



Paper Machine Dryer Control
Optimization

Your technical resource for improving Pulp and Paper process control performance

Topics covered include:

Drying Fundamentals
Regulatory Dryer Control Strategies
Tuning methods for the Dryer loops
Control techniques for nonlinearities
Managing dryer section pressure targets
Sheet Break control logic
Improving energy efficiency
Measuring benefits of improved control
Dryer section troubleshooting

The dryer section plays an important role in paper machine operating efficiency, energy consumption and product quality. Accordingly, dryer section optimization is a high priority. In the area of dryer section control there is much room for improvement. Valve flaws, lack of instrumentation for diagnostics, and poor tuning all degrade regulatory loop performance. There are often no supervisory strategies in place to manage the drying load, respond to sheet breaks, optimize energy efficiency and deal with the fundamental non-linearities in the dryer loops. These supervisory strategies can be easily implemented in modern distributed control systems.

This two-day course strengthens the attendee's ability to identify and troubleshoot paper machine dryer control problems.

Approximately 30% of the course is devoted to a computer-based DCS-like process simulator, where the operator practices the concepts presented during the lectures.

Course Fees...

CDN per student \$1500.00 USD per student \$1200.00

(Canadian Taxes Included.)
Fees include a full set of course notes.

The course is limited to 8 participants to provide individual attention and allow our instructors to address specific attendee issues.

Dryer Control Optimization Course Schedule

Day 1	
Lecture 1	Introduction to Paper Machine Dryers
08:00-09:00	Basic functioning of the dryer section
	Steam and condensate handling systems
	Process design Issues affecting control performance
Lab 1	Introduction to Dryer Control Simulator
09:00-10:00	Navigating the simulator
Lecture 2	Conventional Dryer Control Strategies
10:00-11:00	Objectives of the Moisture, Pressure, Differential loops
	Split ranging / Low select overide strategy
	Blow-through versus Differential control
	Response to sheet breaks and recovery
Lecture 3	Dryer Section Process Dynamics
11:00 - 12:00	
	Moisture Control Dynamics
	Blow through / Differential Dynamics
	Process Design and operating factors that affect dynamics
Lunch Break	,
Lab 2	Understanding Dryer Loop dynamics
12:30-14:00	
Lecture 4	Tuning Strategies / Methods
14:00-15:30	Dealing with the slow, complex pressure controller dynamics
	Decoupling the pressure and blow-through loops
	Optimizing the moisture controller tuning
Lab 3	Tuning the Dryer Loops
14:30 –15:30	Controller setpoint and load response
1 1.00 10.00	

Dav 2

Lecture 6

08:00-09:30	Steam Pressure - Temperature linearization
	TC Output characterization, Pressure/ Differential
	interaction, Moisture cascade ratio
Lab 4	
Lab 4	Linearizing the Dryer Control loops
09:30-11:00	
Lecture 7	Dryer Supervisory strategies
11:00 - 12:00	Set point management for constant % drying load
	Dryer flooding over ride control
	Sheet break logic
	Warm-up Logic

Advanced Regulatory Control Strategies

Lab 5

5 Exploring Dryer Supervisory strategies

13:00 - 14:30

Lecture 8 Dryer troubleshooting techniques

14:30 – 15:30 Common problems

Analytical troubleshooting procedure for dryer loops

Lab 6

Troubleshooting Dryer Control problems

15:30 - 16:30

Wrap-Up and Discussion

4:30 - 5:00

Course Location...

The course is held either at a conference facility or by video conference. Attendees are responsible for arranging their own accommodations.

Accommodations ... For convenience, we recommend that registrants stay at the hotel course site.

About the Course ...

The objective of this course is to provide the attendees with the knowledge and tools to improve dryer control performance. Paper Machine Dryer Control Optimization is a handson course that uses a process simulation as a learning tool to understand dryer process fundamentals, dryer controller tuning, regulatory and supervisory control strategy options, and troubleshooting techniques.

Who Should Attend...

The course is primarily intended for process engineers, control engineers or instrumentation engineers who have responsibility over the optimization of the paper machine dryer section. The course explores the implications of process equipment design and process variability and therefore would be beneficial for maintenance and design engineers.

Instructors Include...

<u>Doug Nelson, P.Eng</u>. has over 30 years of industrial process control experience. He has extensive experience in process control training of operators, E/I techs and process control engineers.

Nyle Parchim, P. Eng. is an expert at troubleshooting paper machine problems and has extensive experience in the training of paper industry workers and managers.

About Omni Process Solutions

Omni Process Solutions is based in Vancouver, BC. The company conducts process and control optimization surveys and provides a range of training courses related to process control optimization. Visit our web sites at

www.omniprocesssolutions.com for more information about our services.