam
A cantilevered beam with the thin-walled angle section shown in fig. 8.16 carries a tip vertical
load, P , applied along axis ı̄3. (1) Determine the location of the centroidal axes and compute
the centroidal bending stiffnesses. (2) Find the shear flow distribution in the root section. (3)
Verify that all joint and edge equilibrium conditions, eq. (8.29), are satisfied.

Problem 8.16. Skewed “I” shaped cross-section
A beam has the thin-walled, skewed “I” shaped cross-section shown in fig. 8.18. The wall
thickness for both flanges and web is a constant, t. Axis ı̄2 is an axis of symmetry of the
section. (1) Determine the location of the centroidal axes and compute the centroidal bending
stiffnesses. (2) Determine the shear flow distribution in the section under a vertical shear force,
V3. (3) Verify that all joint and edge equilibrium conditions, eq. (8.29), are satisfied.

Problem 8.17. Skewed “I” shaped cross-section
Treat problem 8.16 when the section is subjected a horizontal shear force, V2.
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Problem 8.18. Thin-walled semi-circular cross-section beam
Figure 8.19 depicts a thin-walled, semi-circular open cross-section. (1) Determine the location
of the centroidal axes and compute the centroidal bending stiffnesses. (2) Determine the shear
flow distribution in the section under a vertical shear force, V3. (3) Verify that all joint and
edge equilibrium conditions, eq. (8.29), are satisfied. (4) Indicate the location and magnitude
of the maximum shear flow. Note: It is more convenient to work with the angle θ as a variable
describing the geometry of the section: s = Rθ, ds = Rdθ.

Problem 8.19. Thin-walled semi-circular cross-section beam
Work problem 8.18 when the section is subjected a horizontal shear force, V2.

Problem 8.20. Thin-walled semi-circular cross-section with flanges
Figure 8.20 depicts a thin-walled, semi-circular open cross-section with end flanges. (1) De-
termine the location of the centroidal axes and compute the centroidal bending stiffnesses. (2)
Determine the shear flow distribution in the section under a vertical shear force, V3. (3) Verify
that all joint and edge equilibrium conditions, eq. (8.29), are satisfied. (4) Indicate the location
and magnitude of the maximum shear flow.

Problem 8.21. Thin-walled semi-circular cross-section with flanges
Work problem 8.20 when the section is subjected a horizontal shear force, V2.

Problem 8.22. Thin-walled C-channel with variable flange thickness
Figure 8.21 depicts a thin-walled C-channel with variable flange thickness. (1) Determine the
location of the centroidal axes and compute the centroidal bending stiffnesses. (2) Determine
the shear flow distribution in the section under a vertical shear force, V3. (3) Verify that all
joint and edge equilibrium conditions, eq. (8.29), are satisfied. (4) Indicate the location and
magnitude of the maximum shear flow.

Problem 8.23. Thin-walled C-channel with variable thickness
Treat problem 8.22 when the section is subjected a horizontal shear force, V2.

8.3.5 Shear center for open sections

Section 8.3.1 focuses on the determination of the shear flow distribution in thin-
walled open sections. The beam’s cross-section is assumed to be subjected to trans-
verse shear forces, V2 and V3, and it is shown that integration of the local equilibrium
equation, eq. (8.18), over the cross-section yields the desired shear flow distribution.
Intuitively, it is expected that integration over the cross-section of the shear flow com-
ponents in the horizontal and vertical directions must yield the applied shear forces,
V2 and V3, respectively.

In the statement of the problem, the beam is assumed to be subjected to the
transverse shear forces, V2 and V3 alone, and no torque is applied, i.e., M1 = 0.
Consequently, the net torque generated by the shear flow distribution is expected
to vanish. It should be noted, however, that as stated, the problem is not precisely
defined: whereas the magnitudes of the transverse shear forces are given, their lines
of action are not specified. This precludes the computation of the torque generated
by the applied shear forces, and hence, it is not possible verify the torque equilibrium
of the cross-section.
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Definition of the shear center

Consider a beam with the thin-walled, open cross-section depicted in fig. 8.30. At a
particular span-wise location along the beam, the cross-section is subjected to hor-
izontal and vertical shear forces of magnitudes V2 and V3, respectively, with lines
of action passing through point K, with coordinates (x2k, x3k), which are, as yet,
unknown. No external torque is applied with respect to point K, i.e., M1k = 0.

The shear flow distribution over the cross-
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Fig. 8.30. Thin-walled open cross-
section subjected to shear forces.

section must satisfy the following three equipol-
lence conditions. First, integration of the hor-
izontal component of the shear flow over the
cross-section must equal the applied horizon-
tal shear force, i.e.,

∫
C f (dx2/ds) ds = V2.

This condition will be satisfied because it sim-
ply corresponds to the definition of the shear
force, see eq. (8.7a). The second condition is
similar to the first and requires the integration
of the vertical component of the shear flow
to equal the applied vertical shear force, i.e.,∫
C f (dx3/ds) ds = V3, which is identical to

eq. (8.7b). The third condition requires the equivalence of the torque generated by
the distributed shear flow with the externally applied torque, when computed about
the same point. In summary, the shear flow distribution and the externally applied
shear forces and torque must form two equipollent systems of forces.

Whereas the first two equipollence conditions do not require the knowledge of
the line of action of the applied shear forces, the last condition does. The torque gen-
erated by the shear flow distribution about point K is given by eq. (8.10) as M1k =∫
C frk ds, where rk is the perpendicular distance from point K to the line of action

of the shear flow, as defined by eq. (8.11). The torque generated by the externally ap-
plied forces with respect to the same point vanishes: M1k = 0 + 0 · V2 + 0 · V3 = 0.
Indeed, no external torque is applied and the moment arms of the transverse shear
forces with respect to point K both vanish because their lines of action both pass
through point K, as illustrated in fig. 8.30.

The third equipollence condition now requires M1k =
∫
C frk ds = 0. This

means that point K cannot be an arbitrary point; rather, its coordinates must satisfy
the torque equipollence condition,

M1k =
∫

C
frk ds = 0. (8.39)

This torque equipollence condition provides the definition of the shear center
location.

Alternative definition of the shear center

The perpendicular distance from point K to the line of action of the shear flow is
given by eq. (8.11). Similarly, the perpendicular distance from an arbitrary point A
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to the line of action of the shear flow is ra = ro−x2a dx3/ds+x3a dx2/ds, where
(x2a, x3a) are the coordinates of point A. Subtracting this equation from eq. (8.11)
results in rk = ra − (x2k − x2a) dx3/ds + (x3k − x3a) dx2/ds. Introducing this
result into the torque equipollence condition, eq. (8.39), then yields

∫

C
fra ds− (x2k − x2a)

[∫

C
f

dx3

ds
ds

]
+ (x3k − x3a)

[∫

C
f

dx2

ds
ds

]

=
∫

C
fra ds− (x2k − x2a)V3 + (x3k − x3a)V2 = 0.

Since the torque generated about point A by the shear flow distribution is M1a =∫
C fra, it follows that

M1a =
∫

C
fra ds = (x2k − x2a)V3 − (x3k − x3a)V2. (8.40)

This result could also have been obtained from statics consideration by calcu-
lating the moment at point A due to force and moment resultants at point K. In-
deed, as illustrated in fig. 8.30, M1a = M1k + (x2k − x2a)V3 − (x3k − x3a)V2,
where (x3k − x3a) and (x2k − x2a) are the moment arms of shear forces V2 and V3

with respect to point A, respectively. Equation (8.40) then results from the fact that
M1k = 0, as required by eq. (8.39).

Equations (8.39) and (8.40) both express the same torque equipollence condition:
the torque generated by the shear flow distribution associated with transverse shear
forces must vanish when computed with respect to the shear center. Either equation
can be used to evaluate the location of the shear center, as will be illustrated in the
following examples. The choice of whether to use eq. (8.39) or (8.40) depends on
familiarity or convenience. Equation (8.40) is often easier to apply when M1a can
be computed more easily, i.e., by careful choice of point A, M1a ==

∫
C fra can be

much easier to calculate.

Summary

The discussion presented in the previous paragraphs can be summarized as follows.
Consider a beam subjected to transverse shear forces only, i.e., no external torque is
applied. Consequently, a shear flow distribution will arise in the cross-section, and its
distribution is obtained by integrating eq. (8.18). This shear flow distribution must be
equipollent to the externally applied shear forces. The equipollence of this shear flow
distribution is only possible if the transverse shear forces have lines of action passing
through point K, called the shear center, whose coordinates must satisfy eq. (8.39).

Because externally applied shear forces also generate bending of the beam, the
following equivalent statement results: a beam bends without twisting if and only if
the transverse loads are applied at the shear center. A corollary of this statement is
that if the transverse loads are not applied at the shear center, the beam will both
bend and twist. The analysis of coupled bending-twisting problems will be treated in
section 8.6.
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The computation of the location of the shear center is a four step procedure.
First, evaluate the shear flow distribution associated with a transverse shear force,
V2. Second, determine the location, x3k, of the line of action of this shear force with
the help of eq. (8.39) or (8.40). Third, evaluate the shear flow distribution associated
with a transverse shear force, V3. Finally, determine the location, x2k, of the line
of action of this shear force with the help of eq. (8.39) or (8.40). Of course, if the
cross-section features a plane of symmetry, the shear center must lie in that plane of
symmetry.

Example 8.6. Shear center for a C-channel
The shear flow distribution generated by a vertical shear force applied to a C-channel
is computed in example 8.3 and is shown in fig. 8.31. Axis ı̄2 is an axis of symmetry
for the C-channel, and hence, the shear center lies at a point along this axis. Thus, it
is only necessary to evaluate the shear flow distribution generated by a vertical shear
force, V3, to determine the location of the shear center.

Centroid Shear
Center

Shear flow
distribution
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shear
force, V3
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Fig. 8.31. Shear center in C-channel section.

The cross-section is made up of three straight line segments, the lower flange,
the vertical web, and the upper flange. The resultant force in each segment is easily
evaluated by integrating the associated shear flow distribution given in eqs. (8.30),
(8.31) and (8.32), to find

R1 =
∫ b

0

f(s1) ds1 =
hb2t

4
EV3

Hc
22

, R2 =
∫ h/2

−h/2

f(s2) ds2 = V3,

R3 =
∫ b

0

f(s3) ds3 =
hb2t

4
EV3

Hc
22

= R1.

These three resultant forces are shown in fig. 8.31.
It is now possible to check the three equipollence conditions. The integration

of the shear flow distribution component along axis ı̄2 is simply R1 − R1 = 0;
this resultant vanishes, as expected since no horizontal shear force is applied to the
section. Next, integration of the shear flow distribution component along axis ı̄3 is
simply R2 = V3. Here again, this result is expected: the shear flow distribution is
equipollent to the externally applied shear force, V3.
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The torque equipollence condition, eq. (8.39), yields
∫
C frk ds = −R1 h/2 +

R2 e−R1 h/2 = 0, where e is the distance between the shear center and the vertical
web, see fig. 8.31. Solving this equation leads to

e =
hR1

R2
=

h2b2t

4
E

Hc
22

=
3

6 + h/b
b, (8.41)

which gives the location of the shear center along axis ı̄2.
The same result can be obtained by using the torque equipollence condition ex-

pressed by eq. (8.40). Selecting point A as shown in fig. 8.31,
∫
C fra ds = −hR1;

note that the contribution of the vertical web vanishes because the line of action of
resultant R2 passes through point A. The torque generated by the externally applied
forces is (x2k−x2a)V3−(x3k−x3a)V2 = (x2k−x2a)V3 = (−e)V3. Equation (8.40)
then yields −hR1 = (−e)V3, or e = hR1/V3 = Eh2b2t/(4Hc

22), the same result as
that given by eq. (8.41).

Example 8.7. Shear center for an open triangular section
The shear flow distribution generated by a vertical shear force applied to an open
triangular section is computed in example 8.4 and is shown in fig. 8.32. Axis ı̄2 is an
axis of symmetry for the section, and hence, the shear center lies at a point along this
axis. Thus, it is only necessary to evaluate the shear flow distribution generated by a
vertical shear force, V3, to determine the location of the shear center.
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Fig. 8.32. Shear center in thin-walled open triangular section

First, the force resultants, R1, R2 and R3, in the lower flange, vertical web, and
upper flange, respectively, are evaluated by integrating the corresponding shear flow
distributions given by eqs, (8.35), (8.36) and (8.37), respectively, to find

R1 =
∫ 39t

0

f(s1) ds1 =
169
360

V3, R2 =
∫ 15t

−15t

f(s2) ds2 =
49
36

V3,

R3 = −
∫ 39t

0

f(s3) ds3 =
169
360

V3 = R1.

These three force resultants are shown in fig. 8.32, and to facilitate the computation,
the positive directions of these resultants are shown in the figure.
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The three equipollence conditions are now checked. Projection of the shear flow
distribution along axis ı̄2 implies −R1 cosα + R3 cosα = −R1 cosα + R1 cos α =
0, as expected since no horizontal shear force is applied to the section.

Next, projection of the shear flow distribution along axis ı̄3 leads to R2 −
R1 sin α−R3 sin α or

R2 − 2R1 sin α = +
49
36

V3 − 2
169
360

V3
15
39

= V3.

Here again, this result is expected: the shear flow distribution is equipollent to the
externally applied shear force, V3. The upward resultant acting in the vertical web,
R2 = 49/36 V3, is 36% larger than the applied shear force, V3, to compensate for
the downward components of the flange resultants, R1 and R3.

Finally, the torque equipollence condition, eq. (8.39), yields
∫
C frk ds =

−r3R1 + eR2 − r3R3 = 0, where e is the distance between the shear center and
the vertical web and r3 = (36t + e) sin α the normal distance from the shear center
to the upper flange, see fig. 8.32. Solving this equation leads to

e =
2r3R1

R2
= 13t, (8.42)

which gives the location of the shear center along axis ı̄2.
The same result can be obtained by using the torque equipollence condition ex-

pressed by eq. (8.40). Selecting point A in fig. 8.32,
∫
C fra ds = −36tR2, where

the contributions of the upper and lower flanges vanish because the lines of action of
resultants R1 and R3 pass through point A. The torque generated by the externally
applied forces is (x2k−x2a)V3− (x3k−x3a)V2 = (x2k−x2a)V3 = (−e−36t)V3.
Equation (8.40) then yields −36tR2 = (−e − 36t)V3, or e = 36t(R2 − V3)/V3 =
13t, the same result as that given by eq. (8.42).

This example demonstrates why it it sometimes expeditious to use the torque
equipollence condition written as eq. (8.40) rather than eq. (8.39). When selecting
point A indicated in fig. 8.32, the shear flow resultants in the flanges, R1 and R3, do
not enter the computation because their moment arms with respect to point A vanish.
Consequently, the evaluation of integral,

∫
C fra ds, is simplified. In the present case,

combining the torque equipollence condition, eq. (8.40), with the judicious selection
point A at the intersection of the upper and lower flanges simplifies the computation
of the shear center location.

Example 8.8. Shear center for an angle section
Consider the homogeneous angle section or “L” section depicted in fig. 8.33, which
consists of two flanges connected at a 90 degree angle with respect to each other.
Such “L” sections are commonly employed in building and aircraft structures, al-
though in aircraft applications, the flanges might be connected at arbitrary angles
with respect to each other.

A naive approach to the determination of the shear center location for this section
is to follow the procedure described in section 8.3.5. This will first require the com-
putation of the location of the section’s centroid and centroidal bending stiffnesses.
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Fig. 8.33. Shear center in thin-walled right-angle section

Next, the shear flow distributions generated by applied shear forces, V2 and V3, must
be evaluated, and finally, these distributions are used to locate the shear center using
either eq. (8.39) or (8.40).

In this case, however, none of these developments are necessary, if the aim is only
to determine the shear center location. Indeed, let the resultant of the shear flow dis-
tributions in the vertical and horizontal flanges be denoted R1 and R2, respectively,
as indicated in fig. 8.33. The lines of actions of these two resultants will intersect
at point K, and hence, the shear flow distribution produces no net torque about this
point, which must then be the shear center.

8.3.6 Problems

Problem 8.24. Thin-walled angle section
Determine the location of the shear center for the thin-walled angle section shown in fig. 8.16.

Problem 8.25. Horizontal “V” shaped cross-section
Determine the location of the shear center of the thin-walled cross-section shown in fig. 8.17.
Use b = a/2 and α = arcsin(3/5).

Problem 8.26. Skewed “I” shaped cross-section
Determine the location of the shear center of the thin-walled, skewed “I” shaped cross-section
shown in fig. 8.18. Axis ı̄2 is an axis of symmetry of the section.

Problem 8.27. Thin-walled semi-circular cross-section beam
Determine the location of the shear center of the thin-walled, semi-circular open cross-section
shown in fig. 8.19. Note: It is more convenient to work with the angle θ as a variable describing
the geometry of the section: s = Rθ, ds = Rdθ.

Problem 8.28. Semi-circular cross-section beam with vertical flanges
Determine the location of the shear center for the section shown in fig. 8.20. Use a = R.

Problem 8.29. Thin-walled C-channel with variable thickness
Determine the location of the shear center for the section shown in fig. 8.21.

Problem 8.30. Thin-walled “Y” shaped cross-section
Determine the location of the shear center for the section shown in fig. 7.35.
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8.3.7 Shearing of closed sections

In the case of closed sections, the governing equation for the shear flow distribution,
eq. (8.19), still applies, although no boundary condition is readily available to inte-
grate this equation. One notable exception occurs when the section presents an axis
of symmetry, such as the case shown in fig. 8.34. Plane (̄ı1, ı̄3) is a plane of sym-
metry of the section, and if a shear force, V3, acts in this plane, the solution must
be symmetric with respect to this plane. Thus, the shear flow distribution for the left
half of the section must be the mirror image of that for the right half.

Consider now the free-body diagram of a small portion of the thin wall in the
neighborhood of point A, the intersection of the section with the plane of symmetry,
as sketched in fig. 8.34. The joint equilibrium condition, eq. (8.29), implies f1+f2 =
0, whereas the symmetry condition implies f1 = f2. The only possible solution is
f1 = f2 = 0, i.e., the shear flow must vanish at point A.

A similar reasoning will conclude that the

i2

i3

f = 0
f1 f2

f = 0

A

B

V3

Fig. 8.34. Trapezoidal section sub-
jected to a shear force.

shear flow also vanishes at point B, the other in-
tersection of the section’s wall with the plane of
symmetry. Consequently, the section’s left and
right halves can be analyzed separately, as if
they are two independent open sections.

If a horizontal shear force, V2, is applied,
the above symmetry argument is no longer ap-
plicable. While integration of eq. (8.19) would
yield the shear flow distribution, no boundary
condition is available to determine the integra-
tion constant.

To overcome this problem, the following so-
lution process is devised. Consider a closed sec-
tion of arbitrary shape, as shown in part (A) of
fig. 8.35. In the first step, the beam is cut along its axis at an arbitrary point of the
cross-section as shown in part (B) of the figure, defining an “auxiliary problem.” The
points at the two edges of the cut are denoted E1 and E2.

(A) (B) (C)

f(s) f (s)0
fC

f =

constant
C

V3

V2

i2

i3

= +

s s

E1
E1

E2
E2

Fig. 8.35. (A): a general closed section. (B): the auxiliary problem created by cutting the
section open. (C): the constant closing shear flow.
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The shear flow distribution in this auxiliary problem is denoted fo(s), and is
readily found using the procedure described in section 8.3.1 for computing shear
flow distributions in open sections. As illustrated in fig. 8.36, this shear flow creates
a shear strain, γs, which in turn, creates an infinitesimal axial displacement du1. For
small shearing angles, this axial displacement becomes

du1 = γs ds =
τs

G
ds =

fo(s)
Gt

ds, (8.43)

where Hooke’s laws is used to characterize material behavior. The shear flow distri-
bution over the entire section creates a finite relative axial displacement at the two
edges of the cut, points E1 and E2, which can be evaluated by integrating around
the section the infinitesimal axial displacement given by eq. (8.43). The total relative
axial displacement at the cut, u0, is thus

u0 =
∫

C

fo(s)
Gt

ds.

In the last step of the solution process, a constant shear flow, denoted fc, is ap-
plied to the section, as illustrated in part (C) of fig. 8.35. This constant shear flow
must be adjusted to eliminate the relative axial displacement, u0, between the edges
of the cut, thereby returning the section to its original, closed state. The constant
shear flow, fc, is therefore called the closing shear flow.

After addition of the closing shear flow, the to-
f0

du1

f0 dx1

ds
g

s

s

Fig. 8.36. Axial displacement arising
from the shear flow fo.

tal shear flow in the section becomes f(s) =
fo(s) + fc, and the corresponding relative axial
displacement must now vanish, which implies

ut =
∫

C

fo(s) + fc

Gt
ds = 0. (8.44)

This condition is, in fact, the displacement com-
patibility equation for the closed section. Solv-
ing this equation then yields the closing shear
flow as

fc = −

∫

C

fo(s)
Gt

ds
∫

C

1
Gt

ds

. (8.45)

The procedure to compute the shear flow
distribution in a closed section is summarized in the following steps.

1. Compute the shear flow distribution, fo(s), for an auxiliary problem obtained by
cutting the beam along its axis at an arbitrary point of the section. The solution
procedure described in section 8.3.1 can be used.

2. Compute the closing shear flow, fc, using eq. (8.45).
3. The shear flow distribution in the closed section is then f(s) = fo(s) + fc.
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Example 8.9. Shear flow distribution in a closed triangular section
Consider the triangular section depicted in fig. 8.28, but now assume that the section
is closed, i.e., there is no cut at point A. The location of the centroid and bending
stiffnesses are identical in the open and closed sections.

The shear flow distributions given by eqs. (8.35), (8.36) and (8.37) now cor-
respond to the shear flow distributions associated with the auxiliary problem, and
hence,

fo(s1) =
13
360

( s1

39t

)2 V3

t
, fo(s3) = − 13

360

( s3

39t

)2 V3

t
,

fo(s2) =
13
360

V3

t
+

1
72

[
1−

( s2

15t

)2
]

V3

t
. (8.46)

The constant closing shear flow fc can now be calculated using eq. (8.45). Inte-
grating in a clockwise direction around the section, the numerator is

∫

C

fo

Gt
ds =

∫ 39t

0

fo(s1)
Gt

ds1 +
∫ 15t

−15t

fo(s2)
Gt

ds2 −
∫ 39t

0

fo(s3)
Gt

ds3 =
23V3

10Gt
,

where is should be noted that the last integral has a negative sign because curvilinear
variable s3 is selected to be in the opposite direction of the clockwise orientation
used to express the integral, as defined in fig. 8.28. The denominator in eq. (8.45) is

∫

C

ds

Gt
=

1
Gt

(39t + 30t + 39t) =
108
G

.

Thus, the closing shear flow becomes

fc = −23V3/(10Gt)
108/G

= − 23
1080

V3

t
. (8.47)

Finally, the resulting shear flow for the triangular section is f(s) = fo(s) + fc,
where fo(s) is given by eq. (8.46). Note that both shear flow in the auxiliary section
and the closing shear flow are positive when pointing along the local curvilinear
variable. The non-dimensional shear flow distribution, f̄(s) = tf(s)/V3, is shown
in fig. 8.37 where the arrows indicate the physical direction of the shear flow.

Shear flow
distribution

C triangular
section
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s2

s3 i2

i3

A

13t 23t

30t

B

C

fmax = 31/1080

f = 16/1080

f = 23/1080

f = 16/1080

Fig. 8.37. Non-dimensional shear flow distribution in a closed triangular section.
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Example 8.10. Shear flow distribution in a trapezoidal section
Consider the thin-walled trapezoidal section shown in fig. 8.38. The wall thickness, t,
is constant, and the curvilinear variable is broken into four components: s1 along the
upper flange starting from point A, s2 down the left web, with its origin at mid-point,
s3 across lower flange starting from point C, and s4 up the right web with a mid-span
origin. Axis ı̄2 is an axis of symmetry for this section and hence, the cross bending
stiffness vanishes, Hc

23 = 0. This means that centroid lies on this axis somewhere
between the two webs. For this example, a vertical shear force, V3, is applied to the
section and it is only necessary to determine the bending stiffness Hc

22, given by
eq. (6.55), where ` is the distance between points A and B: `2 = b2 + (h2 − h1)2.
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f(s )4
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Closed
trapezoidal
section

Shear flow
distribution

Fig. 8.38. Thin-walled trapezoidal section subjected to a vertical shear force, V3.

The first step of the procedure is to cut the section at an arbitrary point, say
A. The distribution of shear flow in the open section is found using eq. (8.20), and
the boundary condition is f(s1 = 0) = 0. The shear flow in the other segments
of the section is obtained by integrating the same equation and enforcing the joint
equilibrium condition, eq. (8.29), at points B, C, and D. The complete shear flow
distribution is

fo(s1) =
EV3

Hc
22

[
h2 − h1

2`
s2
1 − h2s1

]
, fo(s2) =

EV3

2Hc
22

[
s2
2 − h2

1 − (h1 + h2)`
]
,

fo(s3) =
EV3

Hc
22

[
h2 − h1

2`
s2
3 + h1s3 − h1 + h2

2
`

]
, fo(s4) =

EV3

2Hc
22

[−s2
4 + h2

2

]
.

(8.48)
The next step of the procedure requires the evaluation of the closing shear flow

according to eq. (8.45). The numerator can be evaluated as

∫

C

fo

Gt
ds =

∫ l

0

fo

Gt
ds1 +

∫ +h1

−h1

fo

Gt
ds2 +

∫ `

0

fo

Gt
ds3 +

∫ +h2

−h2

fo

Gt
ds4,

= − EV3

3GtHc
22

[
2(h3

1 − h3
2) + (h1 + 2h2)`2 + 3(h1 + h2)`h1

]
,

and the denominator as
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∫

C

1
Gt

ds =
∫ `

0

ds

Gt
+

∫ +h1

−h1

ds

Gt
+

∫ `

0

ds

Gt
+

∫ +h2

−h2

ds

Gt
=

2(` + h1 + h2)
Gt

,

to yield the closing shear flow

fc =
EV3

Hc
22

2(h3
1 − h3

2) + (h1 + 2h2)`2 + 3(h1 + h2)`h1

6(` + h1 + h2)
. (8.49)

The final distribution of shear flow is found by adding this closing shear flow to
the shearing flow distribution for the open section, eq. (8.48). The shear flow distri-
bution in the closed section is depicted in fig. 8.38, which shows that the maximum
shear flow is found at the mid-point of the right web. Also shown in this figure are the
shear force resultants on each side of the section. Clearly, the horizontal forces must
sum up to zero since no shear force is applied in that direction. The summation of
the forces in the vertical direction yields, after a lengthy of algebraic manipulation,

EV3

Hc
22

{[(
h1 + 2h2

6
`2 − fc`

)
h2 − h1

`

]
+

[
2h3

1

3
+ (h1 + h2)`h1 − 2fch1

]

+
[(

h1 + 2h2

6
`2 − fc`

)
h2 − h1

`

]
+

[
2h3

2

3
+ 2fch2

]}
=

EV3

Hc
22

Hc
22

E
= V3.

Thus, the distributed shear flow exactly sums up to the applied shear force V3.

8.3.8 Shearing of multi-cellular sections

Multi-cellular sections are common

C2

C1

C3

fc1

fc2

s1 s2

s3

Cut 1
Cut 2

+
+

Fig. 8.39. A thin-walled, multi-cellular section.

in aeronautical construction. Fig-
ure 8.39 shows a typical wing section
with two closed cells. The shear flow
distribution must satisfy eq. (8.18),
but no boundary condition is avail-
able to evaluate the integration con-
stant. To remedy this situation, a pro-
cedure similar to that used for a single closed section must be developed.

The multi-cellular beam is cut along its axis at arbitrary points. One cut per cell
is required to eliminate all the closed paths of the section, as illustrated in fig. 8.39
for the present example. The shear flow distribution in the resulting open section
is evaluated using the procedure described in section 8.3.1. Let fo(s1), fo(s2), and
fo(s3) be the shear flow distributions along curves C1, C2, and C3, respectively.

Next, closing shear flows are applied at each of the cuts; fc1 and fc1 for the
front and aft cells, respectively. The shear flow distributions are now fo(s1) + fc1,
fo(s2) + fc2, and fo(s3) + (fc1 + fc2), along curves C1, C2, and C3, respectively.

The two unknown closing shear flows will be evaluated by enforcing the dis-
placement compatibility condition for each of the two cells. When enforcing these
conditions, it is important to keep track of sign conventions. The front cell is de-
scribed clockwise, leading to the following equation
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ut1 =
∫

C1

fo(s1) + fc1

Gt
ds1 +

∫

C3

fo(s3) + (fc1 + fc2)
Gt

ds3 = 0.

Since the curvilinear variables s1 and s3 are defined in the same clockwise direction,
all integral have a positive sign. The aft cell is described counterclockwise, leading
to

ut2 =
∫

C2

fo(s2) + fc2

Gt
ds2 +

∫

C3

fo(s3) + (fc1 + fc2)
Gt

ds3 = 0.

These compatibility conditions can be recast as a set of two linear equations for
the unknown closing shear flows,

[∫

C1+C3

1
Gt

ds

]
fc1 +

[∫

C3

1
Gt

ds

]
fc2 = −

∫

C1+C3

fo(s)
Gt

ds;
[∫

C3

1
Gt

ds

]
fc1 +

[∫

C2+C3

1
Gt

ds

]
fc2 = −

∫

C2+C3

fo(s)
Gt

ds.

Solving these two equations yields the two closing shear flows, fc1 and fc2.
The total shear flow in the multi-cellular section is then found by adding the

closing shear flows to the shear flows in the open section, i.e., fo(s1)+fc1, fo(s2)+
fc2, and fo(s3) + (fc1 + fc2), along curves C1, C2, and C3, respectively.

The procedure is readily extended to multi-cellular section possessing N closed
cells. First, the multi-cellular section is transformed into an open section by creating
N cuts, one per cell. The shear flow distribution in the resulting open section is then
evaluated with the help of the procedure of section 8.3.1. Next, unknown closing
shear flows are applied at each cut and displacement compatibility conditions are
imposed for each of the N cells. These conditions yield a set of N simultaneous
equations for the N closing shear flows. Finally, the total shear flow distribution in
the multi-cellular section is found by adding the closing shear flows to the shear
flows for the open section.

Example 8.11. Shear flow in thin-walled double-box section
Consider the closed multi-cellular, thin-walled, double-box section subjected to a
vertical shear force, V3, as shown in fig. 8.40. The section consists of two closed
cells; the right cell has a wall thickness of 2t, while the three remaining walls of
the left cell have wall thicknesses of t. The vertical sides will be referred to as the
vertical webs, whereas the horizontal sides will be called flanges.

Due to symmetry, the centered horizontal axis ı̄2 is a principal axis of bending,
and hence, Hc

23 = 0. The centroid of the section will be located in the right cell, as
indicated in the figure. Using thin-wall assumptions, the bending stiffness becomes

Hc
22 = E

[
2

(
2tb3

12

)
+

tb3

12
+ 2(bt + b2t)

(
b

2

)2
]

=
23
12

tb3E.

In the first step of the procedure, the closed multi-cellular section is transformed
into an open section by cutting the two lower flanges at the location where they
connect to the center web, as indicated in fig. 8.40. The locations of these cuts are
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Fig. 8.40. A thin-walled double-box section.

arbitrary, but those selected here lead to simple definitions of the curvilinear coordi-
nates, si, for each component of the section.

The stiffness static moments in each component of the section are found with the
help of eq. (8.22). Equation (8.20) now reduces to f(s) = Q2(s)V3/Hc

22 and the
shear flow distribution in the open section, fo(si), becomes

fo(s1) =
6V3

23b

s1

b
, fo(s3) =

6V3

23b

(
1− s3

b

)
, fo(s4) =

12V3

23b

s4

b
,

fo(s2) =
6V3

23b

[
1 +

(
1− s2

b

) s2

b

]
, fo(s5) =

12V3

23b

[
1 +

(
1− s5

b

) s5

b

]
,

fo(s6) =
12V3

23b

(
1− s6

b

)
, fo(s7) = −12V3

23b

(
1− s7

b

) s7

b
.

Next, two closing shear flows, denoted fc1 and fc2, are added to the left and
right cells, respectively. The axial displacement compatibility condition for each of
the two cells will be used to evaluate these two unknown closing shear flows. When
enforcing these conditions, it is important to keep track of sign conventions. The left
cell is described clockwise, leading to the following compatibility equation

ut1 =
∫ b

0

fo(s1) + fc1

Gt
ds1 +

∫ b

0

fo(s2) + fc1

Gt
ds2 +

∫ b

0

fo(s3) + fc1

Gt
ds3

−
∫ b

0

fo(s7)− fc1 − fc2

G2t
ds7 =

b

Gt

(
7fc1

2
+

fc2

2
+

12V3

23b

)
= 0.

Note the minus sign in front of the last integral because curvilinear variable s7 is de-
fined in the direction that opposes the clockwise description of the left cell. The right
cell is described counterclockwise and the corresponding compatibility equation is

ut2 =
∫ b

0

fo(s4) + fc2

G2t
ds4 +

∫ b

0

fo(s5) + fc2

G2t
ds5 +

∫ b

0

fo(s6) + fc2

G2t
ds6

−
∫ b

0

fo(s7)− fc1 − fc2

G2t
ds7 =

b

Gt

(
fc1

2
+ 2fc2 +

12V3

23b

)
= 0.

Here again, note the minus sign in front of the last integral because curvilinear vari-
able s7 is defined in the direction that opposes the counterclockwise description of
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the right cell. Evaluation of the integrals and solution of these two simultaneous al-
gebraic equations yields fc1 = −8V3/(69b) and fc2 = −16V3/(69b).

Finally, the total shear flow in each segment of the section can be computed
by combining the open-section shear flows, fo(si), with the constant closing shear
flows, fc1 and fc2, to find

f(s1) = −2V3

69b

(
4− 9

s1

b

)
, f(s2) =

2V3

69b

[
5 + 9

s2

b
− 9

(s2

b

)2
]

,

f(s3) =
2V3

69b

(
5− 9

s3

b

)
, f(s4) = −4V3

69b

(
4− 9

s4

b

)
,

f(s5) =
4V3

69b

[
5 + 9

s5

b
− 9

(s5

b

)2
]

, f(s6) =
4V3

69b

(
5− 9

s6

b

)
,

f(s7) =
12V3

69b

[
2 + 3

s7

b
− 3

(s7

b

)2
]

.

(8.50)

The shear flows in the webs vary quadratically while those in the flanges vary
linearly, as illustrated in fig. 8.41. This is consistent with previous examples for shear
flow in open sections. The net resultant of the shear flows in the flanges must vanish
because no shear force is externally applied in the horizontal direction. The resultant
of the shear flows in the webs must equal the externally applied vertical shear force,
V3. This important check of the computations is left as an exercise.
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Fig. 8.41. Shear flow in the thin-walled double-box section.

8.3.9 Problems

Problem 8.31. Shear flow distribution in closed circular section
Consider a beam with a thin-walled, circular cross-section of radius R and thickness t. The
section is subjected to a vertical shear force, V3. (1) Determine the bending stiffnesses of the
section. (2) Find the shear flow distribution in the section. (3) Find the location and magnitude
of the maximum shear flow in the section.

Problem 8.32. Shear flow in a closed rectangular section
The thin-walled beam with a rectangular section depicted in fig. 8.42 is subjected to a vertical
shear force V3. (1) Determine the centroidal bending stiffnesses of the section. (2) Find the
shear flow distribution in the section. (3) Verify that all joint and edge equilibrium conditions,
eq. (8.29), are satisfied. (4) Find the location and magnitude of the maximum shear flow in the
section. Use the following data: α = 1.0
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Fig. 8.43. Thin-walled, circular cross-section
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Problem 8.33. Shear flow in closed rectangular section
The thin-walled, rectangular beam section shown in fig. 8.42 is subjected to a horizontal shear
force, V2. The thickness of the right vertical web is 5t, whereas that of the remaining walls
is t. (1) Determine the centroidal bending stiffnesses of the section. (2) Find the shear flow
distribution in the section. (3) Verify that all joint and edge equilibrium conditions, eq. (8.29),
are satisfied. (4) Find the location and magnitude of the maximum shear flow in the section.
Use the following data: α = 5.0

Problem 8.34. Shear flow in closed circular tube with flanges
The thin-walled, circular tube with flanges in fig. 8.43 is subjected to a vertical shear force,
V3. (1) Determine the centroidal bending stiffnesses of the section. (2) Find the shear flow
distribution in the section. (3) Verify that all joint and edge equilibrium conditions, eq. (8.29),
are satisfied. (4) Find the location and magnitude of the maximum shear flow in the section.

Problem 8.35. Shear flow in closed circular tube with flanges
Treat problem 8.34 under a horizontal shear force, V2.

Problem 8.36. Thin-walled “Box-Z” shaped cross-section beam
The thin-walled cross-section shown in fig. 8.15 is subjected to a vertical shear force, V3. (1)
Determine the centroidal bending stiffnesses of the section. (2) Find the shear flow distribution
in the section. (3) Verify that all joint and edge equilibrium conditions, eq. (8.29), are satisfied.
(4) Find the location and magnitude of the maximum shear flow in the section. Use with
b = c = a/2.

Problem 8.37. Shear flow in high-lift device
The cross-section of a high lift device is shown in fig 8.44. The aerodynamic pressure acting
on the lower panel of the device has a net resultant V3 = 100 kN and its line of action is
aligned with axis ı̄3, as indicated on the figure. Material properties are: E = 73 GPa, G = 30
GPa. (1) Find the shear flow distribution in the section. (2) Sketch this shear flow distribution.
(3) Verify that all joint and edge equilibrium conditions, eq. (8.29), are satisfied. (4) Determine
the location and magnitude of the maximum shear stress.

Problem 8.38. Shear flow in a multi-cellular, thin-walled section
The cross-section of the multi-cellular thin-walled beam shown in fig. 8.45 is subjected to a
vertical shear force V3. (1) Find the shear flow distribution in the section. (2) Verify that all
joint and edge equilibrium conditions, eq. (8.29), are satisfied. Use a = b and c = 2b and
t1 = t2 = tw = t.
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8.4 The shear center

In the previous section, procedures for computing shear flow distributions in open
and closed sections are developed. In addition, the concept of the shear center is in-
troduced and defined as the point of the cross-section about which the torque equipol-
lent to the shear flow distribution vanishes. The procedure for determining the shear
center location is developed for open sections, but the concept of shear center also
exists for closed sections.

In chapter 6, it is assumed that transverse loads are applied in “such a way that
the beam will bend without twisting.” This restriction can now be stated in a more
precise manner: the lines of action of all transverse loads are assumed to pass through
the shear center. Consequently, the results derived in chapter 6, and the shear flow
distributions presented in section 8.3 are only valid if the transverse loads are applied
at the section’s shear center. Clearly, the determination of the shear center location is
a crucial step in the analysis of beams. If the lines of action of the applied transverse
shear forces pass through the shear center, the beam will bend without twisting. If the
shear forces are not applied at the shear center, the beam will undergo both bending
and twisting.

A general procedure for the determination of the location of the shear center
for thin-walled cross-sections will now be described. It is based on the requirement
first presented in section 8.3.5: when computed about the shear center, the torque
equipollent to the shear flow distribution over the cross-section must vanish. Since
the two coordinates of the shear center must be evaluated, this torque equipollence
requirement must be applied, in general, to two linearly independent shear flow dis-
tributions.

8.4.1 Calculation of the shear center location

The general procedure for determining the shear center location involves two linearly
independent loading cases and associated shear flow distributions. The first loading
case, identified with a superscript (·)[2], consists of a unit shear force, V

[2]
2 = 1,

acting along axis ı̄2, while no shear force is acting along axis ı̄3, i.e., V
[2]
3 = 0. The

shear flow associated with this loading case is denoted f [2](s). The second loading
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case, identified with a superscript (·)[3], consists of a unit shear force, V
[3]
3 = 1,

acting along axis ı̄3, while no shear force is acting along axis ı̄2, i.e., V
[3]
2 = 0. The

associated shear flow is denoted f [3](s).
From eq. (8.7), the shear forces equipollent to f [2](s) are

V
[2]
2 =

∫

C
f [2] dx2

ds
ds = 1, V

[2]
3 =

∫

C
f [2] dx3

ds
ds = 0. (8.51)

This intuitive result is proved in a formal manner in example 8.16.
By definition, the shear center is located at point K, whose coordinates, denoted

(x2k, x3k), satisfy the torque equipollence condition expressed by eq. (8.39). Equa-
tion (8.10) then implies

M1K =
∫

C
f [2]rk ds =

∫

C
f [2]

(
ro − x2k

dx3

ds
+ x3k

dx2

ds

)
ds,

where rk is the distance from point K to the tangent to contour C, evaluated with the
help of eq. (8.11). Rearranging this expression leads to

−x2k

[∫

C
f [2] dx3

ds
ds

]
+ x3k

[∫

C
f [2] dx2

ds
ds

]
= −

∫

C
f [2] ro ds.

In view of eq. (8.51), the two bracketed terms equal 0 and 1, respectively, and this
equation reduces to

x3k = −
∫

C
f [2]ro ds. (8.52)

A similar reasoning for the shear flow distribution f [3] yields the other coordinate of
the shear center as

x2k =
∫

C
f [3]ro ds. (8.53)

The torque equipollence condition given by eq. (8.39) is used in the above de-
velopment. It is also possible to use the torque equipollence condition expressed by
eq. (8.40). For the shear flow distribution, f [2](s), associated with a unit shear force
along axis ı̄2, this condition yields

x3k = x3a −
∫

C
f [2]ra ds. (8.54)

A similar reasoning for shear flow distribution, f [3](s), yields the other coordinate
of the shear center as

x2k = x2a +
∫

C
f [3]ra ds, (8.55)

where (x2a, x3a) are the coordinates of an arbitrary point A of the cross-section, and
ra the normal distance from this point to the tangent to curve C. In some cases, the
judicious choice of the location of point A can greatly simplify the evaluation of the
integral, see example 8.7.

The general procedure for the determination of the location of the shear center is
summarized in the following steps.
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1. Compute the location of the section’s centroid and select a set of centroidal axes.
In some cases, it might be more convenient to work with the principal centroidal
axes of bending, but this is not a requirement.

2. Compute the shear flow distribution, f [2](s), corresponding to a unit shear force
acting along axis ı̄2, V

[2]
2 = 1, V

[2]
3 = 0;

3. Compute the shear flow distribution, f [3](s), corresponding to a unit shear force
acting along axis ı̄3, V

[3]
2 = 0, V

[3]
3 = 1. The procedure used to determine these

shear flow distributions is described in section 8.3.1 or 8.3.7 for open or closed
sections, respectively.

4. Compute the coordinates of the shear center using either eqs. (8.52) and (8.53),
or (8.54) and (8.55).

Note that if the cross-section exhibits a plane of symmetry, the procedure can be
simplified. For instance, if plane (̄ı1, ı̄2) is a plane of symmetry of the section, the
shear center must be located in this plane of symmetry. Consequently, x3k = 0, and
the computation of the shear flow distribution, f [2], associated with the first loading
case is not required since the use of eq. (8.52) can be bypassed. The computation
of the shear flow distribution, f [3], will be required to evaluate the remaining coor-
dinate, x2k, of the shear center with the help of eq. (8.53). Of course, if the section
presents two planes of symmetry, the shear center is at the intersection of those two
planes.

Example 8.12. The shear center of a trapezoidal section
Consider the closed trapezoidal section depicted in fig. 8.38. The shear flow distribu-
tion generated by a vertical shear force, V3, is evaluated in example 8.10 as the sum
of the shear flow distribution in the auxiliary open section, denoted fo(s) and given
by eqs. (8.48), and of the closing shear flow, denoted fc and given by eq. (8.49).

The location of the shear center then follows from eq. (8.53)

x2k =
∫

C

(
f̄ [2]

o (s) + f̄ [2]
c

)
ro ds,

where f̄
[2]
o (s) = fo(s)/V3 and f̄

[2]
c = fc/V3, i.e., these quantities are the shear flow

distributions associated with a unit shear force, V3 = 1. Evaluation of the integral is
quite tedious and yields

x2k =
b

4
h2 − h1

`

1− (h1 + h2)/`

1 + (h1 + h2)/`

1 + `(h2
2 − h2

1)/(h3
2 − h3

1)
1 + (h2 − h1)(h3

2 + h3
1)/(`(h3

2 − h3
1))

.

Due to the symmetry of the problem, the other coordinate of the shear center is
x3k = 0. Of course, if h2 = h1, the trapezoidal section becomes rectangular, and
x2k = 0, as required by symmetry.

Example 8.13. Relationship between shear centers of open and closed sections
Consider two otherwise identical cross-sections, the first closed, and the second
open. The open section is obtained by cutting the closed section along the axis of
the beam at an arbitrary point of the section. Let (xo

2k, xo
3k) be the coordinates of
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the shear center of the open section, and (xc
2k, xc

3k) those of the shear center of the
closed section. The coordinates of the shear center of the open section are given by
eqs. (8.53) and (8.52) as

xo
2k =

∫

C
f [3]

o ro ds, xo
3k = −

∫

C
f [2]

o ro ds,

where f
[2]
o and f

[3]
o are the shear flow distributions in the open section, corresponding

to unit shear forces acting along axes ı̄2 and ı̄3, respectively.
The coordinates of the shear center of the closed section are obtained in a similar

manner as

xc
2k =

∫

C
(f [3]

o + f [3]
c ) ro ds, xc

3k = −
∫

C
(f [2]

o + f [2]
c ) ro ds.

In these equations, f [3]
c and f

[2]
c are the closing shear flows defined by eq. (8.45), and

f
[2]
o and f

[3]
o are the shear flow distributions in the auxiliary open sections. The first

of these two integrals can be expanded in the following manner,

xc
2k =

∫

C
f [3]

o ro ds +
∫

C
f [3]

c ro ds = xo
2k + f [3]

c

∫

C
ro ds,

where xo
2k is the location of the shear center for the auxiliary open section. The

remaining integral in this equation is a purely geometry quantity.
As illustrated in fig. 8.46, quantity 1/2 ro ds

i2

i3

s

ro

ds

d =

r

A

ods / 2
C

P

O

Fig. 8.46. The area of a differential
triangle, dA = 1/2 rods.

represents the area of a differential triangle of
base ds and height ro. As curvilinear variable s
sweeps around the closed section, the integral
represents the sum of these differential trian-
gles and yields the total area, A, enclosed by
the closed curve C. Hence,

∫

C
ro ds =

∫

C
2dA = 2A. (8.56)

It now follows that

xc
2k − xo

2k = 2Af [3]
c , (8.57a)

xc
3k − xo

3k = −2Af [2]
c . (8.57b)

This result shows that the coordinates of the shear center in the open and closed
section are closely related to each other through the closing shear flows f

[3]
c and

f
[2]
c . As shown by eq. (8.8), ro is an algebraic quantity: when the curvilinear vari-

able describes C counterclockwise, ro is a positive quantity, but it is negative if the
curvilinear variable describes C clockwise. Consequently, the enclosed area, A, ap-
pearing in eq. (8.57) must be understood as an algebraic quantity: positive is C is
described counterclockwise, negative is C is described clockwise. Of course, the sign
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convention for the closing shear flow is also related to the direction of the curvilinear
variable, and hence, the product, Afc, is independent of the arbitrary choice of the
curvilinear coordinate direction, as should be expected.

Example 8.14. The shear center of a closed triangular section
In example 8.4, the shear flow distribution in an open triangular section is evaluated
and the location of its shear center is determined in example 8.7. Finally, in exam-
ple 8.9, the shear flow distribution in the corresponding thin-walled, closed triangular
section is evaluated. In the present example, the location of the shear center of the
closed section will be determined using different approaches.

The location of the centroid and the bending stiffnesses are identical for the open
and closed sections. Since axis ı̄2 is an axis of symmetry, the shear center must lie
on this axis, i.e., x3k = 0 and therefore, according to the procedure described in
section 8.4.1, it is only necessary to determine the shear flow distribution associated
with a unit shear force acting along axis ı̄3: V3 = 1 and V2 = 0. This shear flow
distribution is computed in example 8.9 and consists of the superposition of the shear
flow in the open section and a closing shear flow.

Triangular section
(closed)

Shear center
location

R1

R2

R3

i2
i2

i3 i3

AA B

e

30t

13t 23t

K O

r  =  23t sin0 a

a

Fig. 8.47. Shear center for thin-walled triangular section.

First, the net force resultants in the flanges and vertical web will be evaluated.
Starting with the lower flange, the net resultant of the shear flow distribution is

R1 =
∫ 39t

0

fo(s1) ds1 + fc

∫ 39t

0

ds1 =
169
360t

− 23
1080t

39t = −13
36

,

where the shear flow in the open auxiliary section, fo(s1), is given by eq. (8.46) and
the closing shear flow, fc, by eq. (8.47). In both equations, the applied shear force
is set to V3 = 1. Because the closing shear flow is constant, it can be factored out
of the integral. The negative sign indicates that the net resultant is directed in the
opposite direction of the curvilinear variable, s1, see fig. 8.28. Figure 8.47 shows the
physical direction of the resultant. Proceeding in a similar manner for the web and
upper flange, the magnitudes of the resultants are found to be R1 = R3 = 13/36
and R2 = 26/36, and their directions are indicated in fig. 8.47.

The shear force equipollence conditions can be verified. The net resultant along
axis ı̄2 is V2 = R1 cos α−R3 cos α = 0, as expected since no shear force is applied
along that axis. The net resultant along axis ı̄3 is V3 = R1 sin α + R2 + R3 sin α.
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This leads to V3 = 2(13/36) (15/39) + (26/36) = 5/18 + 13/18 = 1, as expected,
because a unit shear force is applied along that axis.

The shear center is now computed with the help of eq. (8.53) to find

x2k =
∫

C
f [3] ro ds = 2R123t sin α−R213t = 2

13
36

23t
15
39
− 26

36
13t = −3t,

where ro = 23t sin α is the normal distance from the origin of the axes to the flanges.
The shear center is located a distance 3t to the left of the origin of the axes, i.e., a
distance e = 10t to the right of the vertical web as indicated in fig. 8.47.

The alternative manner of expressing the torque equipollence condition given by
eq. (8.55) can also be used to find the location of the shear center. Using reference
point A in fig. 8.47 leads to

x2k = x2a +
∫

C
f [3]ra ds = 23t−R236t = 23t− 26

36
36t = 23t− 26t = −3t,

which is the same result as that found above.
A final way to look at this problem is to consider the relationship between the

shear centers of open and closed sections, as discussed in example 8.13. Equa-
tion (8.57a) yields

xc
2k − xo

2k = 2Af [3]
c = 2

30t 36t

2
23

1080 t
= 23t,

where the closing shear flow, f
[3]
c , corresponding to a unit vertical shear force is

given by eq. (8.47). Using eq. (8.57a) with xo
2k = −26t from example 8.4, results in

xc
2k = xo

2k + 23t = −26t + 23t = −3t.

Example 8.15. Shear center location for a thin-walled, double-box section
Figure 8.40 depicts a closed multi-cellular, thin-walled, double-box section subjected
to a vertical shear force, V3. The shear flow distribution in this closed section is
computed in example 8.11 and is given by eq. (8.50). Determine the location of the
shear center.

i3

i2

H

H

2H

2H

R2
R7

R5
e

OK
b

b bA

Fig. 8.48. Shear center for a thin-walled double-box section.
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First, the resultant forces acting in each wall of the section under a unit vertical
shear force, V3 = 1, are computed by integrating eqs. (8.50), leading to the following
results

H =
1
69

, R2 =
13
69

, R7 =
30
69

, R5 =
26
69

.

Figure 8.48 shows the magnitude and direction of these force resultants.
The shear force equipollence conditions can be verified as follows. The net

resultant along axis ı̄2 is V2 = H − H + 2H − 2H = 0, as expected be-
cause no shear force is applied along that axis. The net resultant along axis ı̄3 is
V3 = R2 + R5 + R7 = 13/69 + 26/69 + 30/69 = 1, as expected, because a unit
shear force is applied along that axis.

The shear center is calculated by expressing the torque equipollence condition at
point K, leading to 2Hb − Hb − (b + e)R2 − eR7 + (b − e)R5 = 0. Solving this
equation gives e/b = H + R5 −R2 = 14/69. The same result also can be obtained
by expressing torque equipollence at point A at the bottom of the center web to find
bR5+bH−bR2 = e. It is left to the reader to explore alternative ways of determining
the location of the shear center.

Example 8.16. Shear flow resultants
A key point of the development presented in section 8.4.1 is that the resultants of
the shear flow distribution, f [2], along axes ı̄2 and ı̄3 are 1 and 0, respectively, as
expressed by eq. (8.51). This result is intuitively correct because the shear flow dis-
tribution, f [2], is computed based on applied shear forces V

[2]
2 = 1 and V

[2]
3 = 0. In

this example, these results are established in a formal manner.
Whether the section is open or closed, the shear flow distribution must satisfy the

local equilibrium condition, eq. (8.18), which, when V2 = 1 and V3 = 0, becomes

df [2]

ds
= −Et

x2H
c
22 − x3H

c
23

∆H
, (8.58)

This equation can be integrated to find the shear flow distribution, f [2], using the pro-
cedures described in sections 8.3.1 or 8.3.7, for open or closed sections, respectively.
The shear force, V

[2]
2 , associated with this shear flow distribution is evaluated with

the help of eq. (8.7) to find

V
[2]
2 =

∫

C
f [2] dx2

ds
ds = −

∫

C
x2

df [2]

ds
ds +

[
x2f

[2]
]
boundary

,

where the second equality is obtained through an integration by parts. The boundary
term always vanishes: if the section is open, f [2] = 0 at the edges of the section,
i.e., the boundaries of the integral, and if the section is closed or multi-cellular, no
boundaries exist and this term vanishes. Introducing the governing eq. (8.58) for the
shear flow distribution then leads to

V
[2]
2 =

Hc
22

∆H

[∫

C
Ex2

2 tds

]
− Hc

23

∆H

[∫

C
Ex2x3 tds

]
=

Hc
22

∆H
Hc

33 −
Hc

23

∆H
Hc

23 = 1,
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where the bracketed terms are identified as the sectional bending stiffnesses com-
puted with respect to the origin of the axes system, which is located at the section’s
centroid.

The shear force, V
[2]
3 , associated with the shear flow distribution, f [2], is readily

evaluated using a similar procedure. From eq. (8.7), this shear force becomes

V
[2]
3 =

∫

C
f [2] dx3

ds
ds = −

∫

C
x3

df [2]

ds
ds +

[
x3f

[2]
]
boundary

,

where the boundary term vanishes for the reason given earlier. Introducing the gov-
erning equation (8.58) then yields

V
[2]
3 =

Hc
22

∆H

[∫

C
Ex2x3 tds

]
− Hc

23

∆H

[∫

C
Ex2

3 tds

]
=

Hc
22

∆H
Hc

23 −
Hc

23

∆H
Hc

22 = 0.

These results are expected. The shear force resultants associated with f [2] are
V

[2]
2 = 1 and V

[2]
3 = 0 because f [2] is computed specifically for that applied load-

ing. Similarly, it can be shown that the shear force resultants associated with f [3] are
V

[3]
2 = 0 and V

[3]
3 = 1, as expected. The result presented in this example provide a

formal proof of eq. (8.51).

8.4.2 Problems

Problem 8.39. Shear flow in closed rectangular section
The thin-walled rectangular beam section shown in fig. 8.42 is subjected to a vertical shear
force, V3. The thickness of the right-hand vertical web is 5t, whereas that of the remaining
walls is t. (1) Determine the bending stiffnesses of the section, Hc

22, Hc
33 and Hc

23. (2) Find the
shear flow distribution in the section. (3) Verify that all joint and edge equilibrium conditions,
eq. (8.29), are satisfied. (3) Find the location of the shear center. Use the following data α =
5.0

Problem 8.40. Shear center of thin-walled semi-circular section
Figure 8.19 depicts the thin-walled, semi-circular open cross-section of a beam. The wall
thickness is t, and the material Young’s and shearing moduli are E and G, respectively. Find
the location of the shear center of the section. Note: It is more convenient to work with the
angle θ as a variable describing the geometry of the section: s = Rθ, ds = Rdθ.

Problem 8.41. Shear center of a thin-walled “H” section
Figure 7.34 depicts the cross-section of a thin-walled “H” section beam. Compute the location
of the shear center for this section.

Problem 8.42. Shear center of a thin-walled “L” section
Consider the thin-walled, “L” shaped cross-section of a beam as shown in fig. 8.14. Find the
location of the shear center of this section.

Problem 8.43. Shear center of a multi-cellular cross-section
A thin-walled multi-cellular cross-section is shown in fig. 8.45. Determine the location of the
shear center for this cross-section.
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Fig. 8.49. Cantilever beam with C-section under offset tip load.

Problem 8.44. Cantilevered beam with a C-channel section
A thin-walled, C-section cantilevered beam of length L is subjected to a tip load, as depicted
in fig. 8.49. The beam is loaded through a horizontal arm, MN, and a vertical load P is
acting at a distance d from the vertical web; load P is allowed to slide along arm MN, d/b ∈
[0, 1.5]. The beam is instrumented with four strain gauge rosettes, denoted A, B, C, and D,
and located at the beam’s quarter span. Strain gauges A and B are located in the middle of
the top flange, gauge A is located on top of the flange, whereas gauge B is located underneath
the flange. Similarly, gauges C and D are located in the middle of the bottom flange, on top
and underneath the flange, respectively. (1) Evaluate the bending moment, vertical shear force,
and torque acting at the beam’s quarter span. (2) On one graph, plot the three readings, eA

1 ,
eA
2 and eA

3 , of strain rosette A as a function of d/b ∈ [0, 1.5]. (3) On one graph, plot the three
readings, eB

1 , eB
2 and eB

3 , of strain rosette B as a function of d/b ∈ [0, 1.5]. (4) On one graph,
plot the three readings, eC

1 , eC
2 and eC

3 , of strain rosette C as a function of d/b ∈ [0, 1.5].
(5) On one graph, plot the three readings, eD

1 , eD
2 and eD

3 , of strain rosette D as a function of
d/b ∈ [0, 1.5]. Use the following data: P = 5.0 kN; E = 73.0 GPa; ν = 0.3; L = 2.0 m; h =
0.4 m; b= 0.2 m; t = 4 mm.

Problem 8.45. Strength of a cantilever beam with C-section under offset tip
load
A thin-walled, C-section cantilevered beam of length L is subjected to a tip load, as depicted in
fig. 8.49. The beam is loaded through a horizontal arm, MN, and a vertical load P is acting at a
distance d from the vertical web; load P is allowed to slide along arm MN, d/b ∈ [0, 1.5]. (1)
Find the location and magnitude of the maximum bending moment, vertical shear force, and
torque acting in the beam. (2) Find the axial and shear stress distributions in the section where
the maximum bending moment, vertical shear force, and torque occur. (3) Based on Von-Mises
criterion, find the maximum load, Pmax, the beam can carry as a function of d/b ∈ [0, 1.5].
Use the following data: P = 5.0 kN; E = 73.0 GPa; ν = 0.3; σy = 600 MPa; L = 2.0 m; h =
0.4 m; b= 0.2 m; t = 4 mm.
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8.5 Torsion of thin-walled beams

In chapter 7, Saint-Venant’s theory of torsion is developed for beams with cross-
sections of arbitrary shape, see section 7.3.2. Unfortunately, Saint-Venant’s approach
requires the solution of a partial differential equation to evaluate the warping or stress
function and the corresponding shear stress distribution over the cross-section. In the
case of thin-walled beams, however, approximate solutions can be obtained without
solving partial differential equations.

8.5.1 Torsion of open sections

The torsional behavior of beams with thin rectangular cross-sections is investigated
in section 7.4 and in section 7.5, the results are extended to the more general case
of thin-walled, open cross-sections of arbitrary shape. For thin-walled open sections,
shear stresses are shown to be linearly distributed through the thickness of the wall,
and the torsional stiffness is shown to be proportional to the cube of the wall thick-
ness, see eq. (7.61). Hence, thin-walled open sections have very limited torque car-
rying capability.

8.5.2 Torsion of closed section

Consider now a thin-walled, closed cross-section of arbitrary shape subjected to an
applied torque, as depicted in fig. 8.50. The cross-section consists of a single closed
cell defined by a curve C. As is the case for the Saint-Venant solution, eq. (7.3.2),
the beam is assumed to be in a state of uniform torsion, i.e., the twist rate is constant
along the span. The axial strain and stress components vanish, and hence, the axial
flow also vanishes, i.e., n(s) = 0.

The local equilibrium equation for
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Fig. 8.50. Thin-walled tube of arbitrary
cross-sectional shape.

a differential element of the thin-walled
beam, eq. (8.14), then implies

∂f

∂s
= 0. (8.59)

Therefore the shear flow must remain con-
stant along curve C, i.e.,

f(s) = f = constant. (8.60)

This constant shear flow distribution gener-
ates a torque, M1, about the origin of the axes given by eq. (8.9)

M1 =
∫

C
f(s) ro(s) ds = f

∫

C
ro(s) ds,

where the constant shear flow is factored out of the integral over curve C. The last
integral is a purely geometric quantity, which equals twice the area enclosed by curve
C, see eq. (8.56), and hence,
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M1 = 2Af, (8.61)

where A is the area enclosed by curve C. This result is known as the Bredt-Batho
formula and provides a simple relationship between the applied torque, M1, to the
resulting constant shear flow, f , for thin-walled, closed sections.

From the definition of the shear flow, eq. (8.4b), the shear stress, τs, resulting
from the torque M1 becomes

τs(s) =
M1

2At(s)
. (8.62)

Next, the twist rate of the thin-walled closed section must be related to the applied
torque. A simple energy argument will be used for this purpose. According to the
first law of thermodynamics, the work done by the applied torque, M1, must equal to
strain energy, A, stored in the tube2. Under the effect of the applied shear stress, τs,
each differential element of the wall undergoes a shear strain, γs. It will be shown
in chapter 10that strain energy stored in a differential element of volume tds dx1

is 1/2 γsτs tds dx1. The strain energy stored in a differential slice of the beam of
length dx1 is then found by integrating this expression over curve C to find

dA =
[
1
2

∫

C
γsτs tds

]
dx1 =

[
1
2

∫

C

τ2
s

G
tds

]
dx1, (8.63)

where Hooke’s law, eq. (2.9), is used to relate the shear strain to the shear stress.
Introducing the shear stress distribution, eq. (8.62), then yields

dA =
[
1
2

M2
1

4A2

∫

C

ds

Gt(s)

]
dx1. (8.64)

On the other hand, the applied torque, M1, produces an infinitesimal rotation,
dΦ1, of the same differential slice of the beam. The work done by the applied torque
is then

dW =
1
2
M1dΦ1 =

[
1
2
M1

dΦ1

dx1

]
dx1 =

[
1
2
M1κ1

]
dx1, (8.65)

where κ1 = dΦ1/dx1 is the section’s twist rate.
The first law of thermodynamics now implies that the work done by the applied

torque, eq. (8.65), must equal the strain energy stored in the structure, eq. (8.64).
This leads to the following relationship between twist rate and applied torque,

κ1 =
M1

4A2

∫

C

ds

Gt
. (8.66)

This relationship expresses a proportionality between the applied torque, M1, and
the resulting twist rate, κ1. The constant of proportionality is the torsional stiffness,

H11 =
4A2

∫

C

ds

Gt

. (8.67)

2 The concept of strain energy will be studied in a formal manner in chapter 10
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For an arbitrary shaped closed section of constant wall thickness and made of a
homogeneous material, the torsional stiffness reduces to

H11 =
4GtA2

`
, (8.68)

where ` =
∫
C ds is the perimeter of curve C. This relationship proves that the cross-

section of maximum torsional stiffness is the thin-walled circular tube. Indeed, a
circle of radius R is the curve that encloses the largest area, A = πR2, for a given
perimeter ` = 2πR. This will maximize the numerator of eq. (8.68), and hence, will
maximize the torsional stiffness.

Sign convention

The discussion of the torsional behavior of thin-walled, closed sections introduces
an important geometric quantity, A, the area enclosed by curve C that defines the
section’s configuration. This area is defined in eq. (8.56) as 2A =

∫
C ro(s) ds. As

discussed in section 8.1.4, the perpendicular distance from the origin, O, of the axes
to the tangent to C, denoted ro(s), is an algebraic quantity whose sign depends on
the direction of the curvilinear variable, s. It follows that A is an algebraic area: A
is positive when curvilinear variable describes curve C while leaving the area, A, to
the left; it is negative in the opposite case.

If the shear flow distribution has the direction indicated in fig. 8.50, f > 0,
A > 0 and eq. (8.61) yields M1 = 2Af > 0, as expected. If the curvilinear variable
is selected in the clockwise direction, see variable s′ in fig. 8.50, the corresponding
shear flow and area is now negative, f ′ = −f , and A′ = −A, but eq. (8.61) leaves
the torque unchanged, M1 = 2A′f ′ = 2Af , as expected.

8.5.3 Comparison of open and closed sections

The torsional behavior of closed sections contrasts sharply with that of open sections.
For closed sections, the shear stress is uniformly distributed through the thickness of
the wall, whereas a linear distribution through the wall thickness is found in open
sections.

The torsional stiffness is proportional Open
tube

Closed
tube

tt Rm
Rm

ts

ts

Fig. 8.51. A thin-walled open tube and a
thin-walled closed tube.

to the square of the enclosed area for a
closed section, see eq. (8.67), in contrast
with a thickness cubed proportionality for
open sections, see eq. (7.64).

To illustrate these sharp differences,
consider a thin strip of circular shape, and
a thin-walled circular tube, both of identi-
cal mean radius Rm and thickness t, as de-
picted in fig. 8.51. The torsional stiffness of the open and closed sections, denoted
Hopen

11 and Hclosed
11 , respectively, are given by eqs. (7.64), and (7.19), respectively, as

Hopen
11 = 2πGRmt3/3 and Hclosed

11 = 2πGR3
mt. Their ratio is
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Hclosed
11

Hopen
11

= 3
(

Rm

t

)2

. (8.69)

If the two section are subjected to the same torque, M1, the maximum shear
stresses in the open and closed sections, denoted τopen

max , and τ closed
max , respectively, are

given by eqs. (7.65) and (7.24), respectively, as

τopen
max = Gκopen

1 t = G
M1t

Hopen
11

=
3M1

2πRmt2
,

τ closed
max = RmGκclosed

1 = G
M1Rm

Hclosed
11

=
M1

2πR2
mt

.

Their ratio can then be expressed as

τ open
max

τ closed
max

= 3
(

Rm

t

)
. (8.70)

Consider, for instance, a typical thin-walled construction for which Rm = 20t.
The torsional stiffness of the closed section will be 1, 200 times larger than that of the
open section. Under the same applied torque, the maximum shear stress in the open
section will be 60 times larger than that of the closed section, or stated equivalently,
the closed section can carry a 60 times larger torque for an equal shear stress level.

8.5.4 Torsion of combined open and closed sections

In the previous section, the behavior of open and closed sections is shown to contrast
sharply. In practical situations, one is often confronted with cross-sections presenting
a combination of open and closed curves. The section shown in fig. 8.52 combines
a closed trapezoidal box and overhanging rectangular strips. All components have a
constant thickness t, and the other dimensions are shown on the figure.

The twist rate is identical for the trapezoidal box and strips, whereas the torques
they carry, denoted Mbox

1 and M strip
1 , respectively, are Mbox

1 = Hbox
11 κ1 and

M strip
1 = Hstrip

11 κ1, respectively. The torsional stiffnesses of the trapezoidal box
and strips are evaluated with the help of eqs. (8.68) and (7.64), respectively, to find
Hbox

11 = 4GtA2/` and Hstrip
11 = G wt3/3, respectively, where ` is the length of the

perimeter of the trapezoidal box and A = h(b1 + b2)/2 its enclosed area. The total
torque, M1, is the sum of the torques carried by the three components of the section,
i.e., M1 = Mbox

1 + 2M strip
1 , and hence,

M1 = Hbox
11

(
1 + 2

Hstrip
11

Hbox
11

)
κ1 = Hbox

11

[
1 +

2
3

w`

(b1 + b2)2

(
t

h

)2
]

κ1.

For thin-walled sections the last term in the bracket is clearly negligible because
t/h ¿ 1. It follows that H11 ≈ Hbox

11 : the torsional stiffness of the section is nearly
equal to that of the closed trapezoidal box alone. The contribution of the strips, i.e.,
of the open parts of the section, is negligible.
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C

b1

b2w w

t tt

t

hA

Fig. 8.52. Thin-walled trapezoidal beam with overhangs.

Using this simplification, the twist rate of the section is κ1 = M1/Hbox
11 , and the

torques carried by the individual components of the section become

Mbox
1 = Hbox

11 κ1 ≈ Hbox
11

M1

Hbox
11

= M1, M strip
1 = Hstrip

11 κ1 ≈ Hstrip
11

Hbox
11

M1.

Finally, the maximum shear stress in the trapezoidal box and strips are found from
eqs. (8.62) and (7.65), respectively, as

τbox
max =

Mbox
1

2At
≈ 1

2At
M1, τ strip

max =
3M strip

1

wt2
≈ 3

wt2
Hstrip

11

Hbox
11

M1.

The ratio of these stresses is now

τ strip
max

τbox
max

=
`

b1 + b2

(
t

h

)
.

Clearly, the maximum shear stress in the strips is far smaller than that in the trape-
zoidal box.

In summary, when dealing with a combination of open and closed sections under
torsion, the contribution of the open portion of the section can be neglected when
evaluating the torsional stiffness, and the shear stress acting in the open portion is far
smaller than that acting in the closed portion of the section.

8.5.5 Torsion of multi-cellular sections

The analysis of thin-walled tubes under torsion developed in section 8.5.2 can be
extended to the case of thin-walled cross-sections with multiple closed cells. Con-
sider, for example, the four cell, thin-walled cross-section subjected to a torque, M1,
depicted in fig. 8.53, which shows an infinitesimal slice of the beam of span dx1.
The section is assumed to be under uniform torsion, and hence, the axial stress flow
vanishes. The local equilibrium equation, eq. (8.14), then reduces to ∂f/∂s = 0,
which implies the constancy of the shear flow.

To study the shear flow distribution over the cross-section, free-body diagrams
of different portions of the cross-section are shown in fig. 8.54. First, consider the
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free-body diagram of the portion of the section between points A and B, shown in
fig. 8.54-(1). Since the axial stress flow acting on the element vanishes, equilibrium
of forces acting along the beam’s axis implies fA = fB , which is consistent with the
constant shear flow requirement.

Next, consider the free-body dia-

A
BC

D

E

F G
dx1

Fig. 8.53. A thin-walled, multi-cellular section
under torsion.

gram obtained by cutting the section at
points C and D, as depicted in fig. 8.54-
(2). Here again, axial equilibrium im-
plies fC = fD. Finally, fig. 8.54-(3)
shows the free-body diagram obtained
by cutting the section around point E,
where several walls connect to each
other. This free-body diagram involves
shear flows fB , fC , fF and fG acting in the four walls that have been cut; axial
equilibrium implies fC + fF + fG − fB = 0, or more generally,

∑
fi = 0. (8.71)

dx1

C

D

A
B

B
C

E

F G

fA

fB fB

fC
fC

fD

fF fG

(1) (2) (3)

Fig. 8.54. Free-body diagrams of the thin-walled, multi-cellular section.

This simple equilibrium argument implies that the sum of the shear flows going
into a joint must vanish. In practical applications of eq. (8.71), the shear flows must
be interpreted as algebraic quantities: by convention, each shear flow is counted
positive in the direction of the corresponding curvilinear coordinate. For instance,
application of eq. (8.71) to the four-wall configuration illustrated in fig. 8.54-(3)
yields (−fC) + (−fF ) + (−fG) + (+fB) = 0, or fC + fF + fG − fB = 0, as
derived earlier.

In summary, simple equilibrium arguments require the shear flow to remain con-
stant along each wall of the multicellular section, and at each connection point, the
sum of the flow going into the joint must vanish.

These continuity requirements are automatically satisfied if constant shear flows
are assumed to act in each cell of the section, as shown in fig. 8.55. Shear flows circu-
lating around each cell are denoted f [1], f [2], f [3] and f [4], and their assumed positive
direction is indicated in the figure. As required, the shear flow remains constant in
each wall, and furthermore, the sum of the flows going into each joint vanishes. Fig-
ure 8.55 illustrates the shear flows converging to joint E: the continuity condition,
eq. (8.71), is satisfied because (f [4]) + (f [3] − f [4]) + (f [2] − f [3]) + (−f [2]) = 0.
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Fig. 8.55. Shear flows in each cell of a thin-walled, multi-cellular section.

The solution of the problem then requires the determination of the constant shear
flows, one around each cell. The total torque, M1, carried by the section equals the
sum of the torques carried by each individual cell, M

[i]
1 , where i indicates the cell

number. The Bredt-Batho formula, eq. (8.61), leads to

M1 =
Ncells∑

i=1

M
[i]
1 = 2

Ncells∑

i=1

A[i]f [i], (8.72)

where Ncells is the number of cells and A[i] the area enclosed by the ith cell. This
single equation does not allow the determination of the shear flows in the Ncells cells.

Additional equations can be obtained by expressing the compatibility conditions
requiring the twist rates of the various cells to be identical. In response to the shear
flow, f [i], acting within the cell, a twist rate, κ

[i]
1 , develops in the cell. Compatibility

of the deformations of all cells provides Ncells − 1 additional equations,

κ
[1]
1 = κ

[2]
1 = . . . = κ

[i]
1 = . . . = κ

[Ncells]
1 . (8.73)

Equation (8.66) expresses the relationship between this twist rate and the torque
carried by the cell as

κ
[i]
1 =

∫

C[i]

M
[i]
1

4(A[i])2
ds

Gt
=

∫

C[i]

2A[i]f [i]

4(A[i])2
ds

Gt
=

1
2A[i]

∫

C[i]

f [i]

Gt
ds. (8.74)

Equations (8.72) and (8.73) provide the Ncells equations needed to solve for the
Ncells shear flows in the cells of a multi-cellular section under torsion.

Example 8.17. Two-cell cross-section
The thin-walled cross-section shown in fig. 8.56 represents a highly idealized air-
foil structure for which the curved portion is the leading edge, the thicker vertical
web is the spar, and the trailing straight segments form the aft portion of the airfoil.
Equation (8.72) implies that the total torque carried by the section is the sum of the
torques carried in each cell

M1 = 2
Ncell∑

i=1

A[i]f [i] = πR2f [1] + 6R2f [2]. (8.75)
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Fig. 8.56. A two-cell thin-walled section under torsion.

The compatibility condition, eq. (8.73), requires twist rates for the two cells to
be identical. Equation (8.66) yields the twist rate for the front cell as

κ
[1]
1 =

1
2A[1]

∫

C1

f

Gt(s)
ds =

1
2 G π R2/2

[
f [1]

t
πR +

f [1] − f [2]

3t
2R

]

=
1

πGRt

[
πf [1] +

2
3
(f [1] − f [2])

]
,

and the twist rate for the aft cell is

κ
[2]
1 =

1
2A[2]

∫

C2

f

Gt(s)
ds =

1
2 G 3 R2

[
f [2] − f [1]

3t
2R + f [2] 2

√
10

R

t

]

=
1

6 GRt

[
2
3
(f [2] − f [1]) + 2

√
10f [2]

]
.

Equating the two twist rates yields the second equation for the shear flows

1
π

[
πf [1] +

2
3
(f [1] − f [2])

]
=

1
6

[
2
3
(f [2] − f [1]) + 2

√
10f [2]

]
,

which simplifies to f [1] = 1.04 f [2].
This result, along with eq. (8.75), can be used to solve for f [1] and f [2]. From

eq. (8.75), it follows that R2f [1] = 1.04M1/(6 + 1.04π) and R2f [2] = M1/(6 +
1.04π). The shear flow in the front cell, f [1], is only about 4% greater than that in the
aft cell, f [2], and hence, the shear flow in the spar, R2(f [1] − f [2]) = 0.04M1/(6 +
1.04π), nearly vanishes.

Because the torsional stiffness of a closed section is proportional to the square of
the enclosed area, the largest contribution to the torsional stiffness comes from the
outermost closed section, which is the union of the front and aft cells. Consequently,
the largest shear flow circulates in this outermost section, leaving the spar nearly
unloaded.

The torsional stiffness is computed as the ratio of the torque, given by eq. (8.75),
to the cell twist rate, given by eq. (8.74). Since the twist rates of the two cells are
equal, either κ

[1]
1 or κ

[2]
1 can be used. For instance, using κ

[1]
1 yields

H11 =
M1

κ
[1]
1

=
(πR2 1.04 + 6R2) f [2]

1/(πGRt) [1.04π + 2/3(1.04− 1)] f [2]
= 2.81πGR3t.
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8.5.6 Problems

Problem 8.46. Torsion of a thin-walled trapezoidal section
Consider the beam with a trapezoidal cross-section shown in fig. 8.52. (1) If the depth of the
cross-section, h, is doubled, how does its torsional stiffness vary? (2) If the width of the strips,
w, are doubled, how does its torsional stiffness vary? (3) If the thickness of the cross-section,
t, is doubled, how does its torsional stiffness vary? (4) If the section carries a torque Q, find
the shear flow at point A. (5) Sketch the shear stress distribution through-the-thickness of the
wall at point A, when the section is subjected to a torque Q.

Problem 8.47. Torsion of a closed, semi-circular thin-walled section
A beam has the closed, semi-circular thin-walled cross-section shown in fig. 8.57 and is sub-
jected to a torque, Q1. (1) Find the resulting shear flow distribution in the section. (2) Deter-
mine its torsional stiffness.

s

t

i3

i2

O

R

q

Fig. 8.57. Thin-walled closed semi-circular
section.

a

2a

4t

2ti3

i2

2t

t

Fig. 8.58. Thin-walled closed rectangular
section with variable wall thicknesses.

Problem 8.48. Torsion of rectangular box with variable thickness
A beam with the closed rectangular thin-walled cross-section shown in fig. 8.58 is subjected
to a torque, Q1. The walls have different thicknesses, as indicated in the figure. (1) Find the
magnitude and location of the maximum shear stress in the section. (2) Determine its torsional
stiffness.

Problem 8.49. Shearing and torsion of a high-lift device
The cross-section of a high lift device is shown in fig 8.59. The aerodynamic pressure acting
on the lower panel of the device has a net resultant V3 = 100 kN and its line of action is
aligned with the left web, as indicated on the figure. Material properties are: E = 73 GPa,
G = 30 GPa. (1) Find and sketch the shear stress distribution generated by the vertical shear
force. (2) Find and sketch the shear stress distribution generated by the torque applied to the
section. (3) Find and sketch the total shear stress distribution in the section. (4) Indicate the
location and magnitude of the maximum shear stress in the section.

Problem 8.50. Torsion of a 2-cell rectangular cross-section
The cross-section of a thin-walled beam consists of two rectangular cells, as shown in fig. 8.60.
The beam is subjected to a torque Q1. (1) Determine the shear flow distribution in the cross-
section. (2) Find the magnitude and location of the maximum shear stress in the section. (3)
Determine its torsional stiffness. (4) Does the section’s mid vertical web contribute signifi-
cantly to the torsional stiffness? Explain.
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Fig. 8.59. High lift device subjected to a transverse
shear force.
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Fig. 8.60. Thin-walled 2-cell rect-
angular section with variable wall
thicknesses.

Problem 8.51. Axial and shear flows in a thin-walled box beam
Consider the thin-walled, rectangular box beam of length L = 2 m shown in fig. 8.61. The
cross-section has a width b = 0.2 m, a height h = 0.1 m, and a constant wall thickness
t = 5 mm. The cantilevered beam is subjected to a tip load P = 5 kN acting in the plane
of the tip section as indicated on the figure, a distributed transverse load p0 = 20 kN/m,
and a distributed torque q0 = 1.0 kN. (1) Find the distribution of axial stress in the beam’s
root section. Find the magnitude and location of the maximum axial stress. (2) Find the shear
stress distribution in the beam’s root section generated by the transverse shear force. (3) Find
the shear stress distribution in the beam’s root section generated by torsion.

i1

i2

i3

L

h

b

t

t

P
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Fig. 8.61. Thin-walled, rectangular box
beam.
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Fig. 8.62. Rectangular box beam subjected to
a tip load.

Problem 8.52. Thin-walled, cantilevered beam under tip load
Consider the thin-walled cantilevered beam of length L depicted in fig. 8.62. The rectangular
cross-section is of width b, height h and thickness t. A tip transverse load P is applied at the
section’s right web, as indicated on the figure. Find the maximum load, Pmax, that the section
can carry. Use the following data: L = 2 m, b = 0.60 m, h = 0.15 m, t = 3 mm, σy = 620
MPa.
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Problem 8.53. Torsion of a 2-cell rectangular cross-section
The multi-cellular thin-walled cross-section depicted in fig. 8.45 is subjected to a torque, Q1.
(1) Determine the shear flow distribution in the section. (2) Determine the magnitude and
location of the section’s maximum shear flow. (3) Determine its torsional stiffness. (4) Sketch
the distribution of shear stress through the thickness of the wall.

Problem 8.54. Shearing and torsion of a closed, semi-circular section
A beam with the closed semi-circular thin-walled cross-section shown in fig. 8.57 is subjected
to a vertical shear force, V3, with a line action passing through the section’s vertical web. (1)
Determine the location of the section’s shear center. (2) Determine the shear flow distribution
due to shearing. (3) Determine the shear flow distribution due to torsion. (4) Determine the
total shear flow distribution.

Problem 8.55. Shearing and torsion of a rectangular section
A beam with the rectangular thin-walled cross-section shown in fig. 8.58 is subjected to a
vertical shear force, V3, with a line action passing through the section’s right vertical web. (1)
Determine the location of the section’s shear center. (2) Determine the shear flow distribution
due to shearing. (3) Determine the shear flow distribution due to torsion. (4) Determine the
total shear flow distribution.

Problem 8.56. Shearing and torsion of a 2-cell rectangular cross-section
A beam with the 2-cell rectangular cross-section shown in fig. 8.45 is subjected to a vertical
shear force, V3, with a line action passing through the section’s central vertical web. (1) Deter-
mine the location of the section’s shear center. (2) Determine the shear flow distribution due
to shearing. (3) Determine the shear flow distribution due to torsion. (4) Determine the total
shear flow distribution.

Problem 8.57. Bending and shear in a 4-web flexure
Figure 8.63 depicts a flexure composed two rigid circular flanges and four flexible webs (ho-
mogeneous material of Young’s modulus, E, and shearing modulus, G). The flexure is sub-
jected to a tip axial load P1, a tip torque, Q1, and tip bending moments, Q2 and Q3. The
resulting tip axial displacement is ū1(L), tip rotation Φ1(L), Φ2(L) and Φ3(L). Find: (1) The
shear center of the section. (2) The axial stiffness Sa of the flexure: Sa = P1/ū1(L). Give the
non-dimensional stiffness LSa/(EbR). (3) The torsional stiffness: S1 = Q1/Φ1(L). Give
the non-dimensional stiffness LS1/(EbR3). (4) The bending stiffnesses: S2 = Q2/φ2(L)
and S3 = Q3/φ3(L). Give the non-dimensional stiffnesses LS2/(EbR3) and LS3/(EbR3).
Use an appropriate approximation of the torsional stiffness of individual webs.

Problem 8.58. Thin-walled, cantilevered beam under tip load
Consider the thin-walled cantilevered beam of length L depicted in fig. 8.64. The circular
cross-section is of radius R and thickness t. A tip transverse load P is applied on the right
edge of the section, as indicated on the figure. Find the maximum load, Pmax, that the section
can carry. Note: a circular section subjected to a vertical shear force V3 will develop a shear
flow distribution f(θ) = (V3/πR) cos θ. The bending stiffnesses of a thin-walled circular
section are Hc

22 = Hc
33 = EπtR3. Use the following data: L = 2 m, R = 0.15 m, t = 5

mm, σy = 620 MPa.

Problem 8.59. Thin-walled, circular cross-section with flanges
Consider the beam with a thin-walled, circular cross-section with flanges shown in fig. 8.43.
(1) If the radius, R, is doubled, how does its torsional stiffness vary? (2) If the width of the
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Fig. 8.64. Thin-walled cantilevered beam
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flanges, a, is doubled, how does its torsional stiffness vary? (3) If the thickness of the cross-
section, t, is doubled, how does its torsional stiffness vary? (4) If the section carries a torque
Q, find the shear flow at point A. (5) Sketch the shear stress distribution through-the-thickness
of the wall at point A, when the section is subjected to a torque Q.

8.6 Coupled bending-torsion problems

In chapter 6, the response of a beam with an arbitrary cross-section subjected to com-
plex loading conditions is investigated. The loading involves distributed and concen-
trated axial and transverse loads, as well as distributed and concentrated moments.
Two important restrictions are made: no torques are applied, and the transverse shear-
ing forces are assumed to be applied in such a way that the beam will bend without
twisting. The first restriction can now be removed. Indeed, if torques are applied,
the beam will twist and the analyses developed in chapter 7 for solid and open thin-
walled cross-sections and in section 8.5 for closed thin-walled sections can be ap-
plied to this problem.

The knowledge of the shear center location allows removal of the second restric-
tion. Applied transverse forces will bend the beam without twisting it if and only if
their lines of action pass through the shear center. If all transverse loads are applied
at the shear center, the bending and shearing analyses developed in this chapter are
applicable. If a transverse load is not applied at the shear center, it can always be
replaced by an equipollent system consisting of an equal transverse load applied at
the shear center plus a torque equal to the moment of the transverse load about the
shear center.

Figure 8.65 shows a concentrated transverse load, P2, acting at the beam’s tip
and its point of application, point A, with coordinates (x2a, x3a). The points of ap-
plication of all distributed loads, p1(x1), p2(x1), and p3(x1), and of the concentrated
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Fig. 8.65. Beam under a complex loading condition.

loads, P1, P2, and P3, must be similarly defined. The transverse load, p2(x1), applied
at point A is equivalent to a transverse load of equal magnitude, p2(x1), applied at
the shear center, point K, plus a distributed torque −(x3a − x3k)p2(x1). A similar
equivalence applies to all distributed and concentrated loads. Note the presence of
distributed and concentrated torques, q1(x1) and Q1, respectively.

The above remarks lead to the following solution procedure.

1. Compute the location of the centroid, C (x2c, x3c), of the cross-section.
2. Compute the orientation of the principal axes of bending ı̄∗1, ı̄∗2, and ı̄∗3, and the

principal centroidal bending stiffnesses, see section 6.6.
3. Compute the location of the shear center, K (x2k, x3k), of the cross-section ac-

cording to the procedure described in section 8.4.
4. Compute the torsional stiffness; see chapter 7, or section 8.5.2 for closed, thin-

walled beams.
5. Solve the extensional problem, eq. (6.30), with appropriate boundary conditions.
6. Solve two decoupled bending problems eqs. (6.31) and (6.32), in principal cen-

troidal axes of bending planes with appropriate boundary conditions.
7. Solve the torsional problem governed by the following differential equation

d
dx∗1

(
H∗

11

dΦ∗1
dx∗1

)
= − [q∗1(x∗1) + (x∗2a − x∗2k)p∗3(x

∗
1)− (x∗3a − x∗3k)p∗2(x

∗
1)] ,

(8.76)
subjected to boundary conditions at the root, Φ∗1 = 0, and at the tip

H∗
11

dΦ∗1
dx∗1

= Q∗
1 + (x∗2a − x∗2k)P ∗3 − (x∗3a − x∗3k)P ∗2 .

The two equations above are written in the axis system defined by the principal
centroidal axes of bending. While this system simplifies the solution of the axial
and bending problems, it is of little help to the solution of the torsional problem.
Because Φ∗1 = Φ1, H∗

11 = H11, and x∗1 = x1, it is more convenient to recast the
governing equation of the torsional problem in a coordinate system for which
axis ı̄1 is aligned with the axis of the beam,
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d
dx1

(
H11

dΦ1

dx1

)
= − [q1(x1) + (x2a − x2k)p3(x1)− (x3a − x3k)p2(x1)] ,

(8.77)
and subjected to boundary conditions at the root, Φ1 = 0, and at the tip

H11
dΦ1

dx1
= Q1 + (x2a − x2k)P3 − (x3a − x3k)P2. (8.78)

The knowledge of the centroid and shear center locations, as well as the orien-
tation of the principal axes of bending allows a complete decoupling of the problem
into four independent problems: an axial problem, two bending problems, and a tor-
sional problem. Of course, as discussed in chapter 6, the two bending problems can
also be treated as coupled problems; in that case, an arbitrary set of centroidal axes
could be used instead of the principal centroidal axes of bending.

In the absence of externally applied torques, and if all transverse loads are applied
at the shear center, the right hand side of eq. (8.77) vanishes, and its solution is then
simply Φ1(x1) = 0: the beam does not twist. When external torques are applied, or if
any transverse load is not applied at the shear center, the right hand side of eq. (8.77)
does not vanish and the beam twists, i.e., each section of the beam undergoes a rigid
body rotation of magnitude Φ1(x1) about the shear center.

Example 8.18. Wing subjected to aerodynamic lift and moment
An important example of this procedure is the wing coupled bending-torsion prob-
lem shown in fig. 8.66. The principal axes of bending, ı̄2 and ı̄3, are selected with
their origin at the shear center. Axis ı̄1 is along the locus of the shear centers of all
the cross-sections assumed to form a straight line called the elastic axis. The aero-
dynamic loading consists of a lift per unit span, LAC , applied at the aerodynamic
center and an aerodynamic moment per unit span, MAC .

According to the sign convention for torques, this nose-up aerodynamic moment
is a negative quantity. The differential equation for bending in plane (̄ı1, ı̄3) is

d2

dx2
1

(
Hc

22

d2ū3

dx2
1

)
= LAC . (8.79)

The boundary conditions for a cantilevered wing of length L are ū3 = dū3/dx1 = 0
at the root and d2ū3/dx2

1 = d3ū3/dx3
1 = 0 at the unloaded tip.

The governing equation for torsion is

d
dx1

(
H11

dΦ1

dx1

)
= − (MAC + eLAC) ,

where e is the distance from the aerodynamic center to the shear center. The boundary
condition at the wing’s root is Φ1 = 0, and at its tip, dΦ1/dx1 = 0. Note that for
symmetric airfoils MAC = 0, but the wing still twists because the lift is applied at
the aerodynamic center, which does not coincide with the shear center for the case at
hand. For typical transport aircraft, the aerodynamic and shear centers are located at
25% and 35% chord, respectively. Consequently, the lift generates a nose-up torque
on the wing.
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Fig. 8.66. The wing bending torsion coupled problem.

For aircraft wing analysis, it is convenient to select the origin of the axes at the
shear center, rather than at the centroid as advised in chapter 6. The main advantage
of selecting the centroid as the origin is that the bending problems decouple from
the axial problem. If the beam is not subjected to any axial loads, the axial problem
is of little interest, and hence it is more meaningful to select the shear center as the
origin of the axis system. In that case, the beam rotates about the origin of the axis
system. As illustrated in fig. 8.66, the rotation, Φ1(x1), of the section is, in fact, the
geometric angle of attack of the airfoil. The lift, LAC , is a function of this angle of
attack; consequently, the aerodynamic problem, which involves the computation of
the lift as a function of the angle of attack, and the elastic problem, which involves
the computation of the wing deflection and twist as a function of the applied loads,
become coupled. The study of this interaction is called aeroelasticity.

Example 8.19. Wing section subjected to transverse loading
Consider the highly idealized wing section depicted in fig. 8.67. The leading edge of
the airfoil is semi-circular, of radius R and thickness t. Given the geometry of the
section, tanα = 2/3. The lower portion of the trailing edge is horizontal, of length
a = 3R and thickness t. The vertical spar is of thickness ηt, where η = 3. The
airfoil thickness is 2R and the chord length 4R. Axis ı̄2 is selected to be horizontal
and passes through the section’s centroid, located a distance d above the horizontal
trailing edge and a distance c to the right of the vertical spar. Curvilinear coordinates
s1, s2, s3 and s4 are defined as indicated on the figure.

The section is subjected to a vertical shear force, V3, with its line of action passing
through the vertical spar. In this case, this shear force is the aerodynamic lift, whose
line of action passes through the section’s quarter-chord point.

The solution to this problem involves a considerable amount of detailed algebraic
computation, and for this reason, symbolic manipulation software is helpful. The
length of the upper portion, AT, of the airfoil is found as b =

√
13R. The axial

stiffness is S = E(9Rt +
√

13Rt + πRt) and the location of the centroid is

c =
(5 + 3

√
13)R

2(9 +
√

13 + π)
= 0.5022R and d =

(6 +
√

13 + π)R
9 +

√
13 + π

= 0.8094R.
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Fig. 8.67. Simplified 2-cell wing cross-section.

Next, the sectional centroidal bending stiffnesses are found through tedious alge-
bra as

Hc
22 =

3π2 + π(57 + 5
√

13) + 242 + 48
√

13
6(π + 9 +

√
13)

ER3t = 7.021 ER3t,

Hc
33 =

π2 + π(27 + 7
√

13) + 169 + 57
√

13
2(π + 9 +

√
13)

ER3t = 17.42 ER3t,

Hc
23 =

π(9 +
√

13) + 79 + 9
√

13
2(π + 9 +

√
13)

ER3t = −4.796 ER3t.

The location of the shear center must be determined to study the torsional be-
havior of the structure; in particular, if the vertical shear force is not applied at the
shear center, it will generate torsion of the section. To determine the shear flow dis-
tribution in the two-cell closed section, it will be cut at point B. Two cuts are needed,
one to open the front cell and another to open the aft cell. Using eq. (8.21), the static
stiffness moments in the various segments of the section are found as

Q2(s1) =
∫ s1

0

Et(−d + R−R cos s1/R) ds1, Q2(s2) = Eηts2(−d + s2/2),

Q3(s1) =
∫ s1

0

Et(−c−R sin s1/R) ds1, Q3(s2) = −Eηtcs2,

Q2(s3) = −Etds3, Q2(s4) =
∫ s4

0

Et(−d + s4 sin α) ds4,

Q3(s3) = Ets(−c + s3/2), Q3(s4) =
∫ s4

0

Et(−c + a− s4 cos α) ds4.

The shear flow distribution in the open section can then be evaluated using
eq. (8.20) to find

fo(si) = fo(0) +
Q3i(si)H23 −Q2i(si)H33

∆H
V3,

where ∆H = Hc
22H

c
33− (Hc

23)
2 = 102.41 E2R6t2. At point A, the shear flow must

vanish in the open section: fo(s1 = 0) = fo(s2 = 0) = fo(s3 = 0) = 0. At points
T and B, the joint equilibrium condition, eq. (8.29), must be satisfied.
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To find the shear flow distribution in the closed section, closing shear flows are
added: fc1 and fc2 in the front and aft cells, respectively, see fig. 8.67. The procedure
described in section 8.3.8 is then used to evaluate these closing shear flows. In the
present case, the compatibility conditions for the front and aft cells become

∫ πR

0

fo(s1)− fc1

Gt
ds1 −

∫ 2R

0

fo(s2) + fc1 − fc2

Gηt
ds2 = 0,

∫ a

0

fo(s3) + fc2

Gt
ds3 +

∫ b

0

fo(s4) + fc2

Gt
ds4 −

∫ 2R

0

fo(s2) + fc1 − fc2

Gηt
ds2 = 0.

These conditions lead to two simultaneous equations for the closing shear flows,
which are found as fc1 = 0.06580 V3/R and fc2 = −0.1458 V3/R. The shear flow
distribution in the closed section is then found by adding the shear flow in the open
section and the closing shear flows to find f(s1) = fo(s1)− fc1, f(s2) = fo(s2) +
fc1 − fc2, f(s3) = fo(s3) + fc2 and f(s4) = fo4(s4) + fc2. These distributions are
plotted in fig. 8.68.
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Fig. 8.68. Shear flow distribution in each segment of the 2-cell wing cross-section.
.

To determine the location of the shear center, the torque equipollence condition
will be expressed about point O, the center of the leading edge semicircle, leading to

(x2k + c)V3 = −
∫ πR

0

f1R ds1 + R R3 + R R4 cosα,

where R3 =
∫ a

0
f3 ds3 and R4 =

∫ b

0
f4 ds4 are the forces resulting from the shear

flow distributions in the aft part of the section. Solving this equation yields the hor-
izontal location of the shear center, x2k = −0.5290 R. The shear center location
relative to the spar is given by e = x2k + c = −0.02682 R which is to the left of
the vertical spar. For real wing structures, the shear center is typically nearer the one-
third chord location and aft of the aerodynamic center. For this example, the location
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is slightly forward of the spar, which is at the quarter-chord or aerodynamic center,
so the lift will produce a decrease in angle of attack.

The torsional stiffness can be computed using the method developed in sec-
tion 8.5.5. First, the areas enclosed by the two cells are A[1] = πR2/2 and
A[2] = 3R2, for the front and aft cells, respectively. The counterclockwise shear
flows due to torsion in each of the cells are defined as ft1 and ft2 for the leading
and trailing edge cells, respectively. The sectional twisting moment, M1, can be ex-
pressed in terms of the torsional moment developed in each cell using eq. (8.72)
as

M1 = 2(A[1]f [1] +A[2]f [2]) = 2A[1]ft1 + 2A[2]ft2.

The twist rates for the two cells can be expressed using eq. (8.74) to find

κ
[1]
1 =

1
2A[1]

∫

C[1]

f [1]

Gt
ds =

1
2A[1]

[
ft1

Gt
πR +

(ft1 − ft2)
Gηt

2R

]
,

κ
[2]
1 =

1
2A[2]

∫

C[2]

f [2]

Gt
ds =

1
2A[2]

[
ft2

Gt
(a + b) +

(ft2 − ft1)
Gηt

2R

]
.

Compatibility of the twist rates for the two cells requires κ
[1]
1 = κ

[2]
1 = κ1, where κ1

is the section twist rate. Combining the above equations then yields the shear flow
distributions due to torsion as

ft1 =
π(11 + 3

√
13) + 12

72 + 132π + π2(11 + 3
√

13)
M1

R2
= 0.1147

M1

R2
,

ft2 =
4(5π + 3)

72 + 132π + π2(11 + 3
√

13)
M1

R2
= 0.1066

M1

R2
.

These resluts can now be used to calculate the section’s torsional stiffness as

H11 =
M1

κ1
=

72 + 132π + π2(11 + 3
√

13)
6 + 2

√
13 + π(11 + 3

√
13)

GR3t = 8.587 GR3t.

To complete the solution, the decoupled bending and torsion problems will be
solved using the procedure developed in example 8.18. First, the transverse deflection
of the wing of length L under a uniformly distributed vertical load p3(x1) = p0

will be determined. Since the axis system used in this problem is centroidal but not
aligned with the principal axes of bending, bending in planes (̄ı1, ı̄2) and (̄ı1, ı̄3) is
coupled, as expressed by eqs. (6.23b) and (6.23c), which become

d2

dx2
1

[
Hc

23

d2ū2

dx2
1

+ Hc
22

d2ū3

dx2
1

]
= p0

d2

dx2
1

[
Hc

33

d2ū2

dx2
1

+ Hc
23

d2ū3

dx2
1

]
= 0.

The boundary conditions for the configuration shown in fig. 8.66 are ū2(0) =
dū2(0)/dx1 = ū3(0) = dū3(0)/dx1 = 0 at the wing’s root and d2ū2(L)/dx2

1 =
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d3ū2(L)/dx3
1 = d2ū3(L)/dx2

1 = d3ū3(L)/dx3
1 = 0 at its tip. Using the bending

stiffnesses computed earlier, the transverse displacement field is found as

ū2(η) = 0.001951 η2(η2 − 4η + 6)
p0L

4

ER3t
,

ū3(η) = 0.007086 η2(η2 − 4η + 6)
p0L

4

ER3t
,

where η = x1/L is the non-dimensional coordinate along the wing span.
Next, the torsion problem is governed by eq. (8.79), which in this case, becomes

H11
d2Φ1

dx2
1

= −eV3,

where e is the location of the shear center to the right of the vertical spar as computed
earlier. The boundary conditions for the configuration shown in fig. 8.66 are Φ1(0) =
dΦ1(L)/dx1 = 0. The solution to the differential equation is

Φ1(x1) = −0.001561η(2− η)
V3L

2

GR2t
.

This result shows, as expected, that the section twists in a counterclockwise (nose
down) direction.

8.6.1 Problems

Problem 8.60. Cantilevered beam under offset tip load
A thin-walled, C-section cantilevered beam of length L is subjected to a tip load, as depicted
in fig. 8.69. The beam is loaded through a horizontal arm, MN, and a vertical load P is acting
at point Q, located a distance d from the vertical web; load P is allowed to slide along arm
MN, d/b ∈ [0, 1.5]. (1) Compute the tip vertical deflection of the beam due to bending. (2)
Compute the tip rotation of the beam due to torsion. (3) Compute the transverse deflection of
point Q, the point of application of the transverse load. (4) Plot this deflection as a function of
d/b ∈ [0, 1.5]. (3) What is the value of d/b for which this transverse deflection is minimum.
Use the following data: P = 5.0 kN; E = 73.0 GPa; ν = 0.3; L = 2.0 m; h = 0.4 m; b= 0.2 m;
t = 4 mm.

i1 i2

i3 i3

h

b

PP d

M N

L

Q

Fig. 8.69. Cantilever beam with C-section under offset tip load.
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Problem 8.61. Simplified two-cell airfoil
Work example 8.19 for an airfoil of chord length 5R, i.e., for a = 4R. Compare your results
with those presented in the example. This is a tedious calculation that is best done using a
symbolic computation software tool.

8.7 Warping of thin-walled beams under torsion

When a thin-walled beam is subjected to an applied torque, shear stresses are gener-
ated, as discussed in the previous section. In turn, these shear stresses cause out-of-
plane deformations of the cross-section called warping. Although the magnitude of
these displacements is typically small, they have a dramatic effect on the torsional
behavior of the structure.

Warping effects are particularly pronounced when dealing with non-uniform tor-
sion of open sections. A beam is undergoing non-uniform torsion when its twist rate
varies along the beam’s span. This contrasts with Saint-Venant theory for torsion de-
veloped in section 7.3.2, which assumes the beam undergoes uniform torsion, i.e.,
the twist rate is constant along the beam’s span.

8.7.1 Kinematic description

Consider a thin-walled beam subjected to a

C

s

R

Q1

i1

i2

i3

L

Fig. 8.70. Thin-walled beam subjected to
an applied torque.

tip concentrated torque, Q1, as depicted in
fig. 8.70. The formulation will be simplified
if the axes are selected to be the principal
centroidal axes of bending.

The analysis starts with an assumed dis-
placement field similar to that for the Saint-
Venant solution described in section 7.3.2.
Under the action of the applied torque,
each cross-section of the beam is assumed
to rotate like a rigid body about point R,
called the center of twist whose coordi-
nates, (x2r, x3r), are as yet unknown. The
magnitude of the axial displacement com-
ponent is assumed to be proportional to the twist rate, κ1(x1), and is characterized
by an unknown warping function, Ψ(s), while the in-plane displacement field de-
scribes a rigid body rotation of magnitude Φ1(x1) about the center of twist

u1(x1, s) = Ψ(s) κ1(x1), (8.80a)
u2(x1, s) = −(x3 − x3r)Φ1(x1), (8.80b)
u3(x1, s) = (x2 − x2r)Φ1(x1). (8.80c)

Because the section is thin-walled, the warping function is assumed to be a function
only of the curvilinear variable, s, i.e., the warping function does not vary through
the thickness of the thin wall.
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The strain field is now evaluated from this assumed displacement field

ε1 =
∂u1

∂x1
= Ψ(s)

dκ1

dx1
, (8.81a)

ε2 =
∂u2

∂x2
= 0, ε3 =

∂u3

∂x3
= 0, γ23 =

∂u2

∂x3
+

∂u3

∂x2
= 0, (8.81b)

γ12 =
∂u1

∂x2
+

∂u2

∂x1
=

[
dΨ

dx2
− (x3 − x3r)

]
κ1, (8.81c)

γ13 =
∂u1

∂x3
+

∂u3

∂x1
=

[
dΨ

dx3
+ (x2 − x2r)

]
κ1. (8.81d)

In the present analysis, the beam is assumed to undergo non-uniform torsion:
the twist rate varies along the beam’s span, and hence, dκ1/dx1 6= 0. This contrasts
with Saint-Venant’s solution developed in section 7.3.2 and the analysis developed
in section 8.5, where uniform torsion is assumed. Consequently, the axial strain,
eq. (8.81a), does not vanish. The in-plane strain components, eq. (8.81b), vanish
because of the assumed rigid body rotation of the section. The shear strain com-
ponents, eqs. (8.81c) and (8.81d), depend on the partial derivatives of the warping
function and are proportional to the twist rate.

8.7.2 Stress-strain relations

The non-vanishing components of the stress field are readily obtained from the con-
stitutive laws as

σ1 = Eε1 = EΨ(s)
dκ1

dx1
, (8.82a)

τ12 = Gγ12 =
[

dΨ

dx2
− (x3 − x3r)

]
Gκ1, (8.82b)

τ13 = Gγ13 =
[

dΨ

dx3
+ (x2 − x2r)

]
Gκ1, (8.82c)

where the linearly elastic, isotropic material is assumed to obey Hooke’s law.
As discussed in section 8.1.2, the only non-vanishing shear stress component for

thin-walled beams is component τs, tangent to curve C. From eq. (8.2b), this shear
stress component can be written as

τs = τ12
dx2

ds
+ τ13

dx3

ds

=
[

∂Ψ

∂x2

dx2

ds
+

∂Ψ

∂x3

dx3

ds
+ (x2 − x2r)

dx3

ds
− (x3 − x3r)

dx2

ds

]
Gκ1.

In view of the chain rule for derivatives, the first two terms represent the total deriva-
tive of the warping function with respect to s. The last two terms evaluate the dis-
tance from the twist center to the tangent to curve C, denoted rr, see eq. (8.11). It
then follows that
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τs =
(

dΨ

ds
+ rr

)
Gκ1. (8.83)

To complete this analysis and determine the warping function, a distinction must
now be made between open and closed sections.

8.7.3 Warping of open sections

The torsional behavior of thin-walled open section is investigated in section 8.5.1,
and the shear stress distribution is found to be linearly distributed across the wall
thickness and zero along the wall mid-line. Consequently, the shear stress, τs, deter-
mined from eq. (8.83) vanishes along curve C, leading to

τs =
(

dΨ

ds
+ rr

)
Gκ1 = 0, (8.84)

along curve C. As a result, the warping function must satisfy the following differen-
tial equation

dΨ

ds
= −rr = −

(
ro − x2r

dx3

ds
+ x3r

dx2

ds

)
. (8.85)

To integrate this equation and determine the warping function, a purely geometric
function, Γ (s), is first defined as

dΓ

ds
= −ro. (8.86)

Introducing this expression into eq. (8.85), it becomes possible to determine the
warping function by integration to find

Ψ(s) = Γ (s) + x2rx3 − x3rx2 + c1, (8.87)

where c1 is an integration constant. When integrating eq. (8.86), an arbitrary bound-
ary condition must be used to evaluate Γ (s), because integration constant c1 is added
in the expression for the warping function. To fully define the warping function, it is
necessary to evaluate this integration constant, c1, as well as the coordinates of the
twist center, (x2r, x3r).

When dealing with uniform torsion, dκ1/dx1 = 0, and eq. (8.80a) implies that
all span-wise sections undergo the same warping displacement; consequently, the
axial strains, eq. (8.81a), and stresses, eq. (8.82a) both vanish. In this case, the in-
tegration constant and the location of the center of twist cannot be determined. The
indeterminate part of the warping function, x2rx3 − x3rx2 + c1, simply represents
a rigid body displacement field that does not affect the state of strain or stress in the
beam. In fact, any point can be selected as the center of twist.

Most practical problems, however, involve non-uniform torsion, either because
the applied torque varies along the axis of the beam, or because warping displace-
ment is constrained at a boundary or at some point along the beam’s span. In such
cases, two neighboring sections warp a different amount, giving rise to axial strains,
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which in turn, generate axial stresses although the beam is acted upon by a torque
alone. The appearance of axial stresses under non-uniform torsion conditions is in
sharp contrast with uniform torsion, which generates shear stresses only. Although
axial stresses appear in the section, the axial force, N1, and bending moments, M2

and M3, must vanish because no such loads are applied.
The vanishing of the axial force, N1, defined by eq. (8.5), implies

∫
C σ1 tds = 0.

Introducing the axial stress, eq. (8.82a), and the warping function, eq. (8.87), then
yields

∫

C
EΓ tds + x2r

∫

C
Ex3 tds− x3r

∫

C
Ex2 tds + c1

∫

C
E tds = 0.

The second and third integrals in this expression vanish because the origin of the
axes is selected to be at the section’s centroid. The last integral is the axial stiffness,
S, defined by eq. (5.17). The integration constant is then found as

c1 = − 1
S

∫

C
EΓ tds. (8.88)

Equation (8.6) defines the bending moment, M2, as
∫
C σ1x3 tds = 0. Imposing

the vanishing of this quantity leads to
∫

C
EΓx3 tds + x2r

∫

C
Ex2

3 tds− x3r

∫

C
Ex2x3 tds + c1

∫

C
Ex3 tds = 0.

The second integral in this expression is the bending stiffness, Hc
22. The third integral

is the cross-bending stiffness, Hc
23, which vanishes because the axes are selected to

be the principal centroidal axes of bending. The last integral also vanishes because
the axes origin is at the centroid. The first coordinate of the twist center, x2r, is thus
found as

x2r = − 1
Hc

22

∫

C
EΓx3 tds. (8.89)

Finally, enforcing the vanishing of the other bending moment, M3, yields the other
coordinate of the twist center as

x3r =
1

Hc
33

∫

C
EΓx2 tds. (8.90)

The procedure to compute the warping function for thin-walled beams with open
sections can be summarized by the following steps.

1. Compute the location of the section’s centroid and select the axis system to be
aligned with the principal centroidal axes of bending.

2. Compute the purely geometric function, Γ (s), by integration of eq. (8.86). Use
an arbitrary boundary condition.

3. Compute the integration constant, c1, with the help of eq. (8.88);
4. Compute the coordinates of the twist center using eqs. (8.89) and (8.90).
5. The warping function is then fully defined by eq. (8.87).
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The shape of the warping function describes the out-of-plane displacement field
of the cross-section. Indeed, eq. (8.80a) gives the axial displacement distribution in
terms of the warping function within a scaling factor, κ1. For non-uniform torsion,
the warping function also describes the axial strain distribution over the section, see
eq. (8.81a). The warping function gives the axial strain distribution within a scal-
ing factor, dκ1/dx1. Finally, for sections made of a homogeneous material, i.e., if
E(s) = E, the axial stress is also distributed according to the warping function, but
this time with a scaling factor, E dκ1/dx1, see eq. (8.82a). These remarks help ex-
plain the importance of the warping function that describes the axial displacement,
axial strain and axial stress distributions over the cross-section, although each with
different scaling factors.

It is worthwhile noticing that the vanishing of the axial stress resultants, N1, M2,
and M3, implies the following properties of the warping function

∫

C
EΨ tds =

∫

C
EΨx2 tds =

∫

C
EΨx3 tds = 0. (8.91)

Example 8.20. Warping of a C-channel
Let the beam with a C-channel cross-section depicted in fig. 8.24 be subjected to a tip
torque. Determine the warping function. The axes shown in the figure are principal
centroidal axes of bending because axis ı̄2 is an axis of symmetry, and hence, is
along a principal direction of bending. The first step of the procedure is to compute
the purely geometric function, Γ (s), defined in eq. (8.86), where ro is the normal
distance from the origin of the axes, point O, to the tangent to curve C, and is given
by eq. (8.8).

e

R

Y (s)s1

s2

s3

h/2

h/2

i2

i3

d

O

Fig. 8.71. The warping function for a C-channel.

As shown in fig. 8.71, curvilinear coordinate s1 is used to describe the lower
flange of the C-channel, where ro = −h/2. According to the sign conventions, ro is
a negative quantity, see section 8.1.4. Function Γ then becomes Γ (s1) = hs1/2 + c,
where c is an integration constant evaluated with the help of an arbitrary boundary
condition, say Γ (s1) = 0 at s1 = 0, leading to Γ (s1) = hs1/2. A similar process
is used for the vertical web and upper flange, where ro = −d and ro = −h/2,
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respectively. Continuity of function Γ must be enforced at the corners and the process
yields Γ (s2) = ds2 + h(b + d)/2 and Γ (s3) = hs3/2 + h(b + 2d)/2.

The next step is to evaluate the integration constant with the help of eq. (8.88) to
find

c1 = −Et

S

[∫ b

0

Γ (s1) ds1 +
∫ +h/2

−h/2

Γ (s2) ds2 +
∫ b

0

Γ (s3) ds3

]
= −h

2
(b + d).

Finally, the coordinates of the twist center are determined by eqs. (8.89)
and (8.90) to find

x2r = − Et

Hc
22

[∫ b

0

Γ (s1)
(
−h

2

)
ds1 +

∫ +h/2

−h/2

Γ (s2)s2 ds2 +
∫ b

0

Γ (s3)
h

2
ds3

]

= −d− h2b2t

4
E

Hc
22

,

x3r =
Et

Hc
33

[∫ b

0

Γ (s1)(b− d− s) ds1 +
∫ +h/2

−h/2

Γ (s2)(−d) ds2

+
∫ b

0

Γ (s3)(s− d) ds3

]
= 0.

This last result could have been more easily obtained by invoking the symmetry of
the problem.

The warping function then follows from eq. (8.87) as

Ψ(s1) =
h

2
(s1 + e− b); Ψ(s2) = −es2; Ψ(s3) =

h

2
(s3 − e), (8.92)

where e = h2b2tE/(4Hc
22). Figure 8.71 shows the warping function and the location

of the twist center, which is located at a distance e to the left of the vertical web. It is
interesting to note that the location of shear center found in section 8.3.1 and that of
the twist center coincide for this cross-section.

Example 8.21. Warping of a triangular section
Consider the thin-walled triangular section of height h and width b, open at point B,
as depicted in fig. 8.72. Determine the warping function and the center of twist of
the section. In view of the symmetry of the problem, the axes shown in the figure are
principal centroidal axes provided that d = b/[2(1 + sinα)]. The bending stiffness
of the section is evaluated with the help of eq. (6.53) to find

Hc
22 = E

th3

12
+ 2E

[
t`3

12
sin2 α + t`

(
h

4

)2
]

=
Et`h2

6
(1 + sinα),

where ` is the length of the flange; note that h/2 = ` sin α.
Figure 8.72 shows the curvilinear coordinate, s1, which runs along the lower

flange, where ro = −(b−d) sin α. According to the sign conventions, ro is a negative
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Fig. 8.72. Warping function for a open triangular section.

quantity, see section 8.1.4. Function Γ is then Γ (s) = (b−d)s1 sin α+ c, where c is
an integration constant evaluated by means of an arbitrary boundary condition, say
Γ (s1) = 0 at s1 = 0. Function Γ becomes

Γ (s̄1) =
1 + 2 sinα

1 + sinα

bh

4
s̄1,

where s̄1 = s1/` is the non-dimensional curvilinear variable across the lower flange.
A similar process is used for the vertical web where ro = −d. Continuity of

function Γ must be enforced at the corner and yields

Γ (s̄2) =
1

1 + sinα

bh

4
(s̄2 + 1 + 2 sin α),

where s̄2 = 2s2/h is the non-dimensional curvilinear variable for the vertical web.
The solution then proceeds with the last two segments of the section defined by

curvilinear variables s3 and s4. Because of the symmetry of the problem, it is clear
that Γ (s̄3) = −Γ (s̄1) and Γ (s̄4) = −Γ (s̄2).

The next step is to evaluate the integration constant with the help of eq. (8.88)

c1 = −Et

S

[∫ `

0

Γ (s1)ds1 +
∫ h/2

0

Γ (s2)ds2 +
∫ `

0

Γ (s3)ds3 +
∫ h/2

0

Γ (s4)ds2

]
.

In view of the symmetry of the problem, c1 = 0.
Finally, the coordinate of the twist center is obtained from eq. (8.89) as

x2r = − Et

Hc
22

[∫ `

0

Γ (s1)(−s1 sin α) ds1 +
∫ +h/2

0

Γ (s2)
(

s2 − h

2

)
ds2

+
∫ `

0

Γ (s3)(s3 sin α) ds3 +
∫ +h/2

0

Γ (s4)
(

h

2
− s4

)
ds2

]

=
2Et

Hc
22

[∫ `

0

Γ (s1)(s1 sin α) ds1 +
∫ +h/2

0

Γ (s2)
(

h

2
− s2

)
ds2

]

= (b− d) +
sin α

1 + sinα

b

2
.
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This means that the twist center is located at a distance e = b sin α/[2(1 + sin α)]
to the right of point A. The vertical coordinate of the twist center vanishes due to
symmetry, as can be verified with the help of eq. (8.90).

The warping function then follows from eq. (8.87) as

Ψ1 = −Ψ3 = − sin α

1 + sinα

bh

4
s̄1, Ψ2 = −Ψ4 =

(2 + 3 sin α)s̄2 − sin α

1 + sinα

bh

4
. (8.93)

Figure 8.72 shows the warping function for this open triangular section.

8.7.4 Problems

Problem 8.62. Alternative evaluation the warping function
In section 8.7, the procedure for the evaluation of the warping function is developed. The
axes are selected to be the principal centroidal axes of bending. (1) Derive a procedure for
evaluating the warping function when a set of centroidal axes is selected, i.e., the axes are not
the principal axes of bending. (2) Give explicit equations to compute the integration constant,
a, and the coordinates of the twist center, i.e., develop the equivalent of eqs. (8.88), (8.89), and
(8.90), respectively.

Problem 8.63. Warping function of an “I” beam
Consider the thin-walled, “I” shaped cross-section depicted in fig. 8.73. (1) Compute and plot
the warping function Ψ(s) for this section. (2) Determine the location of the twist center. (3)
Compute the torsional stiffness of the section.

t
i2

i3

h

b2

b1

A

B

C

D

Fig. 8.73. Configuration of the I beam.

8.7.5 Warping of closed sections

The torsional behavior of thin-walled, closed sections is investigated in section 8.5.2.
In open sections, the shear stress distribution is linear through the thickness of the
wall, but the shear stress distribution is constant through the thin wall of closed sec-
tions. The shear stress is found to be τs = M1/(2At) = H11κ1/(2At), where A is
the area enclosed by curve C, see eq. (8.62).
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On the other hand, this shear stress is related to the warping function by
eq. (8.83), leading to

dΨ

ds
=

τs

Gκ1
− rr =

H11

2AGt
− rr. (8.94)

This is the governing equation for the warping function, and it should be compared
to eq. (8.85), which applies to open sections.

The process of integration of eq. (8.94) closely follows that used for open sec-
tions. First, a purely geometric function, Γ (s), is defined as

dΓ

ds
=

H11

2AGt
− ro. (8.95)

Here again, an arbitrary boundary condition is used to integrate this equation. In-
tegrating eq. (8.94) then yields the warping function in the form of eq. (8.87). The
integration constant, c1, and the location of the twist center can then be found by
enforcing the vanishing of the axial force, and bending moments, respectively.

In summary, the procedure for evaluating the warping function of closed sections
is identical to that developed for open sections except that the governing equation for
function Γ is now eq. (8.95), rather than eq. (8.86).

Example 8.22. Warping function for a thin-walled rectangular section
Consider the warping of the thin-walled rectangular beam shown in fig. 8.74. The
width and height of the section are 2a and 2b, respectively, and the thickness, t, is
uniform. The torsional stiffness is found from eq. (8.67), and hence,

H11

2AGt
=

2A
t

∫

C

ds

t

=
2ab

a + b
.

Curvilinear coordinates s1, s2, s3, and s4 will be used along the four walls of
the section as shown in fig. 8.74. Along the top flange, the governing equation for
Γ (s), eq. (8.95), becomes dΓ/ds = 2ab/(a + b) − ro, where ro = b. According
to the sign conventions, ro is a negative quantity, see section 8.1.4. Integration then
yields Γ (s1) = 2abs1/(a+ b)− bs1 + c. Using an arbitrary boundary condition, say
Γ (s1 = 0) = 0, leads to Γ (s1) = bs1(a− b)/(a + b).

The same process is repeated for the other three sides and continuity is enforced
at the corners of the section to find Γ (s1) = d̄bs1, Γ (s2) = −d̄as2, Γ (s3) = d̄bs3,
and Γ (s4) = −d̄as4, where d̄ = (a−b)/(a+b). For obvious symmetry reasons, c1 =
x2r = x3r = 0, as can be verified with the help of eqs. (8.88), (8.89), and (8.90),
respectively. The warping function, Ψ = Γ , now becomes

Ψ(s1) = d̄bs1, Ψ(s2) = −d̄as2, Ψ(s3) = d̄bs3, Ψ(s4) = −d̄as4. (8.96)

and is depicted in the right half of fig. 8.74.
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Fig. 8.74. Thin-walled beam with a rectangular cross-section.

8.7.6 Warping of multi-cellular sections

In the case of multi-cellular sections, the shear flow distribution, f(s), due to an
applied torque must be computed first with the help of the procedure described in
section 8.5.5. This shear flow distribution is proportional to the twist rate, i.e., f(s) =
G(s) κ1, and the corresponding shear stress is τs = G(s)κ1/t, where G(s) is a
function of s determined by the analysis outlined in that section. Comparing this
result with eq. (8.83) yields the governing equation for the warping function,

dΨ

ds
=
G(s)
Gt

− rr. (8.97)

The procedure for the determination of the warping function of multi-cellular
sections then exactly mirrors that for open and closed sections except that the gov-
erning differential equation for function Γ is now

dΓ

ds
=
G(s)
Gt

− ro. (8.98)

8.8 Equivalence of the shear and twist centers

The analysis of the shear flow distribution in thin-walled beams subjected to shear
forces leads to the concept of shear center. The shear center is defined by the torque
equipollence condition expressed by eq. (8.39). This important concept allows the
decoupling of bending and twisting problems, as discussed in section 8.6. On the
other hand, in the present section the center of twist is introduced for the analysis of
thin-walled beams under torsion.

Consider eq. (8.53) for the coordinate, x2k, of the shear center, and introduce
function Γ defined by eq. (8.86) to find

x2k =
∫

C
f [3]ro ds = −

∫

C
f [3] dΓ

ds
ds.

Integrating by parts then yields
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x2k =
∫

C
Γ

df [3]

ds
ds−

[
f [3]Γ

]
boundary

.

The boundary term vanishes because f [3] = 0 at the boundaries.
Next, the governing equation for f [3], eq. (8.58), is introduced

x2k = −
∫

C

Et

Hc
22

x3Γ ds = − 1
Hc

22

∫

C
EΓx3 tds = x2r,

where the last equality follows from eq. (8.89). A similar reasoning leads to x3k =
x3r, thus establishing the equivalence of the shear and twist centers for open sections.
The equivalence also holds for closed section, as can be shown by a similar develop-
ment. This equivalence is a direct consequence of Betti’s reciprocity theorem, which
will be developed in section 10.10.1, see eq. (10.117).

8.9 Non-uniform torsion

A thin-walled beam under non-uniform torsion develops a complex state of stress
that involves both shear stresses and axial stresses generated by differential warping.
The presence of the axial stress gives rise to a markedly different behavior from that
observed in the case of uniform torsion.

The axial stresses generated by non-uniform torsion are uniformly distributed
across the thickness of the wall, and the associated axial flow is denoted nw = tσ1.
As discussed in section 8.7.3, although the axial stress does not vanish at all points of
the section, the resulting axial force and bending moment do vanish. This condition
implies the global equilibrium of the section, but the local equilibrium equation,
eq. (8.14), is not necessarily satisfied. For this local equilibrium to hold, a shear
flow, fw, called the warping shear flow is generated to satisfy the local equilibrium
condition

∂nw

∂x1
+

∂fw

∂s
= 0.

The implication of this new shear flow, fw, is investigated for the case of open
sections. Introducing eq. (8.82a) for the axial stress and solving for the warping shear
flow yields

∂fw

∂s
= −EtΨ

d2κ1

x2
1

. (8.99)

This first order differential equation can be integrated to determine the warping shear
flow, fw, following the same procedure as that developed in section 8.3. The result
is depicted in fig. 8.75 for the simple case of a C-channel.

In the presence of this new shear flow, the question of overall equilibrium arises
once more: does the warping shear flow generate resultant transverse shear forces?
The shear force resultant, V2w, associated with the warping shear flow is evaluated
with the help of eq. (8.7)
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V2w =
∫

C
fw

dx2

ds
ds = −

∫

C
x2

∂fw

∂s
ds + [x2fw]boundary ,

where the second equality follows from integration by parts. The boundary term
vanishes because fw = 0 at the edges of the contour. Introducing eq. (8.99) then
yields

V2w =
d2κ1

dx2
1

∫

C
EΨx2 tds = 0,

where the last equality stems from property (8.91) of the warping function. It can be
shown in a similar manner that V3w = 0.

Next, the torque resultant about the shear center gener-

fw

K

Fig. 8.75. Shearing
flow, fw, for a C-
channel.

ated by the warping shear flow is evaluated with the help of
eq. (8.10) to find

M1wK =
∫

C
fwrk ds = −

∫

C
fw

dΨ

ds
ds, (8.100)

where the governing equation for the warping function,
(8.85), is introduced. Integrating by parts then yields

M1wK =
∫

C
Ψ

dfw

ds
ds− [fwΨ ]boundary , (8.101)

where the boundary term vanishes once more. Finally, intro-
ducing eq. (8.99) yields

M1wK = −Hw
d2κ1

dx2
1

, (8.102)

where
Hw =

∫

C
EΨ2 tds, (8.103)

is called the warping stiffness.
The total torque is the sum of that generated by the twist rate and that due to

warping,

M1K = H11κ1 −Hw
d2κ1

dx2
1

. (8.104)

The first torque component, H11κ1, is that generated by the shear stress distribution
described in section 8.5.1, whereas the second torque component,−Hw d2κ1/dx2

1, is
the additional contribution arising from the warping shear flow. Note that the second
contribution vanishes for the case of uniform torsion.

The equilibrium equation for a differential element of the beam under torsional
loads is obtained in section 7.15. Introducing the torque expression, eq. (8.104),
yields the governing equation for beams undergoing non-uniform torsion,

d
dx1

(
H11

dΦ1

dx1
−Hw

d3Φ1

dx3
1

)
= −q1. (8.105)
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This fourth order differential equation can be solved to find the beam twist given the
applied distributed torque q1.

Example 8.23. Torsion of a cantilevered beam with free root warping
Consider a uniform cantilevered beam of length L subjected to a tip torque, Q. At
first, the root condition is such that no twisting is allowed, but warping is free to
occur. This condition could be obtained by attaching the beam’s root to a diaphragm
that prevents any root rotation, but does not constrain axial displacements. The beam
has uniform properties along its length. Hence, the governing equation (8.105) be-
comes

H11
d2Φ1

d2x1
−Hw

d4Φ1

dx4
1

= 0.

At the root of the beam, no twist occurs, i.e., Φ1 = 0. Since warping is free
at the root, the axial stress must vanish, and in view of eq. (8.82a), this implies
d2Φ1/dx2

1 = 0. At the tip of the beam, the torque must equal the applied torque,
Q, and the axial stress must vanish once again. From eq. (8.104), the first condition
implies Q = H11dΦ1/dx1 −Hwd3Φ1/dx3

1, and the second condition again implies
d2Φ1/dx2

1 = 0.
To ease the solution of this problem, a non-dimensional span-wise variable, η =

x1/L, is introduced, and the governing equation becomes

Φ′′′′1 − k̄2 Φ′′1 = 0, (8.106)

with the boundary conditions, Φ1 = 0 and Φ′′1 = 0 at the beam’s root, and Φ′′1 = 0
and k̄2Φ′1−Φ′′′1 = QL3/Hw at its tip. The notation (·)′ is used to denote a derivative
with respect to η, and

k̄2 =
H11L

2

Hw
, (8.107)

is a non-dimensional parameter that characterizes the ratio of the torsional stiffness
to the warping stiffness.

The general solution of the governing differential equation is

Φ1 = C1 + C2η + C3 cosh k̄η + C4 sinh k̄η, (8.108)

where C1, C2, C3, and C4 are four integration constants. The boundary conditions at
the root are used to evaluate C1 and C3 to find Φ1 = C2η +C4 sinh k̄η. The remain-
ing two integration constants are found with the help of the boundary conditions at
the tip of the beam. Hence,

Φ1 =
QL

H11
η. (8.109)

This solution is identical to the uniform torsion solution, and could have been
obtained from the governing equation for uniform torsion developed in chapter 7.
Indeed, the solution implies a twist rate κ1 = dΦ1/dx1 = Q/L = constant. The
torsional warping stiffness, Hw, disappears from the solution.
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Example 8.24. Torsion of a cantilevered beam with constrained root warping
The cantilevered beam of the above example is considered here again, but the root
section is now solidly fixed to prevent any warping at the root. At this built-in end,
no twisting occurs, i.e., Φ1 = 0, and no axial displacement is allowed. In view of
eq. (8.80), this last condition implies κ1 = dΦ1/dx1 = 0.

The governing equation of the problem is once again eq. (8.106), but the bound-
ary conditions now become Φ1 = 0 and Φ′1 = 0 at the beam’s root and Φ′′1 = 0 and
k̄2Φ′1 − Φ′′′1 = QL3/Hw at its tip. The general solution of the governing equation
still has the form of eq. (8.108), and the boundary conditions at the root are used to
evaluate C3 and C2. Hence, Φ1 = C1(1 − cosh k̄η) + C4(sinh k̄η − k̄η). The tip
boundary conditions allow the evaluation of the remaining integration constants to
find

Φ1 =
QL

H11

[
η − sinh k̄ − sinh k̄(1− η)

k̄ cosh k̄

]
.

The first term is the linear distribution of twist along the beam’s span found in the
previous example and is characteristic of uniform torsion. The second term repre-
sents the influence of non-uniform torsion induced by the root warping constraint.
This constraint decreases the twist of the beam, and stiffens the beam.

Two types of sections will be considered here, the closed rectangular section
shown in fig. 8.74, and the open C-channel of fig. 8.71. The warping stiffness of
the rectangular section is found by introducing eq. (8.96) into eq. (8.103) and inte-
grating to find Hw = 4E/3 a2b2t(a − b)2/(a + b). The torsional stiffness follows
from eq. (8.67) as H11 = G 16a2b2t/(a + b). Coefficient k̄ defined in (8.107) then
becomes

k̄2 =
(

G

E

) (
2
√

3L

a− b

)2

.

Note that for a = b, the thin-walled, rectangular section becomes square, the warping
function vanishes, as does the warping stiffness, and the uniform torsion solution is
recovered. Consider a rectangular section made of aluminum, and for which a = 4b.
Ratio G/E = 1/2(1 + ν) for isotropic, linearly elastic materials, see eq. (2.8).
Coefficient k̄ then becomes proportional to the aspect ratio L/a. For a long beam,
L/a = 10, k̄ = 16.54, whereas for a shorter beam, L/a = 5, k̄ = 8.27. On the other
hand, if the beam is made of a unidirectional composite for which G/E = 1/28,
coefficient k̄ becomes 5.04 and 2.52, for the long and short beams, respectively.
Figure 8.76 shows the twist distribution for the four cases considered.

For the C-channel, the warping stiffnesses is found by integrating the warping
function, given by eq. (8.92), to find Hw = E/12 h2b3t (3b + 2h)/(6b + h), and
the torsional stiffness is computed in eq. (7.66) as H11 = Gt3(2b + h)/3. Finally,
coefficient k̄ becomes

k̄2 =
(

G

E

)(
L

h

)2 2ht2

b3

(1 + 2b/h)(1 + 6b/h)
1 + 3b/2h

.

Let the C-channel be such that h = 2b and t = b/10. If the C-channel is made of
aluminum, k̄ = 2.65 or 1.33 for the aspect ratios of L/h = 10 or 5, respectively. If
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Appendix: mathematical tools

A.1 Notation

It is traditional to use a bold typeface to represent vectors, arrays, and matrices.
While this typographical convention is elegant in print, it is difficult to reproduce in
handwriting or on a white board in a lecture hall. Students are then faced with the
confusing dilemma of using a notation in handwriting that does not match that used
in textbooks. The notation used in this book is selected to eliminate this problem. The
printed notation uses single and double underlines to indicate arrays and matrices,
respectively, and these are easily reproduced in handwriting.

Vectors and arrays are denoted using an underline, i.e., u or F . A vector is first
order tensors such as a position, displacement, or force vector. An array is a container
used to store a collection of scalars. When defining the components of an array, the
scalars it consists of are listed in a column delimited by curly braces, see eq. (A.2).

Unit vectors are vectors of unit magnitude and are denoted with an overbar; for
instance, ı̄1 indicates the first unit vector of a triad, or n̄ denotes a unit vector in
a particular direction in Euclidean space. The overbar is also used to denote non-
dimensional scalar quantities; for instance, k̄ denotes a non-dimensional stiffness
coefficient.

Matrices are indicated using a double underline. For instance, C indicates a ma-
trix with M rows and N columns, see eq. (A.5). Matrices are used the store the com-
ponents of second order tensors such the stress and strain tensors. They are also used
to store the coefficients of linear systems of equations.

The indicial notation is used throughout the book. The traditional notation, ı̄, ̄, k̄,
for a Cartesian axis system is replaced by I = (̄ı1, ı̄2, ı̄3) and the corresponding coor-
dinates x, y, and z, become x1, x2, and x3, respectively. Similarly, force components
commonly denoted Fx, Fy , and Fz become F1, F2, and F3, respectively.



References

1. B.K. Donaldson. Analysis of Aircraft Structures. Cambridge University Press, Cam-
bridge, New York, second edition, 2008.

2. T.H.G. Megson. Aircraft Structures for Enginnering Students. Elsevier Aerospace Engi-
neering Series, Oxford, fourth edition, 2007.

3. D.J. McGill and W.W. King. An Introduction to Dynamics. PWS-KENT Publishing
Company, Englewood Cliffs, New Jersey, third edition, 1995.

4. J.H. Ginsberg. Advanced Engineering Dynamics. Cambridge University Press, Cam-
bridge, second edition, 1998.

5. R. Ewing. Calculus of Variations with Applications. Dover Publications, Inc., New York,
1985.

6. R. Weinstock. Calculus of Variations with Applications to Physics and Engineering.
Dover Publications, Inc., New York, 1974.

7. F.B. Hildebrand. Advanced Calculus for Applications. Prentice Hall, Inc., Englewood
Cliffs, New Jersey, second edition, 1976.

8. T.J.R. Hughes. The Finite Element Method. Prentice Hall, Inc., Englewood Cliffs, New
Jersey, 1992.

9. K.J. Bathe. Finite Element Procedures. Prentice Hall, Inc., Englewood Cliffs, New Jersey,
1996.

10. G. Strang. Linear Algebra and its Applications. Thomson-Brooks/Cole, Toronto, 2006.
11. W.H. Press, B.P. Flannery, S.A. Teutolsky, and W.T. Vetterling. Numerical Recipes. The

Art of Scientific Computing. Cambridge University Press, Cambridge, 1990.
12. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover Publica-

tions, Inc., New York, 1964.



Index

Aeroelasticity, 357
Affine transformation, 859, 899
Airy’s stress function, 111
Analytical mechanics, 395
Angular distortion, 34
Anisotropic plate, 851, 883
Anticlastic bending, 837
Area static moment, 308
Axial force, 177

Balanced laminate, 844, 847, 852
Beltrami-Michell’s equations, 104
Bending moment, 178, 826
Bending stiffness ellipse, 235
Bending stiffness matrix, 830, 842
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Center of twist, 362
Central solution, 170
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Centroidal bending stiffness, 188
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Circular plates, 865
Closing shear flow, 326
Co-location method, 285
Coefficient of thermal expansion, 59, 742
Compatibility equations, 50

Truss, 438
Compatible

strain field, 681
virtual strain field, 682

Complementary strain energy, 505, 550, 685
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