
Solids Discharge Rates 
Not only must the outlet of a hopper be large enough to prevent an arch, it should also be 
sized to allow the desired discharge rate.  It is well known that the velocity of a fluid 
through an orifice at the bottom of a tank is proportional to the square root of the depth: 

 v = 2gh             (1) 

Nomenclature is given in Table 1.  For solids, stresses are not proportional to the depth; 
instead they are proportional to the outlet diameter, and therefore one would expect: 

v∝ gB             (2) 

Since the cross-sectional area of a round outlet is proportional to the diameter squared, a 
discharge rate proportional to the outlet diameter to the 5/2 power can be expected, i.e., 

!ms = Aρbv∝ B
2 gB ∝ gB
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2               (3) 

Experience has shown that this is not quite true, and several investigators therefore 
suggest using an effective outlet diameter.  The most common formula for calculating 
discharge rates is the Beverloo Equation: 

!ms =Cρbog
1
2 (B− kdp )
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The Beverloo equation [1] has two empirical parameters.  Such an approach is 
philosophically unsatisfying, especially since a formula based on engineering 
fundamentals can readily be derived. 

If only inertial and gravitational forces are included, a force balance on a bulk solid in a 
converging hopper yields      

a = −g                       (5) 

Employing some calculus: 

a = dv
dt
=
dz
dt
dv
dz

= v dv
dz

                   (6) 

Equation 5 can be rewritten as 

v dv
dz

= −g                        (7) 

From continuity, 

d(Av)
dz

= 0                        (8) 

and therefore 
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v
A
dA
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Substitution of Equation 9 into Equation 7 gives 

v2

A
dA
dz

= g
	 	 																														

            (10) 

For circular outlets (see Figure 1), 

A= π (z tan ʹθ )2                        (11) 

dA
dz

= 2π z tan2 ʹθ                       (12) 

Ao =
πB2
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dA
dz o

=
πB
tan ʹθ

                        (14) 

Therefore, at the outlet, 

4vo
2 tan ʹθ

B
= g

                 
         (15) 

Solving for vo gives 

vo =
Bg

4 tan ʹθ
                  (16) 

The mass discharge rate is equal to the product of the velocity, bulk density, and cross-
sectional area of the outlet: 

!ms = ρbo
πB2

4
Bg

4 tan ʹθ
                                                    (17) 

which shows a B5/2 relationship between the outlet diameter and the solids mass discharge 
rate.  Beverloo’s original work was based on measurements of solids discharge rates from 
flat-bottomed silos with round outlets.  Comparison of Equations 2 and Equation 17 
suggests that  

C = π
4

1
4 tan ʹθ

               (18) 

For a flow channel angle of 20°, Equation 18 gives a value of C equal to 0.65, which is 
comparable to the value of 0.58 in Beverloo’s original paper. 

For hoppers with slotted outlets, a similar analysis gives 



vo =
Bg

2 tan ʹθ
                           (19) 

and therefore in general, 
 

vo =
Bg

2(m+1) tan ʹθ
                    (20) 

and 

!ms = ρboAo
Bg

2(m+1) tan ʹθ
                     (21) 

where m is equal to 1 for a circular opening and equal to 0 for a slotted outlet. 

Equations 20 and 21 do not account for the cohesive strength of the bulk solid.  Johanson 
[2] included cohesive strength in his force balance: 

				 2(m+1) tan ʹθ
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Johanson noted that 

fC (1+m)
ρbgB

=
ff
ffa
	 	 	 	 									(23) 

where 

ffa =
σ1o
fC

                    (24) 

and Equation 22 could be elegantly rewritten as 
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The unconfined yield strength is determined by the bulk material’s flow function at a 
stress at the outlet, which according to Johanson was equal to 

σ1o = ff
ρbogB
m+1

                                 (26) 

Following the same steps as before yields 

vo =
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1− ff
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and 
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Equation 29 is called the Johanson equation.  Note that when B is equal to the critical 
arching outlet dimension, the actual flow factor is equal to the critical flow factor, and the 
solids discharge velocity is zero.  The Johanson equation can be used to determine the 
size of a hopper outlet required to provide the desired discharge rate of a course, cohesive 
bulk solid.  It is similar to the Beverloo equation, but it was derived from first principles. 
Johanson assumed that the hopper angle and the angle of the slope of the failing arch 
were equal to 45°.  A more rigorous analysis yields the following force balance: 
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where 

β =
1
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and Equations 25 and 26 can be rewritten as 
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and 
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Following Jenike [3], the solids stress at the hopper outlet should be calculated using 
Equation 33: 

σ1o = ff
ρbogB
H ( ʹθ )

                                 (33) 

For fine powders, gas-phase effects are not negligible, and a pressure gradient term must 
be added to the force balance: 

2(m+1) tan ʹθ
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2 =1− ff sinβ cos ʹθ
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Flow of gas through a bed of material is described by Darcy’s Law: 

u = − K
ρbg

dP
dz

             (35) 



From continuity, it can be shown that the pressure gradient is related to the solids velocity 
by [4] 
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Substitution of Equation 33 into Equation 31 yields the following quadratic: 
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from which the solids discharge rate can be calculated from 

!ms = ρboAovo                        (38) 

The solids stress where the gas pressure is at a minimum is difficult to calculate.  Gu et 
al. [4] noted that it is approximately equal to the maximum solids stress in the cylinder 
section, which can be calculated from the Janssen equation. 
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k tan ʹφ
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The solids stress at the outlet is determined from 

σ1o = ff
ρbog +
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By measuring a bulk material’s fundamental flow properties, i.e., its unconfined yield 
strength, internal friction, compressibility, wall friction, and permeability, the size of the 
outlet of a hopper, bin or silo can be determined.  Knowing that the design equations are 
based on engineering fundamentals, an engineer can be confident in his or her design. 
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Table 1 

Nomenclature 
A area 
Ao outlet cross-sectional area 
B outlet diameter or width 
C Beverloo equation empirical parameter 
dP particle diameter 
fC unconfined yield strength 
ff critical flow factor 
ffa actual flow factor 
g acceleration due to gravity 
h depth 
H(θ') Jenike’s geometry function 
k Beverloo empirical constant or Janssen coefficient 
K permeability 
m constant = 1 for a round outlet, = 0 for a slotted outlet 
!ms  solids mass discharge rate 

P gas pressure 
RH hydraulic radius 
u gas velocity 
vo solids velocity at outlet  
z vertical coordinate 
β arch angle 
ϕ' wall friction angle	 	
θ'	 hopper angle referenced from vertical	
ρb bulk density 
ρbmp bulk density in hopper where interstitial gas pressure is at a minimum 

ρbo bulk density at outlet 

σ1 major principal stress 
σ1o major principal stress at outlet 



 
 

Figure 1.  Hopper geometry.  


