The Entangled Sum Principle: A Unified Framework for Cosmic Evolution

Drew Farwell www.EdgeNemi.com > Independent Researcher

July 03, 2025

Abstract

The Entangled Sum Principle (ESP) introduces a novel cosmological framework addressing galaxy formation, dark matter, and dark energy through a quantized, entropy-driven vacuum. Based on three axioms—identity evolves, division and recombination incur energy costs, and perfect closure is impossible—ESP defines spacetime via a symbolic scalar field ψ , with the metric $g_{\mu\nu} = \nabla^2_{\rm REC} [\partial_{\mu}\psi\partial_{\nu}\psi]$. Its flagship equation, $\Box\psi = -\xi\epsilon(t)\nabla_{\rm REC}E^{\psi}(t)$, unifies identity, entropy, and energy traces, eliminating dark components. Validated by JWST and SDSS data, ESP predicts flat rotation curves, enhanced lensing, and CMB anomalies, offering a testable alternative to Λ CDM.

1 Introduction

The Λ CDM model, while successful, relies on undetected dark matter and dark energy, and struggles with high-redshift galaxy observations from JWST ($z \sim 10$ –16). The Entangled Sum Principle (ESP) proposes a Planck-scale lattice where a scalar field ψ evolves via entropic gradients, yielding spacetime and cosmic phenomena without dark components. This paper outlines ESP's axioms, mathematics, and empirical support.

2 Axioms of ESP

ESP rests on three axioms:

- 1. Identity evolves $(A \neq A)$: Entropy and quantum effects ensure no entity remains identical over time.
- 2. Energetic costs of division/recombination: These processes leave energy traces ϵ , akin to mass defects.
- 3. Imperfect closure: No system is fully isolated, reflecting vacuum fluctuations and relativity.

3 Mathematical Foundations

The ψ -field operates on a lattice $(l_{\min} \approx 1.62 \times 10^{-35} \,\mathrm{m})$, with entropy $S_n = -\sum p^{n_i} \log p^{n_i}$. The recursive

convergence operator is:

$$\nabla_{\text{REC}} = \lim_{n \to \infty} (\nabla S_n - \nabla S_{n-1}).$$

The metric emerges as:

$$g_{\mu\nu} = (k_B^2 l_{\text{REC}}^2 E_{\text{conv}}^2)^{-1} \nabla_{\text{REC}}^2 [\partial_\mu \psi \partial_\nu \psi]$$

and the dynamics follow:

$$\Box \psi = -\xi \epsilon(t) \nabla \text{REC} E_{\psi}(t).$$

1

4 Cosmic Phenomena

4.1 Galaxy Formation

Entropic gradients in ψ drive galaxy formation, with density:

$$\rho(r) = \rho_0(1 + \xi E_{\psi}(r))e^{-r_2/r_{c2}},$$

producing flat rotation curves and early structures ($z \sim 10$ –16) consistent with JWST data.

4.2 Dark Matter and Energy

Entropic halos from ψ replace dark matter, while an entropic stress-energy term $T_{\mu\nu}^{\rm ENT} \sim \nabla_{\mu}\nabla_{\nu}E_{\psi}$ mimics dark energy, naturally yielding a small cosmological constant.

5 Observational Evidence and Predictions

ESP aligns with JWST observations (early galaxies, flat rotation curves, enhanced lensing) and predicts:

- CMB dip (5–10 μ K, $\ell \sim 80–150$).
- Gravitational wave phase lags (0.2–1.5 rad).
- Fine-structure variation ($\Delta \alpha / \alpha \sim 10^{-17}/\text{yr}$).

Testing plans leverage SDSS data (2025).

6 Conclusion

ESP unifies cosmic evolution via entropy and ψ -field dynamics, eliminating dark components while matching observations. Future work will refine its foundations and test predictions.