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Introduction
The generation of indoor air pollutants in building materials is 
influenced by many factors such as indoor microclimate, the 
physical properties of building materials and types of chemical 
substances, and the external environment. It has a variety of 
emission patterns (Awad & Jung, 2021; D’Ovidio et al., 2021; 
Jung & Awad, 2021; Kubečková et  al., 2020). The emission 
pattern refers to the tendency to change due to the increase and 
decrease of chemical substances’ emissions in the building 
material (Peng et al., 2017; Piasecki et al., 2018). This pattern 
has various shapes due to the difference in the initial emission 
amount, the maximum emission amount, the time to reach the 
peak, and the decreasing tendency (Liang & Yang, 2013). The 
difference in these emission patterns affects the prediction 
through simulation (Xing et al., 2020).

The use of simulation to predict chemical concentration is 
beneficial in saving time and money. It has meaning when the 
prediction through simulation becomes more consistent with 
the actual value (Palmisani et  al., 2020; Rosen & Kishawy, 
2012). The prediction of chemical substances is based on 
numerical and empirical models, and empirical models using 
measured values are beneficial based on their convenience (Cho 
& Choi, 2014; Peng et al., 2017). However, in the case of the 
practical model, only limited parameters are substituted, so it 

has limitations in predicting based on the diversity of the emis-
sion pattern (Breen et al., 2014).

Several previous researchers have reported the applicability 
of different empirical models based on the emission character-
istics of various building materials such as paints, adhesives, 
and wood (Böhm et al., 2012; Kozicki & Guzik, 2021; Tudor 
et al., 2020; Wi et al., 2020). However, this has the aspect that 
there is a difference in the emission pattern depending on the 
content of chemical substances inside the building material 
(Khoshnava et al., 2020). Selecting the first order and double 
exponential decay models according to the type of building 
material involves risks in choosing an appropriate model 
(Gładyszewska-Fiedoruk et  al., 2019; Huang et  al., 2016). 
Therefore, it will be beneficial to extract and utilize factors for 
selecting a suitable empirical model based on the emission pat-
tern that exists according to the characteristics of the material 
rather than the classification by the type of building material 
(Marzocca et al., 2017; Tran et al., 2020).

When estimating the emission intensity or indoor concen-
tration of chemical substances, a numerical model based on the 
mass transfer equation and an empirical model based on actual 
values (Piasecki & Kostyrko, 2020). The more easily applicable 
is the practical model (Ahn et al., 2017). The first-order reduc-
tion models and the double exponential decay model (He et al., 
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2019; Liu et al., 2015). The first-order decay model, proposed 
by Gunschera et al. (2013), is suitable for explaining the emis-
sion characteristics of chemical substances in which the evapo-
ration process is dominant in building materials (equation (1)).

 E t E e k t( ) = × − ⋅
0  (1)

E(t) = Amount generated per unit area at time t (mg/m2h)
E0 = Amount generated per unit area at t = 0 (mg/m2h)
k = first-order reduction constant (h−1)
t = time (h)

The double exponential decay model, proposed by de 
Gennaro et al. (2015), explains the emission characteristics of 
building materials in which internal emission is dominant 
(equation (2)).

 E t E e E ek t k t( ) = × + ×− ⋅ − ⋅
1 2

1 2  (2)

E1 = Amount of occurrence at t = 0 in a rapidly decreasing pro-
cess (mg/m2h)
k1 = Decrease constant for rapid decay (h−1)
E2 = The amount of occurrence at t = 0 in a slow-decreasing 
process (mg/m2h)
K2 = Decrease constant for slow decay (h−1)
t = time (h)

The above empirical model equation was made based on the 
characteristics of the decreasing period rather than the applica-
tion to the initial period of increasing concentration (Mocho 
et al., 2017).

Conformity verification by empirical models has been 
reported by many researchers (Ai et  al., 2015; Jomehzadeh 
et al., 2017). They apply the model formula based on building 
materials, mainly considered diffusion-dominated and evapo-
ration-dominated by the characteristics of the reduction sec-
tion in the concentration change over time (Geng et al., 2017). 
Missia et  al. (2010) reported that hazardous chemical sub-
stances were measured through small chamber experiments on 
wood and carpet, such as PB and plywood. As a result of pre-
diction through a double exponential decay model, it showed 
high suitability in all materials. Salem et al. (2012) reported a 
higher fit in the double exponential decay model than the first-
order reduction model due to predicting the HCHO concen-
tration in new houses using measured data from PB and MDF. 
The above studies report the suitability of the double exponen-
tial decay model using wood products (Xiong et al., 2019). In 
applying the empirical model, the emission characteristics of 
the concentration ascending section are not considered, and the 
features of the emission intensity descending area after the 
maximum emission intensity are identified (Liu et al., 2015).

Wang et al. (2021) showed a difference in the initial emis-
sion amount and different radiation patterns. It was reported 
that the emission pattern of the specimen with a low initial 
emission amount, even though it was a wood product, was 

slightly reduced or showed an equilibrium state, indicating that 
the first-order reduction model was highly suitable (Hérault 
et al., 2010). It was also reported that even in the case of the 
same wood products, there was a difference in the emission 
pattern due to the difference in the initial emission amount, 
and there was a difference in the suitability of the model 
applied to it (Böhm et al., 2012).

Previous studies have reported a critical point in selecting an 
empirical model based on the emission pattern, and it is essen-
tial to determine an appropriate practical model based on this 
(Mu et al., 2020). It is judged that it will be helpful to increase 
the suitability of the model application to find factors that have 
an important influence on the model decision by further subdi-
viding the emission pattern (Nogueira et al., 2017).

This study aims to derive factors that influence selecting 
empirical models, such as the primary reduction model and the 
double exponential decay model, by examining the emission 
pattern of formaldehyde (HCHO) emitted from building 
materials.

Materials and Methods
Construction materials overview

The building materials used in this study were the flooring and 
wallpaper used the most as interior finishing materials (Arar & 
Jung, 2021; Jung et al., 2021). Table 1 is an overview of experi-
mental building materials. On the premise that the emission 
pattern differs depending on the chemical substances’ content, 
different production dates were selected, or the number of 
elapsed days was selected differently by other testing dates for 
the same material (Sarbu & Sebarchievici, 2013).

Flooring-A and flooring-B are from the same manufac-
turer, while flooring-C is from a different manufacturer. 
Wallpaper-A and wallpaper-B are also from the same manu-
facturer, but wallpaper-C is from another manufacturer.

As for the storage form after the production of the above 
materials, the wallpaper was sealed in plastic, the flooring was 
packaged in a general paper box, and the materials stored at 
room temperature in the material warehouse of each producer 
were used.

Small chamber pollutant emission test

According to ISO (2020) (the International Organization for 
Standardization) a small chamber system 16,000, test pieces 
are prepared with 160 mm × 160 mm to analyze each speci-
men’s hazardous chemical generation. HCHO was collected 
using an LpDNPH S10L cartridge (Supelco Inc., U.S) to con-
tain carbonyl compounds (Williams et al., 2019). To remove 
the interference caused by Ozone (O3), the O3 scrubber was 
connected in front of the LpDNPH S10L cartridge, and the 
sample was collected by clicking it on a flow sampling pump 
(Tucker, 2014). At this time, 7.0 l of collected air in the cham-
ber was collected at 167 ml/min, and the collected samples 
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were stored in a cool and dark place until extraction (Even 
et  al., 2021). For the extraction of the analytical model, the 
DNPH-carbonyl derivative formed by reacting with DNPH 
was extracted with 5 ml of HPLC grade acetonitrile, and anal-
ysis was performed immediately (Zhang et  al., 2014). The 
examination for HCHO was performed using HPLC (High-
Performance Liquid Chromatography, Shimadzu).

Since the UAE is located in a hot arid desert and the resi-
dents spend 90% of their time indoors with air-conditioning 
due to scorching summer and no apparent differences between 
seasons, The environmental conditions in the chamber were 
maintained at a temperature of 25°C, relative humidity of 50%. 
The number of ventilation at 0.5 times/h to simulate the indoor 
condition with central air-condition in Dubai, UAE. The sam-
ple loading rate was 2.2 m2/m3, the exposed surface area of the 
test piece was 0.044 m2, and the emission intensity was calcu-
lated as shown in equation (3) below (Murata et al., 2013).

 SER C Q
A

C nV
A

C n
L

C qa
t t

t t=
×

=
×

= × = ×  (3)

SERa = Emission amount per unit area of specimen (mg/m2h)
Ct = Contaminant concentration in the small chamber at time t 
(mg/m3)
t = Elapsed time after the start of the test
A = surface area of the specimen (m2)

Q = Flow rate in small chamber (m3/h)
n = Number of ventilation (times/h)
V = Volume of small chamber (m3)
L = Sample load factor (m2/m3)
q = Flow rate per unit area (m3/m2h)

Emission intensity prediction from building 
materials

The parameters for the application of the first-order reduction 
model and the double exponential decay model were calculated 
as shown in Table 2 below using the initial emission intensity, 
the first reduction constant, and the second reduction steady of 
each specimen figured through the small chamber emission 
experiment, and this was used to predict the emission intensity 
(Hult et al., 2015; Liang et al., 2016; Seo et al., 2013).

Results
Experimental results and analysis

An important point to be dealt with through this experiment is 
to identify the characteristics of critical issues that indicate the 
difference in shape in the graph of the emission pattern (Lim 
et al., 2014). The variables applied to calculating the predicted 
value through the empirical model are the initial emission 
intensity, the maximum emission intensity, and the reduction 

Table 1. Outline of Test Pieces.

ClASSifiCATiON MANUfACTURER TEST PiECE SizE PRODUCTiON DATE ExPERiMENT DATE DAyS PASSED

flooring-A itlas (italy) 160 mm × 160 mm 10/02/2021 19/03/2021 38

flooring-B itlas (italy) 160 mm × 160 mm 10/02/2021 16/05/2021 96

flooring-C Meister (Germany) 160 mm × 160 mm 02/09/2019 16/12/2020 456

Wallpaper-A Arte (Belgium) 160 mm × 160 mm 28/02/2021 20/03/2021 20

Wallpaper-B Arte (Belgium) 160 mm × 160 mm 28/02/2021 17/05/2021 78

Wallpaper-C Casadeco (france) 160 mm × 160 mm 11/02/2019 03/12/2020 656

Table 2. Parameters for Prediction for Each Specimen.

ClASSifiCATiON iNiTiAl  
EMiSSiON 
iNTENSiTy (µg/m2h)

DOUBlE ExPONENTiAl DECAy MODEl fiRST-ORDER DECAy MODEl

fiRST DECAy CONSTANT (h−1) SECOND DECAy CONSTANT (h−1) DECAy CONSTANT (h−1)

flooring-A 1.30 0.00972 0.00146 0.00186

flooring-B 8.42 0.00371 0.00122 0.00248

flooring-C 9.80 0.00042 0.00186 0.00134

Wallpaper-A 1.36 0.01812 0.00278 0.00332

Wallpaper-B 1.48 0.00156 0.00062 0.00106

Wallpaper-C 0.74 0.01118 0.00064 0.00418
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constant (Nogueira et al., 2017). As for the reduction constant, 
one is applied in the case of a linear reduction model and two 
in the case of a double exponential decay model (He et  al., 
2019). In particular, when using the double exponential decay 
model, it is essential to determine the breakpoint of the change 
in the descending section (Chi et al., 2016). In the simulation 
through the empirical model, the researcher has to calculate 
and input the information of each breakpoint, so the calcula-
tion of clear measurement values for these critical points ena-
bles valid prediction (Bourdin et al., 2014).

In addition, for each specimen, a concentration change 
trend line was calculated based on the measurement point to 
derive an emission pattern. This is based on the dissipation 
pattern of general building materials, which initially rises for a 
certain period and then decreases (Liu et al., 2015).

In this section, it is essential to improve the suitability of the 
predictive model to derive a distinguishing factor by examining 
the initial emission intensity, which is a crucial point in deter-
mining the emission pattern, the shape of the vertex indicating 
the maximum value, the appearance time of the vertex, and the 
reduction period that determines the subsequent decrease pat-
tern (Mu et al., 2020). Regression analysis was performed on 
the fit between the measured and predicted values to analyze 
the degree of explanation of the linear relationship between 
predicted and actual values (Shalbafan & Thoemen, 2020).

Analysis and characterization of important breakpoints in emission 
patterns

Flooring. The initial emission intensity refers to the emis-
sion intensity within 24 hours after the specimen is put into 
a small chamber (An et al., 2010). According to Figure 1, the 
emission intensity at the first measurement point 1 hour after 

the material was put into the chamber showed a difference by 
material. Flooring-A showed the lowest emission intensity at 
1.31 µg/m2h but showed a high rate of increase after that. At 
24 hours, all materials exhibited emission intensity levels of 
11.19 to 13.14 µg/m2h. After that, there is a difference in the 
form of emission according to the characteristics of each mate-
rial.

In the case of Flooring-C, it showed the lowest emission 
intensity within about 100 hours in the initial period. It 
decreased slightly after that, leading to the lowest cumulative 
emission amount, as shown in Figure 2. Flooring-A initially 
showed the lowest emission intensity, increasing rapidly after 
about 100 hours, offering the highest cumulative emission 
amount.

It is difficult to predict the degree of emission pattern of 
alternative materials based on the initial emission intensity 
alone (Rackes & Waring, 2016). To effectively use the initial 
emission intensity, it is understood that a pre-treatment process 
for the experiment after inducing the emission at a temperature 
close to the experimental temperature for a certain period is 
necessary (Robertson et  al., 2012). Therefore, if the material 
storage process is not straightforward, conducting the chamber 
experiment is desirable after undergoing a pre-treatment pro-
cess for at least 24 hours.

The shape of the graph of the emission pattern changes 
according to the form of the vertex. It is a significant time 
because it is usually classified into an increasing section and a 
decreasing section of chemical substances. As for the shape of 
the vertices, in the case of Flooring-A and B, the shape of the 
bell is taken, and in the case of Flooring-C, the form of the 
vertex is a gentle curve. In this study, flooring-C with relatively 
low cumulative emission had a soft curve shape, and flooring-A 

Figure 1. Emission pattern of HCHO over time for each flooring material.



Sherzad and Jung 5

and B with high cumulative emission showed a bell-shaped 
vertex. Flooring-A showed the most distinct diffusion pattern 
of increasing and decreasing concentration.

Figure 3 shows the degree of the linear relationship between 
the emission intensity and the elapsed time from 1 to 48 hours 
after material input, based on the vertex of each flooring mate-
rial. In the case of flooring-A and flooring-B, the bell-shaped 
vertex was derived, R2, which indicates the degree of the linear 
relationship between time elapsed and emission intensity, was 
.94 or more, showing a solid linear relationship. In the case of 
flooring-C, R2 was .44, indicating a relatively low degree of a 
linear relationship.

The section where the emission intensity decreases from 
the vertex shows a more complex shape. In applying the 
empirical model, in the case of the first-order reduction model, 
it is assumed that the reduction trend decreases linearly in the 
concentration-falling section. The double exponential decay 
model is a case where it is considered that this part is divided 
into two parts, an area in which the decay occurs rapidly and a 
section in which the reduction occurs slowly. Therefore, look-
ing at the degree of relationship that can infer these linear 
relationships, in the case of flooring-C, R2 was .88, and that of 
flooring-B was .89. Flooring-A showed a slightly weakened 
linearity of .76.

Figure 2. Cumulative emission of HCHO over time for each flooring material.

Figure 3. linear correlation with HCHO in the concentration ascending section for each flooring material.
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In the case of flooring-A, which significantly deviates from 
the linear relationship in the concentration drop section, there 
are two inflection points in the reduction pattern, as shown in 
Figure 4. It is judged that the double exponential decay model 
is more suitable, and it is inferred that the first-order reduction 
model is more ideal for flooring-C and flooring-B.

Wallpaper. In the case of wallpaper, the initial emission 
intensity at the time point 1 hour after injecting the sample 
into the chamber was in the range of 0.75 to 1.48 µg/m2h for 
each wallpaper, showing a similar level. After 24 hours were 
completed, the difference in emission intensity for each wall-
paper was demonstrated.

As shown in Figure 5. Wallpaper-C exhibited a maximum 
release intensity of 21.90 µg/m2h at 144 hours, and Wallpaper-A 
exhibited a maximum release intensity of 10.26 µg/m2h at 
24 hours. After the peak, there was a rapid decrease followed by 
a gradual decrease. Wallpaper-B showed a tendency to slightly 
increase and decrease without significant change in concentra-
tion in almost all sections.

The following is an analysis of the shape of the vertices in 
the graph of the diffusion pattern. Wallpaper-A showed the 
highest release intensity when 24 hours had elapsed, and in the 
case of Wallpaper-C, when 144 hours had elapsed after the 
sample was added. This corresponds to the vertex of the bell on 

Figure 4. linear correlation with HCHO in the concentration descending section for each flooring material.

Figure 5. Emission pattern of HCHO over time for each wallpaper.
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the graph. It can be seen that wallpaper-A and wallpaper-C 
show a difference in the time points representing the peaks of 
the highest emission intensity. As shown in Figure 6, it can be 
confirmed that the peak appearance time is delayed in the case 
of wallpaper-C, which has the most significant cumulative 
emission. A graph of a typical bell-shaped dissipation pattern 
showing a continuous decrease after a constant increase is 
shown. However, in the case of Wallpaper-B, it was confirmed 
that the diffusion pattern showed a gentle curve rather than a 
vertex, and the cumulative emission amount was also the least.

As shown in Figure 7, in the linear relationship between the 
time elapsed to the peak and the emission intensity in the 

concentration rise section, wallpaper-A and wallpaper-C, 
which have bell-shaped vertices, have a strong linear relation-
ship with R2 .98 or more. Wallpaper-B was .61, indicating a 
weak linear relationship. In addition, in the case of wallpaper-
B, R2 was .91, showing an excellent linear relationship in the 
concentration decreasing section. In wallpaper-A and wallpa-
per-C, R2 was less than .78, indicating a weak linear 
relationship.

As shown in Figure 8, there is an inflection of the measure-
ment points deviating from the line graph in the case of wall-
paper-A and wallpaper-C. In this case, it is judged that applying 
the double exponential decay model is reasonable. When it has 

Figure 6. Cumulative emission of HCHO over time for each wallpaper.

Figure 7. linear correlation with HCHO in the concentration ascending section for each wallpaper.
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a bell-shaped vertex in the diffusion pattern and a clear con-
centration reduction pattern is secured, it is predicted that the 
double exponential decay model will be helpful, and the first-
order reduction model is suitable for showing a strong linear 
relationship in the concentration reduction section.

Emission intensity prediction result

The emission pattern was classified into three types by com-
paring the way for each building material obtained in this 
experiment with the results predicted by each model ( Jiang 
et al., 2017; Zhou et al., 2016). In addition, regression analysis 
analyzed the fit between the measured and indicated values, 

and critical points’ characteristics were derived for selecting a 
suitable model for each type (Li et al., 2019).

Type I emission pattern. Type I is an emission pattern that 
shows a low fit between the measured and predicted values in 
the entire interval. In particular, it offers a difference between 
the expected value and the actual value for the peak emission 
intensity. The measured value has a characteristic that signifi-
cantly deviates from the prediction pattern of the two models 
(Frihart et al., 2020). Wallpaper-C, which was shown to have a 
relatively high HCHO, corresponds to this type.

Figure 9 shows the emission patterns of the predicted and 
measured values of HCHO using the linear and double 

Figure 8. linear correlation with HCHO in the concentration descending section for each wallpaper.

Figure 9. Emission pattern of HCHO based on the measured and predicted values of wallpaper-C.
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exponential decay models for wallpaper-C. There is a big 
difference in the emission pattern between the predicted and 
measured values according to the difference in the time point 
showing the highest emission intensity.

For this type, as shown in Table 3, R2, which shows the 
explanatory power between the predicted values for the meas-
ured values of the entire section, was .11 in the first-order 
reduction model and .00 in the double exponential decay 
model, indicating no or shallow level of explanatory power.

The explanatory power R2 of the predicted value in the con-
centration ascending section was .25 for the first-order reduc-
tion model and .19 for the double exponential decay model. 
This was meaningless at a significant probability of .1 or less. 
In the concentration descent section, R2 was .51 in the first-
order reduction model and .72 in the double-exponential 
reduction model, indicating good explanatory power. There 
was no sign of a significant probability of .1 or less.

Type II Emission pattern. In Type II, the emission pattern of 
the measured values in the entire section is close to the emis-
sion pattern of the predicted values by the two models. Con-
sistency is high in the descending concentration area, and the 
peak emission intensity appears later than the expected value 
(Wei et al., 2013). Figure 10 shows the emission pattern of the 
HCHO predicted value and the actual value predicted using 
the first-order and double exponential decay models for 
flooring-A.

As shown in Table 3, R2, the degree of explanation of the 
predicted values for the actual values in the entire interval was 
.00 for the first-order reduction model and .13 for the double 
exponential decay model.

In addition, in the concentration ascending section based on 
the vertex, R2 was found to be .02 for the first-order decay 
model and .15 for the double exponential decay model.

In the concentration descending section, the first-order 
decay model was .56, and the double exponential decay model 
was .72, indicating a relatively good degree of explanation in 
the concentration descending section. In particular, the explan-
atory power in the concentration-descent area showed a sig-
nificant result at a substantial probability of .1 or less. Therefore, 
in the case of flooring-A, the low suitability of the entire sec-
tion is pointed out as the cause of the low linear explanatory 
power in the concentration ascending section.

Wallpaper-A and flooring-B are also divided into the same 
emission patterns. In the case of wallpaper-A (Figure 11), it 
can be seen that the emission pattern according to the meas-
ured values shows a slight increase in the maximum emission 
intensity and a gradual decrease in the concentration. According 
to Table 3, in the case of wallpaper-A, R2, which shows the 
explanatory power of the predicted values for the actual values 
in the entire section, is .41 for the first-order reduction model 
and .15 for the double exponential decay model. The first-
order reduction model showed a relatively higher fit, and in 

particular, a significant result was established with a substantial 
probability of .05 or less.

The degree of explanatory value R2 of the predicted value in 
the concentration ascending section was .67 for the first-order 
decay and .70 for the double exponential decay model, but this 
wasn’t very meaningful at a significant probability of .1 or less. 
On the other hand, in the concentration descending section, 
the first-order reduction model showed a significant result at 
the significance level of .05 or less with an R2 of .72. In the 
double exponential decay model, R2 was .53, and the signifi-
cance probability was less than .05.

The flooring-B (Figure 12) showed relatively low explana-
tory power in the entire section and was statistically insignifi-
cant. R2 was .23 for the first-order decay model in the 
concentration ascending section and .20 for the double expo-
nential decay model. These did not show any significant results 
at a substantial probability of .1 or less.

However, it showed a very high explanatory value in the 
concentration descending section. In the first-order decay 
model, R2 was .92, and in the double exponential decay model, 
R2 was .95.

Type II showed extreme suitability in the concentration 
descending section and a relatively good fit in the ascending 
section. In addition, it can be seen that the suitability of the 
predicted values and the actual values for all measurement 
points improved compared to Type I as the suitability for the 
concentration ascending section improved.

Type III emission pattern. Type III is an emission pattern that 
does not show the shape of distinct vertices in the concentra-
tion ascending section. It offers a solid linear relationship 
between the concentration ascending section and the decrease 
section (Blondel & Plaisance, 2011).

Flooring-C (Figure 13) and wallpaper-B (Figure 14) exhibit 
an emission pattern that does not have a distinct apex. At the 
point of declination, the distinction between fast and slow 
decreases does not occur clearly. Therefore, it is judged that it is 
unnecessary to distinguish between the first-order decay model 
and the double exponential reduction model.

As shown in Table 3, in the case of flooring-C, R2, which 
indicates the degree of the linear explanatory value of the pre-
dicted values for the entire section, was .36 for the first-order 
decay model and .33 for the double exponential reduction 
model. This showed a significant result at a substantial proba-
bility of .05 or less.

In addition, in the concentration ascending section, R2 was 
.93 in both the first-order reduction model and the double-
exponential reduction model, indicating a high degree of expla-
nation distinguished from other specimens. This showed a 
significant result at a substantial probability of .01 or less. An 
excellent explanatory degree was established in the concentra-
tion descending section, and essential development was dem-
onstrated at the significance probability level of .05.
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In wallpaper-B, the first-order decay model had an R2 of .58 
and the double exponential reduction model of .60, indicating 
a good fit. A significant result was shown with a substantial 
probability of .01 or less. In addition, the first order and double 
exponential decay models showed a relatively good fit to the 
same degree and statistically significant results in the concen-
tration descending section.

In Type III, the explanatory power of the predicted values 
for the actual values increased in the entire section, and statisti-
cally significant results were obtained. In particular, it is judged 
that the high suitability in the ascending concentration section 
had a considerable influence.

Discussion
In this study, when the peak appeared late in the emission pat-
tern of HCHO and showed a general characteristic of gently 
decreasing (Type I and II emission pattern), no significant 
results were demonstrated in conformity with the predicted 
values by the empirical model. This is because in the case of 
building materials with a high content of HCHO, the peak 
appears later than in the case of the generally expected emis-
sion pattern (Salthammer, 2019).

It is judged that it is essential to secure sufficient prediction 
time for the entire process in the emission pattern in which the 
appearance of vertices is relatively late (D’Amico et al., 2020). In 

Figure 10. Emission pattern of HCHO based on the measured and predicted values of flooring-A.

Figure 11. Emission pattern of HCHO based on the measured and predicted values of wallpaper-A.
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the case of the emission pattern of HCHO, it was confirmed 
that it is a prerequisite for applying the empirical model to secure 
a sufficient period of reduction after the peak and to position the 
ultra-high rise early in the total prediction time ratio.

Accordingly, it is necessary to investigate the characteristics 
of the emission pattern according to the level of HCHO and 
determine how much time is needed to obtain an appropriate 
prediction time through further research.

Conclusions
In this study, when an empirical model is applied based on the 
emission pattern of HCHO for six building material 

specimens, the effect of each emission pattern on important 
division points is identified.

1. The judgment for selecting the first-order decay model 
and the double exponential decay model was based on 
the fact that the HCHO emission pattern had the shape 
of a vertex. In addition, the linear relationship between 
emission intensity and time elapsed in the ascending 
concentration section was more significant. In the con-
centration descending area, the linear relationship was 
weakened. Thus, applying the double exponential decay 
model was appropriate for two or more inflection point 

Figure 12. Emission pattern of HCHO based on the measured and predicted values of flooring-B.

Figure 13. Emission pattern of HCHO based on the measured and predicted values of flooring-C.
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graphs. When there is a high linear relationship between 
emission intensity and time elapse in the concentration 
ascending section and the concentration descending sec-
tion, it was confirmed that selecting the first-order 
reduction model was more appropriate.

2. Based on the emission pattern of HCHO in building 
materials, it was classified into three types according to 
the characteristics of the compatibility between the pre-
dicted values and the actual values. In Type I (R2 = .02–
.25), the emission of chemical substances reaches the 
maximum after the start of the experiment and decreases 
relatively rapidly. Type II (R2 = .67–.70) is an emission 
pattern with a vertex shape with a slight concentration 
increase and a gentle decrease. It is a type in which the 
suitability is significantly high in the concentration 
descending section. Type III (R2 = .77–.93) is an emission 
pattern that shows a mild linear increase and decreases 
trend in the concentration ascending section and the 
descending concentration area. It is a type that offers the 
suitability with the predicted value in a meaningful way 
in the entire section.

3. Most previous studies decided to apply the first order or 
double exponential decay model to consider the chemical 
emission characteristics in the concentration descending 
section according to the difference in material types. 
However, this study confirmed that the emission charac-
teristics in the initial concentration ascending section 
and the concentration descending section are important 
division points for model selection. This study found that 
R2, the degree of explanation of the predicted values for 
the measured values in the concentration descending 
section, was in the range of .51 to .95 in all cases and 
showed a good fit. However, the ascending concentration 
section distinguished the difference between high and 

low suitability. Therefore, the suitability of the measured 
values and the predicted values in the emission pattern of 
the entire area was most affected by the suitability in the 
concentration ascending period, so the excellent suitability 
in the concentration ascending section generally showed 
suitable suitability in the overall emission pattern.
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