
 

S E E K A R    T E C H N O L O G I E S       1 

Cluster Neural Networks for Edge Intelligence in Medical Imaging 

Kordel K. France, Zachary A. Newman 

Seekar Technologies 

 

Abstract 

Cluster convolutional neural networks (CCNNs) have many advantages over single, one-shot neural 
networks that may be capitalized on in edge devices. Some industries investigating the use of machine 
learning into their products entertain applications where the consequences of low sensitivity or specificity 
in a model may be catastrophic. In some of these scenarios, processing capability is minimal and there is 
no availability for cloud transactions. In these instances, conventional convolutional neural networks 
(CNNs) may not fit the bill. Here, we propose a machine learning model architecture that produces 
increased accuracy at lower computational cost than conventional CNNs. We establish how this 
architecture is inherently smaller in size by design without compromising accuracy, opening artificial 
intelligence models up to a much larger population of edge devices and solutions in medicine. We 
illustrate our proof of concept of this architecture through the identification of seven respiratory 
conditions in chest X-ray images by utilizing the machine learning model in a mobile app. Additionally, 
we elaborate on how the model better protects data privacy, may be trained on much less data than 
typical neural networks, and allows for explainability of results. Finally, we evaluate the efficacy our model 
through a clinical trial and compare its results to a conventional CNN on the same data. 

 
Introduction 

 
Research into the use of neural networks has been 
increasing in popularity throughout the better part of 
the last two decades, particularly in that of computer 
vision and image classification. In consumer-based 
products, we have seen social media successfully 
integrate convolutional neural networks (CNNs) into 
playful image filters with the aid of augmented reality 
and we have seen our posted photos automatically 
tagged with labels of probable landmarks and people 
presented in the photo. These applications have done 
a fantastic job at proving the proficiency of machine 
learning in computer vision while also proving the 
market appeal of its capability. However, the 
consequences of these models underperforming are 
not near the degree to that of applications in 
industries such as medicine. Additionally, in the event 
that these consumer social media models provide an 
incorrect response, the end-user is always there to 
supervise and provide the correction with the 
convenience of time. Billions of people engage in 
social media worldwide which provides a substantial 
amount of training data and supervised learning on a 
newly launched algorithm. 
 
The healthcare industry, in contrast, faces much less 
luxurious circumstances. Risk of significant financial 

compromise and even loss of life are consequences of 
a machine learning model underperforming in 
medicine. Here, we evaluate the efficacy of our model, 
a hierarchical cluster of convolutional neural networks 
(CCNNs), to address five of the biggest issues with 
artificial intelligence in medicine and healthcare 
products – explainability, lack of training data, patient 
privacy, efficiency, and quality of experience. 

 
A. Explainability 

The use of machine learning models in healthcare 
mandates explainability in artificial intelligence (XAI). 
Neural networks are often labeled as being “black 
boxes” since the response received from a neural 
network can be difficult to trace. This is partially due 
to the fact that millions of possible paths are possible 
for an input to travel through as a result of a certain 
conclusion achieved. Although its accuracy may be 
high and the performance repeatable, the trace of 
logic that the network performs is especially difficult 
to extract. Many institutions13,14 have proposed 
notable techniques to extract a process from a 
network decision.  As one can obviously interpret, this 
“unexplainability” becomes a problem in scenarios 
where a life-threatening medical diagnostic must be 
performed. When a model provides a diagnosis that 
does not agree with the physician, the model needs 
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to elaborate on its reasoning just as the physician can. 
Most products incorporating artificial intelligence are 
rejected by the Food & Drug Administration (FDA) for 
market use because they lack the ability to explain 
how a result is achieved1. Products demonstrated for 
the Department of Defense also encounter a similar 
issue, but contributors to this2 are outside the scope 
of this paper. 

 
B. Lack of Training Data 

Many suggested artificial intelligence applications in 
healthcare are centered around scenarios where little 
training data exists. In light of this, the deployment of 
a new machine learning algorithm into the wild is 
extremely sensitive and the results of it being wrong 
are catastrophic. In the most recent event of the 
COVID-19 pandemic, many cutting-edge machine 
learning solutions have been proposed to aid 
healthcare responders in the overwhelming demand 
they face with screening for the virus. However, the 
timeline to when an accurate solution was provided 
(at least in the early stages of the pandemic) was less 
than ideal due to the fact that the virus was new and 
little information was available to sufficiently train a 
model. In many cases with cancers, there are an 
abundance of edge cases (highly improbable 
scenarios) in which the cancer may be identified, 
which makes acquiring sufficient data to train a model 
that much harder. 
 
C. Patient Privacy  

The merits maintained in the Healthcare Insurance 
Portability and Accountability Act (HIPAA) and the 
Digital Imaging and Communications in Medicine 
(DICOM) standards demotivate substantial data 
collection to protect patient privacy, and for good 
reasons. Machine learning models requiring cloud 
processing make it difficult to uphold these standards. 
Less network traffic correlates with less probability of 
signal compromise and data loss. Additionally, there 
are scenarios where the physician may not have the 
luxuries of time to wait for processing on a cloud 
network to interpret a result, which contributes 
another point calling for on-device machine learning 
models, or edge intelligence. 
 
D. Efficiency 

Edge intelligence is a popular research field. The 
appeal for edge computing, or performing 
processing on the device itself versus sending the 
computation to a remote server for processing, has 

been driven by a large demand for 5G 
communication and development in the Internet of 
Things (IoT)19. Neural networks and deep learning 
models in general are known to take a lot of 
computational time and energy to train. A deep 
learning model also results in large storage size which 
makes it difficult to incorporate into storage-limited 
edge devices. Various model compression methods 
exist and are continuously improving to allow deep 
learning models to live on these edge devices, but it 
becomes increasingly important to ensure this 
compression does not compromise accuracy. 
Offloading the processing power of millions of 
devices to a cloud will congest the network and poses 
several issues with latency. Additionally, performing 
transfer learning (further training or “fine-tuning” a 

Figure 1 - Concept of how our model breaks a typical classification 
problem down into smaller subproblems. 
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model after it has been deployed) must be managed 
in such a way that calls for computational energy are 
kept to a minimum to make edge computing 
tractable. 
 
 
E. Quality of Experience 

New algorithms in artificial intelligence and machine 
learning are eloquently presented in research papers 
every month. These algorithms all show increased 
accuracy and reliability, but most simply remain at a 
conceptual level or are demonstrated on expensive 
laboratory computer systems not designed to favor 
user experience and real-world robustness. 
Additionally, these algorithms are often given clean 
data that doesn’t entertain noise typically 
encountered with product use. In order for artificial 
intelligence systems to be more widely accepted into 
healthcare, development focus on the user 
experience becomes just as important as the previous 
four factors. Physicians need to have the comfort of 
knowing that they can rely on a product and intuitively 
navigate its functions through high-stress scenarios. 
 
These factors give appeal to a different angle of 
thinking for engineers in designing models. The goal 
of this paper is to outline an approach to model 
design that could aid edge devices in gaining better 
classification performance and providing more 
forgiveness in use by addressing the five points 
above. We show that by breaking a difficult computer 
vision problem down into smaller tasks, a cluster of 
many small CNNs can outperform a single large CNN 
in many ways. We evaluate the efficacy and accuracy 
of this model in its ability to detect 7 different 
respiratory conditions in chest X-ray images. To 
achieve accurate representation of using an edge 
device in a practical clinical setting, an iOS software 
application was developed to both import and 
capture pictures of the X-ray images for evaluation by 
the mentioned model. We show how our algorithm 
helps rectify the problems listed above and, as a 
consequence of the model design, how a “train of 
thought” may be extracted from the algorithm to 
interpret how a certain conclusion resulted from the 
input image. Additionally, we illustrate how the 
machine learning model allows for more forgiveness 
on less training data as well as a method for increasing 
sensitivity on a young, freshly launched algorithm. As 
a benchmark, we compare the properties and 
performance of this algorithm against a standard 
VGG-style CNN on the same dataset. The approach 

we take is particularly favorable towards computer 
vision applications for computationally-starved edge 
devices and the model was evaluated on such a 
device one that is commercially available. Apple 
iPad’s are commonly used in clinics so the entire 
evaluation procedure for the clinical trial was 
evaluated using a 2020 iPad Pro. Though a device of 
this type possess much higher data storage capacities 
than typical IoT devices, we simply use it  as the 
vehicle to illustrate our proof of concept while 
maintaining all other restrictions regarding 

Figure 2 - Architecture of the 19-layer benchmark CNN18. 
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processing power, sensor availability, computational 
complexity, and final application storage size of the 
model that would be maintained by a typical edge 
device. 
 
 
Dataset 

For the purpose of the experiment, several open-
sourced datasets of X-ray and CT scans were used to 
train and test the model.   Datasets of radiographic 
images from patients with confirmed COVID-19 
infections, Severe Acute Respiratory Syndrome 
(SARS), Common Bacterial Pneumonia, Emphysema, 
Atelectasis, Pneumothorax, and normal healthy 
subjects were utilized from open-sourced datasets on 

Github4,6 and Kaggle5. The 
radiographic images were 
obtained from three open-
sourced datasets including the 
National Institute of Health via 
Kaggle7 and two GitHub 
datasets15,9. All evaluation data, 
however, was accumulated from 
a clinical partner through the 
process of a clinical trial 
specifically organized to 
determine the efficacy of this 
machine learning model. 

Inputs into each neural network 
were first normalized since 
image dimensions of the data 
were not all identical. To do this, 
the radiographic images were all 
rescaled to the mentioned size of 
600 pixels in width by 600 pixels 
in height in 3 dimensions along 
the RGB channel. In order to 
achieve some independence of 
rotation, the training images 
were each mirrored and rotated 
5, 10, and 15 degrees both 
clockwise and counterclockwise 
about the central axis effectively 
making an additional 6 copies of 
each image to potentially pool 
from during the training dataset. 

Background 

In a typical computer vision 
application, a single 
convolutional neural network 

may be deployed to identify patterns in an image. 
Once trained on thousands of images, the accuracy 
achieved from these networks in correctly identifying 
these patterns is substantial. Consequences of using 
this accurate, trained network are a large storage size, 
large parameter count, and the requirement of a 
multitude of readily available training data. For small 
edge devices, megabytes or gigabytes of storage are 
not available to host such a large network. One 
solution to rectifying this issue is to host the network 
on a cloud and allow the device to transmit the data 
there for processing on a large neural network, 
providing the edge device was built with the 
capability of hosting an internet connection. However, 
in some applications, the time it may take for cloud 
processing to complete and return a response may 
not be a luxury available to the patient and physician. 
Additionally, internet connectivity may not be 
available to facilitate such a transaction. Another 
solution is to remove some learning layers from the 
network to decrease its storage size, but this comes 
with a compromise in algorithm accuracy and 
robustness. Since the number of parameters and 

Table 1 - Image count for each node network. 

Table 2 - Final storage size of each node network. 

Figure 3 - Network 
architecture of each of 
the 8 node networks18. 
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connections (storage size) increases exponentially 
with more classification inputs and learning layers, 
accurate networks that contain several layers are 
inherently large. In this experiment, we use a VGG-
style CNN reflecting the above restrictions as the 
benchmark model to validate against our new model. 
This new model incorporates a cluster of eight smaller 
CNNs organized in a hierarchical fashion. This 
effectively creates a network of CNNs with each CNN 
specifically trained to identify a different pattern. The 
training properties and performance of these two 
models will be analyzed and compared. 

Fundamentally, our proposed model works by 
breaking a typical classification problem down into 
smaller subproblems. As an example for how our 
model better classifies respiratory conditions in X-ray 

images, consider the concept presented in Figure 1. 

We are given an image of a fruit tree where the goal is 
to determine whether or not the image contains 
apples. A conventional neural network would attempt 
to classify whether or not the entire image contains an 
apple.  Our model breaks the image down by 
identifying all of the regions in the image that contain 
objects that look like clusters of apples, then 
identifying each object within that cluster that looks 
like an individual apple, and then finally looking at 

each of those objects to see if, indeed, it is an apple. 
Our approach allows the model to have sub-models 
that specialize in each task with a final model that 
stiches all of the sub-model data together for a 
general understanding. One may think of this as a 
form of scene segmentation, similar to that of what 
some self-driving vehicle models use. This approach 
shares many similarities in how image classification 
works in the cortex of the human brain20. 

Nearly all deep learning algorithms emulate a 
common recipe by combining a specification of a 
dataset, a cost function, an optimization protocol, and 
a model.  Our model remained true to this process in 
its overall design. A multi-step procedure was used to 
teach the model how to not only identify the seven 
respiratory conditions but also alleviate significant 
optical noise from the X-ray images.  This three-phase 
process involved (1) deep learning on eight 
independent CNNs, (2) hierarchical learning among 
those eight CNNs together, and (3) coupling an image 
preprocessor into the final data pipeline for 
denoising.  

Phase I: Deep Learning 

Eight individual CNNs were designed for this trial in 
order to adequately distinguish the seven respiratory 

Figure 4 - Training metrics for final Node 7 network. 

COVID-19 – SARS – Healthy 
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conditions, so each individual CNN initially needed to 
be trained and evaluated separately. These networks 
were trained on a desktop computer with an Intel 
Core i9 processor and an AMD Radeon RX 560 GPU. 
The hardware used is typical off-the-shelf computing 
hardware that is non-custom. It was important to the 
authors to illustrate the achievability of the results of 
this architecture on commonly available hardware. 
These models all followed a VGG-style architecture 
with 3x3 convolutional filters used for each of their 4 
layers; the model architecture is better shown in 

Figure 3. As we will later discuss, each of these CNNs 

is a “network node” that belongs to a larger cluster 
network so each was trained and evaluated on a 
different permutation of the 7 possible respiratory 
conditions. The exact count of images used to train 

each node network is illustrated in Table 1. Note that 

the total number of images used to train the node 
networks is high but that each node network itself 
required many less images to train. This is to 

demonstrate the capability of this architecture to learn 
and achieve accuracy on less data.  

As an example, the results are shown in Figure 4 for 

the final evaluated Node 7 network before it was 
compressed for evaluation in edge-computing. These 
results illustrate the convergence to a sensitivity of 
98.1%. The node networks were all trained with similar 
hyperparameters with the exception of epoch count. 
The number of epochs, or number of times the model 
passes through the entire dataset, used for training 
each network differed slightly due to the fact that the 
training losses on some models converged sooner 
than others.  

The architecture of the 19-layer benchmark model, by 

contrast, may be viewed in more detail in Figure 2. The 

model took just over 6 hours to train on the mentioned 
hardware with 8 epochs, a batch size of 32, and a 
learning rate of 0.001. 

Figure 5 - Architecture for the cluster network. Each green dot represents a separate trained convolutional neural network. The blue 
boxes near it are the training labels for that network. 
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Once trained, each network was then compressed to 
fit on an Apple iPhone or iPad (the edge device). The 
benchmark model was also compressed. In total, the 
entire CCNN comprising the eight smaller models 
totaled 251 KB versus 1.26 GB for the benchmark 

VGG model. Table 2 illustrates the size of each CNN 

trained in the model. 

 

Phase II: Hierarchical Learning 

Consider the mathematical model in Equation 1 of an 

individual neuron of a simple convolutional neural 
network: 

 

The network takes an input x and contains one hidden 
layer with NH units, where vj represents the output 
weights and h(x;u) is the transfer function dependent 
on those weights. A linear combination of the outputs 
of the hidden units with a bias b is used to obtain f(x)11.  

In a similar manner to how the weights, u, and biases, 
b, are used to influence the final output of the neuron 
in a standard CNN, our proposed model calculates 
weights and biases for individual networks in a cluster 
of CNNs. These individual CNNs are called “network 
nodes” and the weight and bias calculations are used 
to analyze how each network node influences the final 
outcome in a hierarchy of network nodes. Effectively, 
the relationship between network nodes is similar to 
that between individual neurons.  

In Figure 5, each green dot represents a node that 

denotes a separate CNN; the blue boxes next to that 
node indicate the possible classification labels from 
that network. These eight network nodes are 
organized in such a way that each subsequent 
network has fewer output possibilities, effectively 
decreasing loss with each successive network.  As an 
image is first classified in the CCNN, it enters a CNN 
containing output labels of all 7 different conditions; 

this first CNN is denoted as the Trunk in Figure 5. 

Contingent on which classification is determined from 
this trunk network, it is then fed into a subsequent 
node network in Branch 1. Similarly, based on the 
classification from the first branch network, it enters 
into either another CNN in a subsequent branch or 
moves to a final weight comparison that is used to 
determine the final ruling. This final weight 

comparison is denoted in Branch 3 in Figure 5. At this 

point, scores taken from each of the CNNs in the 
experienced nodes are evaluated for a final 
classification result. 

One will notice that some nodes have identical output 
labels as their neighbors. This is intentional—the 
model was constructed to  significantly reduce the 
potential of the patient receiving a false-negative 
result on their X-ray image. Pneumonia, SARS, and 
COVID-19 are similar in their appearance in an X-ray 
image and, in experimentation, it was particularly easy 
to confuse the model between these three when 
evaluating an X-ray image7. Due to this, multiple 
models with different emphases were trained on data 
of the same output labels, and the processing path 
was forked after the determination in the first node. 
Each model looks for slightly different patterns over 
the same labels when the image is passed through. 

Each node network of the overall network outputs a 
confidence in classification that is fed into subsequent 
node networks for use in the final prediction. As an 
example, let’s consider an image that truly shows 
symptoms of COVID-19. In order for an image to gain 
a true positive result of COVID-19, the image must go 
through at least 4 nodes of CNNs and a final statistical 
weighted analysis. Upon completion of this weighted 
analysis, if an adequate ruling with a confidence level 
greater than 65% cannot be determined, the image is 
rotated about its central axis by an arbitrary angle 
between -5 degrees and +5 degrees and sent 
through these those 4 nodes a second time. This adds 
an element of “stochastic activation” to the model. 
This process is recursively repeated until the 65% 
confidence threshold is achieved. Only after this 
process is complete is the final result presented. In the 
event that it is never achieved after 5 cycles through 
these 4 nodes, then an “indeterminant” classification 
is returned from the CCNN. This process helps 
maximize recall and minimize false negative results 
due to the fact that there is a consistent “check” 
against multiple networks that look for different 
biomarkers on the same image. For example, if the 
network in Node 4 outputs a 65% confidence in the 
image representing COVID-19 and the second 
network of Node 7 outputs a 98% confidence in the 

Equation 1 

Equation 2 

Equation 3 
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image representing a healthy individual, the image is 
not automatically deemed as “healthy.” The 
confidence numbers and weights from the networks 
of all previous nodes are compared against these new 
numbers to contribute to the final ruling; if a ruling still 
receives an overall low-confidence, it is fed back into 
the network for reclassification until a ruling is 
achieved above the mentioned threshold. Since each 
node network is weighted, those weights are used in 
determining how much total contribution the result of 
a node network should have towards the final ruling. 
The architecture is designed to slightly favor 
sensitivity over specificity due to the severity of a false-
negative occurrence in this particular application. 

Bayes’ theorem is a foundational element to every 
statistical learning algorithm. Concisely, it 
decomposes the probability of a specific event being 
achieved by basing it on prior knowledge of the 
contributing conditions of that event. It is expressed 

mathematically in Equation 211. 

One can see the importance of this in evaluating the 
prior and posterior probability distributions of an 
image classification as the image is fed from node to 
node. More explicitly, at the conclusion of each 
network node, class-conditional distributions p(x|y) for 
y = C1, … , CC with the prior probabilities of each class 
were modeled. These values were then used to 
compute the posterior probability for each class using 

Equation 3. 

For example, referring to the probability of an X-ray 
image being classified as COVID-19 at the outcome of 
Branch 1, given that it has been classified as COVID-
19 through the trunk of the network can be expressed 

in Equation . 

A similar process can be followed for each 
classification-node permutation encountered by the 
image as it travels through the network classification 
sequence. Let it be re-stated that weights are 
attributed to these numbers and compared at the end 
of Branch 2 of the network; as transfer learning occurs, 
these weights may shift the resulting posterior 
probabilities up or down.  

Gradient-based optimization is a cornerstone for most 
machine learning models. Our model stays true to this 
by incorporating a derivative of this principle into the 
hierarchical learning between node networks. During 
hierarchical learning, the model optimizes the 
gradient between node networks just as it does 
between layers during the training of each node 
network individually. Backpropagation played a 
similar role between node networks in achieving 
model cohesion as backpropagation between layers 
in a conventional CNN. The weights for each node 
network are updated after each classification during 
hierarchical training through backpropagation. As we 
will show later, this also occurs during transfer 
learning after model deployment. Specific attention 
had to be attributed to optimizing the gradient of the 

  

 P(COVID-19)Nodes 1 and 4 Posterior = [P(COVID-19)Node 1 CNN Prior × P(COVID-19)Node 4 | Node 1]  
P(COVID-19)Node 4 CNN Prior 

 

Equation 4 

Figure 6 – Shown for reference3, the pseudocode for the 
Backpropagation algorithm in a neural network from Russell's and 
Norvig's "Artificial Intelligence: A Modern Approach." The CCNN 
uses an additional version of "backprop" between node networks. 
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hierarchical training loss as a consequence. The 

backpropagation algorithm is shown in Figure 6 for 

reference3. 

 

Phase III: Preprocessing and Denoising 

For this project, it was important to the authors to 
design the experiment to closely resemble use in a 
practical setting. After all, the primary appeal for this 
model is for use in edge devices. Many new machine 
learning models proposed are proven accurate on a 
stationary computer with clean data. As any computer 
scientist knows, these models often behave in 
arbitrary ways when coupled with environmental 
noise, optical fallacies, and user input error. Even a 
perfected model in a controlled setting is not 
independent of minor shifts in translation or rotation 
as Goodfellow and others have shown11. In a clinical 
setting, these consequences are devastating and can 
determine the fate of patients.  To these points, the 

model demonstrated in Phases I and II was coupled 
with an image pre-processor and optical denoiser to 
allow for some forgiveness in the integrity of the 
captured or imported image, to provide a better user 
experience, and to promote overall confidence in the 
model architecture. Extra attention was paid to the 
design of the user interface in the app to ensure the 
user experience was intuitive and simple for a 
physician to use. Actual insight from real physicians 
was sought during the design process to deduce 
explicit user needs. 

The hierarchical layout of network nodes, in part, 
contributes significantly to the denoising effort by 
segmenting classification. In addition, the app makes 
use of a live object detector (the X-ray detector) that 
identifies a chest X-ray image within a live camera 
feed with an inference speed of 60 frames per second. 
This object detector automatically locates the X-ray 
image and highlights it with a visual blue box. This box 
provides the bounding dimensions for the input 
image that is allowed in the network. Since our model 
receives an input image of 600 x 600 dimensionality, 
the bounding box crops the image to a 600 x 600 
resolution. Once the radiographic image is identified 
and cropped, a second object detector (the lung 
detector) is initialized to find and segregate the lungs 
within the cropped X-ray image. Since most of the 
biomarkers that identify the seven possible 
respiratory conditions are visible in the lungs, it is 
important to distinguish these in the image to avoid 
having the CCNN classify unintended patterns in 
other parts of the X-ray image. Next, light properties 
are then adjusted in an optical denoiser module to 
realize more image resolution; these properties 
include exposure, saturation, vignetting, and focus. 
Consequently, the resulting image is rid of much of 
the glares, ghosts, and other optical noise that may be 
present in a radiologist technician room. The image 
may now be fed into the CCNN for classification.  

Figure 7 shows the entire pipeline incorporating this 

pre-processor.  

Finally, we arrive at the point of model explainability. 
The model was built to log the telemetry of each 
classification during training. Each time an image was 
classified, a report was generated that showed the 

Figure 7 - Processing pipeline of each X-ray image after it is captured by the camera or imported. 

Figure 8 - Four images showing the model’s ability to generalize 
and look past atypical artifacts present in the X-ray. (Top Left) A 
pacemaker is present in the patient's chest. (Top Right) Text is 
present in the top right of the image and cables are visible 
towards the bottom. (Bottom Left) The image is not vertically 
aligned and poorly cropped. (Bottom Right) A pacemaker is 
present in the patient’s chest and more text is visible on the 
image. 
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probabilities, weights, and labels associated with 
each node network passed through as well as the 
backpropagation metrics. The model returned a score 
on the quality of each image after it was fed through 
the preprocessor to determine how much noise was 
still present. This report showed the model’s “train of 
thought” by illustrating exactly how the image was 
transferred between node networks. This exposed 
any faults within the model and showed engineers 
specific weights that needed to be manually adjusted 
in order for the model to continue increasing accuracy 
and escape a local minimum in loss. Continual 
incorrect classifications could expose entire nodes at 
fault and indicate the need for their retraining or 
replacement. In transfer learning, this was specifically 
helpful since each individual node network could be 
adjusted itself instead of having to adjust the whole 
network. Additionally, in one specific case where the 
model continuously returned false positives on 
Emphysema, node networks 4, 5, 6, 7, and 8 were 
“turned off” to focus generalization on only a few 
labels. The engineers did not encounter any scenario 
during transfer learning where adjusting a specific 
node network negatively impacted the entire cluster 

network. This represents a huge advantage to doctors 
and physicians in being able to determine where 
weak points in the model are and receive the model’s 
final results with appropriate regard. The ability for a 
machine learning model to explain itself also 
contributes to one of the most important topics of AI 
in general; in order for machine learning to truly gain 
acceptance in medicine, a model must be able to 
explain its rationale just as a physician can.  

Results 

Overall performance for the model evaluated during 
the clinical trial showed very promising in the final 
analysis. Results for the CCNN showed to acquire 
94.55%, 86.54%, and 90.65% in sensitivity, specificity, 
and accuracy, respectively, in correctly distinguishing 
COVID-19 between the 7 respiratory conditions. On 
the other hand, the larger benchmark CNN showed 
more meager results with 58.93%, 83.33%, and 
70.91% respectively in sensitivity, specificity, and 
accuracy. 110 images were used for the evaluation of 
both the benchmark and CCNN models. 55 images 
were assessed using the “import” function of the 
mobile application developed, and 55 images were 

Figure 9 – 3 screenshots from the app of images showing COVID-19 captured via the device app. Arrows indicate optical fallacies and 
general noise. (Left) A report showing the model's ability to auto-adjust contrast to reveal critical biomarkers. (Middle) an image showing 
the model's ability to re-crop an X-ray image that was originally poorly cropped and rid it of optical noise. (Right) Image showing the 
model's ability to remove optical glares and contrasts. 
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assessed through capturing a photograph of the X-ray 
through the camera on the edge device. Both models 
were evaluated on the same dataset of 110 images. 

A major contributor to the successful results was the 
preprocessor. The segmentation of the X-ray image in 
the camera field of view and subsequent 
segmentation of the lungs allowed the model to work 
as intended and only analyze the critical part of the X-
ray report. To demonstrate how well the preprocessor 
performed, Figure 8 shows examples of rather noisy 
images that were correctly classified as their ground 
truth labels. One can see how the model generalizes 
well enough to filter out the pacemaker, text in the 
corners, and other artifacts that may appear as 
unintentional patterns for the model to interpret as 
biomarkers and negatively affect model sensitivity. 
Additionally, Figure 9 shows actual screenshots taken 
from the mobile app used for the clinical trial. These 
particular screenshots further demonstrate the 
model’s ability to reconcile bad images. 

 

Discussion 

Some readers may be skeptical about whether or not 
a neural network is applicable and even capable of 
accurately classifying respiratory conditions in X-ray 
images. The universal approximation theorem12 states 
that a neural network, given enough hidden units and 
layers, may approximate any function mapping from 
any finite dimensional discrete space to another8. 
Interpreted differently, the theorem validates that a 
mathematical model is capable of learning to 
approximate a close solution to this classification 
problem (a nonlinear function), but that the size and 
specific architecture of this network is not explicitly 
determined. This was exemplified in the above study 
since the benchmark model was a single neural 
network with significant learning depth and significant 
size, but the model still was unable to learn enough to 
approximate this closed solution to the desired 
accuracy. Equivalently, a derivative of the universal 
approximation theorem may be used with our cluster 
network model in that the cluster network is capable 
of learning to approximate a close solution, but the 
number of node networks and hierarchical 
architecture is not explicitly determined. In this case, 
that architecture was determined through hierarchical 
learning while the number of node networks was 
determined through experimentation. 

Probably the most noteworthy success of this model 
after accuracy is its decision explainability. Simplifying 
the task by segmenting the image allows each model 

component to become more specific in the patterns it 
recognizes. It also allows one the ability to uncover 
erroneous behavior without having expertise in the 
overall system14. Constant mis-classifications of 
Emphysema, for example, point to the CNN at Node 
3 and the engineer knows to focus on the adjustment 
of those weights or swap the CNN out entirely. The 
topic of segmentation arises often within the self-
driving car industry. Some scientists side with the 
approach of scene segmentation since its facilitation 
is very similar to how the human brain interprets its 
visual field through the optical nerve in the eyes17. 
Others back an end-to-end approach indicating that 
computers can make better sense of the information 
than a human without breaking down the scene and 
that segmentation actually slows the model down by 
having so many tasks running in parallel. While there 
is not (yet) a correct answer to which is most robust, 
our model favors the former in that best results were 
achieved parallel processing many smaller tasks. 

Throughout the experiment, we also found transfer 
learning simpler. Transfer learning typically involves 
updating the knowledge of a single CNN after it has 
been trained. The CNN is trained to classify additional 
labels and its weights are adjusted to accommodate 
this new label without compromise in the accuracy of 
the other existing labels. Our model takes an 
additional angle with transfer learning by giving the 
engineer the ability to adjust or entirely replace node 
CNNs within the CCNN. We carried out this 
experiment by transfer learning a prior CCNN without 
Pneumonia to include Pneumonia. That model 
eventually evolved to the exact model used in this 
paper. The success of this gives hope to being able to 
design AI products that can increase their scope of 
capability while maintaining the trust of the physician. 

 

Conclusion 

This paper introduced five main fields the proposed 
model achieves significant advantages in:  

• Explainability—We showed how integrating a 
report that logs the classification process of 
every image input into the model is invaluable 
to artificial intelligence engineers and 
physicians. Breaking a hard problem usually 
tackled by a single CNN down into several 
smaller subproblems allowed our model to 
achieve much higher accuracy since each 
node network was trained to recognize a very 
specific pattern. This further facilitates 
explainability since it can be shown how an 
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image flows through the cluster network and 
how model sensitivity is affected by design 
decisions.  

• Privacy—The smaller node networks allowed 
for a much smaller overall model negating the 
need for an internet connection which, in turn, 
protects patient privacy. This is further 
achieved through data encryption on the 
device. 

• Lack of Training Data—We showed how each 
node network was much smaller in scope 
compared to the benchmark model and 
required less training data to achieve good 
accuracy. 

• Efficiency—We explained how incorporating a 
preprocessor to clean the image before 
classification was necessary to achieve high 
model sensitivity. Each model also 
generalized better on their respective 
datasets and correctly classified more edge 
cases than the benchmark model.  It was 
proven that multiple smaller CNNs can match 
the level of learning of one large CNN16. All of 
these points lead to a model that consumes 
less power and computational bandwidth 
from a processor while achieving better 
accuracy than the alternative benchmark 
design. This complements the demanding 
needs for edge computing and shows a 
feasible solution for obtaining high accuracy 
with neural networks through local distributed 
processing. 

• Quality of Experience—Finally, we 
demonstrated the high accuracy of our model 
in a real product through a clinical trial 
showing how the model compensated for 
nuances found in the wild along the way. 

We hope the advantages presented with this model 
architecture will be particularly leveraged by readers 
designing machine learning products in the medical 
industry. Much of the fundamental knowledge 
employed during the design of a single neural 
network is leveraged throughout our design of the 
CCNN. As a consequence, we hope that this paper 
opens up regulatory consideration of artificial 
intelligence products in FDA product screening by 
exposing the invaluable benefits AI can provide in 
image recognition problems. Through better model 
design and a focus on usability, artificial intelligence 
can significantly augment physicians’ capabilities 
within the clinic. The surging demand in 5G 
communications complements the significant appeal 
of the above techniques in realizing true edge 
intelligence and the authors hope this helps pave the 
path toward more sophisticated edge devices.  The 
authors plan to continue development of the CCNN 
model by broadening its scope to accommodate 
additional respiratory conditions. Additionally, work is 
underway to apply the same architecture towards the 
analysis of eye images to detect biomarkers for 
blindness, to recognition of neurological disorders in 
brain MRI images, and to audio recordings to detect 
biomarkers of potential neuropsychological 
conditions. 

 

 

 

 

 

 

 

As an effort to lighten physician demand for the COVID-19 pandemic, the authors have published the 
application with the model used in this paper to the Apple App Store free for download under the name 

“COVID-AI”. 
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