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Shear cell testers can be used to measure the fundamental 

flow properties of bulk materials, which are cohesive 

strength, internal friction, compressibility (bulk density), 

and wall friction.  From the test results, Andrew Jenike’s 

analyses can be used to design reliable hoppers, bins, and 

silos that will not have obstructions to flow, i.e., arches and 

stable ratholes, or to predict the solids flow behavior in 

existing equipment [1]. 

Not only must the outlet of a hopper be large enough to 

prevent an obstruction to flow, it must also be sized to allow 

the desired discharge rate.  It is well known that the velocity 

of a fluid through an orifice at the bottom of a tank is 

proportional to the square root of the depth h: 

               (1) 

where v is the velocity and g is acceleration due to gravity.  

For solids, stresses are not proportional to the depth but 

instead are proportional to the outlet dimension B.  

Therefore, one would expect: 

           (2) 

Since the cross-sectional area A of a round outlet is 

proportional to the square of the diameter B, the discharge 

rate from a conical hopper can be expected to be 

proportional to the outlet diameter to the 5/2 power, i.e., 

              (3) 

Experience has shown that this is not quite true, and several 

investigators therefore suggest using an effective outlet 

diameter.  The most common formula for calculating 

discharge rates is the Beverloo equation [2]: 

                 
 (4) 

where C and k are empirical parameters.  Such an approach 

is philosophically unsatisfying, especially since a similar 

formula based on engineering fundamentals can be derived. 

If only inertial and gravitational forces are included, a force 

balance on a bulk solid in a converging hopper is      

         (5) 

where a is the acceleration of the solids.  Defining time and 

spatial coordinates t and z, respectively, and employing 

some calculus gives 

         (6) 

Equation 5 can then be rewritten as 

            (7) 

From continuity (and assuming a constant bulk density), 

d

dz
(Av) = v

dA

dz
+ A
dv

dz
= 0             (8) 

dv

dz
= -
v

A

dA

dz
                (9) 

Substitution of Equation 9 into Equation 7 gives 
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Now consider a conical hopper with walls sloped at an angle 

 from vertical (see Figure 1).  For a conical hopper with a 

circular outlet, 
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where the subscript o denotes the hopper outlet.  Then 
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and solving for vo gives 
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Figure 1.  Hopper geometry.  

The mass discharge rate  is equal to the product of the 

velocity, bulk density b, and cross-sectional area of the 

outlet: 

                                            

                       (17) 

which is consistent with the expected B5/2 relationship 

between the outlet diameter and the solids mass discharge 

rate.  Comparison of Equations 4 and Equation 17 suggests 

that  
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For a flow channel angle of 20°, Equation 18 gives a value 

of C equal to 0.65, which is comparable to the value of 0.58 

in Beverloo’s original paper. 

For hoppers with slotted outlets having an outlet width 

equal to B, a similar analysis gives 
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Comparison of Equations 16 and 19 shows that in general, 

v
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and 

      (21) 

where B is the diameter of a round outlet or the width of a 

slotted outlet, and m is equal to 1 for a circular opening and 

0 for a slotted outlet. 

Equations 20 and 21 do not account for the cohesive 

strength of the bulk solid.  To account for the supporting 

force on the abutments of an arch that develops over the 

outlet at its failure condition, Jerry Johanson [3] included a 

cohesive strength term in his force balance: 
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from which the following can be derived: 
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Johanson elegantly recast Equation 23 as 
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where ff is the flow factor (the ratio of the major principal 

stress (1) to the stress on the abutments of an arch) and ffa 

is the actual flow function defined by 
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where the solids stress of the outlet 1o was calculated from 

s
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Figure 2 plots the flow factor as a function of , which is 

valid for wall friction angles greater than about 12° and 

hopper angles in the neighborhood of the mass flow 

boundary [4].  

Following the same steps as before yields 
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Figure 2.  Johanson’s flow factor. 

Equation 28 is called the Johanson equation.  The Johanson 

equation can be used to determine the size of a hopper outlet 

required to provide the desired discharge rate of a coarse, 

cohesive bulk solid.  It is similar to the Beverloo equation, 

but it was derived from first principles.  In the case of a 

conical hopper, comparison of Equations 4 and 28 suggests 

that the term kdp is related to the powder’s cohesive 

strength. 

Johanson assumed that the angle of the slope of the failing 

arch was equal to 45°.  Jenike [5] noted that its angle is equal 

to  + , where   
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  is the effective angle of friction, and  is the wall friction 

angle.  In addition, Jenike [5] modified Equation 25 to 

account for the non-uniformity of the arch:  
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where H() is a function defined by Jenike [1] and is shown 

in Figure 3.  For a hopper with walls sloped at an angle equal 

to , Equations 22 and 23 can therefore be rewritten as 
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and 

 

Figure 3.  Jenike’s geometry function H(). 
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respectively. 

For fine powders, gas-phase effects cannot be neglected, 

and a pressure gradient term should be included in the force 

balance: 
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Flow of gas through a bed of material is described by 

Darcy’s Law: 
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where u is the gas slip velocity, P is the interstitial gas 

pressure and K is the permeability.  The permeability of a 



bulk material can easily be determined by measuring the 

pressure drop that results when a gas passes through a bed 

of solids.  From continuity of the gas and solids, Gu [6] 

derived the following relationship between the solids 

velocity and the gas slip velocity: 
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where the subscript mp denotes the location where the 

interstitial gas pressure is at a minimum and the pressure 

gradient is zero.   The pressure gradient is therefore related 

to the solids velocity by: 
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Substitution of Equation 36 into Equation 33 yields the 

following quadratic: 
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from which the solids discharge rate can be calculated from 

            (38) 

The solids stress where the gas pressure is at a minimum is 

difficult to calculate.  Kerry Johanson [7] noted that it is 

approximately equal to the maximum solids stress 1 in the 

cylinder section, which can be calculated from the Janssen 

equation: 
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where RH is the hydraulic radius, k is the ratio of the 

horizontal and vertical solids stresses in the cylinder  (i.e., 

the Janssen coefficient, which is equal to approximately 

0.4), and z is the depth of solids in the cylinder.  If the depth 

of solids in the cylinder section is low, the maximum solids 

stress can be estimated from 
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where D is the diameter of the cylinder.  The solids stress at 

the outlet is determined from 
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The solids velocity is calculated by first estimating the 

solids stress at the outlet and then using that value to 

calculate the bulk density, permeability, and unconfined 

yield strength at the outlet.  The outlet solids velocity vo is 

then calculated by solving Equation 37.  Knowing the 

velocity allows the pressure gradient to be calculated from 

Equation 36.  An updated value of the solids stress at the 

outlet can then be calculated from Equation 41.  The 

calculations are repeated until the correct value of σ1o is 

found.  The solids mass discharge rate is the product of the 

velocity, cross-sectional area, and bulk density at the solids 

stress at the outlet. 

Figure 4 compares solids discharge rates measured by Gu 

[8] with those predicted from Equations 37 and 38.  The 

author provided the relationships between the fundamental 

flow properties (cohesive strength, internal friction, wall 

friction, compressibility, and permeability) and solids stress 

for ten powders and measured solids discharge rates from 

conical hoppers filled to various depths.  The hopper 

consisted of a 15° (from vertical) cone with a 44.5- or 20-

mm diameter outlet and a 145-mm diameter cylinder.  The 

wall material of the hopper was polished galvanized steel. 

Predicted discharge rates and rates measured by Johanson 

[3] when ores were discharged from a 20° (from vertical) 

hopper with a 1.2-m diameter outlet are compared in Figure 

5.  An arbitrarily high permeability of 1.E5 m/s were used 

in the calculations as coarse powders were handled. 

The agreement is acceptable for design purposes, although 

a safety factor of, say, 20 percent should be employed if 

specifying the size of a hopper outlet that will provide the 

desired maximum steady solids discharge rate is critical. 

In the case of funnel flow, where the hopper walls are not 

steep enough given the wall friction to allow flow along the 

walls, the flow channel angle should be used in place of .  

The flow channel angle fc can be estimated from a relation 

adapted from Arnold [9]: 

q
fc

= 45°-0.5cos-1 1-sind

2sind

æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú

m

65°-0.5cos-1 1- sind

sind

æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú

m-1

      (38)                 

 

 



 

Figure 4.  Comparison of observed and predicted solids 

discharge rates – Gu data. 

 

Figure 4.  Comparison of observed and predicted solids 

discharge rates – Johanson data. 

By measuring a bulk material’s fundamental flow 

properties, i.e., its unconfined yield strength, internal 

friction, compressibility, wall friction, and permeability, the 

size of the outlet of a hopper, bin or silo required to allow 

the desired discharge rate can be specified.  Likewise, 

whether or not an existing storage vessel can meet the solids 

discharge rate requirements can be determined.  While the 

solids discharge rate data were obtained from experiments 

on a small-scale hopper, the model, which is based on 

fundamental principles, can be expected to provide a 

reasonable estimate for larger hoppers, bin, and silos. 
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