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About this book  

When I became an adjunct professor at the University of Rhode Island, I 
realized that most books on the subject of bulk solids testing and hopper 
design were either very terse or rather intense for readers who did not have a 
mechanical engineering background.  I began preparing my course notes 
when I worked at Cabot Corporation and improved them when I joined 
Jenike & Johanson, Inc. While at both Cabot and J&J, I wrote a number of 
articles for Chemical Engineering, Chemical Engineering Progress, and 
other rags.  They really came in handy when I was asked to write the 
subsection on powder flow and hopper design of the ninth edition of Perry’s 
Chemical Engineers’ Handbook.  Jenike & Johanson encouraged me to 
write, provided that I only disclosed design methods that were published in 
the open literature.  I carefully adhered to those guidelines when writing this 
book.  Yes, some of the text was taken from my prior publications, but I 
figure that it isn’t plagiarism when you Ctrl+C and Ctrl+V your own 
material.  (If I were a faculty member or administrator at Harvard, I could 
copy and paste anyone’s material.)  A few of the formulas I derived on my 
own, but they were all based on fundamental engineering principles.  
Consequently, some of the analyses that I present may be slightly different 
from what you might find published elsewhere, so use them with caution.     

I always advise my students to keep this book in the bathroom.  That way 
they can read about hoppers when they are sitting on the hopper, and if they 
run out of toilet paper, there isn’t a crisis. 

I have found that when teaching, it is best to start with the fundamentals and 
then use them to derive the equations that can be used to predict bulk solids 
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flow behavior and design systems for reliable flow.  When you read this 
work, I encourage you to understand the first fundamental equation, know 
how to apply the final one, and then appreciate that someone who was much 
smarter than us1 was able to come up with all the equations in between.  
Fundamentals are fun! 

I’ve always said that handling powders is a lot like electricity – sometimes a 
little knowledge is more dangerous than none at all.  In the real world, there 
is almost always more than one answer to a problem.  For challenging 
problems, I encourage you to contact me, Jenike & Johanson, Solids 
Handling Technologies, or other engineering firms that specialize in the 
storage and handling of bulk solids.  Andrew Jenike developed his test and 
design methods in the 1960’s; yet his principles have withstood the test of 
time and are still used today.  When analyses are based on fundamentals 
rather than empiricism, an engineer can have great confidence in his or her 
designs, and formulators can be confident that their powders can be handled 
reliably in their available equipment. 

Engineers are adept at solving equations, and as a consultant, I rely on the 
following formula: 

Happiness Equals Reality Minus Expectations 

Note that there are three terms.  If the last term is larger than the middle one, 
the first one is negative.  My goal as a consultant is to understand the reality 
of bulk solids handling.  That way I can exceed my clients’ expectations, 
they’ll be happy and eager to pay me, and I can eke out a miserable 
existence.  

Greg Mehos, Ph.D., P.E. 2 

 
 

 

                                                
1  To be grammatically correct, this sentence should be written as “smarter than 

we.”  I checked with Mrs. Sanchez, my high-school English teacher.  She 
agrees and she has pardoned me. 

 

2  I am excited to have both Ph.D. and P.E. after my name although my nephew 
thinks I’m a physical education teacher. 
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1.		INTRODUCTION	

Designing systems for reliable handling of bulk solids or determining if a 
vessel is appropriate for a bulk solid that is to be handled can pose 
challenges that do not typically arise when tackling assignments that involve 
the transport of fluids.  More often than not, the information needed for 
predicting fluid behavior is readily accessible.  A fluid’s viscosity and 
density can usually be found in a reference book or a website; otherwise, 
correlations, estimation methods, or equations of state detailed in textbooks 
can be used to calculate the necessary physical properties.  Given the 
diameter of a transfer line, the fluid’s flow behavior, e.g., laminar or 
turbulent flow, can then be confidently predicted.  From the length and 
layout of the line and knowing the roughness of the pipe, information that is 
also readily found in print, the pump required to transfer the fluid at the 
desired rate can be specified.  If cavitation is a concern, the pump’s net 
positive suction head requirements can be readily determined as the fluid’s 
vapor pressure is likely available from data or correlations.  You know the 
drill.  Gather the physical properties, specify a velocity, assume a pipe 
diameter, and then calculate a Reynolds number.  Then calculate a ΔP, 
which will allow you to calculate an hp and size your pump.  Easy as π! 

Designing a system for handling solids, however, may be more trying as the 
fundamental properties required to predict flow behavior may not be 
immediately obvious and any necessary data may not be readily available.  
In fact, a property as simple as a material’s bulk density is highly dependent 
on the particles’ shape, size, and porosity, and therefore any published data 
providing the bulk density of a powder may not necessarily be 
representative of the material that will be handled.  In addition, because bulk 
solids are compressible, the bulk density of a material inside a hopper, bin, 
or silo will vary due to consolidation stresses.  Without proper training, one 
may be resigned to select a conical hopper that has an aesthetically pleasing 
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slope or recommend a pyramidal vessel that is inexpensive to fabricate, size 
the outlet to fit the valve that a supplier recommended, and propose the 
installation of vibrating equipment to promote flow.  Perhaps that is why 
identifying equipment and lines that handle bulk solids is often easy – they 
are the ones with the hammer marks (see Figure 1.1). 

 

Figure 1.1.  Examples of “bin rash”. 

Many geometries are used in the design of hoppers, bins, and silos, 
including conical, pyramidal, wedge, chisel, and transition (round to 
rectangular).  Common designs are shown in Figure 1.2.   

 
Figure 1.2.  Common hopper designs. 

Frequently, the size and geometry of a hopper or bin are based on ease of 
fabrication rather than with consideration of the solids’ flow behavior.  
Sometimes, bulk solids are stored in flat-bottomed vessels, some equipped 
with agitators.  These vessels are appropriate for storing liquids, but bulk 
solids behave differently.  A liquid spreads when it is poured onto a flat 

Conical																			Pyramidal																		Wedge-shaped													Transi6on																			Chisel	
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surface.  A bulk solid forms a pile.  Liquids are nearly incompressible.  Most 
bulk solids are highly compressible.  With liquids, the resistance to shear, 
i.e., its viscosity, is independent of normal pressure but is dependent on 
shear rate.  For bulk solids, the shear stress is dependent on normal stress 
and independent of shear rate.  Liquids are isotropic, that is, their properties 
such as pressure are the same in all directions.  Bulk solids are anisotropic; 
their stresses vary with direction.  Unlike liquids, bulk solids have friction 
and can generate shear stresses at wall boundaries. 

Designing vessels for storing or handling bulk solids by following methods 
established for fluids is a risk that is too often taken.  Unfortunately, 
compared to liquids and gases, training in bulk solids is frequently lacking 
for scientists and engineers.  For many, bulk solids fit into the four 
categories presented in Table 1-1 [Woodcock, C.R. and J.S. Mason, Bulk 
Solids Handling: An Introduction to the Practice and Technology, Chapman 
& Hall, London, 1987]. 

Table 1-1 
Classification of Bulk Solids 

Neurotic 
Move awkwardly 
  - Poor flowability 
  - Sticky or tacky 

Sadistic 
Attack their surroundings 
  - Abrasive 
  - Explosive 

Masochistic 
Suffer from their surroundings 
  - Friable 
  - Degradable 

Schizophrenic 
Change their behavior 
  - Hygroscopic 
  - Electrostatic 

This book attempts to summarize the fundamental principles behind bulk 
solids handling, test methods for measuring their fundamental flow 
properties, and methods for designing systems for reliable flow or predicting 
flow behavior in existing equipment, e.g., determining if an existing bin or 
hopper will be able to handle a powder without difficulties. 
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Some definitions 

Now is a good time to define a few terms that are used in the discussion of 
bulk solids handling.   

Bulk solid – a material consisting of discrete solid particles, handled in bulk 
form.  There really is no limit to their size.  The material must be made up of 
separate particles.  The term bulk solid does not apply to muds, pastes, or 
slurries. The terms bulk solids and powders are sometimes used 
interchangeably. 

Hopper, bin, or silo – storage vessels for bulk solids.  The terms are often 
used interchangeably.  Silos usually refer to tall vessels that store several 
tons of material.  Hoppers and bins usually refer to smaller vessels.  The 
converging section of a storage vessel is often called the hopper section.  
For the most part, this book will refer to storage vessels as bins. 

Cylinder – vertical part of a bin.  It may be round or rectangular, and it has a 
constant cross section. 

Expanded flow – flow pattern inside a bin, where all the bulk material is in 
motion in the bottom portion of the vessel when discharged, but flow only 
occurs in a central flow channel in the top portion of the vessel. 

Feeder – device for modulating the withdrawal rate of bulk material.  
Examples include rotary valves, screw feeders, and belt feeders.  Often, a 
valve or gate is used to stop and start flow, but such devices in general 
should not be used to control the discharge rate of bulk solids. 

Flow channel – the space in a bin in which the bulk solid is actually flowing 
during withdrawal. 

Funnel flow – flow pattern inside a bin, where the bulk material only moves 
in a flow channel above the outlet when withdrawn. 

Hopper section – the converging part of a storage vessel that has sloped 
walls and a variable cross section. 

Major principal stress – the maximum normal stress on a bulk solid.  The 
terms major principal stress, major consolidation stress, and major 
consolidation pressure may be used interchangeably. 

Mass flow – flow pattern inside a bin where all material is in motion when 
withdrawn. 
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Shear cell tester – device that measures the cohesive strength, 
compressibility, and wall friction of bulk solids. 

Unconfined yield strength – a fancy way to say cohesive strength. 

Thank you, Dr. Andrew Jenike 

Andrew W. Jenike began his work on the development of the theory of bulk 
solids flow in the early 1950s and published his classic bulletins in the mid 
1960s [Jenike, A.W., Gravity Flow of Bulk Solids, Bulletin 108, University 
of Utah Engineering Station, 1961; Jenike, A.W., Storage and Flow of 
Solids, Bulletin 1233, University of Utah Engineering Station, 1964 (revised, 
1976)].  Until then, the walls of hoppers, bins, and silos were usually 30° or 
45° from vertical because those were the angles of common triangles that 
engineers of that era used to carry.  (Yes, engineers had a reputation for 
being nerdy back then, not that anything is different today!)  An advantage 
of specifying a 30° from vertical cone was that its fabrication from a flat 
sheet of metal generated the least amount of waste material.  Of course, in 
the days without calculators, choosing an angle whose sine was equal to 0.5 
was an added bonus. 

Andrew Jenike was born in Poland in 1914 and graduated from Warsaw 
Polytechnic Institute with a B.S. in mechanical engineering in 1939.  Jenike 
joined the military and fought the Nazis until Poland was overrun.  He 
escaped to England where he continued his education, receiving his 
doctorate in structural engineering from the University of London in 1949.  
Later, he immigrated to Canada and then the United States.  He eventually 
settled in Salt Lake City, Utah. 

Jenike was a bookworm, and so in his spare time, he enjoyed browsing the 
literature at the University of Utah library.  He was surprised to find that bin 
design at the time was a black art.  Storage equipment for bulk solids was 
pretty much taken for granted.  Designs were based on rules of thumb or 
methods that made the math stress-free and fabrication easy.  He approached 

                                                
3

 https://digital.library.unt.edu/ark:/67531/metadc1067072/?q=Bulletin%20123 has 
a pdf copy of Bulletin 123 that you can download. It really is a classic.  It’s a bit 
confusing because the number 13 seems to appear everywhere.  Jenike presented 
his expressions in terms of force rather than stress, and the number 13 is the 
reciprocal of the cross-sectional area of his 3¾ inch diameter cell in square feet.
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the NSF (National Science Foundation, not Not Safe for Work), who agreed 
that storage and flow of bulk solids fundamentals was a subject worthy of 
research.  To be funded, however, he would have to be affiliated with a 
college or university.  He contacted the University of Utah with a proposal; 
If the University were to hire him, he would work for no salary.  NSF would 
provide the funding.  All Jenike needed was a lab and some students.  
(Come to think of it, I have a similar arrangement at the University of Rhode 
Island where I am an adjunct professor.  I don’t get paid, but I am able to 
embellish my LinkedIn profile.)  

Using a solids mechanics continuum approach, Jenike developed a 
theoretical approach to solids flow.  The critical fundamental flow properties 
of a bulk solid were found to be its cohesive strength, internal friction, wall 
friction, and bulk density.  Testing methods and shear cells along with 
design techniques were developed, and experiments were run to confirm and 
refine the analysis.  Knowing the bulk solid’s cohesive strength and bulk 
density, the dimensions of a hopper outlet that would prevent the 
development of obstructions to flow could be calculated.  Wall friction data 
could be used to determine the slope of hopper walls that prevented ratholes 
from developing when a powder was discharged from a hopper.   

Jenike eventually left the University of Utah and moved to Massachusetts to 
live nearer to the ocean and pursue full-time consulting.  Jerry Johanson, 
one of his Ph.D. students, later joined him, and in 1966, the two founded 
Jenike & Johanson, Inc.  John Carson, who had worked in Jenike’s 
basement as a co-op student, was hired after receiving his Ph.D. from 
Massachusetts Institute of Technology and eventually became president.  
Jenike’s test and design methods that were developed in the 1960s still form 
the primary bases for the design of hoppers, bins, and silos for reliable flow 
of bulk materials.  The advancement of computers has allowed the 
development of automated testers for measuring solids flow properties; 
however, they only are able to gain acceptance if the test results agree with 
data obtained from Jenike’s original direct shear cell.  By measuring the 
fundamental properties of a bulk solid, the flow behavior of the material can 
be predicted, and reliable hoppers, bins, and silos can be designed.   

Flow problems 

Many storage vessels are fabricated from architectural or fabrication 
viewpoints.  However, designing equipment without regard to the bulk 
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material being handled often leads to flow problems.  Common solids flow 
problems include: 

No flow.  If a stable dome, bridge, or arch forms over the outlet of a bin, the 
bulk solid will not flow when the feeder is started or gate is opened.  If a 
stable rathole forms in a vessel in which flow only occurs in a narrow 
channel above the outlet, material will stop flowing when the flow channel 
empties.  Obstructions to flow are illustrated in Figure 1.3. 

 

Figure 1.3.  Obstructions to flow – cohesive arch (left), stable rathole 
(right). 

Erratic flow.  Erratic flow occurs when both arching and ratholing occurs.  
If a rathole collapses due to external vibration, the bulk solid may arch as it 
impacts the outlet.  After the arch fails due to vibration or operator 
intervention, the flow channel will empty leaving a rathole momentarily 
stopping flow until it eventually collapses, reforming a cohesive arch.   

Flooding.  If a stable rathole develops and fresh material is added or if a 
rathole collapses and falls into the channel, it may become aerated or 
fluidized.  Since most feeders are designed to handle solids and not fluids, 
the fluidized material may flood, that is, discharge uncontrollably in a 
fluidized state from the bin, and the feeder will not be able to control the 
rate of discharge. 

Limited discharge rate.  As a fine powder dilates as it flows toward the 
outlet, vacuum will naturally develop inside the hopper above the outlet.  As 
a consequence, air will flow counter to the solids, disrupting flow.  
Increasing the speed of the feeder will no longer increase the discharge rate 
of powder as the discharge rate has become limited. 
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Caking.  Some materials will readily flow from a bin if handled 
continuously.  Other materials, however, will exhibit flow problems if 
allowed to remain at rest for a period of time.  Given enough time at rest, 
some powders will gain additional cohesive strength, and obstructions to 
flow such as arches and ratholes may become exceptionally difficult to 
remove. 

Segregation.  Some materials, when transferred into a bin, will segregate, 
that is, particles of different size will separate.  For some powders, once a 
pile is formed, larger particles, which are relatively free flowing, will roll 
down the surface towards the periphery of the vessel; smaller particles will 
percolate through the bed and concentrate in the center.  When the piles 
avalanche, the momentum of the larger particles causes them to travel 
farther than the finer particles (see Figure 1.4).  Lyn Bates refers to this as 
“Christmas tree segregation” [Bates, L., User Guide to Segregation, 
Bartham Press, London, 1997].  If flow only occurs in a central channel 
during discharge, the particle size distribution of the powder leaving the bin 
will be considerably different than that of the feed. 

 

Figure 1.4.  Sifting segregation. 

Flow patterns 

The likelihood of a solids flow problem often depends on the flow pattern 
present inside a bin.  There are three primary flow patterns that can occur: 
mass flow, funnel flow, and expanded flow.  In mass flow, the entire bed of 
solids is in motion when material is discharged from the outlet, including 
material along the walls.  Mass flow hoppers typically have steep and/or 
low-friction walls.  Provided that the outlet is large enough to prevent 
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arching, all material will be discharged from the bin, as ratholes will not 
form.  Mass flow is illustrated in Figure 1.5. 

 

Figure 1.5.  Mass flow pattern. 

Mass flow bins are characterized by a first-in, first-out flow sequence and 
therefore are suitable for handling materials that degrade with time or are 
prone to caking.  The steep hopper walls provide a more uniform flow, 
making mass flow hoppers suitable for process vessels.  Discharge rates are 
predictable and likely more steady, since the bulk density of the material is 
nearly independent of the head of the material inside the vessel.  Sifting 
segregation is minimized, as fine and coarse particles separated during 
filling are remixed at the outlet during discharge. 

A disadvantage of a mass-flow hopper is that it requires relatively more 
headroom due to its steep hopper section.  This is especially the case for 
conical hoppers. 

In funnel flow, an active flow channel forms above the outlet, with stagnant 
material remaining at the periphery (i.e., ratholes).  This occurs when the 
walls of the hopper section of the storage vessel are not steep enough or 
have low enough friction to allow flow along them.  The size of the resultant 
flow channel is approximately the largest dimension of the outlet.  It is equal 
to the diameter of a round outlet or the diagonal of a slotted outlet.   For a 
conical funnel flow hopper, the fraction of its volume that is active can be 
dramatically small.  If the bulk material is cohesive, the ratholes may be 
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stable and the effective capacity of the bin will be just a small fraction of the 
intended capacity.  Funnel flow is illustrated in Figure 1.6.   

 

Figure 1.6.  Funnel flow pattern.      

A funnel flow bin typically exhibits a first-in, last-out flow sequence.  
Therefore, materials that readily cake or degrade over time should not be 
handled in funnel flow hoppers.  Funnel flow can cause erratic flow and 
induce high loads (depending on vessel size) on the structure and 
downstream equipment due to collapsing ratholes and eccentric flow 
channels.  If the powder is cohesive, ratholes may become stable, and the 
vessel will not empty.   

Funnel flow bins are best suited for bulk solids that are free flowing and do 
not degrade or gain strength over time. They should not be used if 
segregation is a concern.  Funnel flow vessels require less headroom and in 
general are less expensive to build since they can have shallower walls. 

Expanded flow is characterized by mass flow in the lowermost section of a 
bin and funnel flow in the upper section.  An expanded flow bin is 
essentially a mass flow bin with a funnel flow hopper section above it.  An 
expanded flow bin is illustrated in Figure 1.7. 

The outlet of the funnel flow hopper section must be large enough to prevent 
stable ratholes from developing.  Because the bottom section is designed for 
mass flow, discharge rates are uniform and predictable.  Expanded flow bins 
are frequently used when large bin diameters are required. 
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Figure 1.7.  Expanded flow hopper. 

Designing systems for bulk solids can be challenging since they have a wide 
range of characteristics, e.g., cohesive or free-flowing; fine or coarse; fluffy 
or dense; adhesive to surfaces or surface repellant; easily aerated or nearly 
impermeable; and highly compressible or nearly incompressible.  Defining a 
particle size, density, or permeability may be straightforward.  The best 
metric for cohesion or adhesion, however, might not be as obvious.  These 
characteristics or a combination of them ought to be useful in defining a 
bulk material’s ease of flow or “flowability”.   

So how do we define flowability? 

Several methods exist for measuring the relative flowability of bulk 
materials.  The simplest is to determine the powder’s angle of repose by 
pouring the material onto a horizontal surface and measuring the surcharge 
angle of the pile that is formed.  A powder that forms a steeper pile is 
believed to be less flowable than one that is shallow.  However, as stated by 
<genuflect> Andrew Jenike </genuflect> [Storage and Flow of Solids, 
Bulletin 123, Utah Experimental Station, 1964]: 

“The angle of repose is not a measure of the flowability of solids. In 
fact, it is useful only in the determination of the contour of a pile, 
and its popularity among engineers and investigators is due not to 
its usefulness but to the ease with which it is measured.” 

Compressibility tests, such as those in which a sample of bulk solid is 
vibrated or tapped inside a cylinder, are often used.  The Hausner ratio is the 
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ratio of the “tapped” density to the aerated or loose bulk density.  The Carr 
ratio is determined by dividing the difference between the tapped and freely 
settled volumes of a given mass of material by the freely settled volume.   A 
low Hausner ratio or low Carr ratio indicates that the material is easy to 
handle.  These ratios might be useful for comparing the relative 
cohesiveness of similar materials; however, the ratios reveal no fundamental 
information that can be used to predict how a powder will flow or if a 
powder will flow in a bin. 

Hausner and Carr ratios are frequently used in the pharmaceutical industry 
in an attempt to quantify flowability.  The indices are of limited use, 
however, since at best, these ratios can be only loosely correlated to the flow 
behavior of similar powders.  In addition, these methods are deficient as the 
stress applied to the sample of powder is unknown, the tests do not replicate 
the degree of consolidation that takes place when a powder is stored in a 
vessel, and the gain in the material’s strength during rest cannot be 
determined. 

Another flowability test involves a series of tests, including angle of repose, 
angle of spatula, bulk density before and after vibration, and particle size 
distribution, to establish a flow index.  This index is known as the Carr 
index, which is determined by summing scores that depend on the outcomes 
of each test [Carr, R., Chem. Eng., 72, 163 (1965)]4.   The maximum 
possible score for each test was 25, and any powder scoring a Carr index of 
100 won a prize.  Interpretations of the Carr index are given in Table 1-2. 

The Carr index may indeed qualitatively compare the likelihoods of solids 
flow problems of similar materials, but after the tests have been completed 
and a flow index has been determined, the investigator will not know what 
size hopper outlet dimension will prevent blockages, how steep the hopper 
walls must be to avoid ratholing, what outlet size is required to achieve the 
desired discharge rate, and whether or not storage at rest will lead to flow 
stoppages.   

Investigators often find comfort in a Carr index, as its result is usually 
consistent with experience, e.g., when a flow aid is added to improve the 
flowability of a powder, the flow index indeed increases.  Table 1-3 gives 
                                                
4  In Carr-speak, a high ratio is bad, whereas a high index is good.  It can be 

confusing; it’s best to use neither. 
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flow index results for mixtures of a polyolefin powder, pigment, and fumed 
silica that were provided in a technical bulletin published by the silica 
manufacturer.  Indeed, addition of silica improved the flowability of the 
powder.  By adding a small amount of silica, the Carr index of a powder that 
sans silica was equal to 44.3, indicating poor flowability, increased to as 
high as 59.5, which was still poor, but perhaps better than before.  Hey, at 
least it wasn't very poor or very, very poor! 

Table 1-2 
Carr’s Flow Index 

Score Flowability and Performance 
90-100 Excellent 
80-89 Good 
70-79 Fair 
60-69 Passable 
40-59 Poor 
20-39 Very Poor 
0-19 Very, Very Poor 

 

Table 1-3 
Carr Index Example 

Silica Angle of 
Repose 

Aerated Bulk 
Density 

Cohesiveness 
(%) 

Flow 
Index 

None 49.0 0.384 16.5 49.3 
A 42.0 0.384 4.1 54.0 
B 41.0 0.737 5.4 56.0 
C 46.1 0.388 8.0 59.0 
D 50.4 0.388 6.0 59.5 

The tests that must be conducted to obtain a powder’s Carr index are tedious 
and time consuming.  The index is frequently used in the toner industry as a 
measure of flowability.  Tribocharge properties of toners are also important.  
Fortunately, laboratories equipped with instruments that measure the Carr 
index also have tribocharge testers.  After spending a day in the lab 
obtaining angle of repose, angle of spatula, compressibility, and particle size 
data to obtain results that have questionable utility, investigators are able to 
get some badly needed electroshock therapy. 



19 

Solids rheometers of various designs are sometimes used to quantify the 
flowability of powders.  The material is placed in a cell equipped with an 
impeller, and the torque or energy required to rotate the agitator either 
upward or downward is measured.  In some instruments, the vertical force 
on the agitator can also be directly measured.  Flowability is deemed to 
correlate with the torque or the power drawn by the agitator.   

Unfortunately, the stresses acting in the shear zone during testing are 
unknown, and therefore the results cannot be applied to actual process 
conditions.  In addition, both fluidization and agglomeration can occur 
inside the test cell, confounding the results [Schulze, D., Powders and Bulk 
Solids – Behavior, Characterization, Storage, and Flow, Springer, Berlin, 
2007].  The “basic flow energy”, in which the impeller pushes the powder 
downward, roughly correlates with the material’s compressibility 
(compressible powders require less energy to compact), while the “specific 
energy”, where the impeller rotates upward, weakly correlates with its 
cohesive strength (more effort is required to cause a powder to yield if it is 
cohesive).  High torque or energy consumption may be the result of high 
internal friction or friction between the bulk material and the walls of the 
cell, rather than an indication of the material’s cohesive strength or 
compressibility.  It is better to determine a powder’s cohesive strength and 
compressibility directly as they are fundamental flow properties whereas 
methods based on stirred vessels do not provide results that have any 
fundamental solids flow basis.  They are often used for quality control or 
acceptance criteria for raw materials and are reported to be able to pick up 
differences in powders that other testers cannot. 

Funnel tests are also frequently used.  In such a test, a powder is placed in a 
cylinder with interchangeable bottom lids that have an orifice of various 
sizes.  Flowability is defined as the minimum size of the orifice for which 
flow occurs, or alternatively, the time required to discharge the powder. 

Very little practical information is obtained from such a test.  The funnel 
flow pattern that results from such a test ensures variability of the test 
results.  In addition, the discharge rate will be greatly influenced by the 
permeability of the bulk solid, since powder introduced into the flow 
channel from collapsing ratholes may be aerated if the air cannot flow 
through the powder quickly. 
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The pharmaceutical industry frequently uses a parameter known as the flow 
function coefficient or FFC.  It is the ratio of the major principal stress to 
the unconfined yield strength as determined from a shear cell test.  (Shear 
cell testing will be discussed later. The major principal stress is the 
maximum level of stress imparted on the material during a shear cell test.  
Unconfined yield strength is a measure of a powder’s cohesive strength.)   
Interpretation of FFC values is summarized in Table 1-4. 

Table 1-4 
Flow Function Coefficient 

Ratio Flowability 
< 2 Very Cohesive 

2 – 4 Cohesive 
4 – 10 Easy-flowing 
> 10 Free-flowing 

FFC is often abused.  The FFC value and therefore its interpretation (e.g., 
cohesive, easy-flowing) depend on the major principal stress, and the 
appropriate value of that stress to use when defining FFC is not immediately 
known.  Because the major principal stress imparted on the powder during 
the test is not known a priori, the FFC for a desired major principal stress 
cannot be determined by performing only one test.  Conclusions from the 
comparison of FFC values of two powders must be made carefully.  Two 
materials may have identical FFC values, but the powder that has the higher 
bulk density will discharge from hoppers with smaller outlets.  So, FFS, 
don’t use FFC! 

Researchers often have the task of optimizing the composition of a powder 
both for performance (in the case of pharmaceuticals, potency, dissolution 
rate, etc.) and flow behavior.  Because typical experimental designs look for 
the response of a set of dependent variables due to changes in independent 
variables, defining flowability by one numerical value is tempting.  Such a 
strategy certainly allows one’s statistical software to do its job.  
Unfortunately, one number cannot readily define flowability. 

An optimal test method is one where the consolidation pressures used while 
conducting a test simulate those expected when a bulk solid is stored and 
quantifiably measures the fundamental flow properties of the material.  
Results can then be applied with confidence since tests conducted with small 
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samples of material will replicate conditions present in real systems.  For 
example, the solids-stress profile inside a bin can be readily determined if 
the material’s bulk density, internal friction, and wall friction are known.  
Therefore, test methods that measure these properties along with the 
strength of the bulk material over the applicable range of stress are 
advantageous.   

The test results should allow investigators to be able to (1) predict the flow 
pattern inside a bin, (2) determine the minimum outlet dimension that can 
prevent an obstruction to flow from developing, and (3) allow calculation of 
the outlet size that will provide the desired discharge rate.  A material that 
has the best flowability is therefore one that will not arch or develop a stable 
rathole in a hopper with the smallest outlet, is able to flow along the walls of 
a bin with the shallowest hopper angle and will discharge from a hopper 
steadily at the highest rate.  Hence, it is beneficial to define a powder’s 
flowability by the size of the outlet required to prevent flow obstructions 
and to achieve the desired discharge rate and the hopper angle required to 
allow flow along the hopper walls.  To determine these critical outlet 
dimensions and hopper angles, the following fundamental solids flow 
properties must be measured: 

1. Cohesive strength.  The relationship between the cohesive strength of a 
bulk material and consolidation pressure is called the material’s flow 
function.  The flow function can be analyzed to determine the minimum 
outlet size of a bin that prevents arching or stable rathole formation.  
Cohesive strength is best measured by shear cell testing. 

2. Internal friction.  Internal friction is a result of solid particles flowing 
against each other.  Internal friction is expressed as an angle of internal 
friction.  Instruments that measure cohesive strength also measure 
angles of internal friction. 

3. Wall friction.  Wall friction results when solid particles flow along a 
surface.  Like internal friction, wall friction is expressed as an angle of 
friction.  Wall friction can also be measured using a shear cell; 
alternatively, instruments that measure shear and normal forces as a 
sample of material slides along a wall material are available.  Wall 
friction test results, together with knowledge of the material’s internal 
friction, can be used to predict the flow pattern inside a bin.  Wall 



22 

friction test data are used to determine hopper angles that ensure mass 
flow. 

4. Bulk density or compressibility. The bulk density of a powder varies 
with the applied consolidation pressure.  Bulk density test results are 
used to calculate stress profiles in and capacities of hoppers, bins, and 
silos and in the calculation of critical outlet dimensions.  The 
relationship between bulk density and consolidation pressure is called 
the compressibility. 

5. Permeability. Pressure gradients within a bed of powder are created 
when voids within the powder expand during flow in the converging 
section of a vessel.  This results in the flow of gas counter to the flow of 
solids at the outlet, which can hinder solids flow and limit solids 
discharge rates.  Permeability test results along with compressibility can 
be used to determine the outlet size required to achieve a desired solids 
discharge rate. 

With fundamental solids flow property data, investigators can determine 
outlet dimensions that will prevent obstructions to flow from developing, 
hopper angles required for mass flow, and outlet sizes necessary to achieve 
desired discharge rates.  A bulk material’s flowability therefore depends on 
the bin that is currently in place or will be used to handle the material.   A 
material perceived to be easy flowing may rathole or arch in an 
inappropriate hopper, whereas one that is considered to flow poorly will 
flow unhindered from a hopper that was properly designed. 

The classic Rand Corporation study 

Specifying solids-handling equipment without regard to the fundamental 
flow properties of the bulk solids can have dire consequences.  A study 
performed in the 1980s by the Rand Corporation [Merrow, E.W., Chem. 
Eng., 95 (18), 89 (1985)] found a significant difference between the start-up 
times of new plants that handled fluids and those that handled bulk solids.  
Figure 1.8 shows the average planned start-up times and actual start-up 
times for nearly 40 new plants that handled fluids and bulk solids.  The 
average start-up time for a new plant handling liquids and gases was about 
three months, and the start-up typically proceeded as planned.  The project 
engineers who managed these projects received large bonuses, as their Gantt 
charts required very few revisions.  Project engineers on average anticipated 
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a six-month start-up for plants handling bulk solids.  (After all, some of the 
materials were neurotic.)  Instead, the plants that handled solids on average 
required nearly two years. 

 

Figure 1.8.  Planned and actual start-up times for new plants. 

Capacity also suffered for the plants that handled bulk solids.  On average, 
the capacity of plants that processed fluids was 90 percent of design, 
compared to about 50 percent for plants handling solids.  And what was the 
solution?  Frequently, capacity was increased by adding a second, equally 
crappy, parallel line! 

Merrow followed up his study in 2000 using a larger database of over 500 
companies [Merrow, E.W., Chem. Innov., 30 (1), 35 (2000)].  The 
performance of new plants improved, but the same trends from the previous 
study were observed.  Start-up times were shorter and performance was 
significantly better for plants that received liquids and gases as raw 
materials.  

With proper training, engineers can design bulk solids handling plants with 
the same level of confidence they have when designing processes for liquids 
and gases.  The key is to measure the fundamental bulk solids flow 
properties: cohesive strength, internal friction, bulk density or 
compressibility, wall friction, and permeability.  Find a laboratory that has a 
shear cell tester and a permeability tester.  If you are adventurous, set up 
your own powder-testing lab.  Then follow Jenike’s testing and design 
recipes, and you will never need a hammer again.  
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2.		ANALYSIS	OF	STRESS	

Let’s start with the obvious: liquids and solids are different.  Liquids are 
isotropic; that is, their properties are uniform in all directions.  For example, 
if a pressure probe were inserted into a cylinder containing a liquid and its 
orientation were then varied, its reading would not change.  The static 
pressure of the fluid is the same in all directions.  This is illustrated in 
Figure 2.1. 

 

Figure 2.1.  Stresses inside a cylinder of liquid. 

On the other hand, bulk solids are anisotropic.  If the liquid were replaced 
with a bulk solid and the probe then inserted into the cylinder, the measured 
stress would depend on its orientation.  In the vertical direction, the probe 
would measure the normal stress applied on the bulk solid, and the stress 
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measured in this direction would be its maximum.  If the probe were rotated, 
the measured normal stress would become lower, following a sinusoidal 
pattern and reaching a minimum when the direction of the probe was close 
to horizontal (see Figure 2.2).  The maximum normal stress is called the 
major principal stress σ1.  The minimum normal stress, which acts 
perpendicular to σ1, is called the minor principal stress σ2.   

 

Figure 2.2.  Stresses inside a cylinder containing a bulk solid. 

If the cylinder were replaced with a rigid solid, and a probe was inserted and 
its orientation somehow changed, the maximum normal stress again would 
be measured when the probe was directed vertically.  In this case, the stress 
would be nearly zero when the probe reached horizontal. 

The ratio of the horizontal stress to the vertical stress in a bulk solid is the 
stress ratio k.  For liquids, the stress constant is equal to one.  For an ideal, 
rigid solid, the stress constant is zero.  Not surprisingly, the stress ratio for 
bulk solids is somewhere in between, typically between 0.4 and 0.6.   

Transforming the stresses in bulk solids can be stressful (pun intended).  
Fortunately, there are graphical techniques that an engineer or scientist can 
use to determine the stress with respect to a convenient reference plane 
when the state of stress is known or has been measured with respect to 
another less useful plane of reference. 
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Continuum model 

Although a bulk solid consists of individual particles, they are generally 
treated as if they were a continuum when the flow of bulk solids is analyzed.  
The forces associated with individual particles are not considered.  Rather, 
the forces on the boundary areas of individual volume elements are 
described.   

Figure 2.3 illustrates a volume element in the form of an infinitesimal cube.  
On each plane, three stress components are specified.  One acts into to the 
plane; the other two act along the plane.  Stress components acting 
perpendicular are termed normal stresses; those acting parallel are shear 
stresses.   

 

Figure 2.3.  Stresses on bulk solid element. 

Consider the stresses acting on a plane that lies perpendicular to the x-axis.  
The normal stress is denoted σx.  The shear stress acting in the y direction is 
denoted τxy; the shear stress that acts in the z direction is denoted τxz.  Figure 
2.3 provides descriptions of stresses acting on the other planes. 

The following sign convention is used.  When both the normal and shear 
components face in a positive direction with respect to the coordinate axes, 
the stress is positive.  When both components face in a negative direction 
with respect to the axes, the stress is positive.  When the normal stress 
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points in the positive direction while the shear stress points to the negative 
and vice versa, the stress is positive.  Note that in this convention, tensile 
stresses, which act to pull on the volume element, are negative, while 
compressive forces, which push against the volume element, are positive. 

Rotational equilibrium of the element is established by taking moments 
about its center.  For example, taking moments of the forces in the z 
direction yields the following: 

                           (2.1) 

and hence 

                          (2.2) 

Likewise, 

                          (2.3) 

and 

                                        (2.4) 

In the case of two-dimensional or plane stress, all stresses act parallel to the 
x and y axes.  For convenience, often only a two-dimensional view of the 
element is sketched, as shown in Figure 2.4. 

 

Figure 2.4.  Plane stress. 
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Often, geometry considerations are the basis of the coordinate directions 
chosen to ensure that principal stresses line up with system boundaries, e.g., 
the walls of the vessel in which the bulk material is handled.  For example, 
to analyze a bin, one of the coordinate axes is lined up with the straight-
walled section of the vessel.  As a result, the normal and shear stress 
components are associated with this direction.  In the converging hopper 
section, radial coordinates are generally used.    

Additionally, recall that bulk solids are anisotropic.  The solids stresses 
depend on direction.  How we define the stress will depend on to what plane 
the force is acting.  Given a state of stress, the magnitude of the normal and 
shear stresses acting on the bulk material will depend on the coordinate 
system used to describe the direction of these stresses.  It will be convenient 
to define the axes such that the normal stresses acting on planes 
perpendicular to the axes are at their maximum or minimum.  These stresses 
are called the principal stresses, and they act in the direction of the principal 
axes.  A somewhat obvious example might be a cylinder with vertical walls 
that contains a bulk solid.  We would expect the maximum normal stress, at 
least on average, to act vertically on a cross section of the cylinder.  This 
stress is called the major principal stress.  The minor principal stress or 
minimum normal stress will be directed 90 degrees from the direction of the 
major principal stress. 

Transformation of stress and Mohr’s circles 

Consider the case of two-dimensional stress on an infinitesimal element of 
powder as shown in Figure 2.5.  Normal and shear stresses acting on planes 
perpendicular to the x and y axes are assumed known.  Our task is to 
determine the stresses acting on the element with a new set of axes formed 
by rotating the original set about the origin.   We can define a new set of 
axes, denoted by xʹ and yʹ.  The angle θ formed between the x and xʹ is 
positive when measured from the x axis toward the y axis in the 
counterclockwise direction (anticlockwise if you’re a Brit).  It should be 
obvious that if we are looking at stresses on walls inclined by an angle equal 
to θ, the analysis will prove to be useful.  
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Figure 2.5.  Stresses on a rotated element. 

The area of each face of the infinitesimal element is equal to dA.  Applying 
the equations of static equilibrium to the wedge-shaped element shown in 
Figure 2.6 in the x’ direction gives 

   (2.5) 

 

 

Figure 2.6.  Stresses on a wedge-shaped element (left); forces on a 
wedge-shaped element (right). 

Let’s examine how we derived this force balance.  Remember, force is equal 
to the product of stress and area.  If the cross sectional area of the left side of 
the differential element is dA, then the cross-sectional area that σx’ acts 
against is equal to dA/tanθ or dAsecθ.  The force is equal to the product of 
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the stress and the area, i.e., σxdAsecθ, the first term of Equation 2.55.  The 
component of the stress σx in the x’ direction is equal to σxcosθ; hence the 
force is equal to σxcosθ dA, which is the second term of Equation 2.5.  You 
get the idea.  Lots of trigonometry is applied as necessary to each of the 
stress and differential area terms. 

So, on your mark!  Get set!  Derive! 

Equation 2.5 can be rewritten as 

                  (2.6) 

Substitution of the trigonometric identities  

                                     (2.7) 

and 

                                            (2.8) 

into Equation 2.6 yields 

               (2.9) 

Figure 2.7 is an example of the application of Equation 2.9.  Note that as the 
element is rotated, the normal stress with respect to the transformed 
coordinate system varies in a sinusoidal pattern.  (Recall the experiment 
where a pressure probe was inserted into a cylinder of powder and rotated.) 

Equation 2.9 does not seem too challenging to solve, but can you imagine 
how painful analysis of stress was before calculators and engineers and 
scientists relied on trig tables and slide rules?  Actually, we’ll see that it 
wasn’t so bad because in the late 1800s, Otto Mohr continued to drink and 
derive. 

A similar balance of the forces acting in the yʹ direction gives 

                                                
5  I once entered a trigonometry competition.  I finished in secant place. 

σ ʹx =σ x cos
2θ +σ y sin

2θ + 2τ xy sinθ cosθ

cos2θ = 1+ cos2θ
2

sin2θ = 1− cos2θ
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σ x +σ y
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+
σ x −σ y
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cos2θ +τ xy sin 2θ
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                      (2.10) 

 

 

Figure 2.7.  Transformation of stress. 

The normal stress in the direction of the yʹ axis can be derived by replacing 
θ with θ + π/2 (i.e., θ + 90°), which yields 

                 (2.11) 

Squaring Equations 2.9 and 2.10 and adding the results gives 

                                 (2.12) 

where 

                                           (2.13) 
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                                   (2.14) 

Equation 2.12, together with Equations 2.13 and 2.14, is a circle with radius 
R and center (σavg, 0) and is appropriately called a Mohr’s circle.  A Mohr’s 
circle can be used to determine stresses in directions that do not line up with 
the original coordinate set.  A Mohr’s circle represents all possible 
combinations of σx, σy, and τxy that act on a rotated coordinate system, i.e., 
one acting on a differently oriented plane.  No slide rules or trigonometric 
tables are needed.  Just pull out your compass and draw a circle!  A Mohr’s 
circle is illustrated in Figure 2.8. 

Additionally, the Mohr’s circle allows the direction of principal axes and 
major and minor principal stresses to be calculated.  A Mohr’s circle that 
gives the principal axes is illustrated in Figure 2.9.   

 

Figure 2.8.  Stress transformation using a Mohr’s circle. 
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Figure 2.9.  Determination of principal stresses by application of 
Mohr’s circle. 

The maximum and minimum values of the normal stresses, i.e., the major 
and minor principal stresses, respectively, can be determined from the two 
intersection points of the Mohr’s circle and the horizontal axis.  The major 
principal stress σ1 and minor principal stress σ2 can therefore be calculated 
from 

	 																																												(2.15)	

		 	 	 																																												(2.16)	

Note that the Mohr’s circle is centered at σavg and the two points (σx, τxy) and 
(σy, -τxy) lie on opposite sides of the circle.  To determine the stresses with 
respect to the rotated or transformed axes, the line connecting the two points	
(σx, τxy) and (σy, -τxy) is rotated 2θ.  The transformed axes have been rotated 
by θ.   

In summary, the major and minor principal stresses are the highest and 
lowest values, respectively, of the normal stresses possible on a material.  If 
the normal and shear stresses are known, the principal stresses can be 
conveniently determined using a Mohr’s circle.  We’ll find Mohr’s circles 

σ1 =σ avg + R

σ 2 =σ avg − R
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useful when analyzing results from shear cell testers, which measure the 
cohesive strength of a powder.  During a shear cell test, a sample is sheared 
while under a normal load.  Mohr’s circles are used to determine what is 
known as the material’s unconfined yield strength at the major principal 
stress applied to a sample during a test.  Mohr’s circles are also used to 
determine solids and wall stresses at a bin outlet, which come into play 
when calculating outlet dimensions required to prevent obstructions to flow 
and recommending hopper angles for mass flow.  While computers have all 
but rendered compasses, trig tables, rulers, and slide rules obsolete, Mohr’s 
circles remain a useful tool for analyzing stresses of bulk solids. 
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3.		STRESSES	IN	HOPPERS,	BINS,	AND	SILOS	

The geometry of the bin, which determines the solids flow pattern, and the 
solids flow properties, in particular wall friction, bulk density, and internal 
friction, influence the pressure profiles that develop within the bulk solids 
handled in a bin.  A typical bin consists of a vertical (cylinder) section 
followed by a converging (hopper) section.  Solids stresses are illustrated in 
Figure 3.1.   

	
Figure 3.1.  Representative stress profiles in a mass flow bin. 

In the cylindrical section, the stresses increase with depth, approaching a 
maximum asymptotically.  The wall stresses are smaller than the vertical 
stresses by a factor equal to k.  In the cylinder, the major principal stress σ1 
is directed downward, parallel to the vertical walls.  As the silo walls are 

a.	Ini'al	Fill																																																							b.	Flow			
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approached, the direction of the major principal stress begins to diverge 
from vertical. 

When a previously empty bin is initially filled with a bulk solid, the major 
principal stresses in the converging section also act downward.  This stress 
state after initial fill is termed the active stress state.  Note that a 
discontinuity exists in the wall stress profile.  Both the wall stresses and 
vertical stresses decrease as the hopper outlet is approached. 

When the bulk solid is discharged from the bin, changes in the stress 
conditions in the hopper section occur.  In order for flow to take place, the 
bulk solid is compressed laterally and expands vertically.  As a result, the 
major principal stresses act horizontally instead of vertically.  This state of 
stress is called the passive state.  A peak stress, called the switch, occurs at 
the hopper-cylinder interface.  

Cylinder (vertical) section 

The stresses in the vertical section of a silo were originally calculated by 
Janssen in 1895 [Janssen, H.A., Zeitschr. d. Vereines deutscher Ingenieure, 
39, 1045 (1895)] when he was investigating wall stresses in corn and grain 
silos.  His analysis is still used today!   

Consider a volume element as shown in Figure 3.2, which has the same 
cross-sectional area A as the vertical section of the silo.  Assuming a 
constant vertical stress and constant bulk density across the cross-section, an 
equilibrium force balance in the z direction gives: 

                        (3.1) 

where A is the cross-sectional area of the element (equal to cross-sectional 
area of the cylinder), C is its perimeter, z is the distance from the top of the 
bed of solids, dz is the height of the infinitesimal element, σv is the vertical 
stress, τw is the wall stress, ρb is the bulk density, and g is equal to the 
acceleration due to gravity6. 

                                                
6  We all know that g = 9.8 m/s2 or 32.2 ft/s2.  There are two types of units: metric 

units and units used by the only country to have ever landed a man on the 
moon.  When the bulk density is given in lb/sq ft, g is built in and you don’t 
have to multiply by 32.2.  

Aσ v + ρbgAdz = A(σ v + dσ v )+τwCdz
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Figure 3.2.  Stresses on element of bulk solid inside cylinder. 

The wall friction coefficient µw can be defined as 

               (3.2) 

where σw is equal to the stress normal to the wall.  Wall friction is typically 
expressed as an angle of wall friction ϕ’, which is the inverse tangent of the 
friction coefficient, i.e.,  

                                  (3.3) 

Expressing friction as an angle may at first appear peculiar, but in the 
analysis of stresses in bulk solids in bins, angles appear everywhere, such as 
hopper angles, angles referenced to normal, etc.  We’ll learn that the math 
becomes a bit cleaner if angles are used in place of inverse tangents of 
friction coefficients.   

Recall that the ratio of the horizontal stress to the vertical stress, i.e., the 
stress ratio k, is given by: 

                                    (3.4) 
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The stress ratio is also known as the Janssen coefficient and is typically in 
the range of 0.4 to 0.67.  Noting that σh is equal to kσv, Equation 3.1 can be 
rewritten as 

                         (3.5) 

where the hydraulic radius RH is given by 

                                                              (3.6) 

Equation 3.5 is an ordinary differential equation, which we all know how to 
solve provided that we have a boundary condition.  At the top of the solids 
bed, the solids stress is zero, i.e., 

                             (3.7) 

Solving Equation 3.5 yields the Janssen equation: 

                        (3.8)                              

The stress in the horizontal direction, i.e., the stress on the walls, is therefore 

                        (3.9) 

The dependence of solids stress on depth is illustrated in Figure 3.3.  Note 
that the maximum stress is proportional to the cylinder’s hydraulic radius 
and is independent of its height if the cylinder is tall.   

                                                
7  The lateral stress constant k can be estimated by the relation k = 1.2(1-sinϕ) 

where ϕ is the kinematic angle of internal friction, which is determined from 
shear cell testing.  Powder flow property testing is discussed in Chapter 4.  
Structural engineers often choose a stress ratio equal to 0.6. 
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Figure 3.3.  Stresses on cylinder walls filled with bulk solid. 

The pressure distribution for a bulk solid in a cylinder is very different from 
the stress (i.e., pressure) profile for a liquid.  If the cylinder were instead 
filled with a liquid instead of a bulk solid, the vertical and horizontal 
stresses would both be equal to the hydrostatic pressure, which is 
proportional to the depth of the liquid: 

                                      (3.10) 

where ρ is the density of the liquid.   

If a load σv0 were placed on the top of the solids bed inside the cylinder, then 
the solution to Equation 3.5 with the new boundary condition is  

σ v (z) =
ρbgRH
k tan ʹφ
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The horizontal stress is then 

σ h (z) =
ρbgRH
tan ʹφ
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Figure 3.4 illustrates the effect of an additional load on the solids stress 
profile in a cylinder.  When analyzing the stresses in silos, the additional 
load is often the surcharge or pile formed when a bulk solid is filled from 
the center as shown in Figure 3.5. Note that (for long cylinders) the 
maximum stress is independent of the load.  This is of course not the case 
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for fluids, where applying a load on the liquid will increase the hydrostatic 
pressure. 

The additional load is calculated from the hydrostatic head: 

σ v0 = ρbgh                                             (3.13) 

where h is the height of the pile (see Figure 3.5).  Figure 3.6 compares the 
stress on the walls of a cylinder filled with a liquid to those of a cylinder 
filled with a bulk solid that has a bulk density equal to the density of the 
liquid.  Since bulk solids are capable of supporting a shear stress, the wall 
stresses are significantly lower. 

 

 

Figure 3.4.  Effect of load on vertical stress on bulk solids in cylinder. 

 

Figure 3.5.  Surcharge of powder on cylinder. 
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Figure 3.6.  Comparison of stresses in a cylinder containing a bulk solid 
or a liquid. 

Note that bulk density and wall friction are dependent on consolidation 
pressure, and therefore average values for ρb and µw must be used in the 
analytical expressions given above.  Alternatively, the differential form of 
the Janssen equation can be used: 

                     (3.14) 

Equation 3.14 can be integrated numerically from the top of the cylinder 
with the boundary condition 

σ v (0) =σ v0                                           (3.15) 

Numerical integration can be readily accomplished by expressing Equation 
3.14 as a difference equation and using Euler’s method of integration: 

                             (3.16) 

where the superscript i is related to the distance from the top of the solids 
bed, i.e.,   

                               (3.17) 

Because pressures generated by liquids are proportional to the level of 
material, efforts are made to minimize the height of a vessel used to store 
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liquids to reduce the wall thickness required for structural stability.  For 
solids, the maximum stress is independent of height but instead proportional 
to the diameter.  To reduce the wall thickness of a silo, the diameter is kept 
as small as possible.  This is why tanks that store liquids tend to be short and 
squatty whereas silos tend to be tall and thin.  Isn’t that interesting? 

Hopper (converging) section – mass flow 

The cross-sectional area varies in the converging hopper section.  Walker 
[Chem. Eng. Sci. 21, 11, 975 (1966)] and Walters [Chem. Eng. Sci., 28, 1, 
13 (1973)] analyzed the stresses in the hopper section by performing an 
equilibrium force balance on an elemental volume with converging sides as 
shown in Figure 3.7.    

 

Figure 3.7.  Forces acting on a differential slice of bulk material in a 
hopper. 

Johanson [Powder Technol., 140, 122 (2004)] provides a rather intimidating 
version of the force balance: 
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where p denotes the perimeter of a differential section and for the hopper 
analysis, θ’ is the hopper angle (from vertical), and z is the distance from the 
vertex.   

At the hopper-cylinder junction, i.e., at z = h, 

 σv(h) = σvht                                       (3.19) 

where σvht is the mean vertical stress on the solid at the transition after filling 
(as determined by the Janssen equation).   

For conical or wedge-shaped hoppers, Schulze [Chem. Eng. Sci., 49, 13, 
2047 (1994)] presents a simpler form: 

                      (3.20) 
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where m is equal to 1 for a conical hopper and equal to 0 for a straight-
walled hopper having a slotted outlet.   

Integration of Equation 3.20 yields the following: 
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Average values of the bulk density and stress ratio are used in Equation 
3.22.  As with the Janssen equation, Equation 3.20 can be integrated 
numerically if the properties vary strongly with solids stress. 

Methods to calculate the stress ratio k are given in the Eurocode standard 
[European Committee for Standardization, EN 1991-4:2006].  The value of 
the stress ratio depends on the flow properties of the bulk material handled 
and the slope of the hopper walls.  Different values of k are used when 
determining initial filling loads and discharge loads. 

According to the Eurocode, the stress ratio for initial fill is 

dσ v
dz

− n
σ v
z
= −gρb



44 

k =1− 0.2

1+ tan ʹθ
tan ʹφ

                    (3.23) 

For discharge, the Eurocode recommends the larger of Equations 3.24 or 
3.26: 

k = 1+ sinδ cosε
1− sinδ cos(2 ʹθ +ε)

                          (3.24) 
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Equation 3.24 was derived by Walker [Chem. Eng. Sci., 21, 975 (1966)].  
Equation 3.26 is based on a more complete theory described by Enstad 
[Chem. Eng. Sci., 30, 1273 (1975)].  Note that the Eurocode uses different 
definitions of the angle ε in its stress ratio equations.  (Don’t shoot the 
messenger!) 

The wall stress σw is calculated from: 

             (3.28)	

and the frictional traction τ is calculated from 

τ =σ w tan ʹφ                  (3.29) 

σ w = kσ v
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The wall friction angle φ ’ is a function of the stress normal to the wall σw, 
while the bulk density is a function of the major principal stress σ1.  The 
major principal stress and the wall stress are related by: 

σ1 =
σ v
cosβ

                                           (3.30) 

where β can be calculated from 

                                    (3.31) 

A derivation of the equations that describes the solids stresses in a mass 
flow hopper is shown in Figure 3.8 [Larson, G., The Far Side Gallery, 
Warner, London, 1992]. 

 

Figure 3.8.  Derivation of the equation for solids stresses in the 
converging section of a mass flow hopper8.   

                                                
8  Actually, a fairly easy-to-follow derivation can be found in Shamiou, P.A., 

Handling of Bulk Solids – Theory and Practice, Butterworths, Boston, 1988. 
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Transition hoppers have both flat side walls and round end walls, and as 
such, the analysis is a bit more tedious.  Going back to Equation 3.18, the 
cross-sectional area A can be calculated from 

A= πb
2

2
+ (l −b)b                                         (3.32) 

with 
b = 2z tan ʹθside                                            (3.33) 

and 
l = 2z tan ʹθend              (3.34) 

where b and l are the hopper width and length, respectively, and side and 
end of course denote the sides and ends, respectively (see Figure 3.9).  Also, 
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⎥                  (3.35) 

That oddball integral term in Equation 3.18 can be replaced by 

k (tan( ʹθ + tan ʹφ )[ ]
p
!∫ dp = 2(l −b)(tan ʹθside + tan ʹφ )kside      (3.36) 

                                                          +2πbkend (tan ʹθend + tan ʹφ )  

These terms can be inserted into Equation 3.18, which can then be 
integrated numerically to calculate the solids stresses inside a transition 
hopper. 

The values of the stress constants kside and kend in Equation 3.36 should be 
those recommended by the Eurocode with m equal to 0 (planar flow) and 1 
(axisymmetric flow), respectively.  For transition hoppers with vertical end 
walls, kend can be set equal to the value of the stress ratio used in the cylinder 
load calculations. 

 

Figure 3.9.  Side and end wall angles. 

q’side q’end



47 

A qualified structural engineer should be assigned the task of performing 
solids-induced load calculations, using appropriate safety factors as needed.  
Otherwise, the bin may one day resemble the one shown in Figure 3.10. 

 

Figure 3.10.  Example of silo failure. 

Funnel flow hoppers 

In a funnel flow silo, flow of material takes place in a flow channel 
surrounded by stagnant zones.  Eventually, the flow channel may expand 
and reach the silo walls.  A stress peak may then form at that point.  The 
location is difficult to predict, however, and therefore the cylinder section of 
a funnel flow hopper should be designed to withstand peak stress.  Methods 
for calculating solids stresses in funnel flow silos are given in the Eurocode. 
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4.		BULK	SOLIDS	FLOW	PROPERTIES	TESTING	

When designing systems for handling fluids, an engineer must find or 
measure the material’s viscosity, density, and if cavitation is a concern, its 
vapor pressure.  For bulk solids, there are five fundamental flow properties 
that an engineer uses to design a bin for reliable flow: cohesive strength, 
internal friction, bulk density, wall friction, and permeability.   

Unlike fluids, bulk solid materials that have the same composition often 
have considerably different fundamental flow properties.  The solids flow 
properties are frequently dependent on the material’s particle size, shape, 
porosity, and particle size distribution.  In addition, temperature, moisture 
content, purity, surface energy, and morphology all can affect the flow 
behavior of a bulk solid.  In some cases, the flow properties may change 
dramatically when a bulk solid is stored at rest. 

Using flow property data from the literature or assuming that the properties 
are the same as those of other bulk materials whose properties are known is 
exceptionally risky.  Tests should be conducted on the materials that will 
actually be used, and measurements should be taken over the range of 
temperatures, moisture contents, relative humidity levels, time at rest, and 
stress levels for which the bulk solid will be stored and handled.  A material 
that is free flowing under ambient conditions may become cohesive or 
frictional at actual handling conditions.  The addition of moisture generally 
causes powders to become more cohesive, although high levels of moisture 
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can reduce cohesiveness due to lubrication.  Smooth wall surfaces often 
allow lower wall friction, but sometimes a rougher surface is better due to 
less contacts between the powder and the wall.  The number-one rule of 
powder properties is that there are exceptions to every rule. 

Cohesive strength, internal friction, and wall friction tests are performed 
using a shear cell tester9.  Permeability testing is performed by measuring 
the pressure drop that results from passing a fluid through a bed of bulk 
material. 

Cohesive strength and internal friction 

The size of the outlet of the vessel that will prevent arching or the formation 
of a stable rathole depends greatly on the bulk material’s cohesive strength.  
Knowing a bulk material’s strength is therefore an important fundamental 
solids flow property. 

Consider a snowball.  If you were to “pre-consolidate” it by packing it 
tightly together with your hands, you’ll have made yourself a snowball with 
a lot of strength.  If you were to throw it, the snowball would likely cause 
damage once it hit a target.  I know, because I have been the target of such a 
snowball.  Now if I were to make a snowball, it might not have as much 
strength because I do not have the ability to pre-consolidate it with a great 
amount of stress.  In fact, the snowball may be so weak that when I throw it, 
the drag forces from the air may be great enough to cause it to fail.  
Obviously there is a relationship between the strength of the snowball and 
the pre-consolidation stress applied to it when forming it. 

                                                
9  When process conditions are severe, a Jenike direct tester should be used, as its 

electronics are isolated from the cell in which the sample resides during testing.  
Modern annular ring shear testers can be used in high-temperature environments, 
but only once.  Then another tester must be purchased!  Shear cell testers are 
rather pricey, so this is probably not advised.  Jenike & Johanson has a modified 
tester that can measure the properties of bulk solids at furnace temperatures.  
Dietmar Schulze can also customize his tester so that it can be used at extreme 
temperatures.  Anton-Paar offers a tester that can be operated at über-high 
temperatures. 
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Figure 4.1 is a schematic of a uniaxial compressive strength tester.  In a 
uniaxial test, a sample is placed in a cell with low-friction walls and is then 
consolidated by applying a normal load equal to σ1.  The load and cell are 
removed, and increasing loads are applied to the compacted, unconfined 
specimen until it breaks apart, i.e., fails.  The failure stress is termed the 
material’s cohesive strength or the unconfined yield strength fC.   

 

Figure 4.1.  Uniaxial compressive strength test. 

Uniaxial compressive strength test results are often highly variable.  The 
stresses are not uniform inside the sample, and the location of the failure 
varies greatly from one test to the next.  In addition, the cell walls should 
ideally be frictionless, but in reality, wall friction does exist. Improvements 
have been made to uniaxial strength testers to reduce their variability; 
however, uniaxial compression tests usually do not provide a bulk material’s 
true unconfined yield strength.  That being said, Ajax Equipment Company 
in the U.K. offers a decent one that is good for comparative tests where the 
intention does not involve designing a bin. 

The cohesive strength of a bulk solid is therefore best measured by shear 
cell testing.  Translational (Jenike), annular (ring), and torsional testers are 
frequently used.  They are described in ASTM standards D-6128 
(translational), D-6773 (annular), and D-6682 or D7891 (torsional).  
Schematics of the testers are given in Figure 4.2. 

The direct translational shear tester was originally developed by Andrew 
Jenike [Storage and Flow of Solids, Bulletin 123, University of Utah, 1964 
(revised, 1976)].  This tester is particularly hearty in that its cell can be 
placed in extreme environments allowing a material’s cohesive strength to 
be measured over a sizeable range of process conditions.  Its disadvantage is 
that significant operator training and experience are usually required to be 
able to obtain reliable results.  Good health insurance with mental health 
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coverage is also recommended.  Figure 4.3 is a photograph of a Jenike 
tester. 

 

    

  

Figure 4.2.  Shear cell testers – Jenike direct (top), annular (center) and 
torsional (bottom). 

  
Figure 4.3.  Jenike direct shear cell tester. 

Modern annular and torsional shear testers are computer controlled and are 
thus straightforward to operate and less prone to operator error.  The 
automated shear testers have been validated by conducting tests on multiple 
bulk solids and obtaining results that were within experimental error equal 
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to those determined using a Jenike tester.  Annular and torsional shear 
testers are shown in Figure 4.4. 

       
Figure 4.4.  Automated testers; left to right: Schulze, Brookfield 
Engineering and Anton-Paar annular ring shear testers, Freeman 
Technology and E&G Associates (Peschl) torsional testers. 

Most manufacturers of shear cell testers confirm that their results from 
testing a BCR limestone (CRM-116) standard powder are similar to those of 
a Jenike direct tester.   

To measure cohesive strength, a sample of bulk material is placed in a cell 
and then “pre-sheared”, that is, consolidated by applying a normal stress and 
then shearing it until the measured shear stress is steady.  A shear plane 
develops, in which a moving layer of bulk material is sheared against a 
stationary layer.  Next, the “shear” step is conducted, in which the normal 
compacting load is replaced with a smaller load, and the sample is again 
sheared until it fails.  These pre-shear and shear steps are repeated at the 
same consolidation level for a number of reduced normal stresses.  The test 
history is illustrated in Figure 4.5.  Some shear cell testers perform the pre-
shear step by rotating the cell and then periodically reducing the shear stress 
to zero by retracting it, and then again shearing the sample until steady state 
is reached. 

The failure shear stress is plotted against the normal stress together with the 
steady-state results.  This plot is called the yield locus and is illustrated in 
Figure 4.6.  The yield locus gives the shear stress that must be applied to a 
previously consolidated sample as a function of normal stress.  The yield 
locus terminates at the steady-state values of normal stress and shear stress.  
For a given normal load, any shear stress below the yield locus will not be 
great enough to cause the bulk solid to fail.  Instead, it will deform 
elastically.  Shear stresses above the yield locus are not possible.  The 
material has already yielded. 
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Figure 4.5.  Pre-shear and shear steps. 

 

Figure 4.6.  Yield locus. 
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Ideally, all measurements of the pre-shear shear stress τss should be 
identical.  However, because of unavoidable variability during testing and 
occasional attrition along the shear plane, there is inevitably scatter in the τss 
values.  Prorating is used to account for the variability of the data.  Prorated 
values of the shear stress measured during each shear step are calculated by 
dividing the measured shear stress by the ratio 𝜏!!/𝜏!! where 𝜏!! is equal to 
the average of the measured pre-shear shear stresses.  Prorating assumes that 
the variations in the shear stress measured during a shear step are 
proportional to the corresponding variation in the measured pre-shear shear 
stress. 

To determine the major principal stress σ1 (also called the major 
consolidation stress or the major consolidation pressure) and the unconfined 
yield shear strength fC from the yield locus, a line is drawn through the shear 
test data.  The major principal stress can be determined using a Mohr’s 
circle analysis.  At steady state, the state of stress is represented by the 
points (σss, τss) on the yield locus.  To construct a Mohr’s circle, we need one 
more point.  We know that the Mohr’s circle cannot lie above the yield 
locus.  Therefore, we draw a Mohr’s semicircle through the steady-state 
result (σss, τss) that is tangent to the yield locus line (see Figure 4.7).  The 
intersection points of the semicircle with the horizontal axis give the values 
of the major principal stress σ1 and the minor principal stress σ2.   

We also know that when a sample is unconfined, its minor principal stress is 
equal to zero.  The unconfined yield strength fC is therefore determined by 
drawing a Mohr’s semicircle tangent to the yield locus and passing through 
the origin.  The point of intersection of this circle and the horizontal axis is 
the major principal stress associated with the condition where the bulk solid 
has failed.  The major stress is called the unconfined yield strength, which 
can be considered the cohesive strength of the bulk solid.  Note that all 
points on the yield locus must lie to the right of the point of tangency to the 
smaller Mohr’s circle.  Data points to the left should be discarded. 
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Figure 4.7.  Determination of the major and minor principal stresses, 
unconfined yield strength, effective angle of friction, and the kinematic 
angle of internal friction from the yield locus. 

Also determined are the effective angle of friction δ	and kinematic angle of 
internal friction φ.  The effective angle of friction is found by constructing a 
line through the origin and tangent to the larger Mohr’s semicircle.  The 
kinematic angle of internal friction is the angle formed between a line that is 
horizontal and one drawn tangent to the smaller Mohr’s circle at its 
intersection with the yield locus (see Figure 4.7).  The effective angle of 
friction δ is useful in the design of mass flow hoppers and is an indication of 
the anisotropy of the powder.  The kinematic angle of internal friction ϕ is 
used to design funnel flow hoppers.   

The yield locus generally is slightly concave downward.  However, if the 
yield locus is approximated as linear with respect to the consolidation 
pressure, the major principal stress and unconsolidated shear strength can be 
calculated explicitly.   

Now if you insist on a nonlinear curve fit, Wolfram has a computer tool for 
fitting the data to a Warren Spring equation [Peleg, M., M. Normand, and 
M. Corradini, “Interactive software for calculating the principal stresses of 
compacted cohesive powders with the Warren-Spring equation”, Powder 
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Technology, 197, 268-27 (2009)].  But why bother? A linear approximation 
gives conservative results; that is, the unconfined yield strength determined 
from a linear approximation of the yield locus will be higher than its true 
strength.  (What is the difference between a scientist and an engineer?  A 
scientist will say, “f = ma”, whereas an engineer will say, “f = ma + 25%, 
just to be safe.”) 

The (prorated) shear data that make up the yield locus (i.e., all data points 
sans the steady-state or pre-shear data) are regressed to give the following 
linear relation: 

                               (4.1) 

where τ is the shearing stress and σ is the normal load.  Equation 4.1 is the 
Coulomb equation.  The slope of the line is equal to the tangent of the 
kinematic angle of internal friction ϕ, and the intercept is equal to c, which 
is called the material’s cohesion.  The cohesion c should not be confused 
with the cohesive strength or unconfined yield strength fC.  In fact, the state 
of stress in which the normal stress equals zero and the shear stress is equal 
to the cohesion c does not exist when a bulk solid is flowing inside a hopper.  
While some investigators tabulate c as a metric for powder flowability, it 
really has very little utility. 

The unconfined yield strength and major principal stress are calculated 
from: 

                      (4.2) 

and 

         (4.3) 

respectively, where  

                           (4.4) 
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The major principal stress represents the maximum amount of stress applied 
to the sample during the shear test.  The minor principal stress σ2 can be 
calculated from   

                           (4.5) 

Finally, the effective angle of friction δ is calculated from:  

                        (4.6) 

The larger Mohr’s circle can be constructed by drawing a circle centered at 
(σ1+σ2)/2 on the horizontal axis having a radius R.  The radius R is given by	

                                               (4.7) 

Plotting values of fC against the major principal stress σ1 gives the flow 
function FF of the bulk solid.  The flow function describes the relationship 
between a bulk material’s cohesive strength and its consolidation stress.  
Construction of the flow function from a number of yield locus 
measurements is illustrated in Figure 4.8.  The effective yield locus EYL is 
an envelope of the larger Mohr’s semicircles, as illustrated in Figure 4.9.  

Some bulk materials gain cohesive strength if stored at rest.  Unless a bin is 
expected to be operated continuously, the time unconfined yield strength of 
the bulk material should be measured.  To conduct a time test, a sample of 
bulk material is placed inside a cell and pre-sheared using a normal stress σss 
used during instantaneous testing.  After pre-shear, the sample is then kept 
consolidated at that state of stress, typically by applying a vertically-acting 
load equal to the major principal stress σ1 associated with the corresponding 
instantaneous test.  After the appropriate amount of time has passed (e.g., 2-
3 days if the bulk material is to be stored at rest over a weekend), the 
vertical compacting load is replaced with a lighter load, and the shear step is 
conducted, in which the shearing force again is applied until the sample 
fails.  
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Figure 4.8.  Construction of flow function from yield loci. 

 

 

Figure 4.9.  Construction of the effective yield locus. 

The pre-shear, time under consolidation, and shear steps are repeated at the 
same normal stress σss for a number of normal stresses, and the time yield 
locus (TYL) is then determined by plotting the failure shear stress against 
normal stress.  An example of a time yield locus is given in Figure 4.10. 
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Figure 4.10.  Construction of the time yield locus. 

To calculate the time unconfined yield strength, a Mohr’s circle is drawn 
through the origin and tangent to the time yield locus. The point of 
intersection with the horizontal axis is the material’s time unconfined yield 
strength fCt.  This value, along with the value of the major consolidation 
stress for instantaneous flow σ1, becomes one point on the time flow 
function (FFt).   

The time angle of internal friction ϕt is the angle formed between a 
horizontal line and a line drawn tangent to the smaller Mohr’s circle at its 
intersection with the time yield locus (see Figure 4.10). 

As with the yield locus, the time yield locus is often approximated as a line, 
and Equation 4.2 can be used to calculate fCt.  Frequently time tests are 
conducted by performing one test only, that is, conducting a pre-shear step, 
consolidating it under a normal stress equal to the major consolidation stress 
determined from the instantaneous test, and then performing only one shear 
step at a reduced normal load.  A line whose slope is the same as that of the 
instantaneous yield locus is drawn through the point, and the time 
unconfined yield strength is calculated using Equation 4.2. 

The time flow function is determined by plotting the time unconfined yield 
strength fCt against major principal stress σ1 after measuring time yield loci 
using other normal stress levels and corresponding major principal stresses.  
If a bulk material gains strength when stored at rest in a bin over time, its 
time flow function will lie above its instantaneous flow function, as 
illustrated in Figure 4.11. 
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Figure 4.11.  Instantaneous and time flow functions. 

Solving the equations that allow the major principal stress, effective angle of 
friction, and the unconfined yield strength to be determined from the yield 
locus or time yield locus can be painful, but the formulas can be readily 
input into spreadsheets.  Most modern automated shear cell testers perform 
this analysis.  The user should confirm that prorating is used and in general, 
a linear approximation to the yield locus is acceptable. 

Note that in a torsional shear cell, shear deformation of the specimen varies 
with radius in the cell: at the perimeter it is at its maximum, while at the 
center it is zero.  This can result in data that differ from results obtained 
using a Jenike (translational) or annular shear cell.  Rotational and annular 
shear cells permit infinite travel, so they are better suited than a Jenike shear 
cell for testing bulk solids that require large shear strain to reach steady 
state.  The Jenike shear cell tester can be relatively easily modified to 
operate at extremely high or low temperatures, whereas this is more difficult 
with the other two types of testers.  In addition to the Jenike direct tester, 
Jenike & Johanson uses Schulze ring shear testers to measure the cohesive 
strength of powders, which is an über endorsement of Schulze’s tester. 

The normal stress values that should be used when conducting a shear cell 
test depend on the bulk density of the powder tested and the size of the 
storage vessel that is under consideration.  Typically three yield locus tests 
are conducted, which allows three points on a flow function to be 
determined.  The tests should provide values of the material’s cohesive 
strength that are expected in the cylinder and the hopper section of the 
vessel.  
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The maximum solids stress in the cylinder σ1max can be calculated using the 
Janssen equation (Equation 3.8).  A very approximate value can be 
estimated from 

                (4.8) 

where h is the cylinder height.  Because the major principal stress σ1 
calculated from the yield locus is roughly double the normal stress used 
during the pre-shear step of the yield locus test, the value of the pre-shear 
normal load σpre used to create the highest-stress data point on the flow 
function is 

                (4.9) 

Subsequent tests can be performed using the lowest normal stress allowed 
by the tester and one near the middle.  Most shear cell testers have a lower 
limit to the normal stress that can be used during a yield locus test.  Because 
the solids stress at the outlet of a mass flow hopper is low, it’s best to have a 
test conducted in the neighborhood of this lower limit.  If you are fortunate 
and have a Schulze RST-XS.s, RST-01.pc, or RST MK II, you will be able 
to measure shear stresses at very low normal stresses. 

Wall friction and compressibility tests should be conducted over a similar 
range of normal stresses. 

Example yield locus calculation 

A shear cell test was performed on a sample of powder.  The target pre-
shear normal stress was 1.6 kPa, and shear-step normal stress set points 
were 20, 30, 40, 50, and 60 percent of the pre-shear normal stress setting.  
Test data are summarized in Table 4-1. 

The average steady-state shear stress measured during the pre-shear steps is 
1.286 kPa.  This value is used to adjust the shear-step failure shear stress 
values by prorating.  The prorated data are given in Table 4-2 and plotted in 
Figure 4.12.  

 

 

 

σ1max =
1
2 ρbgh

σ pre =
1
4 ρbgh
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Table 4-1 
Shear Cell Test Data – Measured 

Pre-Shear Step Shear Step 

Normal Stress  
(kPa) 

SS Shear Stress  
(kPa) 

Normal Stress  
(kPa) 

 Failure Shear 
Stress  
(kPa) 

1.602 1.363 0.961 1.112 
1.601 1.261 0.801 0.899 
1.598 1.262 0.642 0.755 
1.599 1.261 0.481 0.599 
1.605 1.281 0.320 0.477 

 

Table 4-2 
Pro-rated Shear Cell Data – Prorated 

Pre-Shear Step Shear Step 
Normal Stress 

 (kPa) 
SS Shear Stress  

(kPa) 
Normal Stress 

 (kPa) 
Failure Shear 
Stress (kPa) 

1.601 1.286 0.961 1.049 
1.601 1.286 0.801 0.917 
1.601 1.286 0.642 0.769 
1.601 1.286 0.481 0.611 
1.601 1.286 0.320 0.479 

 

Regression of the shear-step data gives an intercept equal to 0.186 kPa and a 
slope equal to 0.903.  The slope is equal to tan ϕ; hence ϕ = 42°.  Solving 
Equation 4.2 gives fC = 0.84 kPa.  Solving Equation 4.3 gives σ1 = 3.01 kPa.  
From Equation 4.6, δ = 49°. 
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Figure 4.12.  Prorated shear cell data and yield locus. 

Bulk density/compressibility 

A method to measure the bulk density of a material as a function of 
compressive stress (i.e., pressure) is given in ASTM D6683.  A sample is 
placed in a cylinder of known volume and its mass is recorded.  A lid with a 
known weight is placed on the specimen and the displacement is logged, 
allowing an updated volume to be calculated.  The compressive stress is 
equal to the weight placed on the sample divided by the cross-sectional area 
of the cylinder.  The bulk density is equal to the mass of sample divided by 
the volume.  Increasing loads are placed on the lid, and the displacement is 
recorded for each load.  From the data, the bulk density as a function of 
consolidation pressure, i.e., its compressibility, is determined.  A typical 
compressibility curve is shown in Figure 4.13.    

The relationship between bulk density and consolidation pressure is 
nonlinear.  The bulk density increases with increasing consolidation pres-
sure, varying rapidly at low stress and less so at high stress.  Data can be fit 
to a number of equations that describe the relationship between bulk density 
and consolidation pressure.   Frequently, a power-law relationship is used:  
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Figure 4.13.  Typical bulk density – consolidation stress relationship. 

                 (4.10) 

where σ is the consolidation pressure, σo is an arbitrarily chosen reference 
consolidation level, ρbo is the bulk density at that consolidation, and β is 
called the compressibility.  A limitation of the model is that it does not 
provide a value of the bulk density at zero stress.  Alternative bulk density-
consolidation stress relations are [Gu et al., Powder Techn., 72, 39 (1992)]: 

                    (4.11) 

                 (4.12) 

                   (4.13) 

                         (4.14) 
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                   (4.15)  

where α and β are empirical constants and ρbmin and ρbmax are the material’s 
minimum (loose-fill) and maximum bulk density, respectively.  

Wall friction 

The flow pattern inside a bin depends on the friction between the bulk solid 
and the wall material.  Therefore, measuring wall friction is a critical step 
when designing mass flow bins. 

Suppose we were to place a bulk material in a dump truck and then raise the 
front of the bed.  When the slope is great enough, the contents will begin to 
slide on the floor of the bed.  We then lower it until the material stops 
sliding.  We note the angle of incline referenced from horizontal to equal α, 
as shown in Figure 4.14. 

 

Figure 4.14.  Element of bulk solid sliding on a straight surface. 

A force balance gives 

	 																									(4.16)	

where g is the acceleration due to gravity and µw is the friction coefficient.  
Solving for µw gives 

 	 																													(4.17) 

ρb = ρbminρbmax
1+ασ

ρbmax + ρbminασ
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It turns out that the friction coefficient is equal to the tangent of the angle of 
the incline where the bulk material stopped sliding. 

One would expect that for some materials, such as coarse sand, the angle of 
incline would be fairly shallow.  However, if carbon black were loaded onto 
a dump truck (not recommended!), the bed would have to be very steep 
before sliding begins. 

A better way to measure the friction between a bulk solid and a wall 
material is described in ASTM D-6128.  The test is best conducted using a 
direct translation shear tester.  A sample of bulk solid is placed inside a 
retaining ring on a flat coupon of wall material (see Figure 4.15), and a 
normal load is then applied to the bulk solid.  The bulk solid in the ring is 
forced to slide along the stationary wall material, and the resulting steady 
shear stress is measured as a function of the applied normal load.  The 
normal load is then reduced, and the test is continued until a new steady 
shear stress is measured.  The test is repeated for various normal loads.   

 

Figure 4.15.  Wall friction test equipment. 

The wall coupon should be located beneath the bulk solid sample.  After all, 
this is what occurs in most commercial equipment.  If a material is allowed 
to slide against a coupon of wall material located above the sample, low 
values of the wall friction will be measured if fine particles percolate 
through the sample and away from the coupon. 

After a number of steady shear stress values have been recorded for a range 
of normal loads, the instantaneous wall yield locus (WYL) is constructed by 
plotting shear stress against normal stress.  The angle of wall friction φ’ is 
the angle that is formed when a line is drawn from the origin to a point on 
the wall yield locus.  A typical wall yield locus is shown in Figure 4.16. 
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Figure 4.16.  Wall yield locus. 

Guess what?  The angle of wall friction is the inverse tangent of the ratio of 
the shear stress to the normal stress, i.e., the inverse tangent of the friction 
coefficient.  That is, the angle of wall friction ϕ’ is the same as α, the angle 
at which material stopped sliding in the dump truck.  The higher the friction 
coefficient, the higher the value of the angle of wall friction or the angle 
required to stop material from sliding on an inclined wall.  It is convenient 
to use an angle of wall friction φ’ rather than a friction coefficient µw.  Again, 
angles appear everywhere in the analysis of solids stresses inside hoppers.  
The math is less hostile if angles of wall friction are used rather than inverse 
tangents of friction coefficients. 

The wall yield locus is frequently concave downward.  In addition, the wall 
yield locus does not always intersect the origin, as many bulk materials 
adhere to a wall surface in the absence of a normal stress.  As a conse-
quence, φ’ is often higher at lower applied stresses.  This is important in the 
design of hoppers, since for mass flow the stresses at the hopper outlet are 
low and the angle of wall friction is therefore usually higher near the outlet.  
The wall friction angle is constant only when the wall yield locus is a 
straight line that passes through the origin.   

Because wall friction is a critical parameter in the design of mass flow 
hoppers, tests are often performed in triplicate, and the highest values of the 
wall friction angle are used in the calculation of critical mass flow hopper 
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angles.  Stresses on bin walls are maximized when low wall friction angle 
values are used in load calculations. 

To measure the static friction between a wall surface and a bulk solid after 
storage at rest, wall friction time tests are performed.  A sample is sheared 
under a normal load until a steady shear load is observed.  The normal load 
is then reduced by 10-20 percent, and shearing is continued until steady state 
is again reached.  The shear is then reduced to zero and the sample is stored 
in the cell for the suitable period of time.  Afterwards, the sample is again 
sheared, and the maximum shear stress is reported.  

The pair of normal stress and maximum shear stress values provide one 
point on the time wall yield locus (TWYL).  Repeating the test over a range 
of normal loads completes the time wall yield locus.  The time angle of wall 
friction is the angle obtained by drawing a line from the time wall yield 
locus to the origin (see Figure 4.17). 

 

Figure 4.17.  Time wall yield locus. 

Note that the measured friction between a powder and a “smooth” surface 
will not always be lower than that for a “rougher” surface.  There are two 
components that lead to the measured friction between the bulk material and 
wall material: friction and adhesion.  While friction is independent of 
contact area, adhesion is not.  Smoother surfaces should lead to reduced 
friction but also increased wall adhesion due to greater contact area and 
reduced intermolecular separation between the wall and solid particles.  
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Therefore, the measured wall friction may be considered an “effective wall 
friction.” 

Wall friction can also be measured in annular and torsional ring shear 
testers.  A limitation is when friction is dependent on the grain direction of 
the wall material.  The sample of bulk material slides circumferentially 
along the wall coupon in annular and torsional testers.  For this reason, 
direct shear testers are preferable.  Figure 4.18 gives an example in which 
wall friction angle is strongly dependent on the direction of powder flow 
with respect to the grain of the wall material (Schulze, D., “How to Deal 
with Orientation-Dependent Wall Friction”, presented at the 2012 CHoPS 
meeting, Friedrichshafen, Germany). 

 

Figure 4.18.  Influence of grain direction on wall friction angle. 

Wall friction depends on the roughness of the surface, which is generally 
indicated by its Ra value.  2B finish is typically 0.3 - 1 µm depending on the 
gauge of the metal.  A #1 finish, sometimes called hot rolled, annealed, and 
pickled (HRAP), typically ranges from 3.2 to 12.5 µm.  The Ra of a metal 
with a #4 or ‘brushed’ finish is around 0.8 µm, while a #8 finish is mirror-
like and is around 0.025 µm.  Table 4-3 compares grit size and Ra values.   

Note that the surface designations encompass rather large ranges of surface 
roughness values.  Wall materials from different suppliers can have 
considerably different roughness characteristics.  It is always prudent to 
conduct wall friction tests on the actual material in use or that will be used 
to fabricate a bin. 
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Table 4-3 
Comparison of Grit Size and Approximate Ra Values 

Grit Size  Ra (µm) 
80 1.80 

120 1.32 
150 1.06 
180 0.76 
240 0.38 
320 0.30 
500 0.18 
600 0.13 

 

FFC 

Frequently, FFC, the ratio of the major principal pressure σ1 to the 
unconfined yield strength fc is used as a metric for flowability, i.e., FFC = 
σ1/fC.  Because the unconfined yield strength appears in the denominator, 
small values of FFC are believed to indicate poor flowability.     

In his Bulletin 123, Jenike generalized the flowability of powders as shown 
in Table 4-4: 

Table 4-4 
Jenike Bulletin 123 Ratios 

10 < FF free-flowing 
4 < FF < 10 easy-flowing 
2 < FF < 4 cohesive 

FF < 2 very cohesive and non-flowing 

The ratio is often erroneously referred to as the flow function or the flow 
factor.  In Bulletin 123, Jenike first defined the term FF as the ratio of the 
major principal stress to the cohesive strength.  He also defined FF as the 
flow function, the relationship between the material’s strength (fC) and the 
major principal stress σ1.  FF can therefore be either the ratio of the major 
principal stress to the cohesive strength or the flow function.  Jenike defined 
the flow factor ff as the ratio of the major principal stress to the stress on the 
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abutments of an arch of powder at the hopper outlet .  We will learn how 
the flow factor is used to calculate the size of a hopper outlet required to 
prevent arching.  FFC should never be referred to as the flow function or 
flow factor.  FFC is equal to σ1/fC, the ratio of the major principal stress to 
the cohesive strength.  It is best to refer to FFC as the flow function 
coefficient or the flowability coefficient.  Actually, it’s probably better not 
to use FFC at all. 

FFC can be a poor metric for flowability as it ignores the effects of bulk 
density and wall friction on flow behavior.  Instead, cohesive strength tests 
should be conducted over a range of consolidation pressures.  The test 
results, together with those from wall friction and compressibility tests, can 
then be used to determine the size of a hopper outlet that must be exceeded 
to prevent flow obstructions and the recommended hopper angle to ensure 
mass flow.  The results can also be used to determine if an existing bin is 
appropriate for the powder tested. 

FFC can be confusing because it more times than not depends on the major 
principal stress.  This is illustrated in Figure 4.19 where a flow function is 
plotted along with flowability defined by FFC.  At high solids stresses, FFC 
may suggest that a material is easy-flowing, but at low stresses, the powder 
may be deemed very cohesive.  In fact, we will learn that if the size of the 
outlet is the minimum dimension required to prevent arching, FFC at the 
outlet solids stress will be equal to the flow factor ff, which typically ranges 
between 1.1 and 1.5. 

Permeability 

Because of vacuum that naturally develops above a hopper outlet when the 
voids in fine powders expand as the material discharges, the resulting 
counter flow of gas may hinder the solids flow and a limiting discharge rate 
will exist.  The ease at which a gas flows through a bed of solids therefore 
greatly influences the maximum attainable discharge rate of a bulk material 
from a hopper, bin, or silo. 

σ
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Figure 4.19.  Flowability changing with major principal stress. 

If the particle diameter, its particle sphericity, and the void fraction of the 
bed of bulk solids are known, the Kozeny-Carman equation can be used to 
calculate the pressure drop of a gas flowing through the bed.  The equation 
is only valid for laminar flow and is given by 

                                   (4.18)  

where ΔP is the pressure drop (formally, this term should be negative, but 
for now, we’ll let this slide for convenience), L is the height of the bed, ug is 
the gas slip velocity (i.e., the superficial gas velocity relative to the solids 
velocity), η is the viscosity of the fluid, ε is the porosity of the bed, ΦS is the 
sphericity of the particles in the bed, and DP is the diameter of the related 
spherical particle.  The sphericity of a particle is the ratio of the surface area 
of a sphere (with the same volume as the given particle) to the surface area 
of the particle and is given by 

     ΦS =
π 1/3(6Vp )

2/3

Ap
                                      (4.19)  

where Ap and Vp are the particle surface area and volume, respectively.  
Equation 4.19 can be rearranged to solve for the slip velocity: 

                                     (4.20) 
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Inspection of Equation 4.20 shows that under laminar flow, the gas slip 
velocity is proportional to the pressure drop across a moving bed of solids.  
This is the basis of Darcy’s law (or D’Arcy’s Law if you are a Francophile), 
which mathematically can be expressed as  

 
                               (4.21) 

where K is the powder’s permeability.  Comparison of Equations 4.20 and 
4.21 shows that 

 
                     (4.22)  

Note that the units of K are length/time, which are those of velocity.  If the 
gas slip velocity is equal to the powder’s permeability, then 

                             
(4.23) 

and the pressure gradient is equal to the body forces.  In other words, there’s 
just enough pressure force to overcome gravity, and the powder is fluidized.  
The permeability is therefore related to the powder’s minimum fluidization 
velocity. 

Frequently, Darcy’s Law is expressed as 

ug =
k
η
dP
dz

                            (4.24) 

where k is the Darcy permeability.  Equation 4.24 is just an empirical form 
of the Kozeny-Carman equation.  K and k are related by: 

                            (4.25) 

Unless dealing with powders comprised of mono-disperse spherical 
particles, the Kozeny-Carman equation unfortunately is of little practical 
use.  The sphericity of the particles is difficult to measure, and if the powder 
is made up of particles with a distribution of sizes, which diameter to use in 
the calculations is unclear. 

ug =
K
ρbg

ΔP
L

K =
ΦS
2Dp

2ρbgε
3

180η(1−ε)2

ΔP
L
= ρbg

K =
ρbg
η
k



74 

The permeability of a bulk solid is best measured directly.  Permeability is 
determined by passing a gas through a bed of powder contained in a cylinder 
as shown in Figure 4.20.  During a test, the sample mass and volume are 
recorded, which allows its bulk density to be calculated.  The pressure drop 
between two locations of the bed and the gas flow rate are measured, from 
which the permeability can be calculated from Darcy’s Law: 

                              
 (4.26) 

where qg is the volumetric gas flow rate, A is the cross-sectional area of the 
bed, and h is the distance between pressure measurements (see Figure 4.20). 

Typically, the test is conducted by measuring the flow rate of air that results 
in a target pressure drop.  The permeability is then calculated from the 
formula 

                              
(4.27) 

To determine the relationship between permeability and bulk density, the 
test is conducted over a range of bulk densities by adjusting the bed height 
downward and determining the flow rate of air that results in the same 
pressure drop. 

Alternatively, for a given bed height (i.e., bulk density), the flow rate can be 
varied, recording the pressure drop for each flow rate as shown in Figure 
4.21.  The data for which the pressure drop varies linearly with flow rate 
(i.e., where Darcy’s Law holds) are regressed, and the permeability can be 
determined from the slope of the line passing through the origin. 

Permeability is a strong function of the powder density.  As a powder is 
compacted, its void fraction decreases, which results in a greater pressure 
drop for a given flow rate.  Permeability and bulk density tend to have a 
power-law relationship, as shown in Figure 4.22.  Permeability results are 
therefore frequently regressed to fit the expression 

                     
(4.28) 
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Figure 4.20.  Permeability tester. 

 

	
Figure 4.21.  Determination of K from permeability test results. 
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Figure 4.22.  Bulk density – permeability relationship.	

where ρb0 is an arbitrary reference bulk density, K0 is the powder’s 
permeability at that bulk density, and α is an empirical constant determined 
by regression.  For convenience, the reference bulk density can be the loose-
fill bulk density, i.e., ρbmin. 

The permeability factor K is inversely proportional to the viscosity of the 
gas (see Equation 4.25). Results from permeability tests performed at 
ambient temperature can be adjusted to elevated temperatures and to other 
gases by multiplying the constant K0 by the ratio of the viscosity of air at 
room temperature to that of the gas at the temperature in question. 

For many purposes, only the value at the material’s minimum bulk density is 
critical.  Values of K at higher stresses are important in the design of process 
vessels if a gas is injected into a moving bed of solids. 

Hopper tests 

Some bulk materials, e.g., solids that are fibrous, composed of rod-like 
particles with a high aspect ratio or that readily interlock, are not amenable 
for shear cell testing.  For these materials, relatively large-scale hopper tests 
should be performed. 

To conduct a hopper test, a planar hopper made up of removable wedge 
sections similar to that illustrated in Figure 4.23 is fabricated.  A hopper 
angle of 15° from vertical is preferred.  The hopper is filled with the bulk 
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solids, and then sections are removed from the bottom until the material 
discharges.  The width of the outlet that allowed the bulk solid to flow can 
be considered the critical arching span of a planar mass flow hopper with a 
slotted outlet.  The critical arching diameter of a conical mass flow hopper 
can be assumed to be equal to twice that value. 

 
Figure 4.23.  Hopper test apparatus. 

Additional tests are then performed in which a normal stress is applied to 
consolidate the bulk material.  The lowermost wedge section is then filled 
with material, and a weight is applied briefly and then removed.  The next 
wedge section is then filled with powder, and again a weight is applied and 
then removed.  The weight added is such that the applied stress is the same 
as that which was used previously by accounting for the increase in the 
cross-sectional area.  The process of filling a wedge section with bulk 
material and applying and removing a weight that gives a constant stress is 
continued until the top wedge section has been filled.  The cylinder section 
is then filled, but no weight is applied.  Wedge sections are then removed 
until material discharges.  Typically, two series of tests in which the bulk 
material is consolidated are performed to be able to generate a flow 
function.	

The major principal stress associated with the outlet at which material 
discharged is calculated from  

30° Clamps

4"
Stand

Removable wedge
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                              (4.29) 

where B is the width of the wedge section outlet for which failure occurred.  
A value of ff of 1.3 and H(θ') equal to 1.1 are typically used.  (The flow 
factor ff and the geometry function H(θ') will be defined in Chapter 5.)  The 
unconfined yield strength is then calculated from 

                     (4.30) 

A plot of the unconfined yield strength against the major principal stress 
gives the flow function. 

For biomass and other strange materials, the Wolfson Centre recommends 
conducting a simple test to determine whether or not the material can be 
handled in a conventional hopper with inclined walls.  Material is placed 
inside a ca. 8-in. diameter tube, taking care not to consolidate it during 
filling.  The tube is then slowly lifted vertically.  If the material expands and 
forms a pile while it leaves the cylinder, it can be handled in a hopper with 
converging walls provided that its outlet is large enough to prevent 
obstructions to flow.  If it discharges and remains as a plug, then bins with 
straight vertical walls or diverging walls are recommended.  Figure 4.24 
illustrates the Wolfson Centre’s test method. 

 

Figure 4.24.  Wolfson Centre test; surcharge formation (left) and plug 
formation (right). 

σ1 = ff
ρbgB
H ( ʹθ )

fC =
ρbgB
H ( ʹθ )
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Particle size 

While particle size and shape measurements by themselves cannot be used 
to predict the flow behavior of bulk solids, measurement is still useful, as 
size and shape greatly influence flowability.  In general, fine powders have 
greater cohesive strength (due to a greater number of inter-particle contacts 
and greater specific surface area), higher wall friction (due to greater contact 
between the wall surface and surface of the powder particles), and lower 
permeability (due to reduced void volume).  Particles with high aspect ratios 
tend to be less flowable.  Numerous methods and instruments are available 
to measure particle size, including sieving, laser diffraction, and image 
analysis.  Frequently, particle size is expressed in terms of mesh size.  
Standard mesh sizes are given in Table 4-5. 

Various mean diameters are used to characterize powders with a particle 
size distribution. (Note that for volume and weight averages to be equal, 
particle density must be independent of particle diameter.)  Mean diameters 
can be calculated from the following formulae: 

Arithmetic (linear) mean diameter dAM:  

                        
(4.31) 

 

Geometric mean diameter dGM: 

                
(4.32) 

Surface mean diameter dSM: 

               
(4.33) 

Weight (volume) mean diameter dVM: 

dAM =

di f (di )Δdi
i
∑

f (di )Δdi
i
∑

logdGM = df (di )logdi
i
∑

dSM =

d
i
2 f (di )Δdi

i
∑

f (di )Δdi
i
∑
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(4.34) 

Surface-volume (Sauter) mean diameter dSM: 

                
(4.35) 

The Sauter mean is appropriate for analyses that involve heat and mass 
transfer.  In Equations 4.31 through 4.35, f(di) is the fraction of all powder 
particles whose particles are within the range Δdi. 

Different methods, including sieving, laser diffraction, and photographic, 
can be used to measure particle size.  Results obtained using one method 
generally should not be compared to results obtained by another.  You’ll be 
comparing apples to oranges, and you may just end up with fruit salad. 

Particle shape is less straightforward to define.  One approach is to define 
the sphericity of a particle ΦS as the ratio of the surface area of a sphere 
having the same volume as the particle to the surface area of the particle, 
(see Equation 4.19).  For most powders, ΦS ranges between 0.65 and 0.98.   
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Table 4-5  
Standard Sieve Sizes 
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5.			BIN	DESIGN	

There are a number of factors that determine what type of bin is required.  
These factors include the cohesiveness of the bulk solid, headroom or 
footprint constraints, segregation concerns, the likelihood of degradation 
over time (e.g., caking, spoilage), and discharge rate requirements. 

In general, for a given volume, mass flow hoppers, bins, and silos are taller 
than those designed for funnel flow.  If there are headroom restrictions, 
designing a mass flow bin with the desired capacity may be challenging.  If 
this is the case, an engineer should confirm that the constraints are necessary 
or consider whether a funnel flow bin will suffice.  In some cases, an 
expanded flow hopper (a mass flow hopper beneath a funnel flow hopper) is 
a good compromise.   

Mass flow hopper angle 

The first step in designing a mass flow hopper is to ensure that the hopper 
walls are steep enough and have friction low enough to allow the bulk 
material to slide along them.  The critical mass flow hopper angle depends 
on the geometry of the bin (conical or planar), the powder’s effective angle 
of friction, and the angle of wall friction. 

By assuming a radial stress field, Jenike [Gravity flow of Bulk Solids, 
Bulletin 108, University of Utah, 1961] was able to derive equations that 
described stresses in the region of the hopper outlet as a function of the 
effective angle of friction δ, hopper angle (from vertical) θ', and wall 
friction angle ϕ'.  His equations posed a split boundary condition problem, 
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and he had to integrate the equations numerically by hand.  This was back in 
the 1960’s!  He didn’t have Excel!  He didn’t even have a PC!   

Jenike was not always able to find solutions to the radial stress equations.  
He reasoned that when combinations of δ, θ', and ϕ' did not satisfy the 
boundary condition that described flow along the hopper walls, mass flow 
was not possible, and a funnel flow pattern would result.  Jenike was a 
freakin’ genius!  He validated his theoretical mass flow funnel flow 
boundaries experimentally and presented his results in chart form. 

The design charts provide allowable hopper angles for mass flow given 
values of wall friction angle and effective angle of friction.  These charts are 
summarized in Figures 5.1 and 5.2 for conical (or pyramidal hoppers with 
square outlets) and planar hoppers (e.g., wedge-shaped hoppers and 
transition hoppers), respectively.  The outlet of a wedge-shaped or transition 
hopper must be at least two times as long as it is wide for Figure 5.2 to 
apply if it has vertical end walls and three times as long if its end walls are 
converging. 

Values of the allowable hopper angle for mass flow θ' (measured from 
vertical) are on the abscissa, and values of the wall friction angle ϕ' are on 
the ordinate.  Any combination of ϕ' and θ’  that falls within the mass flow 
region of the chart (i.e., to the left of the boundaries) will provide mass flow.  

Hoppers with round or square outlets should not be designed at the 
theoretical mass flow hopper angle value.  Otherwise, a small change in the 
bulk material’s flow properties may cause the flow pattern inside the hopper 
to change from mass flow to funnel flow, with its associated risk of flow 
problems.  A 2 to 3° margin of safety with respect to the mass flow hopper 
angle given in Figure 5.1 is therefore recommended.  (Hey, just because it 
didn’t work in the field doesn’t mean that it won’t work in theory!) 

Sloping walls required for mass flow in wedge-shaped hoppers can be 10 to 
12° less steep than those required to ensure mass flow in conical or 
pyramidal hoppers.  In fact, hoppers with angles less steep than those given 
in Figure 5.2 may still allow flow along the walls.  Planar-flow hoppers are 
therefore highly suitable for materials that have high wall friction.  (Planar-
flow hoppers are like the Clintons.  Rules don’t apply to them.) 
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An analytical description of the theoretical boundary between the mass flow 
and funnel flow regions for conical hoppers is as follows [Jenike Bulletin 
108]: 

                    (5.1) 

where β is calculated from 

                 (5.2) 

 

Figure 5.1.  Theoretical mass flow hopper angles for hoppers with round 
or square outlets.  Note:  a minimum safety factor of 2 to 3° should be 
used. 

In case you are curious, β is the angle formed between the major principal 
axis and a line normal to the hopper wall.  Note that a safety factor of 2 to 3° 
should be used with Equation 5.1.   
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For hoppers with slotted outlets, the following equation can be used to 
calculate the recommended mass flow hopper angle [Arnold et al., Bulk 
Solids: Storage, Flow, and Handling, TUNRA Publications, 1980]: 

                     (5.3) 

for ϕ’ less than δ - 3°.   

 

Figure 5.2.  Recommended mass flow hopper angles for wedge-shaped 
hoppers. 

Frequently, “off-the-shelf” conical bins have walls that are sloped 30° from 
vertical.  Figure 5.3 illustrates how the hopper section of such a bin is 
fabricated.  A fabricator begins with a square sheet of metal.  He or she then 
cuts two concentric circles and slices the sheet in two.  Drawing the straight 
sides together forms a 30° cone.  If a hopper with steeper sides is to be 
fabricated, a “Pac Man” figure must be cut.  Note the greater amount of 
unused sheet metal.  30° hoppers may be better for the fabricator’s bottom 
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exp[3.75(1.01)(δ−30°)/10 ]− ʹφ

0.725(tanδ)1/5

Hopper	Angle	from	Ver.cal	(deg)	

	 W
al
l	F
ric
.o

n	
An

gl
e	
(d
eg
)	



86 

line, but not for powder flow.  Hey, the fabricator might be able to sell the 
customer a hammer as well. 

 

Figure 5.3.  Fabrication of 30° (left) and 20° (right) hoppers. 

Figure 5.4 shows the percentage of bins that would successfully operate in 
mass flow as a function of conical hopper wall angle, based on a survey of 
500 bulk solids (ter Borg, German Chem Engr, 5, 1, 1982, 59).  The chart 
shows that only about 25 percent of installations of 30° hoppers would be 
expected to allow mass flow.  Unfortunately, silo manufacturers often 
regard this slope as sufficiently steep. 

 

Figure 5.4.  Mass flow as a function of hopper angle. 
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As illustrated in Figure 5.5 transition hoppers have both straight sides (side 
walls) and round sides (end walls).  The appropriate chart or equation must 
be used in specifying the angles of the end walls (Figure 5.1 or Equation 
5.1) and side walls (Figure 5.2 or Equation 5.3) when designing a transition 
hopper for mass flow. 

Additional care must be taken when designing a pyramidal hopper for mass 
flow.  The angles that are formed at the intersections of the sloping walls of 
pyramidal hoppers are significantly less steep than those of the hopper walls 
themselves.  The valley angle from vertical θv can be calculated from 

                    (5.4) 

where θside and θend are the side and end wall angles from vertical, 
respectively.  Side, end, and valley angles are defined in Figures 5.5. 

     

Figure 5.5.  Side and end walls of transition hopper (left) and side, end, 
and valley angles of pyramidal hoppers (right). 

Note that if a pyramidal hopper has a square outlet rather than a slotted 
outlet, design procedures for conical mass flow hoppers should be followed.  
After all, a pyramid with a square opening is essentially just a crummy cone. 

If a bulk material is to be stored at rest for an extended period of time, e.g., 
overnight or over a weekend, the time wall yield locus should be used. 

θv = tan
−1 tan2θside + tan

2θend

End	wall	
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θvθend
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Jenike’s flow - no flow postulate 

The outlet of the hopper must be large enough to prevent stable obstructions 
to flow (arching and stable ratholes) from developing.  The required outlet 
size depends on the solids flow pattern inside the bin and the cohesive 
strength, the effective angle of friction, and the bulk density of the bulk 
solid.  

An obstruction to flow develops when the magnitude of the stresses on the 
obstruction is not as great as the bulk solid’s cohesive strength.  Jenike’s 
flow – no flow postulate is as follows [Jenike, Bulletin 123 (1964)]: 

Gravity flow of a solid in a channel will take place provided 
the yield strength which the solid develops as a result of the 
action of the consolidating pressure is insufficient to support 
an obstruction to flow. 

Critical mass flow hopper outlet dimensions to prevent arching 

In a mass flow bin, as an element of bulk material flows downward, it 
becomes consolidated under a major principal stress σ1 and develops an 
unconfined yield strength fC.  The consolidating stress follows the Janssen 
equation in the vertical section of the bin, changes dramatically at the 
cylinder-hopper junction, and then decreases toward the outlet.   

Jenike [1961] calculated the stress on the abutment of a cohesive arch over 
the outlet  as 

                                               (5.5) 

where B is the diameter of the outlet of a conical hopper or the width of the 
slotted outlet of a planar hopper, and H(θ') is a geometry function shown in 
Figure 5.6.   

σ

σ =
ρbgB
H ( ʹθ )
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Figure 5.6.  Function H(θ'). 

H(θ') can be calculated from [Arnold and McLean, Powder Techn., 13, 255 
(1976)]:  

                                 (5.6) 

for round outlets, and 

                                       (5.7) 

for slotted outlets.    

If the arch had a uniform thickness, the values of H(θ') would equal exactly 
2 and 1 for round and slotted outlets, respectively.  Jenike found that the 
values were slightly higher and depended on the hopper angle, so he came 
up with the empirical relations plotted in Figure 5.6. 

The stress and strength profiles inside a bin are shown in Figure 5.7.  Note 
that there is a critical outlet size where the stress on the abutments of a 
cohesive arch is equal to the cohesive strength of the bulk solid.  This outlet 
dimension represents the minimum outlet size that will prevent a stable 
cohesive arch from developing. 
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Figure 5.7.  Stress and strength profiles of mass flow hopper. 

Jenike postulated that near the hopper outlet the stress distribution of the 
bulk solid could be described by a radial stress field, i.e., the stress 
distribution could be approximated by a straight line through the hopper 
vertex.  The average stress was modeled as: 

                   (5.8) 

where r is the radial coordinate with the origin located at the vertex of the 
hopper, σavg is the average stress, and s(θ') is called the stress function.  (The 
stress function is discussed much later in Chapter 7.  It is not for the faint of 
heart!)  

Jenike [1961] developed solutions to the stress function and presented them 
in doodle form (i.e., chart form – remember that Jenike did not have 
computers as we have now.  We really should admire what he was able to 
accomplish with a compass, slide rule, straight edge, and a set of 
trigonometric tables!).    

The major principal stress is related to the average stress by  

                                      (5.9) 

At the hopper outlet, 

stress	>	strength	

strength	>	stress	

σ avg = rρbgs( ʹθ )

σ1 =σ avg (1+ sinδ)
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                            (5.10) 

Jenike [1961] defined the ratio of the major principal stress to the arch 
support stress as the flow factor ff, that is, 

                                      (5.11) 

Hence, the flow factor is given by 

                             (5.12) 

The flow factor is a function of the hopper angle θ', angle of wall friction ϕ', 
and the effective angle of friction δ. The latter depends on the major 
principal stress σ1 at the hopper outlet.  The angle of wall friction depends 
on the stress normal to the hopper wall σ', which is not equal to σ1. 

Charts that provide flow factors for conical and planar flow hoppers based 
on Jenike’s solutions to the stress function [Jenike, Bulletin 123 (1964)] are 
given in Figures 5.8 through 5.15.   

 
Figure 5.8.  Flow factors for conical hoppers, δ = 30°. 
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Figure 5.9.  Flow factors for conical hoppers, δ = 40°. 
 

 
Figure 5.10.  Flow factors for conical hoppers, δ = 50° 
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Figure 5.11.  Flow factors for conical hoppers, δ = 60°. 
 

 
Figure 5.12.  Flow factors for planar flow hoppers with slotted outlets, δ 
= 30°. 
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Figure 5.13.  Flow factors for planar flow hoppers with slotted outlets, δ 
= 40°. 

 
Figure 5.14.  Flow factors for planar flow hoppers with slotted outlets, δ 
= 50°. 
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Figure 5.15.  Flow factors for planar flow hoppers with slotted outlets, δ 
= 60°. 

 

Explicit expressions for the flow factor from an analytical form of the stress 
function were derived by Arnold and McLean [Powder Techn., 13, 255 
(1976); Powder Techn., 72, 121 (1992)].  These expressions are as follows: 

                                     (5.13) 

where  

                          (5.14) 

     (5.15) 

and 

                     (5.16) 
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The value of i in Equations 5.14 - 5.16 is equal to 1 for circular outlets and 0 
for slotted outlets.  These equations have more Greek letters than an Athens 
post office, but once they have been entered into Excel or Matlab, 
calculating a flow factor is just a matter of plugging in values for δ, ϕ', and 
θ'. 

Superimposing the material’s flow function and flow factor on the same 
graph allows the cohesive strength and arch stress to be compared.  The 
flow factor is constructed by drawing a line having a slope equal to 1/ff 
through the origin.  (Recall that ff is the ratio of the major principal stress to 
the arch stress.  The slope is therefore the reciprocal.)  

The relationship between the effective angle of friction δ and the major 
principal stress σ1 is provided by the effective yield locus.  In a converging 
hopper, the stresses in the bulk solid are represented by a Mohr’s circle that 
is tangent to the material’s effective yield locus.  The intersections of the 
Mohr’s circle and the horizontal axis give the principal stresses.  In mass 
flow, the material is also slipping along the hopper wall, and therefore, the 
wall stress σ' is represented by the wall yield locus.  The shear and normal 
stresses at the wall are therefore located at the larger value of the 
intersections of the wall yield locus and the Mohr’s circle.  The relationship 
between σ1, δ, σ', and ϕ' is illustrated in Figure 5.16. 

 

Figure 5.16.  Construction of effective yield locus and wall yield locus. 
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If the wall yield locus is linear, which is often true at low stresses, it can be 
described by 

                                        (5.17) 

where τ’ and σ’ are the shear and normal stresses at the wall surface, 
respectively and a and b are empirical constants determined from regression.  
The normal stress can then be calculated from 

                        (5.18) 

where  

                            (5.19) 

                                          (5.20) 

and 

                                                (5.21) 

with  

σ 2 =σ1
1− sinδ
1+ sinδ

                                          (5.22) 

                                           (5.23) 

and 

                             (5.24) 

The wall friction angle is then calculated from  

                                (5.25) 

where the shear stress at the wall τ’ is calculated from Equation 5.17. 
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To determine the size of the outlet required to prevent arching, the flow 
function and flow factor are compared.  The flow factor is dependent on the 
material’s effective angle of friction δ and its angle of wall friction ϕ’, as 
well as the hopper angle and geometry.  The angle of wall friction is a 
function of the stress normal to the hopper wall σ’.  Hence, unless the angle 
of wall friction and effective angle of friction are constant, calculation of the 
critical outlet diameter or width is iterative.  The procedure is as follows:  

1. An estimate of the flow factor ff is made.  Because ff is typically in the 
range of 1.1 to 1.5, a value of 1.3 is a good starting point. 

2. The flow factor and flow function are plotted together.  As shown in 
Figure 5.17, there are three possibilities: 
a. There is no intersection, and the flow function lies below the flow 

factor.  A cohesive arch cannot develop.  Instead, B is selected 
based on other considerations such as discharge rate requirements, 
choice of feeder, or prevention of particle interlocking.  The hopper 
angle required for mass flow requires the major consolidation stress 
σ1 at the outlet to be known.  The major principal stress σ1 is 
determined from Equation 5.26: 

                                        (5.26) 

b. The flow factor and flow function intersect.  This allows determina-
tion of the major principal stress at the outlet σ1 to be calculated 
from the intersection. 

c. There is no intersection and the flow function lies above the flow 
factor.  Gravity flow will no longer be possible in a hopper with 
converging walls. Consideration should be given to using a 
standpipe or changing the flow properties of the material, such as 
increasing its particle size, reducing its moisture content, or using a 
flow aid. 

3. If the flow factor and flow function intersect, the effective angle of 
friction is determined from a plot of δ against σ1, and the effective yield 
locus is drawn by drawing a straight line through the origin at an angle 
equal to δ.  A Mohr’s circle is drawn through σ1 that is tangent to the 
effective yield locus.  The value of ϕ’ is then found from the intersection 
of the Mohr’s circle and the wall yield locus, as shown in Figure 5.16.   

σ1 = ff
ρbgB
H ( ʹθ )
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4. The hopper angle is selected, one that ensures mass flow, by using the 
appropriate charts (Figure 5.1 or Figure 5.2) or equations (Equation 5.1 
or 5.3).  Note that if a conical hopper is to be specified, a safety factor of 
ca. 3° should be used with respect to the theoretical mass flow 
boundary. 

5. The flow factor ff is determined from the appropriate chart given by 
Figures 5.8 through 5.15 or Equation 5.13. 

6. The steps are repeated until convergence is reached. 
7. The minimum outlet dimension Bmin is then calculated using Equation 

5.27: 

   Bmin =
H ( ʹθ )σ crit

ρbg
                                    (5.27)  

where σcrit, the critical stress, is the value of the unconfined yield strength 
where the flow factor and flow function intersect.  A flow chart that 
describes the design procedure is shown in Figure 5.18.  Larger outlet 
diameters or widths of course can be used, and they are generally selected 
by considering standard feeder sizes or discharge rate requirements.   

 

 

Figure 5.17.  Plot showing both flow factor and flow function. 
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hopper outlet dimension will be much larger than necessary, but one will be 
confident in the design. 

A similar procedure is followed to determine recommended mass flow 
hopper angles for a given hopper outlet dimension, and a flow chart is 
shown in Figure 5.19.  Hopper angles steeper than those recommended can 
be used. 

In the absence of wall friction test results, the following empirical equation 
can be used to calculate the flow factor10:    

              
 (5.28) 

where i = 1 for round outlets and i = 0 for slotted outlets.  Equation 5.28 
provides design values for ff as a function of the effective angle of friction 
and is based on a plot by Jerry Johanson (Kulwiec, Materials Handling 
Handbook, John Wiley and Sons, Hoboken, NJ, 1985).  Equation 5.28 is 
plotted in Figure 5.20.  The flow factor is approximately the same value that 
would be calculated for wall friction angles between 15 and 25 degrees and 
hopper angles in the neighborhood of the mass flow boundary.  This flow 
factor is often referred to as the limiting or critical flow factor.  If a powder 
has exceptionally low wall friction, the rigorous method for determining Bmin 
should be followed.  See Figure 5.21 for a flow chart that shows the 
procedure for determining critical outlet dimensions without wall friction 
test results.  For design purposes, H(θ’) can be set equal to 2.3 or 1.1 for 
round and slotted outlets, respectively. 

To prevent mechanical interlocking, the following rules of thumb are used: 
for a conical hopper, the outlet diameter should be at least 6-8 times the size 

                                                
10

  Johanson used flow factors provided in Jenike’s bulletins that were based on 
Jenike’s hand calculations.  A relation equation based on TUNRA’s analytical 
solution to Jenike’s stream function, which gives approximately the same 
result, is:  

ff = 1.081+ 0.269
(tanδ)2.06

⎡

⎣
⎢

⎤

⎦
⎥

i

+ 0.998+ 0.353
(tanδ)2.57

⎡

⎣
⎢

⎤

⎦
⎥

1−i
 

 

ff = 1.118+ 0.285
(tanδ)1.59

⎡

⎣
⎢

⎤

⎦
⎥

i

1.125+ 0.176
(tanδ)2.90

⎡

⎣
⎢

⎤

⎦
⎥

1−i
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of the largest particle that will be handled; for hoppers with slotted outlets, 
the outlet width should be at least 3-4 times the largest particle size. 

If a bulk solid is to be stored at rest in a bin, the flow function and wall yield 
locus must be based on time tests.  The intersection of the time flow 
function and flow factor is used to determine the critical stress and hence the 
minimum outlet size. 

Solids discharge rates 

While an outlet diameter greater than the minimum will prevent cohesive 
arching, it may not necessarily be large enough to allow the desired 
discharge rate.  The steady-state discharge rate of a coarse powder from a 
hopper can be determined from a force balance.   

Consider a hopper with the geometry shown in Figure 5.22.  If only inertial 
and gravitational forces are included, a force balance on a bulk solid in a 
converging hopper yields      

                        (5.29) 

where a is the acceleration of the solids.  Defining time and spatial 
coordinates t and z, respectively, and employing some calculus gives 

             (5.30)              

Equation 5.29 can then be rewritten as 

                            (5.31) 

From continuity (assuming a constant bulk density), 

d
dz
(Av) = v dA

dz
+ Adv

dz
= 0                   (5.32)             

and therefore, 

dv
dz

= −
v
A
dA
dz

                                           (5.33) 

Substitution of Equation 5.33 into Equation 5.31 gives 

 

a = −g

a = dv
dt
=
dz
dt
dv
dz

= v dv
dz

v dv
dz

= −g
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Figure 5.18.  Flowchart for determining critical hopper outlet size and 
mass flow hopper angle. 
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Figure 5.19.  Flowchart for determining recommended mass flow 
hopper angle for a specified outlet dimension. 
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Figure 5.20.  Flow factor vs. effective angle of friction. 
 

	
Figure 5.21.  Flow chart for determining critical arching dimensions 
sans wall friction test results. 
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Figure 5.22.  Hopper geometry. 

v2

A
dA
dz

= g
                          

   (5.34) 

For a conical hopper with a circular outlet, 

               (5.35) 

                        (5.36) 

Ao =
πB2

4
                                (5.37) 

       

1
AO

dA
dz o

=
4 tan ʹθ
B

                   (5.38)                              

where the subscript o denotes the hopper outlet.  Then 

4vo
2 tan ʹθ

B
= g

                                
(5.39) 

and solving for vo gives 

vo =
Bg

4 tan ʹθ
           (5.40) 

The mass discharge rate !ms  is equal to the product of the velocity, bulk 
density, and cross-sectional area of the outlet: 

θ	 ‘	

B	 z	

A= π (z tan ʹθ )2

dA
dz

= 2π z tan ʹθ
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!ms = ρbo
πB2

4
Bg

4 tan ʹθ
                                  (5.41) 

For hoppers with slotted outlets having an outlet width equal to B, a similar 
analysis gives 

vo =
Bg

2 tan ʹθ
                                (5.42) 

and therefore in general, 

vo =
Bg

2(m+1) tan ʹθ
                           (5.43) 

and 

!ms = ρboAo
Bg

2(m+1) tan ʹθ
                               (5.44) 

where B is the diameter of a round outlet or the width of a slotted outlet, and 
m is equal to 1 for a circular opening and 0 for a slotted outlet. 

Equations 5.43 and 5.44 do not account for the cohesive strength of the bulk 
solid.  Jerry Johanson (Trans. Soc. Mining Engr., March 1965) included 
cohesive strength in his force balance: 

−
a
g
=1−

(m+1) fC
ρbgB

                                       (5.45) 

and 

2(m+1) tan ʹθ
Bg

vo
2 =1−

(m+1) fC
ρbgB

                           (5.46) 

which he elegantly recast as 

2(m+1) tan ʹθ
B

vo
2 = g 1− ff

ffa

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟                   (5.47) 
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where ff is the flow factor (the ratio of the major principal stress (σ1) to the 
stress on the abutments of an arch) and ffa is the actual flow function defined 
by 

ffa =
σ1o
fC

                           (5.48) 

where the solids stress of the outlet σ1o is calculated from 

σ1o = ff
ρbogB
m+1

                  (5.49) 

Following the same steps as before yields 

 
vo =

Bg
2(m+1) tan ʹθ

1− ff
ffa

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟                     (5.50) 

and 

!ms = ρboAo
Bg

2(m+1) tan ʹθ
1− ff
ffa

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟                          (5.51) 

Equation 5.51 is called the Johanson equation.  The Johanson equation can 
be used to determine the size of a hopper outlet required to provide the 
desired discharge rate of a coarse, cohesive bulk solid11.   

Johanson assumed that the angle of the slope of the failing arch was equal to 
45°.  In his Bulletin 108, Jenike noted that its angle is equal to β + θ’, where   

                                                
11 Many investigators like to use the Beverloo equation to calculate solids discharge 

rates from hoppers with round outlets: 

                                                 !ms =Cg
1
2 (B− kdp )

5
2  

where dp is the particle diameter and C and k are empirical parameters. 
Comparison of the Beverloo and Johanson equations suggests that the parameter 
C is related to the slope of the hopper walls or the flow channel and k is related to 
the powder’s cohesive strength, which is in general inversely proportional to the 
particle size.  Beverloo and Johanson both found that for conical hoppers, the 
solids  discharge rate was roughly proportional to the diameter to the 5/2 power.  
Beverloo’s relation is purely empirical.  Johanson’s was based on fundamentals. 
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β =
1
2

ʹφ + sin−1 sin ʹφ
sinδ

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥             (5.52) 

and φʹ is the wall friction angle.  Hence, 

ff
ffa

=
2(m+1)cos ʹθ sin(β + ʹθ ) fC

ρbogB
                    (5.53) 

In addition, Jenike modified Equation 5.49 to account for the non-
uniformity of the arch:  

σ1o = ff
ρbogB
H ( ʹθ )

                 (5.54) 

The maximum flow rate of a fine powder can be several orders of magnitude 
lower than that of coarser materials.  Two-phase flow effects are significant 
due to the movement of interstitial gas as the powder compresses and 
expands during flow.  Figure 5.23 illustrates solids and gas pressure profiles 
in bins for coarse (high permeability) and fine (low permeability) powders. 

 

Figure 5.23.  Consolidating pressure, bulk density, and gas pressure 
profiles for coarse (high permeability) and fine (low permeability) 
powders. 

For fine powders, gas-phase effects cannot be neglected, and a pressure 
gradient term should be included in the force balance: 
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2(m+1) tan ʹθ
Bg

vo
2 =1− ff

ffa
+
1

ρbog
dP
dz

o                        
 (5.55) 

Flow of gas through a bed of material is described by Darcy’s Law: 

u = − K
ρbg

dP
dz

                    (5.56) 

where u is the gas slip velocity, P is the interstitial gas pressure and K is the 
permeability.  Applying continuity to the gas phase, Gu et al. [Powder 
Techn., 72, 121 (1992)] derived a relationship between the air and solids 
flow rates that when combined with Darcy’s law gives: 

u = voρbo
1
ρbmp

−
1
ρbo

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟                                 (5.57) 

where the subscript mp denotes the location where the interstitial gas 
pressure is at a minimum and the pressure gradient is zero.  The pressure 
gradient is therefore related to the solids velocity by: 

dP
dz

=
voρbo

2 g
Ko

1
ρbmp

−
1
ρbo

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟                             (5.58) 

Substitution of Equation 5.58 into Equation 5.57 yields the following 
quadratic: 

2(m+1) tan ʹθ
Bg

⎡

⎣
⎢

⎤

⎦
⎥vo

2 +
1
Ko

1−
ρbo
ρbmp

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
vo +

ff
ffa

−1= 0              (5.59) 

from which the solids discharge rate can be calculated from 

!ms = ρboAovo                             (5.60) 

The solids stress where the gas pressure is at a minimum is difficult to 
calculate.  Kerry Johanson, [“Powder Flow Properties”, Chapter 13, 
Encapsulated and Powdered Foods, Onwulata, C., ed., CRC Press, Boca 
Raton, FL, 2005.] noted that it is approximately equal to the maximum 
solids stress in the cylinder section, which can be calculated from the 
Janssen equation: 



110 

                       (5.61)        

If the level of solids in the cylinder section is low, the maximum solids 
stress can be estimated from 

σ1 =
ρbgD

(m+1) tan ʹθ
                               (5.62)        

where D is the diameter or diagonal of the cylinder.  The solids stress at the 
outlet is determined from 

σ1o = ff
ρbog +

dP
dz o

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟B

H ( ʹθ )
                              (5.63) 

The solids velocity is calculated by first estimating the solids stress at the 
outlet and then using that value to calculate the bulk density, permeability, 
and unconfined yield strength at the outlet.  The outlet solids velocity vo is 
then calculated by solving Equation 5.59.  Knowing the velocity allows the 
pressure gradient to be calculated from Equation 5.58.  An updated value of 
the solids stress at the outlet can then be calculated from Equation 5.63.  The 
calculations are repeated until the correct value of σ1o is found.  The solids 
mass discharge rate is the product of the velocity, cross-sectional area, and 
bulk density at the solids stress at the outlet.   

Funnel flow outlet size to prevent arching and ratholing 

For funnel flow hoppers, the outlet must be large enough to prevent both a 
cohesive arch and stable rathole from developing.  The critical rathole 
diameter is calculated by first determining the maximum major principal 
stress, σ1, on the bulk solid.  For hoppers with tall cylinders, the consolidat-
ing load can be estimated by the Janssen equation: 

                       (5.64)        

where h is the solids level in the cylinder.  For short (or no) cylinders, an 
approximate value of the maximum solids stress is 

σ1 =
ρbgRH
k tan ʹφ

1− exp −k(tan ʹφ )h
RH

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

σ1 =
ρbgRH
k tan ʹφ

1− exp −k(tan ʹφ )h
RH
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σ1 = 2ρbgRH                           (5.65) 

In general, it’s good to use  the smaller value of σ1 calculated from 
Equations 6.64 and 6.65. 

Jenike [Bulletin 108 (1961)] calculated the stress on a rathole as 

                                       (5.66) 

where D is the diameter of a round outlet or the diagonal of a slotted outlet 
and G(ϕt) is a function given in Jenike’s Bulletins 108 and 123, which is 
plotted in Figure 5.24.  The rathole will collapse provided that the flow 
channel stress is greater than the cohesive strength of the bulk solid that 
makes up the rathole.  The critical rathole diameter DF can therefore be 
calculated as: 

                                (5.67) 

where fC is the cohesive strength of the bulk solid at the consolidation 
pressure given by the Janssen equation.   

Courtesy of McGlinche, Bulk Solids Characterization, Blackwell Publishing 
Co., Carlton, Victoria Australia, 2005), a convenient expression for G(ϕt) is 

                                            (5.68) 

A conical funnel flow hopper with an outlet diameter smaller than DF or a 
planar funnel flow hopper with an outlet whose diagonal is less than DF will 
not empty completely.  This is illustrated in Figure 5.25.  Because the major 
consolidation stress is higher in the lower part of the bin, the cohesive 
strength of the bulk solid will be correspondingly higher.  As material 
discharges in a funnel flow pattern, ratholes that form in the upper part of 
the vessel may continually collapse, provided that the stress on the stagnant 
material is greater than its cohesive strength.  However, if the size of the 
outlet is smaller than the critical rathole diameter, a level will be reached 
where the ratholes will no longer fail.     

 

σ1 =
ρbgD
G(φt )

DF =
G(φt ) fC
ρbg

G(φt ) = 4.3tanφt
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Figure 5.24.  Function G(ϕt). 

If a hopper with a square or round outlet is designed with an opening large 
enough to prevent development of a stable rathole, cohesive arching is 
unlikely to occur.  When funnel flow hoppers with elongated outlets are 
designed, prevention of arching must also be considered, i.e., the width of 
the slotted outlet must be large enough to prevent a cohesive arch from 
developing.  The same procedure that is used to determine the minimum 
outlet width to prevent arching in a planar-flow mass flow hopper is 
followed, except that a flow factor of 1.7 is used.  (A flow factor of 1.2 is 
sometimes used to determine the critical arching diameter of a conical 
funnel flow hopper.  Keep in mind that this diameter will be smaller than the 
critical rathole diameter.) 

Comparison of Equations 5.66 (critical rathole diameter) and 5.27 
(minimum arching dimension) shows that DF can be much larger than Bmin if 
cohesive powders are handled.  The cohesive strength of the powder at the 
hopper cylinder junction is usually significantly higher than the critical 
stress in a mass flow hopper, and G(ϕt) is greater than H(θ’).  While the 
diameter of a conical hopper required to prevent arching might be 
reasonably small, the critical ratholing diameter of a hopper that handles a 
cohesive powder can be bigger than Donald Trump’s rap sheet. 
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Figure 5.25.  Formation of a stable rathole in a funnel flow hopper.          

Expanded flow hopper dimensions 

An expanded flow hopper is essentially a funnel flow hopper above a mass 
flow hopper.  The upper diameter of the mass flow section must be larger 
than the critical rathole diameter DF, while its outlet size must be larger than 
the critical arching dimension.  An example of an expanded flow hopper is 
shown in Figure 5.26. 

	

Figure 5.26.  Expanded flow hopper. 
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Inserts 

A disadvantage of conical mass flow bins is that relatively steep hopper 
sections are generally required, and therefore the bins may be too tall for the 
available space.  A planar mass flow bin having flat walls and a slotted 
outlet can have a reasonably shallow hopper section.  However, discharge 
from a slotted outlet cannot be modulated with a rotary valve, which is often 
preferred because of its low cost and small footprint.   

When properly designed, an insert can be used to allow mass flow in a 
conical bin with shallow hopper walls that, without modifications, would 
discharge in a funnel flow pattern.  Cone-in-cone and bullet designs are 
shown in Figure 5.27.  A cone-in-cone insert is designed to allow mass flow 
through the inner cone and also through the annular space between the inner 
and outer cones.  The angle of the inner cone is equal to or steeper than the 
hopper angle recommended for mass flow in a conical hopper, and the angle 
of the outer cone is equal to twice that of the inner cone.  The cones form an 
annulus, which allows planar flow to be mimicked.  The outlet diameter of 
the inner cone must be greater than the critical arching diameter.  For 
cohesive materials that would otherwise arch over the outlet of the inner 
cone of an insert, an inverted cone or “bullet” can be placed above the inner 
cone. 

The position and dimensions of the insert are determined by locating the 
vertex of the outer hopper and then extending lines with angles equal to the 
recommended mass flow hopper angle.  Arcs constructed as shown in 
Figure 5.28 locate the inlet and outlet of the inner cone. 

To design a cone-in-cone insert, the following inputs are required: 

θi Inner cone hopper angle (referenced from vertical) 

DC Cylinder diameter or outer cone inlet diameter 

Doo Outer cone outlet diameter 

From these inputs, the following dimensions and hopper angles can be 
calculated: 

θo Outer cone hopper angle (referenced from vertical) 

Dii Inner cone inlet diameter 

Dio Inner cone outlet diameter 
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Figure 5.27.  Inserts; cone-in-cone, left, and bullet, right.  

 

Figure 5.28.  Insert geometry. 
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Δhi Distance between inner and outer cone inlets 

Δho Distance between inner and outer cone outlets 

hi Height of inner cone 

ho Height of inner cone 

The hopper angle of the outer cone is twice that of the inner cone: 

                         (5.69) 

From geometry, trigonometry, and assorted other -ometries, the following 
dimensions and placements are derived: 

                              (5.70) 

                          (5.71) 

                     (5.72) 

                                     (5.73) 

                                  (5.74) 

                                (5.75) 

To prevent bridging, the width of the annulus at the bottom of the insert 
should be equal or greater than the minimum width of the slotted outlet of a 
planar mass flow hopper.  Alternatively, the slope of the walls of the insert 
can be steepened below this dimension as shown in Figure 5.29.  This 
creates a lower section where the walls do not converge. 

θo = 2θi

Dii = DC
sinθi
sinθo

Δhi =
Dii

2 tanθi
−

DC
2 tanθo

Dio = Doo
sinθi
sinθo

Δho =
Dio
2 tanθi

−
Doo
2 tanθo

ho =
DC −Doo
2 tanθo

hi =
Dii −Dio
2 tanθi
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Figure 5.29.  Hopper with insert and steepened walls. 

In some cases, the outlet of the inner cone may be too small and will cause 
the powder to arch.  When this is the case, the outlet diameter of the outer 
cone should be increased to allow the required inner cone outlet diameter.  
A hopper section steep enough to allow mass flow that converges to the 
desired outlet diameter is then added beneath the bin, as illustrated in Figure 
5.30.  A spool piece is installed above the lower cone to prevent high solids 
velocities in the center of the bin. 

According to Lyn Bates, the Andrew Jenike of the United Kingdom, the 
walls of the outer cone can be fairly shallow provided that the angle between 
the inner and outer cones is less than the recommended conical mass flow 
hopper angle θC, the hopper outlet diameter is greater than the critical 
arching diameter BC, and an inverted cone or bullet is in place to prevent 
powder from entering the inner cone.  A disadvantage of any bin with a 
bullet insert is that its capacity will be decreased.  Lyn Bates’ design is 
illustrated in Figure 5.31. 

Greater than minimum 
arching dimension for 
planar mass flow hopper

Support  
crossbeans
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double that of  
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Figure 5.30.  Hopper with insert and extended conical section. 

	
Figure 5.31.  Lyn Bates’ bullet insert. 

While less effective than cone-in-cone inserts, inverted-cone inserts are 
sometimes used to improve the flow in hoppers, bins, and silos.  They are 
frequently used to retrofit funnel flow vessels that suffer from stable 
ratholes.  An inverted-cone insert is shown in Figure 5.32a. 
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Figure 5.32.  Inverted-cone insert. 
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The design procedure is as follows: 

1. Select the slope angle of the insert θ2. 30° is typical; steeper slopes 
should be used for materials with exceptionally high wall friction. 

2. Determine the critical ratio W/R from Figure 5.32b and the critical angle 
α from Figure 5.32c. 

3. Select a location for the top of the insert (Point A in Figure 5.32a) and 
draw a line AF to the hopper wall with a slope equal to 90° - θ2 - α from 
horizontal. 

4. Draw a line inclined at angle α from the vertex of the hopper.  Points on 
this line represent values of the critical ratio W/R. 

5. Draw a line of slope angle θ2 from Point A. Point E (see Figure 5.32a) 
locates the bottom of the insert. 

6. Confirm that the width of the annulus W is large enough to prevent an 
arch from forming.  The critical arching dimension can be assumed equal 
to three-quarters of the critical arching diameter of a mass flow cone. 

7. Check that the diameter of the hopper at the level aligned with Point A is 
greater than the critical rathole diameter. 

Converging/diverging walls 

The angle required for mass flow in hoppers with flat walls can be 
significantly less steep, typically 10-12° or greater, than for conical hoppers 
provided that they have slotted outlets.  Hoppers with slotted outlets 
generally cannot be fitted with simple feeders such as rotary valves.  For this 
reason, hoppers with round or square openings are often desired. 

Designs with converging and diverging walls allow hoppers with round 
outlets and hopper angles greater than the minimum recommended for mass 
flow in conical hoppers to be used.  The Diamondback hopper [US Patent 
No. 4,958,741 (1990)] is shown in Figure 5.33.  The outlet diameter must be 
greater than the minimum arching diameter for a conical hopper, but the 
slope of the end walls can be 10-20° greater than the recommended conical 
mass flow hopper angle.  When the length:width ratio of the outlet of a 
section is less than 2, the non-converging walls should diverge slightly. 
According to the patent, this will allow the minimum outlet dimension to be 
the critical arching width of a slotted outlet. 

Lyn Bates recommends wedge-shaped hoppers with slotted outlets and 
diverging end walls for handling challenging bulk materials (see Figure 
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5.34).  He refers to such a design as “Sigma2 Relief” as it allows the 
material to move sideways during flow.   

 

Figure 5.33.  Diamondback hopper. 

 

Figure 5.34.  Lyn Bates’ Sigma2 Relief bin. 

Over-pressurization 

For cases in which over-pressurization is anticipated due to, for example, 
vibration or external forces, the critical outlet diameter or width should be 

C
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��B
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increased.  To calculate the minimum arching dimension, the solids stress at 
the outlet is multiplied by an appropriate factor when calculating the critical 
arching diameter ([McLean, Bulk Solids Handling, 5, 1 (February 1985)].   
When calculating the critical rathole diameter, the stress used to calculate 
the cohesive strength of the powder at the cylinder-hopper junction is 
multiplied by the factor.  This factor is commonly called the P-factor. 

Formulas for P-factors are summarized at the following site: 

https://www.powderbulksolids.com/instrumentation-control/how-interpret-
solids-flow-report. 

Note that an increase in solids stress can lead to both an increase in the 
material’s unconfined yield strength and its bulk density, which have the 
opposite effects on the bulk solid’s likelihood of arching. 

Vibration.  Vibration has two effects: while it tends to break arches that 
obstruct flow, it also packs the solid in stagnant regions, thereby giving it 
greater strength.  In order to allow for this packing, a P-factor of 1.5 should 
be used when calculating critical arching dimensions for use with vibrating 
equipment.  

Vibrators are suitable for materials that are free flowing under conditions of 
continuous flow but cake and gain strength when stored at rest for hours or 
days.  Hoppers for these materials should be equipped with pads for 
mounting external vibrators.  Vibrators should be used only to initiate flow 
and should be turned off once flow has started.  The following equation can 
be used to estimate P-factor due to vibrator use as described here: 

P-factor = 1+
az

g
                             (5.76) 

or 

P-factor = 1+
ay

g
          (5. 77) 

where g is the gravitational constant and az and ay are the vertical and 
horizontal acceleration components imposed on the solid, respectively.  The 
component that gives the highest P-factor should be used. 
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Fine powders and wet materials tend to pack severely when vibrated; hence, 
vibrating equipment is generally not recommended for these materials.  

Impact pressure from fall into a bin.  A coarse material compacts as it is 
charged into a bin, under the impact of the falling particles.  When the 
material contains fines and the impact area is close to the outlet, the impact 
P-factor should be used in the design:  

                                (5.78) 

where m is equal to 1 or 0 for a round or elongated outlet, respectively, A is 
the impact area of the solids, B is the diameter of a round outlet or the width 
of a slotted outlet, and h is the drop height. 

External loading.  If the solid has been compacted by an external load F 
(such as the weight of a tractor passing over an outside stockpile), the 
overpressure factor at the point of application is given by  

                                      (5.79) 

where A is the area of load application. 

Liquid or gas flow loading.  If the solid has been subjected during storage to 
fluid or gas flow such as having been imposed by an air blaster, draining of 
a saturated solid or the flow of air or gas during drying or chemical 
processing, the overpressure factor is given by  

                                       (5.80) 

where dp/dz is the (vertical) liquid or gas pressure gradient at the bin outlet 
and z is positive upward.  

If a P-factor calculation yields a value less than one, a P-factor equal to one 
should be used. 

The P-factor approach is likely very conservative in that it essentially 
assumes that over-pressurization affects the solids stress and not the external 
stress (i.e., the stress on the abutment of an arch).  As such, P-factor can be 

P-factor = (1+m) !m
ABρb

2h
g

P-factor = (1+m)F
ABρbg

P-factor =1+ 1
ρbg

dP
dz
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considered a safety factor, and it is especially appropriate to use if the slope 
of the flow function is nearly equal to 1, in which case the value of the 
critical stress cannot be determined with confidence, or if the flow function 
is dramatically steep and a small change in solids stress can result in a 
significant increase in cohesive strength. 

Flow channel angle 

In funnel flow, flow only occurs in a central channel above the hopper 
outlet.  The channel expands at an angle that depends on the effective angle 
of friction δ	 and the geometry (i.e., axisymmetric or planar).  If the flow 
channel is less steep than the hopper walls, the flow channel will reach the 
hopper walls and will flow along a thin layer that adheres to the wall.  The 
flow behavior will be essentially mass flow on a thin stagnant layer of bulk 
material.   

The flow channel angle θfc can be estimated using the following equation 
adapted from Arnold, Bulk Solids Handling, 5, 1 (February 1985): 

     (5.81) 

where i is equal to 1 for round outlets and equal to 0 for slotted outlets.  The 
flow angle is referenced from vertical.  Note that for conical hoppers, the 
flow angle can be very steep unless the material’s effective angle of friction 
is very small.  Flow channel is plotted against the effective angle of friction 
in Figure 5.35. 

When material is discharged from a funnel flow hopper, the solids will flow 
only in the central flow channel.  As the flow channel empties, the ratholes 
will collapse and tumble into the falling channel provided that the diameter 
of the flow channel exceeds the critical rathole diameter DF.  The angle 
formed when material slides into the channel is called the drawdown angle 
θdd, which is referenced from horizontal.  If unknown, the drawdown angle 
can be crudely estimated as the average of the effective angle of friction δ 
and the kinematic angle of internal friction ϕ.  Flow channel and drawdown 
angles are illustrated in Figure 5.36. 

The solids discharge rate equations given in the previous section can be used 
with funnel flow hoppers by replacing θ’ with the flow channel angle. 

θ fc = 45°−0.5cos
−1 1− sinδ
2sinδ
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Figure 5.35.  Solids flow channel angle in funnel flow hoppers. 

 

 
 
Figure 5.36.  Flow channel and drawdown angles. 
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Capacity 

A reasonable height-to-diameter ratio (H/D) of the cylinder section should 
be used, with ratios between about 1.5 to 4 usually being the most 
economical.  Height may be limited because of building constraints, zoning 
considerations, or restrictions imposed by other structures or equipment. 

The following formulas can be used to calculate the height and volume of 
common bin geometries shown in Figure 5.37. 

 

Figure 5.37.  Conical, pyramidal, and transition hopper nomenclature. 
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                        (5.83) 

Pyramid: 

  
                    (5.84) 

V =
H 2 AB+ ab( )+ Ab+ aB⎡
⎣

⎤
⎦

6
                   (5.85) 

For symmetric pyramids with curved walls, the volume can be calculated by 
solving 

H = a+ 2z tanαside( ) b+ 2z tanαend( ) π − 4( ) b
2 +

B−b
2H z( )

2⎡
⎣⎢

⎤
⎦⎥

0

H

∫ dz    (5.86) 

An analytical solution can be found, but numerical integration is 
straightforward. 

To determine the height and volume of a wedge-shaped hopper, note that 
either A = a or B = b when using Equations 5.84 and 5.85, respectively. 

Transition: 

H =
D− B
2 tanαside

=
D− L
2 tanαend

               (5.87) 
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Be careful how you regress the data! 

Typically, a yield locus or cohesive strength test is performed three times.  
Unless you are fortunate enough to have a Schulze ring shear tester, 
determining the critical stress when calculating the critical hopper outlet 
arching dimension will require an extrapolation of the test data, which can 
be risky. 

Consider the cohesive strength data shown in Figure 5.38.  The data were 
regressed to fit the following empirical formulas: 

fC = a+bσ1                    (5.91) 

fC = a+bσ1 + cσ1
2                      (5.92) 

fC
a

⎛

⎝
⎜

⎞

⎠
⎟

c

=
σ1 +b
b

                   (5.93) 

where a, b, and c are empirical constants.  Equation 5.93 is the Warren 
Spring equation, which is frequently used to use fit shear cell data when 
curvature of the yield locus is dramatic and some investigators believe it can 
describe a curved flow function as well. 

The flow function denoted as No. 1 in Figure 5.36 was determined by linear 
regression.  The correlation coefficient is > 0.98, which seems impressive 
but not all that surprising considering that there were three data points and 
two empirical constants.  Inspection of the data suggests that there is 
curvature, as is frequently the case, so perhaps a quadratic relationship 
would be more appropriate.  The flow function denoted as No. 2 was 
determined by fitting the data to a second-order polynomial.  The correlation 
coefficient equals 1 as the quadratic passes through every data point – even 
less a surprise since the number of adjustable parameters (the regression 
constants a, b, and c) is the same as the number of data points.  Note how 
this choice of a regression model gives a very low value of the critical stress, 
as determined from the intersection of the flow function and flow factor.  As 
a consequence, the calculated minimum hopper outlet dimension to prevent 
arching will be correspondingly small, and considering that extrapolation of 
the data was required to determine the critical stress, specifying such a small 
outlet can be dicey. 
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Figure 5.38.  Regression of cohesive strength data. 

The flow function represented by curve No. 3 was constructed by fitting the 
data to the Warren Spring equation.  The flow function fits the data nicely, 
and the calculated critical stress seems more truthful.  The flow function 
denoted as No. 4 is a quadratic.  However, this time, a linear regression was 
first performed using only the two data points obtained at the two lowest 
consolidation stresses; then, all the data were fit to a quadratic while fixing 
the intercept equal to the value obtained by the linear regression.  This 
regression method is easier to execute, and it allows calculation of a critical 
arching dimension that is slightly less conservative than if a linear 
regression were used. 

Software that is supplied with various automated shear cell testers 
sometimes includes modules for hopper design.  The software should be 
used with caution, especially if the user is unable to choose the appropriate 
description of the flow function (and also the wall yield locus and 
compressibility).  An engineer should use judgment when extrapolation of 
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the data is required to derive an equation for the flow function.  Some useful 
regression formulas are given in Table 5-1. 

Bin selection 

When designing a bin, keep in mind that mass flow is not always necessary.  
Funnel flow and expanded flow bins are advantageous because they allow 
greater capacity if there are height restrictions.  A flow chart that illustrates 
the bin design procedure is shown in Figure 5.39. 

The engineer typically begins with a basis (e.g., capacity and throughput, 
materials handled) and constraints (e.g., available height, allowable 
footprint, acceptable wall materials).  The volume occupied by the pile of 
bulk material in the cylinder that is defined by its angle of repose is roughly 
equal to that of the hopper section.  Hence, a reasonable starting point for 
sizing the cylinder section is to choose a diameter or width such that a 
height equal to 1.5 to 4 times the diameter or width gives the desired 
capacity.  Ratios in this range are economical, and the required height can be 
determined once the hopper section has been designed. 

 

Figure 5.39.  Bin design procedure.  

Example bin design 

Consider a powder having the flow properties shown in Figures 5.40a 
through 5.38d.  Determine the critical outlet dimensions and recommended 
mass flow hopper angle that can reliably handle the powder. 
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First, design a mass flow hopper.  Following the procedure described in 
Figure 5.21: 

Step 1.  Estimate ff.  Choose ff = 1.3. 

Step 2.  Determine σ1 from the intersection of the flow function and a line 
through the origin with a slope equal to 1/1.3.  By setting fC = , the σ

Table 5-1 
Least Squares Regression Formulas 

Equation Regression Constants 
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solution to the simultaneous equations Equation E.1 and = σ1/1.3 gives σ1 
= 0.26 kPa. 

Step 3.  Calculate δ.  Substitution of σ1 = 0.26 kPa into Equation E.2 gives δ 
= 42.9°.   

Step 4.  Update flow factor.  Solving Equation 5.28 with δ = 42.9° and i = 1 
gives ff = 1.44. 

Step 5.  Update σ1 from intersection of the flow function and the updated 
flow factor gives 0.29 kPa. 

Step 6.  Update δ.  Solving Equation E.3 with updated value of σ1 gives δ = 
41.7°.  

Step 7.  Solving Equation 5.28 gives ff = 1.44.  The solution has converged. 

Step 8.  Calculate σcrit.  σcrit = σ1/ff =  0.29/1.44 = 0.20 kPa. 

Regression of the data gives the relationships in the accompanying Table 5-
2. 

 

 
Figure 5.40a.  Flow function. 
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Figure 5.40b.  Internal friction. 

 

 
Figure 5.40c.  Compressibility. 
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Figure 5.40d.  Wall yield locus. 

Step 9. Find Bmin.  From Equation E.4, ρb = 325 kg/m3. Setting H(θ’) = 2.3 
and solving Equation 5.27 gives Bmin = 0.15 m (5.8 in.). 

Step 10.  Specify the outlet diameter.  For this example, choose B = 0.25 m 
= 10 in. 

Step 11.  Estimate σ1.  From Equation 5.26 after setting H(θ’) = 2.3, ff  = 1.3, 
and ρb = 304 kg/m3, σ1 = 0.46 kPa. 

Step 12.  Update δ and ϕ’.  From Equation E.2, δ = 42.4°.  Solving 
Equations 5.17 – 5.25 gives ϕ’ = 20.4°. 

Step 13.  Estimate recommended mass flow hopper angle.  From Equation 
5.1 after subtracting a 3° safety factor, θ’ = 23.3°. 

Step 14.  Update ff.  Solution of Equations 5.16 – 5.28 gives ff = 1.40. 

Step 15.  Update σ1.  Solution of Equation 5.26 using H(23.3°) = 2.36 gives 
σ1 = 0.48 kPa. 

Step 16. Update δ and ϕ’.  From Equation E.2, δ = 42.3°.  Solving Equations 
5.17 – 5.25 gives ϕ’ = 20.1 °. 
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Table 5-2 

Regression Results 

Flow function:  

             fC = 0.177 + 0.0939 σ1 - 0.00177 σ1
2                         (E.1) 

Effective angle of friction:   

δ = 41.7 - 0.88 ln σ1                                                (E.2) 

Kinematic angle of internal friction: 

 ϕ = 35.3 - 0.0312 σ1                               (E.3)  

Bulk density:   

ρb = 303.6 +39.77 σ1
0.517                       (E.4)  

Wall yield locus:   

τ’ = 0.0395 + 0.269 σ’                          (E.5) 

Permeability:  

  K = 0.022 (ρb/303.6)2.2                         (E.6) 

Units: stress: kPa; bulk density: kg/m3; internal friction: deg; permeability: 
m/s 

The flow function empirical relationship was found by fitting the data to a 
quadratic, fixing the intercept equal to a value obtained by linear 
extrapolation of the two lowest data points.   

Step 17.  Update recommended mass flow hopper angle.  From Equation 5.1 
after subtracting a 3° safety factor, θ’ = 23.7°. 

Step 18.  Calculate ff.  Updated flow factor equals 1.40. 

Step 19.  Update σ1.  Solution of Equation 5.26 with H(23.7°) = 2.33 gives 
σ1 = 0.48 kPa.  Solution has converged. 

Our recommended mass flow conical hopper has a 10-in. diameter outlet 
(minimum arching diameter is 5.8 in.) and walls sloped 24° walls from 
vertical if fabricated using the same material used in the wall friction test. 
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To confirm that the recommended mass flow hopper will allow the desired 
steady discharge rate, solve Equation 5.60.  The discharge rate depends on 
the dimensions of the cylinder section of the storage vessel.  For this 
example, specify a 4 ft (1.2 m) diameter, 15 ft (4.6 m) tall cylinder, which 
together with the hopper section can store about 200 cu ft of bulk material.  
Solving Equations 5.59, 5.60, and 5.63 gives σ10 = 0.31 kPa, dP/dz = -1300 
N/m3, and vo = 0.044 m/s  At this stress, ρb = 330 kg/m3.  The solids 
discharge rate is then equal to (0.044m/s) (0.252π/4 m2)(330 kg/m3)(3600 
s/hr) = 2,600 kg/hr (2.6 ton/hr).  It is best to multiply this number by 0.8 to 
be conservative. 

Now consider a funnel flow hopper.  The critical rathole diameter depends 
on the dimensions of the cylinder.  From Equations E.1 and E.3, at σ1 = 8.3 
kPa, fC = 0.83 kPa and ϕ = 35°, respectively.  From Equation 5.67, G(ϕ) = 
3.0.  Solving Equation 5.66 for DF gives a critical rathole diameter of 0.60 m 
(24 in.). 

A funnel flow conical hopper may not be practical due to the large outlet 
diameter required to prevent stable ratholes from developing.  However, a 
hopper section that transitions from the cylinder to a slotted outlet may be an 
option provided that the diagonal of the outlet is greater than 0.61 m.  The 
width of the outlet must be large enough to prevent bridging. Jenike 
recommends using a flow factor of 1.7 to determine the critical arching 
dimension.  For a transition hopper beneath a 1.2-m diameter, 4.5-m 
cylinder and filled with bulk material, the outlet width should be greater 
than or equal to 0.18 m (6.9 in.)              

There is always more than one answer (another example design 
problem) 

So how ‘bout another example?  This time, the results of shear cell tests 
conducted on a bulk material are given in Figure 5.41a through 5.41d.  In 
addition, discharge rate is assumed not to be an issue since the permeability 
of the material high. 

Our task is to design a silo that will reliably handle the material.  The silo 
has the following requirements: 

Capacity: 50 metric tonne 
Throughput: 5 metric tonne/hr 
Maximum diameter: 4.88 m (limited by floor space) 
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Material will be continuously discharged (no time tests are required) 

The first step is to determine critical arching and ratholing diameters.  Using 
Equation 5.28 or Figure 5.20 to calculate the flow factor gives a critical 
arching diameter of 390 mm for a conical mass flow hopper and a critical 
arching width of 180 m for a planar mass flow hopper with a slotted outlet.  
Using a value of ff = 1.7, the critical arching width of a slotted outlet for a 
planar funnel flow hopper is 210 mm. 

The critical rathole diameter depends on the maximum stress in the cylinder 
section of the silo.  Using Equation 5.66 with G(30°) = 2.47 gives the 
relationship between the critical rathole diameter and the major principal 
stress at the hopper-cylinder junction given in Figure 5.42. 

The procedure outlined in Figure 5.19 is used to determine the 
recommended hopper angle for conical and planar mass flow hoppers.  The 
results are shown in Figures 5.43 and 5.44. 

Inspection of the analysis shows that a conical funnel flow silo is unlikely to 
be practical because the diameter of a large silo required to prevent a stable 
rathole from developing is larger than Al Gore’s carbon footprint.  However, 
an expanded silo consisting of a funnel flow hopper section above a mass 
flow hopper is feasible.  A planar funnel flow hopper with a slotted outlet is 
feasible provided that the width of the outlet is at least 210 mm (8¼ in.) and 
the diagonal of the slotted outlet is greater than DF, which may be 
achievable.  Mass flow can be achieved in conical silos with reasonably 
shallow hopper walls if 304 stainless steel with a #2B finish is used.  A 
conical mass flow hopper fabricated using carbon steel must be very steep 
unless it has a large outlet.  Mass flow planar hoppers can be fabricated with 
304 #2B stainless steel or carbon steel.   

Three possible designs are shown in Figures 5.43 through 5.45.  Figure 5.43 
is a conical mass flow silo.  As designed, its hopper section must be 
fabricated or lined with 304 #2B stainless steel.  Although the critical 
arching diameter for a mass flow hopper handling this material is 390 mm, a 
690-mm diameter outlet is specified to allow the desired solids discharge 
rate.  A 24-in. rotary valve operated at ca. 8 rpm can provide the required 
throughput.  (Feeders are discussed in Chapter 6.) 

The silo drawn in Figure 5.44 has both a transition hopper section and a 
cone.  All sloping surfaces can be fabricated using carbon steel.  Note that 
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the required hopper angle for mass flow in the cone is reasonably shallow 
because it has a large outlet.  (The wall friction angle is highly dependent on 
the wall stress, which increases with hopper diameter.)  Beneath the hopper 
is a 305-mm mass flow screw feeder, which can be operated at 
approximately 25 rpm to allow the desired discharge rate.  

The final design, shown in Figure 5.47, is an expanded flow silo that 
includes a shallow cone above a steep cone.  Both cones are fabricated using 
carbon steel.  The lower cone is steep enough to allow mass flow, and the 
outlet of the upper cone is large enough to prevent a stable rathole from 
developing. 

least costly wall material and the simplest feeder (i.e., rotary valve).  It is 
also taller due to its steep mass flow hopper section.  

 

 
Figure 5.41a. Cohesive strength. 
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Figure 5.41b.  Internal friction. 
 

        
Figure 5.41c.  Compressibility. 
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Figure 5.41d.  Wall friction. 

 

Figure 5.42.  Critical rathole diameter. 
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Figure 5.43.  Recommended mass flow hopper angles for conical 
hopper. 

     

Figure 5.44.  Recommended mass flow hopper angles for planar hopper. 
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That’s all very nice, but what is the best choice?  The mass flow cone is the 
simplest, but it requires a relatively expensive stainless steel liner.  The 
transition hopper can be fabricated using inexpensive carbon steel; however, 
it cannot accommodate a rotary valve and instead a more expensive mass 
flow screw feeder (or belt feeder) must be installed beneath the outlet.  It is 
also the shortest of the three choices.  The expanded flow option uses the  

The design engineer must consider the advantages and disadvantages of 
alternative designs.  In some cases, constraints can be relaxed.  For example, 
if segregation is not a problem and tight control of the discharge rate is not 
required, a funnel flow hopper, which can be shorter, that is equipped with a 
bin activator may be a more economical option. 

 

 

Figure 5.45.  Conical mass flow silo.  
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Figure 5.46.  Silo with transition hopper and cone sections. 

	

Figure 5.47.  Expanded flow hopper. 
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6.		FEEDERS	AND	FLOW	AIDS	

Feeders can be a source of hopper flow problems if improperly used or if 
they are improperly designed.  This is especially true for hoppers with 
slotted outlets, where feeders should be designed to draw uniformly from 
the entire cross-section of the outlet in order for mass flow to occur.  
However, even hoppers with round outlets can have uneven flow if a proper 
interface is not utilized. 

There are two primary categories of feeders available to handle bulk solids: 
volumetric and gravimetric.  A volumetric feeder discharges a particular 
volume of powder over a period of time.  This type of feeder is adequate for 
many applications, especially for mass flow hoppers, in which the bulk 
density of the powder at the hopper outlet is nearly independent of level 
inside the vessel.   

A gravimetric feeder relies on a control system that adjusts the speed of the 
feeder based on loss-in-weight measurements.  Because the controller 
cannot determine a discharge rate when its hopper is being filled with 
material, typically two hoppers are used in series.  The upstream system is 
designed so that it can feed the downstream vessel very quickly.  During the 
fill cycle, the downstream feeder is operated in a volumetric mode (i.e., at a 
constant speed), and then in gravimetric mode (i.e., its speed is controlled by 
measuring the loss in weight of material inside the hopper) once the 
downstream hopper is filled.  The hopper on the gravimetric feeder, which is 
sometimes called the extension hopper, should be designed for mass flow to 
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reduce variability of the discharge rate when it is operated in volumetric 
mode. Gravimetric feeders are usually much more expensive than 
volumetric feeders. 

An advantage of mass flow bins is that the bulk density at the bin outlet is 
independent of the height of material inside the vessel and does not change 
even when a vertical stress is imparted when the hopper is refilled.  If 
precise measurement of the discharge rate from a bin is not critical, 
volumetric feeders are often adequate and a less expensive alternative to 
gravimetric feeders. 

Rotary valves 

Rotary valves are often used beneath hoppers with round or square outlets.  
They are particularly useful for applications in which a seal must be 
provided to prevent air from flowing out of or into the hopper outlet.  A 
schematic of a rotary valve is shown in Figure 6.1. 

 

Figure 6.1.  Rotary valve feeder. 

If a rotary valve is used, a short vertical spool section (length equal to or 
greater than its diameter) should be installed between the hopper outlet and 
valve inlet.  Otherwise, material may flow preferentially from the upside of 
the valve and affect the flow pattern inside the vessel as shown in Figure 
6.2. 

When the powder is dropped from a pocket, the air or gas that replaces it 
can be pumped back into the bin.  A vent line should be considered, 
especially if the rotary valve discharges material into a high-pressure line.  
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Typically, the vent line directs air either into a dust collector or into the top 
of the hopper. 

 

 

Figure 6.2.  Flow of powder through rotary valve with (left) and without 
(right) spool section. 

The capacity of a rotary valve can be calculated from 

                           (6.1) 

where q is the volumetric discharge rate, N is the rotary valve speed, D and 
d are the vane and shaft diameters, respectively, and W is the width of the 
vane.  The result is often multiplied by a factor of about 0.8 to account for 
incomplete filling of the pockets.  Rotary valve speeds of 15 - 45 rpm are 
preferable.  For valves with scalloped pockets, capacities from the supplier 
should be used. Young Industries’ website has a nice app for sizing rotary 
valves that can be downloaded. 

Screw feeders 

Screw feeders are primarily used to control the discharge of powders from 
hoppers with slotted outlets.  A screw is comprised of a series of flights 
wound around one or more shafts.   

A screw that has a constant pitch and constant shaft diameter will cause the 
formation of a flow channel at the back of the hopper over the first pitch of 
the screw.  As illustrated in Figure 6.3, this channel will draw material from 
the top surface into the flow channel until a stable rathole forms and the 

q = Nπ (D
2 − d 2 )W
4
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channel empties.  The rathole will then periodically fail as the base of the 
material fails above the screw.  This will continue to broaden the flow 
channel, and this cyclic fail-flow-empty cycle will continue until the hopper 
empties.  If the powder is cohesive, an arch or stable rathole may develop, 
causing a disruption in flow. 

 

Figure 6.3.  Screw feeder with constant pitch, constant diameter screw. 

A mass flow screw feeder, comprised of a tapered section followed by an 
increasing pitch section, ensures that the capacity of the feeder increases in 
the direction of flow (see Figure 6.4).  The length of the cone and the pitch 
schedule are chosen such that the capacity of the screw increases linearly 
along the hopper length.  The screw flight diameter should equal the width 
of the hopper outlet, and the trough should be about an inch wider than the 
screw.  Fabrication tolerances limit the length-to-width ratio of the hopper to 
≤ 6.   

 
Figure 6.4.  Mass flow screw feeder. 
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The capacity of the screw C is the volume between adjacent screw flights.  
In the tapered shaft section, the volume of screw segment is given by 

                    (6.2) 

where  

                    (6.3) 

In Equations 6.2 and 6.3, D and d are the screw and shaft diameters, 
respectively, LC is the length of the cone, start and end of course denote the 
start and end of the screw section, respectively, 0 and s denote the diameter 
of the large end of the tapered section and the diameter of the constant-shaft-
diameter section, respectively, P is the screw pitch, and t is the flight 
thickness.  For the constant shaft diameter section, the capacity of each 
screw segment is given by 

                          (6.4) 

A mass flow screw feeder is designed such that its capacity increases 
linearly in the direction of discharge.  Usually the capacity of the screw at 
the discharge end of the hopper outlet is around 75-85 percent of that of the 
constant-diameter conveying section, which extends past the hopper outlet. 
Such a design reduces the power requirements of the screw feeder.  A 
shroud is often installed immediately past the hopper wall to ensure that the 
conveying section does not completely fill.   

To prevent logging, the pitch should be greater than one half the height of 
the flight, that is,  

                             (6.5) 

The final pitch determines the throughput of the screw feeder, that is, 

ν = NC f f                              (6.6) 

C = π
12
(3D2 − dstart

2 − dstartdend − dend
2 )(P − t)

dend = dstart −
P(d0 − ds )
LC

C = π
4
(D2 − ds

2 )(P − t)

P
(D− d ) / 2

≥
1
2
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where ν is the volumetric discharge rate, Cf is the capacity of the screw in 
the constant-pitch conveying section (typically equal to the flight diameter), 
N is the screw speed, and f is the fill fraction.  Generally, screw feeders are 
best operated between 3 and 40 rpm.  

The trough should be U-shaped rather than V-shaped to prevent material 
from stagnating.  Screw flights should have lower friction than the trough; 
otherwise, material will only be spun about the shaft and will not be 
conveyed.  The conveying section should be long enough to prevent 
material from falling into the outlet when the feeder has been stopped.  This 
length can be determined from the material’s angle of repose.  The flights 
should terminate 1-2 in. from the start of the screw feeder outlet to prevent 
compaction of the solids. 

The power requirements depend on the solids stress at the feeder inlet, the 
wall friction between the solids and the trough wall, the screw diameter, and 
the screw speed.  The running torque T can be estimated from 

T ≈ σ v tan ʹφ πD2L
2

                                   (6.7) 

where σv is the average vertical solids stress at the feeder inlet and L is the 
length of the screw (both the feed section and the conveying section).  The 
solids stress is calculated from  

σ v = qρbgB
4
π

⎛

⎝
⎜

⎞

⎠
⎟

m

                                   (6.8) 

where B is the outlet width, m equals 0 or 1 for a slotted or round outlet, 
respectively, and q is Jenike’s non-dimensional surcharge factor that can be 
determined using charts in his Bulletin 123.  McLean and Arnold [Powder 
Techn., 19, 279 (1978)], obviously having too much time on their hands, 
derived an analytical expression for q: 

q = 1
4 tan ʹθ

2
ʹσ

ρbgB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟(tan ʹθ + tan ʹφ )−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

               (6.9) 
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where  

ʹσ
ρbgB

=
Y
X −1

1+ sinδ cos2β
2sin ʹθ

⎛

⎝
⎜

⎞

⎠
⎟                   (6.10) 

and θ’ is the hopper angle (referenced from vertical), ϕ’ is the wall friction 
angle, δ is the effective angle of friction, σ’ is the wall stress, ρb is the bulk 
density, and g is acceleration due to gravity.  The terms β, X, and Y, and 
were given in Equations 5.2, 5.14, and 5.15, respectively.  

If a vertical section exists between the hopper outlet and feeder inlet (often 
to allow installation of a slide gate), Equation 3.11 is used.  Since the 
vertical section is usually short, the additional stress can be approximated as 
ρbgh, where h is the height of the vertical section. 

The running power requirement WS is equal to the product of the torque and 
the rotational speed of the screw: 

                          (6.11) 

For applications where cohesive powders must be discharged at low rates, 
feeders with agitators are often used.  Frequently, the screws are shaft-less 
so that they can be operated at a higher speed, which improves their ability 
to handle particularly cohesive powders.  A ribbon-like agitator or other 
device is located in a bowl above the augers to ensure a live bottom at the 
outlet of the extension hopper.  Figure 6.5 is a schematic of an auger feeder 
equipped with an agitator. 

Instead of an agitator, some feeders employ flexible walls.  If cohesive 
powders are handled, the flexing can compact the powder and increase its 
strength, preventing it from entering the screws.  Such screw feeders should 
be used with caution. 

 

 

 

WS = 2πNT
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Figure 6.5.  Low-throughput screw feeder. 

The outlet to the extension hopper should be large enough to prevent a 
cohesive arch or a stable rathole from developing.  A mass flow hopper is 
generally preferred since the critical arching diameter is significantly 
smaller than the critical rathole diameter.  In addition, the stress at the 
hopper outlet will remain nearly constant both as it empties and when 
additional powder is added during refill (see Figure 6.6) due to the radial 
stress field that develops inside the hopper.  This allows a more constant 
bulk density in the feeder and a steadier discharge rate, even while the 
hopper is refilled.  If the extension hopper is a funnel flow hopper or a short 
cylinder with vertical walls, the solids stress and hence the bulk density will 
decrease as the hopper empties.  A gravimetric feeder can change the screw 
speed to adjust for the reduction in bulk density; however, it is not always 
able to compensate during the refill stage when the addition of fresh powder 
compacts the powder and increases its bulk density because the feeder is 
operated volumetrically. 

  
  

Extension	hopper	

Agitator	

Auger(s)	

Feeder	

Large	enough	to	prevent	bridging	
	or	a	stable	rathole	(if	funnel	flow)	Steep	enough	for	mass	

flow	(if	required)	
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Figure 6.6.  Major principal stress on solids when hopper is refilled and 
emptied. 

Other feeders 

Belt feeders consist of a moving belt, idlers that support the belt, and a 
motor to power the belt.  Like screw feeders, a belt feeder is useful for 
hoppers with slotted outlets.  To ensure that all the contents of the hopper 
are in motion when the belt is in motion, a feeder-hopper interface must be 
carefully designed so that its capacity will increase in the direction of flow.  
A belt interface is shown in Figure 6.7. 

 

Figure 6.7.  Belt feeder interface. 

Both the width of the interface and its distance from the belt surface increase 
in the direction of discharge.  A good rule of thumb is that the increase in 

Major	Principal	Stress	

Refilled	

½	full	

¼	full	
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elevation and width should be approximately ¼ inch per foot (20 mm/m in 
third-world units).   Experts such as Thayer Scale should be contacted for 
design and supply of belt feeders and interfaces. 

Pan feeders, also known as vibratory feeders, use vibration to modulate the 
flow of powder from a hopper.  As the pan of the feeder vibrates, material is 
thrown upward and forward. Eriez (Erie, Pennsylvania) manufactures 
vibratory feeders with a wide range of capacities.  A vibratory feeder is 
shown in Figure 6.8. 

 

Figure 6.8.  Eriez vibratory feeder. 

Vibratory feeders should not be used with funnel flow hoppers that handle 
fine powders.  If aerated material reaches the feeder, e.g., the result of a 
collapsed rathole, the feeder will not be able to stop its discharge.  

Siletta feeders use an array of louvers and a vibratory drive to control the 
discharge rate of a bulk material from a hopper.  The angle and spacing of 
the louvers are set such that the material will find its angle of repose and 
will not discharge unless the feeder is vibrating.  Figure 6.9 is a photograph 
of a siletta feeder. 

 

Figure 6.9.  Siletta louvered feeder. 

Belt, vibrating pan, and siletta feeders should be used with caution if fine 
powders are discharged.  Fine powders may fluidize and flood the feeder if 
operated at too high a rate or if ratholes in a funnel flow hopper collapse and 
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the powder remains aerated, resulting in uncontrollable discharge of the 
material.  The angle of repose of a fluidized powder is zero. 

The Kamengo feeder is equipped with openings that move laterally along 
the slotted outlet of a planar hopper, which prevents preferential flow during 
discharge.  Figure 6.10 is a schematic of a Kamengo feeder. 

 

Figure 6.10.  Kamengo feeder. 

Table feeders, a.k.a. circle feeders, are useful for handling materials that 
require large hopper outlets to prevent bridging or the formation of stable 
ratholes.  Flat, slowly-rotating blades covey material radially toward an 
outer ring and into one or more discharge ports.  Figure 6.11 is a schematic 
of LCI Corporation’s circle feeder. 

 

 

Figure 6.11.  LCI Circle feeder. 

Often, circle feeders are used beneath bins with straight, non-converging 
walls, which ensures mass flow.  However, this can lead to high power 
requirements due to high solids stresses on the feeder.  Installing vertical, 
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flat plates in the cylinder so that more of the load can be supported by wall 
friction can reduce these stresses. 

Crammer feeders (or Kramer feeders if you are a Seinfeld enthusiast) are 
frequently used to feed powders into extruders.  Figure 6.12 is a drawing of 
a crammer feeder. 

 

Figure 6.12.  Crammer feeder. 

The pitch is generally equal to the hopper outlet diameter, i.e., the screw 
diameter.  The diameter of the reverse pitch ribbon in the hopper should be 
greater than the critical rathole diameter.  High power requirements are 
often required due to wall friction. 

Flow aids 

Flow aids are pneumatic or mechanical devices or chemical additives used 
to induce bulk solids to flow more readily.  Examples of mechanical and 
pneumatic flow aids are vibrators and air cannons, respectively.  Common 
chemical additives include silicates and stearates. 

Vibrators impart forces to the bulk solid through the hopper walls of the bin.  
Some vibrators produce high-frequency, low-amplitude forces, while others 
deliver low-frequency, high-amplitude forces.  Their effectiveness is mixed.  
In some cases, they may be an effective means of restoring flow when a bin 
becomes plugged.  In other cases, however, their effect is marginal or can 
even exacerbate flow problems.  Applying sufficient but not excessive force 
where it is required is difficult, particularly in the case of ratholing where 
the forces often must be transmitted through a significant amount of material 
to reach it. 
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The force required to overcome a cohesive arch depends on the bulk solid’s 
cohesive strength and the size of the outlet.  If the hopper outlet is slightly 
undersized, i.e., the size of the outlet is only marginally smaller than its 
critical arching dimension after storage at rest, a vibrator may be able to 
provide enough force to restart flow. Because ratholes are inherently stable, 
the outlet diameter required to prevent a stable rathole from developing can 
be several times the outlet size of a bin; therefore, vibrators generally cannot 
be used to overcome ratholing. 

A steeply sloped flow function is evidence of a bulk solid that is pressure 
sensitive, i.e., its strength increases substantially when additional stresses 
are applied.  Vibrating pressure-sensitive bulk materials often will 
exacerbate flow problems.  Another challenge is that a Google search for 
vibrators will likely direct you to an adult website. 

A bin activator or vibrating discharger utilizes an inverted cone or dish that 
moves in a gyratory, horizontal, or vertical motion.  The bulk solid then 
flows around the cone or dish into a conical section beneath it, which 
essentially operates as a chute.  Vibratory dischargers can be effective in 
overcoming flow problems if they are used appropriately.  When used at the 
outlet of a funnel flow bin, the flow channel above the discharger will be 
approximately the size of its top diameter.  If this diameter is smaller than 
the bulk material’s critical rathole diameter, a stable rathole will form, and 
the discharger will be ineffective in collapsing it.  The width of the annulus 
formed by installation of the bin activator should be smaller than the critical 
arching dimension to ensure that flow halts when the discharger is stopped. 

A cone valve is similar to a bin activator in that it uses a vibrating inverted 
cone inside the bin.  The position of the cone can be adjusted vertically and 
opened and shut for short intervals to control the discharge rate or stop flow 
completely.  Cone valve assemblies include a discharge station equipped 
with a probe that controls the height of the insert. 

Air or nitrogen cannons operate differently in that they rely on a pressure 
wave to provide the stress required to break an arch.  Cannons work by 
releasing a small volume of high-pressure gas into the bin.  The required 
size, number, and location of the cannons depend on the cohesive strength 
of the bulk material and the dimensions of the bin.   
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Air cannons are best used for reinitiating flow after a cohesive arch develops 
when the material is stored at rest.  Air cannons are usually not effective in 
preventing flow problems in funnel flow bins since ratholes are inherently 
stable.  Contact Martin Engineering for size, number, and placement. 

Air sweeps, in which nozzles inject a high-pressure, high-volume, 360-
degree burst of compressed gas to lift and sweep stagnant material back into 
the flow stream, can be effective.  Contact Control Concepts for sizing and 
location. 

Chemical flow aids are often used to prevent arching or the formation of a 
stable rathole.  Parting agents such as silicon dioxide (preferably CAB-O-
SIL®, a shameless plug for my old employer Cabot Corporation) and 
calcium stearate are effective as they increase the distance between adjacent 
particles, thereby reducing the magnitude of their cohesive forces.  Note that 
while a flow aid may be effective in reducing a bulk solid’s cohesive 
strength, the additive may increase wall friction, potentially resulting in flow 
problems associated with funnel flow.  In addition, only a small amount 
should be added.  High additive levels can increase a bulk material’s 
cohesive strength rather than reduce it.  To reduce wall friction, small 
amounts of magnesium stearate are frequently added. 

Air assist and fluidization  

Air pads are sometimes used to inject low-pressure air into a bin.  They are 
sometimes effective in correcting solids flow problems caused by arching or 
ratholing.  Air pads may be effective in increasing the discharge rate of fine 
powders by reducing or eliminating the adverse pressure gradient that 
develops above a hopper outlet that causes counter flow of air.    

A better means to increase the discharge rate of fine powders is to use an air 
permeation system, which consists of a sloping shelf or insert through which 
air is introduced at a low rate.  The air reduces or eliminates the vacuum that 
naturally develops when a bulk solid dilates in the hopper section and 
increases its void fraction.  The air does not fluidize the bulk material.  
Rather, its flow rate should be low enough to prevent fluidization, the air 
should be distributed evenly, and the permeation system should not impede 
solids flow in the hopper.   

Air-assist dischargers are designed to reduce the wall friction angle to nearly 
zero, thereby allowing powders to glide along hopper walls.  The hopper 
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section is either lined with air panels or is fabricated using a permeable 
membrane through which air is injected at a low rate.  Jenike [Bulletin 123 
(1964)] recommends conical hopper angles between 40° and 50° from 
vertical as steeper hoppers may require large outlet diameters to prevent 
arching.  (Note that the flow factors in Figures 5.8 - 5.15 have large values 
for combinations of steep hopper angles and low wall friction angles.)  Steep 
hopper angles can be used provided that a fully open, unrestricted on/off 
valve is used or if enough gas is added to completely fluidize the bulk 
material at the outlet. 

A fluidized discharger can be used when the bulk material is fluidizable and 
a low bulk density of the discharged material is acceptable.  A schematic of 
a fluidized discharger is shown in Figure 6.13. 

Fluidized dischargers can generally be used for Geldart Group A, B, and C 
materials [Powder technology, 7, 5 285 (1973)], although Group C materials 
may require mechanical agitation.  Discharge from a bin equipped with a 
fluidized discharger is typically controlled through use of a rotary valve.  A 
Geldart powder classification chart is shown in Figure 6.14. 

Young Industries offers a patented design (US Patent No. US11325776B1) 
where two cones having gas-permeable walls are used (see Figure 6.15).  
The lower cone is a conventional, shallow fluidizing discharger through 
which enough gas is injected to fluidize the powder.  The upper cone is 
steeper, and gas-permeable walls allow a relatively small amount of gas to 
be introduced, i.e., just enough to reduce wall friction and ensure mass flow.  
Think of it as a conical air hockey table.  The design is advantageous in that 
compared to conventional fluidizing dischargers, significantly less gas is 
required. 

Reclaim systems 

Reclaim systems have screws that draws material into the centered outlet of 
a conical or flat-bottomed hopper.  The screw turns about its own axis 
conveying material toward the center while rotating along the hopper walls 
or floor sweeping the material.  Material conveyed to the outlet then flows 
into a discharge auger or conveyor.  A schematic of a Laidig reclaimer is 
shown in Figure 6.16. 
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Figure 6.13.  Fluidized discharger. 

 

 

Figure 6.14.  Geldart powder classification chart. 
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Figure 6.15.  Young Industries mass flow fluidizer.  

   

 
 

Figure 6.16.  Laidig reclaim system. 
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7.	OTHER	STUFF	

Segregation 

Some materials, when transferred into a bin, will segregate, that is, particles 
of different size, shape, density, etc. will separate.  Segregation can occur by 
a number of different mechanisms, depending on the physical characteristics 
of the particles and the method of handling.  The three most common 
mechanisms are fluidization (air entrainment), dusting (particle 
entrainment), and sifting.  These segregation methods are illustrated in 
Figure 7.1. 

Fluidization, or air entrainment, can cause vertical segregation, i.e., 
horizontal layers of fines and coarse material.  Fine powders generally have 
a lower permeability than coarse materials and therefore retain air longer.  
Thus, when a bin is being filled, the coarse particles are driven into the bed 
while the fine particles remain fluidized near the surface.  Air entrainment 
often develops in materials that contain a significant percentage of particles 
below 100 µm in size.  Fluidization segregation is also likely to occur when 
a bin is filled or discharged at high rates or if gas counter-flow is present.  
Segregation by the fluidization segregation mechanism is illustrated in 
Figure 7.1a. 
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Dusting, a.k.a particle entrainment or impact segregation, involves airborne 
particles, differences in settling velocities between particles, and air currents 
to cause movement of suspended particles.  Dusting can occur when powder 
is dropped and impacts onto a pile surface, causing the release of finer 
particles into the air.  Particles can also be re-entrained in air if large pockets 
of air bubble up through a stationary bed of material from below.  These 
particles will tend to remain suspended in the air and be carried by air 
currents to the least active portion of the receiving vessel’s area, generally 
the lowest part of the pile surface that is furthest away from the impact 
point.  Generally, powders that are susceptible to this mechanism contain a 
portion of finer particles below 50 µm that do not readily adhere to larger 
particles.  Dusting is illustrated in Figure 7.1b. 

 

Figure 7.1.  Segregation by fluidization (left), dusting (center), and 
sifting (right). 

Sifting, which is illustrated in Figure 7.1c, occurs when smaller particles 
move through a matrix of larger ones.  Four conditions must exist for sifting 
to occur: 

• A difference in particle size between the individual components, 
typically a minimum ratio of 2:1 or greater. 

• A sufficiently large mean particle size, typically one greater than 
approximately 500 µm.	

• Free flowing material.   
• Inter-particle motion.   

Coarse	

Fines	

Coarse	

Fines	Coarse	

Fines	

a																																								b																																							c		
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All four of these conditions must exist for sifting segregation to occur.  If 
any one of these conditions does not exist, the mix will not segregate by this 
mechanism.  

Sifting segregation is also illustrated in Figure 7.2, which is a photograph of 
a typical pile that forms when a vessel is filled.  Because coarser particles 
tend to be more mobile, they roll downward towards the periphery of the 
pile.  Fines percolate through the bed as they fall from the center and 
accumulate in the middle.  The result is side-to-side separation of particles 
by size. 

 

Figure 7.2.  Sifting segregation after formation of a pile. 

Segregation can be controlled by changing the material or by changing the 
process.  For example, fines can be extracted by sieving and perhaps be 
introduced later in the manufacturing process, granulated, or recycled. 
Impact and sifting segregation can be mitigated by adjusting the particle size 
such that the proportion of fines to coarse is approximately equal to the void 
fraction of the larger particles.  Sometimes moisture or a weak binding agent 
can be added to reduce inter-particle motion, being careful not to increase 
the material’s cohesive strength significantly enough to cause flow 
problems. 

Changes to the manufacturing process include altering procedures and 
modifying or replacing equipment.  The likelihood of segregation is 
frequently related to the rate at which the bulk material is handled.  
Increasing the discharge rate from a bin will often reduce the degree of 
segregation by allowing less time for segregation methods to progress.  
Smaller and more frequent batches reduce the scale at which segregation 
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mechanisms can progress.  Altering the sequence of processing steps such as 
deferring mixing until a later stage of production can reduce segregation. 

Segregation caused by fluidization can be reduced by eliminating long drops 
of material or by introducing the solids tangentially into a bin so that they 
contact the walls.  Air entrainment can be reduced by proper venting.  A 
telescoping chute that rises as a bin is filled will reduce fluidization 
segregation. 

Sifting segregation is more common in funnel flow hoppers.  Segregation 
can be reduced by keeping them nearly full (at the expense of surge or 
storage capacity) or continuously feeding and discharging from them at 
approximately the same rate.  For the latter case, the bin will be acting as a 
standpipe. 

In some cases, funnel flow can be changed to mass flow by installing a low-
friction liner inside the hopper, replacing the hopper section with one 
designed for mass flow, or installing an insert.  Sifting segregation is 
mitigated when the powder is handled in a mass flow bin because all the 
material is in motion during discharge.   

There will be a solids velocity profile in the hopper section of a mass flow 
bin, however, as particles at the center will move at a faster velocity than 
those along the wall.  To mitigate sifting segregation, having as uniform a 
velocity as possible is desirable. 

Jenike realized that a radial velocity field was compatible with the radial 
stress field function that he solved when calculating flow factors.  In his 
Bulletin 10812, he solved the following equations to determine the velocity 
profile: 

dψ
dθ

= −1−[mssinδ(1+ sinδ)(cotθ sin 2ψ + cos2ψ −1)

          + cosθ − sinδ cos(θ + 2ψ)+ scos2δ] / [2ssinδ(cos2ψ − sinδ)]

 (7.1) 

ds
dθ

=
ssin 2ψ + sin(θ + 2ψ)+mssinδ[cotθ (1+ cos2ψ)− sin 2ψ]

cos2ψ − sinδ
  (7.2) 

                                                
12

  He also presents the equations in his Bulletin 123, but there’s a typo.  It 
happens to the best of us! 
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ψ( ʹθ ) = 1
2

ʹφ + sin−1 sin ʹφ
sinδ
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⎥+90°                    (7.3) 

ψ(90°) = 90°                    (7.4) 

V
V0

= exp −(2+m) tan(2ψ)dθ
0

ʹθ

∫
⎡

⎣
⎢

⎤

⎦
⎥                     (7.5) 

where δ is the effective angle of friction, θ is the radial coordinate, ϕ’ is the 
wall friction angle, ψ is the angle between the direction of the major 
principal stress and the radial coordinate ray, m is equal to 0 or 1 for planar 
flow and axisymmetric flow, respectively, s is the radial stress function, V is 
the radial velocity, and V0 is the centerline velocity.  Equations 7.3 and 7.4 
describe the boundary conditions for Equation 7.1, which means that the set 
of equations present a split boundary problem.  Can you imagine attempting 
to solve these equations without a computer?  Jenike did!  In his Bulletin 
108, he gave the solution in graph form for δ equal to 50°, which is shown in 
Figure 7.3.  It must have taken him months, which is probably why he only 
provided a solution for one value of the effective angle of friction. 

 

Figure 7.3.  Wall-centerline velocity ratio, δ = 50°. 

Even with computers, solving the equations is still a pain in the ass, but it 
can be done.  Velocity profiles are plotted against dimensionless distance 
r/R, i.e, the normalized distance from the hopper wall in Figures 7.4 and 7.5 
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for conical hoppers with angles of 20° and 30° from vertical, respectively 
and a bulk material with an effective angle of 50°. 

 

Figure 7.4.  Velocity profiles for δ = 50°, θ = 20°, axisymmetric flow. 

 

Figure 7.5.  Velocity profiles for δ = 50°, θ = 30°, axisymmetric flow. 
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The ratio of the radial velocity at the wall V’ to the centerline velocity V0 is a 
good metric for the uniformity of the solids velocity.  It can be considered 
the span of the solids velocity.  Figures 7.6 through 7.13 are plots of V’/V0 
vs. hopper angle θ’ for different values of the wall friction angle ϕ’. 

 

Figure 7.6.  Wall-centerline velocity ratio, δ = 30°, axisymmetric flow. 

 

 

Figure 7.7.  Wall-centerline velocity ratio, δ = 40°, axisymmetric flow. 
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Figure 7.8.  Wall-centerline velocity ratio, δ= 50°, axisymmetric flow. 

 

 

Figure 7.9.  Wall-centerline velocity ratio, δ = 60°, axisymmetric flow. 
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Figure 7.10.  Wall-centerline velocity ratio, δ = 30°, planar flow. 

 

 

 

Figure 7.11.  Wall-centerline velocity ratio, δ = 40°, planar flow. 
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Figure 7.12.  Wall-centerline velocity ratio, δ= 50°, planar flow. 

 

 

Figure 7.13.  Wall-centerline velocity ratio, δ = 60°, planar flow. 

Figures 7.14 – 7.21 plot the ratio of the average solids velocity to the 
centerline velocity.  To minimize sifting segregation that occurs during 
filling of a hopper, it is best to design a mass flow hopper that allows a high 
average solids velocity to centerline velocity ratio. 
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Figure 7.14. Average-centerline velocity ratio, δ = 30°, axisymmetric 
flow. 
 

 
 

Figure 7.15. Average-centerline velocity ratio, δ = 40°, axisymmetric 
flow. 
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Figure 7.16 Average-centerline velocity ratio, δ = 50°, axisymmetric 
flow. 
 

 
 
Figure 7.17 Average-centerline velocity ratio, δ = 60°, axisymmetric 
flow. 
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Figure 7.18. Average-centerline velocity ratio, δ = 30°, planar flow. 
 
 

 
 

Figure 7.19. Average-centerline velocity ratio, δ = 40°, planar flow. 
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Figure 7.20. Average-centerline velocity ratio, δ = 50°, planar flow. 

 
 

 
 

Figure 7.21. Average-centerline velocity ratio, δ = 60°, planar flow. 
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an inverted cone above a ring that has equally spaced extensions that 
redirect approximately one half of the particles when they travel past the 
cone.  This results in mixing of the particles as they fall inside the silo. 

 

Figure 7.22.  Dispersion cone schematic. 

If the particles fall freely when they are dropped onto the chute, their 
velocity before impact V0 is its free-fall velocity: 

                          (7.6) 

where g is the acceleration due to gravity and h is the drop height (see 
Figure 7.23).   

 
Figure 7.23.  Dispersion cone and ring dimensions. 
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From a momentum balance, V1, the velocity of the particles after impact (see 
Figure 7.24), is given by: 

                                  (7.7) 

where θ is the impact angle and ϕ’ is the angle of wall friction. 

 

Figure 7.24.  Velocity after impact and sliding. 

While sliding on a straight surface, the particles accelerate or decelerate, 
depending on the relative magnitudes of the cone angle α (measured from 
horizontal) and the wall friction angle: 

                                  (7.8) 

where a is the acceleration.  The particles continue to accelerate (provided 
that α > ϕ’), and its velocity V2 reaches at the end of the cone: 

                                            (7.9) 

where S is the distance traveled and is calculated from   

                              (7.10) 

where D is the diameter of the cone and H is its height.  Typically, D is 
approximately one third the diameter of the bin. The height can be 
calculated from the diameter and cone angle from 

                                              (7.11) 

V1 =V0 (cosθ − sinθ tan ʹφ )
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The particles continue to accelerate after leaving the cone; the distance X 
and Y traveled over time t can be calculated from: 

                                   (7.12) 

and 

                                       (7.13) 

respectively.  Referring to Figure 7.23, X is equal to the difference between 
the radii of the cone and the ring, and Y should be chosen such that the 
particles impact the extensions from the ring.  Combining Equations 7.12 
and 7.13 and simplifying yields 

                                   (7.14) 

Surcharge and subsequent segregation due to sifting can be reduced filling 
the bin from multiple locations.  For smaller bins, a screw conveyor with an 
opening that widens linearly and extends over the full length of the bin can 
be used. 

There are testers available for determining the “propensity” of a powder to 
segregate by particle size by aggressively handling it in a way that 
segregation is most probable.  Much simpler methods exist.  A test that will 
determine if sifting segregation is a potential problem is to pour a well-
mixed sample of powder onto a flat surface to form a pile and then compare 
the particle size of a subsample taken from the center to that taken from the 
periphery.  To determine if fluidization segregation is a concern, a sample 
can be poured into, say, a 3-ft tall, 1-in. diameter or similarly dimensioned 
cylinder.  Then, the particle size of a subsample taken from the bottom of 
the cylinder is compared to that from the top surface.  Of course, careful 
handling, such as ensuring that a mass flow hopper is used and that long 
vertical drops are avoided, can prevent segregation problems from occurring 
in the first place. 

X = (V2 cosα)t

Y = (V2 sinα)t +
g
2
t2

Y = X tanα + g
2

X
V2 cosα
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⎞
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Caking 

Caking occurs when an easy-flowing powder becomes cohesive after 
storage or transport, forming agglomerates comprised of individual particles 
that are bonded together.  As a consequence, a powder that flowed freely 
during packaging may contain lumps when the package is opened by a 
customer; a silo that readily discharges a bulk material when in continuous 
operation may become constipated after a shutdown.  A bulk solid from one 
production lot may meet performance requirements, but one taken from 
another lot may be deficient. In extreme cases, dealing with problems 
created by caked materials can subject personnel to dangerous situations.  
For example, the sudden collapse of the caked material has caused silos to 
collapse.  

Caking is frequently moisture-induced.  When the moisture content of a 
bulk material reaches a critical value, moisture will condense primarily at 
the contact points between adjacent particles, causing liquid bridges.  If 
local drying occurs due to temperature swings during storage or transit, solid 
bridges may form when soluble components in the liquid precipitate.  Water 
is also a plasticizer for many materials, and its presence can cause particles 
to deform and increase inter-particle contact area.  Elevated temperature and 
impurities also frequently increase the likelihood of a material to cake. 

Caking occurs when the magnitude of inter-particle forces increases 
significantly over time.  These cohesive forces are primarily van der Waals 
forces, polar interactions, and forces associated with plastic creep or liquid 
bridges (when moisture is present).  van der Waals forces include all 
intermolecular forces that act between electrically neutral molecules.  Polar 
interactions occur when adjacent particles contain regions that are 
permanently electron-rich or electron-poor.  van der Waals forces and polar 
interactions increase as the distance between particles decreases.  Although 
these forces are proportional to particle size, the likelihood of caking 
generally decreases with increasing particle size since the number of inter-
particle contacts is inversely proportional to the square of the particle 
diameter.   
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With some bulk materials, plastic creep, which is the tendency of a material 
to deform when under consolidation, may occur.  Plastic creep can be severe 
if impurities that behave as plasticizers are present or if the bulk solid is 
subjected to high temperatures for long periods of time, especially when 
above its glass transition temperature (Tg).  Differential scanning calorime-
try (DSC), thermal mechanical analysis (TMA), and inverse gas 
chromatography (IGC) are frequently used to measure Tg.  IGC is preferable 
over the other methods if moisture is known to act as a plasticizer since tests 
can be conducted at a constant relative humidity. 
Liquid bridging occurs when moisture accumulates at the contact points 
between adjacent particles.  The likelihood of liquid bridging can often be 
inferred from a powder’s moisture sorption isotherm, which relates relative 
humidity (RH) or activity, which is RH expressed as a fraction, and 
equilibrium moisture content.  Examples of moisture isotherms that are 
characteristic of bulk materials prone to caking are shown in Figure 7.25. 

 
Figure 7.25.  Example isotherms. 
The Type II moisture isotherm is typical when moisture adsorbs onto the 
surface of a solid particle.  It is initially linear as water molecules are 
adsorbed until a monolayer is formed.  The effect of moisture on caking is 
generally negligible in this region.  As relative humidity increases, multi-
layer adsorption takes place as a consequence of hydrogen bonding.  In this 
region, the slope of the isotherm is initially shallow but steepens with 
increasing relative humidity.  As moisture uptake increases, the particles 
become surrounded by moisture.  If the solids are water soluble, the layer of 
moisture can be viscous, and the bulk material may become cohesive.   
The third region occurs at high relative humidity, where the equilibrium 
moisture content increases dramatically.  In this region, most of the 
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incremental condensation takes place at the contact points between particles.  
This phenomenon is known as capillary condensation.  The moisture content 
at this inflection point on the isotherm is sometimes called the critical 
moisture content or CMC, and its corresponding equilibrium relative 
humidity is the critical relative humidity or CRH.  The CRH is also the ratio 
of the water vapor pressure over a saturated solution of the solid to the vapor 
pressure of pure water, times 100.  Exceeding the critical moisture content 
or CRH likely will result in caking, and über caking if the solid is at least 
partially soluble in water and solid bridges form if the moisture evaporates. 
The Type III isotherm shown on the right is concave upward from the get go 
and is characteristic of powders that are readily soluble in water.  Moisture 
not only adsorbs onto the surface; it also readily penetrates inside. The 
moisture content or RH at which caking can be expected may not be 
obvious. 

Water is a universal plasticizer. An increase in a powder's moisture content 
or activity or an increase in the relative humidity of the interstitial and 
surrounding air can lower the material's glass transition temperature. The 
glass transition temperature as a function of relative humidity can be 
determined by inverse gas chromatography  (IGC). 
There are other types of isotherms. The Type II is frequently modeled by the 
Guggenheim, Anderson, and de Boer equation and Type III is often 
described by Flory-Huggins.  Other models, such as one derived by Valdez, 
Paredes, Vargas-López, and Hernández [Food and Nutrition Sciences, 5, 
153 (2014)], can be used to describe complex isotherms.  I haven’t run the 
statistics, but I'm fairly certain that there is a correlation between the number 
of authors of a model and the number of its empirical parameters. 
Conditions that can lead to moisture-induced caking can frequently be 
gleaned from moisture sorption tests and glass transition temperature 
measurements.  The critical relative humidity or the relative humidity that 
causes the glass transition temperature of a powder to fall below its storage 
temperature can be correlated with the powder’s moisture content through 
its moisture sorption isotherm.  This moisture level can serve as a spec that 
should not be exceeded. 
Any moisture limits to avoid caking that are based on equilibrium moisture 
content should account for the possibility of moisture migration.  This 
occurs when a temperature gradient exists during packaging, storage, or 
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transit of powders.  The mechanism of caking due to moisture migration is 
as follows: 

• The relative humidity of the interstitial air at the warm boundary 
decreases. 

• As a consequence, moisture desorbs from the warmer solids, as the 
solids and interstitial air are no longer in equilibrium. 

• The absolute humidity of the interstitial air increases. 

• The driving force in the gas phase leads to moisture migration toward 
the interior, which has a lower absolute humidity. 

• The relative humidity of the cooler interstitial air increases. 

• Moisture adsorbs onto solids in the interior in an effort to re-establish 
equilibrium. 

Moisture migration is illustrated in Figure 7.26. 
 

 
Figure 7.26.  Schematic describing moisture migration. 
An analysis can be performed to determine the moisture distribution in a 
bulk solid that will result if a temperature gradient (e.g., if product pack-out 
temperatures exceed storage temperatures or if storage temperatures vary) is 
imposed.  One assumes that the temperature gradient remains constant.  
Since this is not true, the analysis results in a conservative view of possible 
conditions that can exist if temperature differences were to remain for an 
extended time. 
The analysis is as follows.  If a bulk solid were exposed to a warm surface 
(temperature = TH) on one side and a cool surface (temperature = TC) on the 
other, the temperature profile at steady state would be given by: 

                    (7.15) 
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where z is the ratio of the distance from the cold surface to the distance 
between the hot and cold surfaces. 
At steady state, the concentration of water in the interstitial air Cw, is 
constant.  The vapor phase moisture concentration (Cw,) is the product of the 
absolute humidity H and the dry air density ρa:	

 Cw = ρa H                         (7.16) 

The relative humidity RH is related to absolute humidity by 

                         (7.17) 

where Pt and are the total pressure and saturation pressure of pure 

water, respectively.  Due to the temperature gradient, the relative humidity 
of the interstitial air will vary.  As a result, the amount of condensed 
moisture that is in equilibrium with the interstitial air will also vary.  The 
relationship between the solid’s equilibrium moisture content X and the 
relative humidity of the interstitial air RH is given by the material’s 
isotherm.  Since the amount of moisture in the gas phase is negligible 
compared to that in the solid, the total amount of moisture in the solid after 
migration can be assumed to be equal to the initial solid moisture content X0, 
i.e., 

                      (7.18) 

A specification for a bulk material’s moisture content that, if exceeded, 
causes caking (as determined from unconfined yield strength measurements) 
can be determined by finding the value of Cw that satisfies Equations 7.17 
and 7.18 and the material’s moisture isotherm. 
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Pneumatic conveying 

Facilities that handle bulk solids invariably need to transport material from 
one location to another.  It is usually advantageous to have various storage 
vessels and equipment at different elevations so that gravity can do the job.  
In many cases, however, powders must be transported horizontally or 
vertically upward, which requires the use of conveyors such as screw, belt, 
and tubular conveyors, hoists and bucket elevators, or pneumatic conveying 
lines. 

Pneumatic conveying is the transfer of particulate solids in a gas stream.  
Compared to other conveying technologies. pneumatic conveying offers a 
number of advantages, including: 

• Flexibility in layout. 
• Discharge to and pick-up from multiple locations. 
• Dust-free operation. 

Pneumatic conveying systems do have some disadvantages, however, such 
as: 

• High power requirements. 
• Abrasive wear, especially in elbows. 
• Attrition of particles. 

Systems operating above atmospheric pressure are known as pressure 
systems or sometimes push systems since material is “pushed” from a pick-
up point to a destination point.  Conversely, systems operating below 
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atmospheric pressure suck.  They are known as vacuum systems or pull 
systems.  Pull systems can have multiple feed points, but their overall 
pressure drop is limited to 1 atm.  Push systems allow a greater overall 
pressure drop, are able to accommodate multiple destination points, and can 
provide higher capacities at longer distances.  Push and pull pneumatic 
conveying systems are shown in Figures 7.36 and 7.37, respectively.   

Pneumatic conveying systems can be classified into two divisions: dense-
phase and dilute-phase.  The divisions are sometimes ambiguous, but often 
they can be inferred from a state diagram.  A state diagram, also known as a 
Zenz diagram, plots pressure gradient against superficial gas velocity when 
solids are conveyed in a horizontal pipe.  Figure 7.38 is an illustration of a 
state diagram. 

At high gas velocities, the system is operating in dilute phase.  As the gas 
velocity is decreased, the pressure gradient decreases until a minimum is 
reached.  This critical velocity corresponds to the system’s saltation 
velocity, the velocity that must be exceeded to keep the solids moving.  Past 
this point, any reduction in gas velocity will result in an increased pressure 
drop due to a dramatic deposition of solids.  With some solids, but not all, 
material can still be conveyed at low gas velocities in dense phase as slugs 
or dunes. 

 

Figure 7.36.  Pressure system. 
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Figure 7.37.  Vacuum system. 

 

Figure 7.38.  State diagram. 

The state diagram can be expanded to give the relationship between the 
pressure gradient, superficial gas velocity, and solids feed rate.  Consider the 
system described in Figure 7.39 operating with solids mass flow rates of Ws1 

< Ws2 < Ws3.  You would think that increasing the gas velocity would allow a 
greater solids feed rate. However, the maximum permissible pressure drop is 
limited by the gas mover.  If the system gas velocity is instead reduced from 
point A to point B, you’ll be able to increase the solids mass flow rate from 
Ws1 to Ws3.  By lowering the gas velocity, additional solids can be conveyed, 
which is somewhat counterintuitive.  Unfortunately, many engineers 
wanting to stretch conveying capacity will buy a bigger blower, only to find 
that the maximum possible solids feed rate is now lower.  Sad! 
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Each of the curves of the state diagram has a minimum.  Constructing a line 
through the minima gives a pressure minimum curve, from which the 
minimum conveying velocity can be inferred.  When coarse particles are 
conveyed, saltation usually occurs at the pressure minimum.  With fine 
particles, saltation often occurs before the minimum pressure point.  The 
pressure minimum curve also gives the optimal operating condition from an 
energy consumption perspective.  Note that as the solids become dilute, the 
shape of the curves of the state diagram resemble that of the curve 
representing gas flow with no solids.   

 

Figure 7.39.  Optimization of conveying system. 

Saltation velocity 

The saltation velocity is the superficial gas velocity that must be exceeded to 
ensure that the solids will be conveyed.  It is best determined by testing on a 
pilot pneumatic conveying system.  Design equations exist, but they are best 
used for developing a preliminary design or troubleshooting existing 
systems. 

The Rizk equation is frequently used:  
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where vs is the saltation velocity, Ws is the solids mass flow rate, g is 
acceleration due to gravity, D is the pipe diameter, ρg is the density of the 
drying gas, A is the pipe cross-sectional area, and δ and κ are parameters 
given by the following equations: 

δ =1.44dp +1.96             (7.54) 

κ =1.1dp + 2.5                   (7.55) 

where dp is the particle diameter.  Equations 7.54 and 7.55 are dimensional 
with dp in millimeters.  The accuracy of the Rizk equation is approximately  
± 50 percent, so using the Rizk equation can be “Rizky”.   

For fine particles, Matsumoto’s method is used to calculate solids loading 
ratio at saltation ϕs, i.e., the ratio of the solids mass flow rate Ws to the gas 
mass flow rate Wg.  The solids loading ratio is also called the phase ratio.  
The saltation velocity depends on the value of a critical particle diameter 
d*p, which is calculated from 

dp
*

D
=1.39
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                                  (7.56) 

where ρs is the particle density.   

For dp ≥ d*p,  

φs = 0.373
ρs
ρg

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1.06
ut

10 gdp

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−3.7
vs

10 gD

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

3.61

                (7.57) 

where the terminal velocity ut can be estimated from 

ut =1.74
gdp (ρs − ρg )

ρg
                                      (7.58)  

For dp < d*p, 



188 

φs = 0.556
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                               (7.59) 

The saltation velocity vs is related to ϕs by 

vs =
Ws

φsρgA
                                              (7.60) 

In general, the recommended minimum conveying velocity is at least twenty 
percent greater than vs to avoid plugging or unstable conveying.  
Representative minimum conveying velocities are listed in Table 7-1 
(Glinzing et al., Pneumatic Conveying of Solids – A Theoretical and 
Practical Approach, Springer, New York, 2010).  Note that the velocities 
given in the vacuum conveying column are probably greater than necessary. 

In some applications, there can be a maximum allowable conveying 
velocity, since high velocities can result in excessive abrasive wear, particle 
attrition, or the formation of streamers or angel hair (see Figure 7.40). 

For vertical lines, choking, which occurs when solids cannot be carried 
upward, must be avoided.  The choking velocity can be calculated from 

vc = 32 gdp Re p
−0.06φ0.28                                (7.61) 

The particle Reynolds number Rep is given by 

Re p =
ρgutd p
η

                                          (7.62) 

Other equations exist, but because the choking velocity is usually lower than 
the saltation velocity, the saltation velocity vs is generally used in the design 
of dilute-phase pneumatic conveying systems. 
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Table 7-1 
Representative Minimum Conveying Velocities 

Material 
Bulk 

Density 
(kg/m3) 

Particle 
Size  
(μm) 

Min. ug 
Push 

Systems 
(m/s) 

Min. ug 
Pull 

Systems 
(m/s) 

Coal 720 13000 15 - 
Coal 720 6000 12 - 

Wheat 750 5000 12 - 
Polyethylene 480 3000 12 - 

Cement 1400 90 7.6 - 
Flour 560 150 4.6 - 

Pulverized Coal 720 75 4.6 - 
Pulverized Coal 720 150 4.6 - 

Salt 1400 150 9.1 - 
Alumina 930 110 7.6 - 

Magnesite 1600 75 9.0 - 
Uranium Dioxide 3500 75 18 - 
Sodium Sulfate 1400 110 12 - 

Alumina 800 - 20 34 
Calcium Carbonate 440 - 20 34 

Coffee Beans 670 - 14 23 
Hydrated Lime 480 - 12 27 

Malt 450 - 17 30 
Oats 400 - 17 30 
Salt 1400 - 25 37 

Starch 640 - 17 27 
Sugar 800 - 18 34 
Wheat 770 - 17 32 

 

Figure 7.40.  Angel hair from pneumatic conveying line (left) and my 
local grocery store (right). 
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Pressure drop 

The procedure for designing a pneumatic conveying system is similar to that 
used to analyze compressible flow through a pipe.  Contributions to the 
overall pressure drop ΔPtotal include that of the conveying gas ΔPgas, 
acceleration of the solids ΔPacc, lifting the solids ΔPlift, deceleration and 
reacceleration around elbows ΔPbend, solids friction ΔPsolids, and the gas-
solids separator ΔPseparation: 

ΔPtotal = ΔPgas +ΔPacc +ΔPlift +ΔPbend +ΔPsolids +ΔPseparation    (7.63) 

The greater the total pressure drop, of course, the greater the power 
requirements of the gas mover.  For low overall pressure drops, a radial-
blade centrifugal fan can be used.  For greater pressure drops, Roots-type 
blowers are commonly used.  Compressors must be used when pressure 
differentials exceed ca. 1.2 bar. 

Gas pressure drop 

The gas-only pressure drop is calculated using customary methods based on 
the friction factor f and the velocity head ug

2/2g: 

ΔPgas = f
ρgug

2

2
L
D

             (7.65) 

where L is the length of the pipe.  A handy equation explicit in f is the 
Sacham equation: 
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               (7.66) 

where Re is the Reynolds number and ε/D is the relative roughness of the 
pipe.  The Reynolds number is 

Re =
ρgugD
η

          (7.67) 

where η is the viscosity of the conveying gas.   
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Acceleration pressure drop 

The pressure drop that results from acceleration of the gas and solids can be 
calculated using a method given by Glinzing et al.: 

ΔPacc =
ρgug

2

2
1+ 2φ

up
ug
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                                   (7.68) 

where up is the particle velocity and the phase ratio ϕ is given by 

φ =
Ws

ρgAug
                    (7.69)          

The particle-to-gas-velocity ratio can be calculated by a relation given in 
Barton Hinkle’s Georgia Tech PhD dissertation: 

up
ug

=1−0.044dp
0.3ρs

0.5            (7.70) 

or the IGT correlation 

up
ug

=1−0.68dp
0.92ρs

0.5D−0.54ρg
−0.2                          (7.71) 

Equations 7.70 and 7.71 are dimensional.  The units for dp are meters and 
the units for density are kg/m3.  The units of velocity are m/s. 

Lift pressure drop 

The pressure drop due to lift is given by 

ΔPlift = [ερg + (1−ε)ρs ]gΔz                  (7.72) 

where  

ε =1−
Ws

ρsAup
          (7.73) 

Equation 7.70 or 7.71 is used to calculate the particle velocity up. 
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Bend pressure drop 

Instead of using equivalent lengths, which is frequently done in the analysis 
of fluid flow in pipes, the pressure drop in elbows in pneumatic conveying 
systems is calculated separately for each elbow.  As solids enter a bend, they 
tend to form a rope of material that slides along the outer wall of the elbow.  
This causes the solids to decelerate, but then they reaccelerate when leaving 
the bend.   

The bend pressure drop can be calculated from 

ΔPbend = B(1+φ)
ρgug

2

2
                    (7.74) 

where B is the bend factor.  The bend factor depends on R/D, the ratio of the 
bend radius to the pipe diameter, as given in Table 7-2. 

Table 7-2 
Bend Factors 

R/D   B 
2 1.50 
4 0.75 
≥ 6 0.50 

Solids friction pressure loss 

The equation used to calculate the pressure drop due to friction is similar to 
the equation for calculating the gas pressure drop except that the phase ratio 
ϕ is included: 

ΔPsolids = φ fs
ρgug

2

2
L
D

                (7.75) 

where fs is the solids friction factor.  For horizontal conveying, the solids 
friction factor is given by 

fs = Kφ
aFrbFrs

c D
dp
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                      (7.76) 
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where the Froude numbers Fr and Frs are given by13 

Fr =
ug
2

gD
                                               (7.77) 

and 

Frs =
ut
2

gdp
                     (7.78) 

and K, a, b, c, and d are parameters given in Table 7-3. 

Table 7-3 
Solids Friction Factor Parameters 

Constant > 500 µm   < 500 µm   
K 0.082 2.1 
a -0.3 -0.3 
b -0.86 -1 
c 0.25 0.25 
d 0.1 0.1 

For vertical conveying, 

fs =
ug

1200up
+
2ug
upFr

            (7.79) 

In most cases, the relationship between the differential pressure of the 
separator and the volumetric flow rate of the gas is provided by the 
equipment vendor.  Bag filters are the most common, and the differential 
pressure in most units range ranges between 2 and 8 in. H2O (500 - 2000 
Pa).  Bag filter suppliers generally shoot for an air-to-cloth ratio based on 
the gas volumetric flow rate and the particle size of the solids that gives an 
acceptably low pressure drop.  In most cases, solids loading does not come 
into play. 

                                                
13  Not a typo!  The Froude number is typically defined as the velocity divided by 

the square root of the product of g and the diameter, but not in this case.  
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Some things to consider 

If a positive displacement blower is to be used, blow the dust off your 
thermodynamics book and look up the adiabatic temperature rise formula.  
The gas density is inversely proportional to the absolute temperature and 
coolers may be necessary to prevent problems that stem from high 
temperatures such as the creation of angel hair. 

The terms SCFM (standard cubic feet per minute) and Nm3/hr (normal cubic 
meters per hour) can be confusing.  A standard cubic foot is the volume of a 
gas at 1 atm pressure and 60°F, while a normal cubic meter is its volume at 
1 bar and 0°C.  Chemists, bless their hearts, prefer to use STP (standard 
temperature and pressure) where the temperature is equal to 0°C and the 
pressure equals 1 atm.  Always be sure that you are using actual volumes in 
your calculations. 

The gas mass density can be calculated from the ideal gas law: 

ρg =Mg
P
RT

                  (7.80) 

where Mg is the molecular weight of the gas (29 kg/kmol for air), P is the 
pressure, R is the ideal gas constant, and T is the absolute temperature.  
(Don’t forget to add 460 if your temperature is in degrees Fahrenheit or 273 
if it is in degrees Canadian.) 

The recommended radius of a bend is 4 to 6 times the pipe diameter.  
Abrasive wear of pneumatic conveying lines and attrition of particles are 
more likely at elbows.  Products such as Hamertek’s Smart Elbow deflect 
solids away from the curved walls.  Blind tees are simpler but suffer from 
high pressure drops.   

A horizontal pipe section should follow the solids feed point.  The distance 
between the feed point and the first bend should be 25 to 50 times the pipe 
diameter to allow acceleration of the solids. 

The end of the line has the lowest pressure and therefore the highest 
velocity.  Some systems are stepped, that is, the pipe diameter of 
downstream sections are higher to lower the gas velocity and reduce wear 
and attrition and to reduce the overall pressure drop and gas mover power 
requirements. 
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Sloping sections are not recommended as they can cause instabilities, 
especially at low gas velocities.  Instead, horizontal and vertical runs should 
be used.  The number of bends should be kept at a minimum to prevent too 
great of a pressure drop, and bends should not be placed close to each other. 

Example 

Design a dilute-phase pneumatic conveying system that can handle a coarse 
powder made up of 2-mm diameter particles having a particle density of 950 
kg/m3.  The propsed layout is drawn in Figure 7.41.   The solids feed rate is 
5,000 kg/hr.  The gas temperature is 20°C.    

 

Figure 7.41.  Proposed dilute-phase conveying system. 

Step 1.  Calculate saltation and conveying velocity.  Since the particles are 
large, use the Rizk equation with δ = (1.44)(2) + 1.96 = 4.84. and κ = 
(1.1)(2) + 2.5 = 4.7.  We need the gas pressure, but for now, let’s use the 
ideal gas law to calculate the density at 1 bar, 20°C.   We’ll check our result 
later. 

We need to specify a pipe diameter.  Let’s choose a 4-in. diameter Schedule 
40 pipe.  We’ll see if it gives us a reasonable pressure drop. 

vs = {1.39([(9.81)(0.102)]1/2)4.7(104.84)/[(1.2)(0.00214)]}1/5.7 = 16.8 m/s 

Conveying velocity ug = (1.2)(16.8) = 20.2 m/s 

Feed Point

Separator

Air Mover

10 m 10 m

20 m

5 m
D/R = 4

1 2 3

4

5

6 7 8

D/R = 4

4½
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Step 2.  Confirm with bag filter supplier that ΔPseparation = 1000 Pa (4 in. 
H2O), i.e., ΔP7-8 = 1000 kPa. (Refer to Figure 7.41 from here on out.) 

Step 3.  Calculate pressure drop in horizontal line feeding separator.  

Re = (1.2)(19.4)(0.102)/1.84E-5 = 1.3E4 

Using ε/D = 0.0002 in the Sacham equation gives f = 0.018.   

ΔPgas6-7 = (0.018)(1.2)(20.2)2(5)/[(2)(0.102)] = 440 Pa 

Solids loading ratio ϕ = Ws/Wg = 1.39/[(1.2)(20.2)(0.00214)] = 1.39/0.198 = 
7.0.  Fr = (20.2)2/[(9.81)(0.102)] = 407 

ut = (1.74)[(9.81)(0.002)(950-1.2)/1.2]1/2 = 6.85 m/s  

Frs = (6.85)2/[(9.81)(0.002)] = 2390   

fs = (0.082)(7)-0.3(407)-0.86(2390)0.25(0.102/0.002)0.1 = 0.0027 

ΔPsolids6-7 = (7)(0.0027)(1.2)(20.2)2(5)/[(2)(0.102)] = 227 Pa 

ΔP6-7 = ΔPgas6-7 + ΔPsolids6-7 = 440 + 227 = 670 kPa 

ΔP6-8 = 1000 + 670 = 1670 Pa 

Step 4.  Calculate pressure drop in bend.  With D/R = 4, use B = 0.75. 

ΔP5-6 = (0.75)(1+7)(1.2)(20.2)2/2 = 1470 Pa 

ΔP5-8 = 1470 + 1670 = 3140 Pa 

Step 5.  Calculate pressure drop in vertical line.  The line is rather long, and 
compared to horizontal conveying, the solids friction factor for vertical 
conveying is relatively large.  Therefore, let’s separate it into two 10-m long 
sections. 

Since we are dealing with compressible flow, check the gas density.  At 
3140 Pa gauge, ρg = 1.25 kg/m3; ug = 20.1 m/s 

Upper section:  ΔPgas4½-5  = (0.018)(1.25)(20.1)2(10)/[(2)(0.102)] = 450 Pa 

up/ug = 1 – (0.044)(0.002)0.3(950)0.5 = 0.79 

fs = 1/[(1200)(0.79)] + 2/[(0.79)(403)] = 0.0073 

ΔPsolids4½-5 = (7)(0.0073)(1.25)(20.1)2(10)/[(2)(0.102)] = 1270 Pa 

Pressure drop due to lift: ε = 1 – 1.39/[(950)(0.00817)(0.79)(20.1)] = 0.989 
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ΔPlift4½-5 = [(0.989)(1.25) + (1 - 0.989)(950)](9.81)(10) = 1150 Pa 

ΔP4½-5 = 450 +1270 + 1150 = 2870 Pa; ΔP4½--8 = 3140 + 2870 = 6010 Pa 

Similar calculations are performed for the lower half of the vertical section, 
but this time use ρg = 1.3 kg/m3; ug = 19.9 m/s to account for the higher gas 
pressure. 

ΔPgas4-4½  = 460 Pa;  ΔPsolids4-4½ = 1320 Pa; ΔPlift4-4½  = 1180 Pa 

ΔP4-4½ = 2960 Pa; ΔP4-5 = ΔP4-4½ + ΔP4½-5 = 5830 Pa; ΔP4-8 = 8970 Pa                           

Step 6.  Bend at lower elevation.  You know the drill; same as last time, but 
this time set the gas density equal to 1.6 and the gas velocity equal to 18.4 
m/s.  ΔP3-4 = 1550 Pa; ΔP3-8 = 10520 Pa  

Step 7.  Calculate pressure drop in horizontal line following feed point.  
Calculate the pressure drops due to gas flow and solids flow as before, but 
for this section, we also need to determine the pressure drop due to the 
acceleration of the solids.  Keep ρg equal to 1.3 kg/m3 and ug equal to 19.9 
m/s. 

ΔPgas2-3 = 460 Pa; ΔPsolids2-3 = 480 Pa  

ΔPacc2-3 = [(1.3)(19.9)2/2] [1 + 2(7)(0.79)] = 2990 Pa 

ΔP2-3 = 3930 Pa; ΔP2-8 = 14450 Pa 

We should recalculate the saltation velocity to confirm that our conveying 
velocity is okay at the higher pressure. The Rizk equation gives vs = 16.6 
m/s, so we should be fine if we don’t worry about the imprecision of the 
Rizk equation.  Again, it’s best to conduct trials on a vendor’s test rig.  

Step 8.  Calculate pressure drop between air mover and feed point.  At last, 
an easy one!  All we need to determine is the pressure drop due to air flow 
alone.  With the higher pressure, we need to set ρg equal to 1.4 kg/m3 and ug 
equal to 19.7 m/s. 

ΔP1-2 = ΔPgas1-2 = 470 Pa 

ΔP1-8 = 14920 Pa = 2.2 psi   

Results are summarized in Table 7-4. 
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Table 7-4 
Pressure Drop Calculation Summary 
Section   ΔP (Pa) 

7-8 1000 
6-7 670 
5-6 1470 
4-5 5830 
3-4 1550 
2-3 3930 
1-2     470 

Overall (1-8) 14920 

The results show that the vertical lifting and acceleration of the solids are 
major contributions to the overall pressure drop.  Also note that bends also 
give relatively large pressure drops, which is one of the reasons why their 
number should be minimized. 

Our choice of a 4-in. nominal diameter pipeline gave us a reasonable 
pressure drop.  If we had instead chosen a 2-in. nominal diameter pipe, our 
calculated pressure drop would have been 52 kPa (7.5 psi).     

Dense-phase conveying 

While design methods for dilute-phase pneumatic conveying systems are 
well developed, methods for designing dense-phase systems are 
considerably less defined.  Installing a dense-phase conveying system 
without first conducting tests is risky, as trials need to be conducted to 
determine the appropriate pipe diameter and gas-loading ratio and the 
location and number of boosters, devices that introduce additional gas into 
the conveying pipeline.  Compared to dilute phase, dense-phase conveying 
is gentle and should be considered for transport of friable particulate solids. 

Transfer chutes 

Chutes are used to direct the flow of bulk solids.  Unlike bins, they 
(generally) do not have converging walls and are not completely filled with 
the bulk solid.  They need to be properly designed to avoid problems such as 
plugging, excessive wear, dust generation, and particle attrition. 

A chute must be sufficiently steep and low enough in friction to permit 
sliding and clean off.  Referring to Figure 7.42, the velocity of a stream of 
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particles (assuming no bouncing) after impacting a chute, V2, relative to its 
velocity before impact, V1 is: 

                  (7.81) 

where θ is the impact angle and ϕ’	is the wall friction angle.		

	
Figure 7.42.  Velocity of a particle after impact on a chute.		

If the particles fall freely when they are dropped onto the chute, their 
velocity before impact V1 is its free-fall velocity: 

                               (7.82) 

where H is the drop height.   

If the sum of ϕ’ and θ equals 90°, the value of V2 in Equation 7.81 is equal to 
zero, and the bulk material will not slide on the chute surface unless its 
angle of inclination is greater than a minimum value.  To determine the 
minimum chute angle required to overcome adhesion at impact, chute tests 
described by Stuart and Royal [Bulk Solids Handling, 12, 3, 447 (1992)] can 
be performed.  A sample of the bulk material is loaded onto a wall coupon 
and a load representing the impact pressure is briefly applied.  The impact 
pressure σ is approximately equal to 

                  (7.83)	

The coupon is inclined about a pivot point until it just starts to slide.  
Usually a safety factor of 5° is applied to this minimum value to ensure 
clean off; if 10° greater than the minimum, the chute will remain cleaner 
than a Doris Day’s greatest hits album. 

V2 =V1(cosθ − sinθ tan !φ )

  
θ

V1

V2

V1 = 2gH

σ ≈ ρbV1
2 sin2θ



200 

While sliding on a straight surface, the particles will accelerate or 
decelerate, depending on the relative values of the chute angle α measured 
from horizontal and the wall friction angle ϕ’ (see Figure 7.43): 

                   (7.84) 

where a is the acceleration.   

 

Figure 7.43.  Element of bulk solid sliding on a straight chute. 

With a little effort, Equation 7.84 can be rewritten as  

a = g cosα(tanα − tan ʹφ )               (7.85) 

which shows that if you want to be certain that the velocity of the particles 
does not fall to zero, you should set the chute angle α greater than the angle 
of wall friction ϕ’, say 5-10° greater to be safe. 

Of course it’s okay for acceleration to be negative.  In fact, too high a 
velocity can lead to the formation of dust.  Also, if for example, you are 
discharging the material onto a moving conveyor belt, it is prudent to aim 
for a final velocity somewhat close to the belt speed.  You just don’t want 
the velocity to equal zero!  Assuming that the chute cross section does not 
decrease along a distance S on the chute surface, the stream velocity V is 
given by: 

                              (7.86) 

where V0 is its velocity at the chute entrance.   

When the velocity of the stream changes as it passes through a chute, the 
stream’s cross-sectional area will change.  To prevent flow stoppages, the 
chute should be sized such that it is no more than about one-third to one-half 
full at its minimum velocity.   

a = g(sinα − cosα tan ʹφ )

 
α

mg

mg cos α tan φ'

V = V0
2 + 2aS
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While chutes can be fabricated and installed in rectangular sections, having 
curved surfaces upon which the material slides is advantageous.  Chutes 
fabricated from cylindrical pipes or having rounded surfaces control the 
stream effectively, as they can be used to center the material allowing its 
momentum to keep the chute clean.  The path that the bulk material will 
flow depends on its frictional properties and flow rate.   

Flow onto a curved chute is illustrated in Figure 7.44.  Dynamic equilibrium 
of forces gives 

dV
dθ

+V tan2 ʹφ =
gR
V
(cosθ − tan ʹφ sinθ )                     (7.87) 

where R is the radius of the “spoon” and θ is the angular coordinate. Fritella 
and Smit (search for “Chute Design Essentials” on bulk-online.com) found 
an analytical solution for a constant radius and wall friction angle: 

V =
2gR

4 tan2 ʹφ +1
(1− 2 tan2 ʹφ )sinθ +3tan2 ʹφ cosθ⎡
⎣

⎤
⎦+ exp(−2θ tan ʹφ )  

• Vi
2 −
6 tan ʹφ gR
1+ 4 tan2 ʹφ

⎡

⎣
⎢

⎤

⎦
⎥                                                                          (7.88) 

 

Figure 7.44.  Element of bulk solid sliding on a curved chute. 

 

When designing chutes with complicated geometries or when the solids fly 
off a belt before they enter the chute, Discrete Element Method (DEM) 

θ 

Vi	

V	
mg	

R	Mg	sinθ tan	φ’		
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models should be used.  Rocky DEM is a good provider of DEM simulation 
tools.  

Free fall height and sudden changes in the direction of material flow should 
be minimized to reduce solids impact pressures, which can result in attrition, 
abrasive wear, and dust generation.  Since impact pressure is proportional to 

sin2θ and , reducing the impact angle and drop height will reduce wear, 

and the momentum of the flowing material will keep the chute surface 
cleaned off.  Short drop heights also reduce the risk of segregation due to 
differences in particle velocities.  

Dust is created when air is entrained into the flowing material.  To avoid 
creation of dust, the chute should be designed to ensure that the material 
remains in contact with the chute surface, the material stream is 
concentrated, and the velocity through the chute remains nearly constant.  If 
the material is to land on a belt conveyor at the exit of the chute, the velocity 
of the stream should be in the direction of and equal to or greater than the 
belt velocity. 

Attrition of friable particles is most likely to occur at impact points where 
the impact pressures are high. Therefore, attrition can be reduced by 
minimizing the impact angle θ, maintaining a constant stream velocity, and 
ensuring that the flowing stream is concentrated and remains in contact with 
the chute surface. 

One final note: I enjoy skiing, but I struggle whenever I attempt to 
snowboard.  My nephew reminded me that I used to skateboard when I was 
in college and wondered why snowboarding was more challenging.  I 
showed him Equation 7.85 and pointed out that the formula had two terms: 
α, which is related to the slope, and ϕ’, which is related to friction.  When I 
was on a skateboard, the slope was shallow and the friction was high.  My 
acceleration was therefore manageable.  On a snowboard, however, the 
slope is high and the friction is low.  Consequently, my acceleration could 
be quite high, and the only time it wasn’t high was when I fell because the 
friction between my ass and the snow was much greater than the friction 
between my snowboard and the snow (see Figure 7.45).  I still suck at 
snowboarding, but my nephew knows how to design transfer chutes. 

V1
2
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Figure 7.45.  Analogy between chute design and snowboarding.   
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