
Python
Programming:
An Introduction to
Computer Science

Seminar 1
Chapter 1 Computers and Programs Chapter 2
The Software Development Process Chapter 3
Computing with Numbers

Python Programming, 3/e 1

The Universal Machine
Objectives

■ To understand the roles of hardware and
software in a computing system.

■ To understand the software development
process

■ To begin using the Python programming
language.

■ To program with numbers

Python Programming, 3/e 2

Hardware Basics

■ Computer - hardware
■ stores and manipulates information

■ Computer program - software
■ step-by-step set of instructions
■ The process of creating software is called

programming ■ rule the hardware

“brain” of a computer.
carries out all the basic
operations on the data. Pass information

to computer

stores
Present
processed information

■ makes computer performs a different set of actions or a different

task.

Python Programming, 3/e 3

programs (instructions) and data (information
manipulated by program)
Python Programming, 3/e 4

Python Programming, 3/e 1
Programming Languages
■ Natural language

■ Ambiguous and imprecise

■ Programming language
■ Unambiguous and precise
■ Every structure has a precise form, called

its syntax

Programming Languages
■ High-level computer languages ■

Understood by humans
■ E.g., c = a + b

■ Low-level or machine language ■

in 0s and 1s or mnemonics
■ Usually 1:1 mapping to computer hardware

■ Every structure has a precise
meaning, called its semantics.

Python Programming, 3/e 5

■ E.g.,
Load the number from memory location 2001 into the
CPU Load the number from memory location 2002 into
the CPU Add the two numbers in the CPU
Store the result into location 2003 Python Programming, 3/e 6

Programming Languages

■ Compilers convert programs written in a
high-level language into the machine
language of some computer.

Programming Languages
■ Interpreters simulate a computer ■

analyzes and executes the source code
instruction by instruction.

Python Programming, 3/e 8

Python Programming, 3/e 2
Programming Languages

Compiler Interpreter

Once compiled, it can be
executed over and over
without the source code or
compiler.

If it is interpreted, the
source code and
interpreter are
needed each time the
program runs

Generally run faster since
the translation of the source
code happens before the
execution.

Generally run slower since
the translation of the source
code happens during the
execution.

Not portable.
Executable code produced
from a compiler won’t run on
a different platform, without
recompiling

More portable.
If a suitable interpreter
already exists, the interpreted
code can be run with no
modifications.

Stages of Software Development
■ Analyze the Problem

■ What problem
■ The temperature is given in Celsius, user wants it expressed

in degrees Fahrenheit.”

■ Determine Specifications
■ What your program will do.

■ Input – temperature in Celsius
■ Output – temperature in Fahrenheit
■ how they relate to one another.
 Output = 9/5(input) + 32

Python Programming, 3/e 9Python Programming, 3/e 10

Stages of Software Development
■ Create a Design

■ Formulate the overall structure of the program. ■

The how of the program gets worked out. ■

Develop an algorithm that meets the
specifications.

■ Input, Process, Output (IPO) Structure
■ Pseudocode or Flowchart

Algorithm is a design of a solution. It defines the
structure and the steps to solve a problem.

Python Programming, 3/e 11

Algorithm
Input Input celsius

Processin
g

fahrenheit = 9/5
celsius + 32

Output Output fahrenheit

Pseudocode Flowchart

Python Programming, 3/e 12

Python Programming, 3/e 3
Stages of Software Development

■ Implement the Design
■ Translate the design into a computer

language.
■ In this course we will use Python.

#convert.py
A program to convert Celsius temps to Fahrenheit
by: Susan Computewell
def main():
 celsius = float(input("What is the Celsius temperature? "))
 fahrenheit = (9/5) * celsius + 32
 print("The temperature is ",fahrenheit," degrees Fahrenheit.")
main()

Python Programming, 3/e 13

Stages of Software Development
■ Test/Debug/Run the Program

■ Try out your program to see if it worked.
>>>
What is the Celsius temperature? 0
The temperature is 32.0 degrees Fahrenheit.
>>> main()
What is the Celsius temperature? 100
The temperature is 212.0 degrees Fahrenheit.
>>> main()
What is the Celsius temperature? -40
The temperature is -40.0 degrees Fahrenheit.
>>>

■ Errors (bugs) need to be located and fixed.
This process is called debugging.

■ Three types of errors:
■ Compile/Syntax, Runtime, Logic

Python Programming, 3/e 14

Stages of Software Development Python
■ Maintain the Program

■ Continue developing the program in
response to the needs of your users.

■ In the real world, most programs are never
completely finished – they evolve over time.

■ The design of the program affects its
maintainability.

Python Programming, 3/e 15

■ Created by Guido van Rossum
■ Released in 1991

■ Multiple programming paradigms:
object-oriented, imperative, functional
and procedural

■ Large and comprehensive standard
library

■ Current version 3.7.0
Python Programming, 3/e 16

Python Programming, 3/e 4
Python Construct - Output

OUTPUT statement:
 print(expr1, …, exprn, end = "") ■ >>>

print("Hello, world")
Hello, world
>>> print(2+3)
5
>>> print("2+3=", 2+3)
2+3= 5

■ With end Output: print("3+4=", end = "")
print(3+4) 3+4=7 Python Programming, 3/e 17

Python Construct - Function
■ Making a new command with parameters

(or arguments):

Define FUNCTION: def func(arg1, …, argn):
<body>

>>> greet("Terry")

Python Construct – Function
■ Making a new command:

Define FUNCTION: def func():
 <body>

■ >>> def hello():
 print("Hello")

 print("Computers are Fun")

>>> hello()
Hello
Computers are Fun

Python Programming, 3/e 18

Python Construct - Input
INPUT statement: input (prompt)

■ First the prompt is printed
■ The input part waits for the user to enter a value

and press <enter>
■ The value entered is treated as a string of

characters

>>> def greet(person):
 print("Hello",person) print ("How are
you?")

>>>
Hello Terry

How are you?
>>> greet("Paula") Hello Paula
How are you?
>>>

>>> friend = input('Enter name of person

to greet: ') Enter name of friend to
greet: Alan
>>> greet(friend)
Hello Alan
How are you?

Python Programming, 3/e 19
Python Programming, 3/e 20

Python Programming, 3/e 5
Python Construct - Assignment

ASSIGNMENT statement: var = expr
■ The value obtained from evaluating expr is assigned to the

variable.

Python Construct - Assignment
x = x + 1

Once the value on the RHS is computed, it is stored back
into (assigned) into x

A variable is used to assign a
name to a value so that we can
refer to the value later.

A variable begins to exist
when a value assigned to
it.

>>> friend = input('Enter name of person to greet:
') Enter name of friend to greet: Alan
>>> greet(friend) Hello Alan
How are you?
friend Alan Python Programming, 3/e 21

Python Programming, 3/e 22

Python Construct - Assignment

Simultaneous ASSIGNMENT statement:
var1, …, varn = expr1, …, exprn

sum, diff = x+y, x-y

■ Evaluate the expressions in the RHS and assign them to
the variables on the LHS

x, y = y, x

What does this statement do?

Python Programming, 3/e 23

Python Construct – Selection
Selection statement: if condition:
<true-body>

■ A selection tells Python to perform the

true-body if the condition is true.

 if celsius < -273:

 print(celsius, "is invalid") Python

Programming, 3/e 24

Python Programming, 3/e 6
Python Construct - Loop

LOOP statement: for var in exprList:
<body>

Python Construct - Loop
for i in range(10):

 x = 3.9 * x * (1 - x)
 print(x)

 equivalent to
■ A loop tells Python to repeat the
same thing over and over.

 for i in range(10):
 x = 3.9 * x * (1 - x)

print(x)

x = 3.9 * x * (1 - x) print(x)
x = 3.9 * x * (1 - x) print(x)
x = 3.9 * x * (1 - x) print(x)
x = 3.9 * x * (1 - x) print(x)
x = 3.9 * x * (1 - x) print(x)

x = 3.9 * x * (1 - x) print(x)
x = 3.9 * x * (1 - x) print(x)
x = 3.9 * x * (1 - x) print(x)
x = 3.9 * x * (1 - x) print(x)
x = 3.9 * x * (1 - x) print(x)

Python Programming, 3/e 25

Python Construct - Comment
Comment: # comment

■ Lines that start with #
■ Intended for human readers and

ignored by Python
■ Python skips text from # to end of line

File: chaos.py
A simple program illustrating chaotic behavior

Python Programming, 3/e 27

Python Programming, 3/e 26

Elements of Programs
■ Identifiers

■ Names to identify variables (celsius,
fahrenheit), functions (main, convert), etc.

■ Naming convention
■ begin with a letter or underscore (“_”) ■

followed by any sequence of letters,
digits, or underscores
■ case sensitive.

Python Programming, 3/e 28

Python Programming, 3/e 7
Elements of Programs

■ Keywords
■ Identifiers that are part of Python itself. are

known as reserved words (or keywords). ■ not
available for you to use as a name for a

variable, etc. in your program.
■ and, del, for, is, raise, assert, if, in, print, etc. ■

For a complete list, see Table 2.1 (p. 32)

■ Meanings already assigned

Python Programming, 3/e 29

Numeric Data Types
■ Two number data types or classes in Python ■

int : whole positive or negative numbers e.g., 3,
-4, 0
■ float data type : decimal fractions

Elements of Programs
■ Expressions

■ Evaluated to value e.g., x = 3.9 * x * (1 - x)
■ May include:

■ Literals are used to represent a specific value,
e.g.

■ number literals 3.9, 1, 1.0 or
■ string literals (like "Hello" and "Alan")

■ Identifiers such as variables or functions ■

Operators and function calls:
■ +, -, *, /, //, **, %, abs
■ normal mathematical precedence applies.

Python Programming, 3/e 30

Numeric Data Types
■ int and float are immutable

Values of immutable data types cannot be changed
without changing the identities .

e.g., 3.0, -0.2523
Every data in Python is an object. An object
has
• content (the value),
• type (the data type of the value) and • id or

an identity (the address where the value is
stored in memory)
>>> type(3)
<class 'int'> >>> type(3.0) <class 'float'> >>>
myInt = 3 >>> myInt
3
>>> type(myInt) <class 'int'> >>> id(myInt)
493790368
>>> id(3)
>>> x = 10 >>> id(x)

493790592
>>> x = x + 1 >>> x
11
>>> id(x)
493790624
>>> id(10) 493790592
>>> id(11)

493790368 Python Programming, 3/e 32

Python Programming, 3/e 31
493790624

Python Programming, 3/e 8
Numeric Data Types

■ Operations on int produce int operations
on float produce float.

>>> 3.0 + 4.0
7.0
>>> 3 + 4
7

Type Conversion & Rounding
■ Implicit typing

■ Python converts ints to floats in mixed-typed
expressions : 3 + 4.0 evaluates to 7.0

■ Explicit typing
Integer division // produces a whole number
or a float with 0 in the decimal part

Modulus % is the remainder of the integer
division.
a = a // b * b + a % b
>>> 10.0 / 3.0 3.3333333333333335 >>> 10 / 3

3.3333333333333335 >>> 10 // 3
3
>>> 10.5 // 3.0 3.0
>>> 10.5 % 3.0 1.5

■ To control the type conversion.
3 + int(4.0) evaluates to 7
Converting to an int simply discards the

fractional part of a float – the value is
truncated.

int("32") and float("32") evaluate to
32 and 32.0

Python Programming, 3/e 33

Type Conversion & Rounding
■ round function

■ to the nearest whole value.
■ to another float value, if second parameter

specifies the number of digits after the
decimal point.

Python Programming, 3/e 34

Using the Math Library
■ A library is a module with useful functions,

e.g., Math library
■ Importing a library makes whatever functions are

defined within it available to the program, e.g.,
import math

>>> float(22//5) 4.0
>>> int(4.5)
>>> round(3.9) 4
>>> round(3)

■ To compute the roots of a
quadratic equation: 2 4 − ± −

b b ac

xa
4

3
=
2

>>> int(3.9) 3
>>> round(3.1415926, 2)
3.14

Python Programming, 3/e 35

discRoot = math.sqrt(b*b – 4*a*c)
Python Programming, 3/e 36

Python Programming, 3/e 9
Using the Math Library

Pytho
n

Mathematic
s

English

pi π An approximation of pi

e e An approximation of e

sqrt(x) x The square root of x

sin(x) sin x The sine of x

cos(x) cos x The cosine of x

tan(x) tan x The tangent of x

asin(x) arcsin x The inverse of sine x

acos(x) arccos x The inverse of cosine x

atan(x) arctan x The inverse of tangent x

Python Programming, 3/e 37

Using the Math Library
Pytho
n

Mathematic
s

English

log(x) ln x The natural (base e) logarithm of x

log10(x) 10logx The common (base 10) logarithm
o
f
x

exp(x) xe

ceil(x) ⎡⎤x⎢⎥

floor(x) ⎢⎥x⎣⎦

Python Programming, 3/e 38

Python Programming, 3/e 10

