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Abstract—The Johanson equation, which predicts the 
discharge rate of coarse solids from hoppers, was modified to 
account for the adverse pressure gradient that can develop 
when fine powders are handled.  The modified equation 
agrees with published data. 
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Andrew Jenike’s pioneering work on bulk solids handling 
fundamentals [1,2] allows designers of hoppers to specify 
minimum outlet dimensions that prevent obstructions to flow.  
However, the calculations do not reveal if a hopper outlet will 
provide the desired solids discharge rate.  

The most common formula for calculating discharge rates 
from hoppers is the Beverloo equation [3]: 

!ms =Cρbg
1
2 B− kdp( )

5
2                             (1) 

where dp is the particle diameter, ρb is the bulk density (at the 
hopper outlet), g is acceleration due to gravity, and C and k are 
empirical parameters.  An empirical equation is philosophically 
unsatisfying, especially since a similar formula based on 
engineering fundamentals can be derived. 

When deriving his formula for calculating solids discharge 
rates from hoppers, Jerry Johanson [4] began with a force 
balance:
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where a is the acceleration of the solids, m = 0 or 1 for an 
elongated or round outlet, respectively, B is the width or 
diameter of the hopper outlet, and fC is the unconfined yield 
strength.  It can be shown that [4] 

a = −
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where θʹ is the hopper angle referenced from vertical and vo is 
the solids velocity at the outlet.  Equation 2 can then be 
rewritten as 
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Johanson elegantly recast Equation 4 as 
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where ff is the flow factor (the ratio of the major principal 
stress (σ1) to the stress on the abutments of an arch) and ffa is 
the actual flow function defined by 

  ffa =
σ1o
fC

                                         (6) 

where the solids stress of the outlet σ1o was calculated from 

σ1o = ff
ρbogB
m+1

                                     (7) 

Figure 1 plots the flow factor as a function of the effective 
angle of friction δ, which is valid for wall friction angles (φʹ) 
greater than about 12° and hopper angles in the neighbourhood 
of the mass flow boundary [5].  

 

 

 

 

 

 

 

 

 

 

Figure 1.  Johanson’s flow factor [5].  

Solving Equation 5 for vo gives 
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    The mass discharge rate !ms  is the product of the solids 
velocity and the cross-sectional area of the hopper outlet Ao: 
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Equation 10 is called the Johanson equation.  The Johanson 
equation can be used to determine the size of a hopper outlet 
required to provide the desired discharge rate of a coarse, 
cohesive bulk solid.  It is similar to the Beverloo equation, but 
it was derived from first principles.  Comparison of Equations 
1 and 10 suggests that the term C is related to the hopper 
geometry and kdp is related to the powder’s cohesive strength. 

     Johanson assumed that the angle of the slope of the failing 
arch was equal to 45°.  Jenike [1] noted that its angle is equal 
to β + θʹ, where   
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Hence,  

ff
ffa

=
2(m+1)cos ʹθ sin(β + ʹθ ) fC

ρbogB
                   (12) 

In addition, Jenike [1] modified Equation 7 to account for the 
non-uniformity of the arch:  

σ1o = ff
ρbogB
H ( ʹθ )

                                 (13) 

where H(θʹ) is a function defined by Jenike [1,2] 
approximately equal to 1 for a planar hopper with a slotted 
outlet and 2 for a conical hopper. 

1.0

1.3

1.6

1.9

2.2

2.5

20 30 40 50 60 70

Axisymmetric (Conical)
Planar

Fl
ow

 F
ac

to
r

Effective Angle of Friction (deg)



  

For fine powders, gas-phase effects cannot be neglected as 
vacuum develops inside the hopper, and therefore a pressure 
gradient term should be included in the force balance: 

2(m+1) tan ʹθ
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               (14) 

where dP/dz is the interstitial gas pressure gradient. 

Darcy’s Law describes flow of gas through a bed of 
material: 

u = − K
ρbg

dP
dz
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where u is the gas slip velocity and K is the permeability. From 
continuity of the gas and solids, Gu [6] derived the following 
relationship between the solids velocity and the gas slip 
velocity: 
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where the subscript mp denotes the location where the 
interstitial gas pressure is at a minimum and the pressure 
gradient is zero.   The pressure gradient is therefore related to 
the solids velocity by: 
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Substitution of Equation 17 into Equation 14 yields the 
following quadratic formula: 

2(m+1) tan ʹθ
Bg

⎡

⎣
⎢

⎤

⎦
⎥vo

2 +
1
Ko

1−
ρbo
ρbmp

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
vo +

ff
ffa

−1= 0        (18) 

from which the solids discharge rate can be calculated from 

!ms = ρboAovo                               (19) 

The solids stress where the gas pressure is at a minimum is 
rather cumbersome to calculate.  Kerry Johanson [7] noted that 
it is approximately equal to the maximum solids stress σ1 in 
the cylinder section, which can be calculated from the Janssen 
equation: 

σ1 =
ρbgRH
k tan ʹφ
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where ρb is the average bulk density, RH is the hydraulic radius, 
k is the ratio of the horizontal and vertical solids stresses in the 
cylinder (approx. equal to 0.4), and z is the depth of solids in 
the cylinder.  If the level of solids in the cylinder section is 
low, the maximum solids stress can be estimated from 

σ1 =
ρbgD

(m+1) tan ʹθ
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where D is the diameter or diagonal of the cylinder.  The solids 
stress at the outlet is determined from 
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The solids velocity is calculated by first estimating the 
solids stress at the outlet and then using that value to calculate 

the bulk density, permeability, and unconfined yield strength at 
the outlet.  The outlet solids velocity vo can then be calculated 
by solving Equation 18.  Knowing the velocity allows the 
pressure gradient to be calculated from Equation 17.  An 
updated value of the solids stress at the outlet can then be 
calculated from Equation 22.  The calculations are repeated 
until the correct value of σ1o is found.  The solids mass 
discharge rate is the product of the velocity, cross-sectional 
area, and bulk density at the solids stress at the outlet. 

Figure 2 compares solids discharge rates measured by Gu 
[8] with those predicted from Equations 18, 21, and 22.  The 
author provided the relationships between the fundamental 
flow properties (cohesive strength, internal friction, wall 
friction, compressibility, and permeability) and solids stress for 
ten powders and measured solids discharge rates from conical 
hoppers filled to various depths.  The hopper consisted of a 15° 
(from vertical) cone with a 44.5- or 20-mm diameter outlet and 
a 145-mm diameter cylinder.  The wall material of the hopper 
was polished galvanized steel. 

The agreement is acceptable for design purposes, although a 
safety factor of, say, 25 per cent should be employed if 
specifying the size of a hopper outlet that will provide the 
desired maximum steady solids discharge rate is critical. 

By measuring a bulk material’s fundamental flow 
properties, i.e., its unconfined yield strength, internal friction, 
compressibility, wall friction, and permeability, the size of the 
outlet of a hopper required to allow the desired discharge rate 
can be specified. While the solids discharge rate data were 
obtained from experiments on a small-scale hopper, the model, 
which is based on fundamental principles, can be expected to 
provide a reasonable estimate for larger hoppers, bin, and silos. 

 
Figure 2.  Comparison of observed and predicted solids 

discharge rates – Gu data [8]. 
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