
Python
Programming:
An Introduction to
Computer Science

Seminar 2
Chapter 5 Sequences: Strings, Lists, Tuples
and Files
Chapter 7 Decision Structures

Python Programming, 3/e 1

Objectives

■To be familiar with various operations
for sequence data types.

■To apply string formatting for program
output.

■To perform basic file processing in
Python.

Python Programming, 3/e 2

Objectives
■To apply simple decision, two-way

decision, multi-way decision
■To formulate Boolean expressions ■ To
implement algorithms that employ
decision structures, including those that
employ sequences of decisions and
nested decision structures.

Python Programming, 3/e 3

The Sequence Data Type

■ Values of sequence data types are ordered
collections of items called elements ■str
(immutable)

■Elements are characters enclosed within quotation
marks (") or apostrophes (') e.g., "Ann"

■list (mutable)
■Elements are values of any data type, enclosed within

square brackets e.g., [[1, 2], 'Ann', 3.3]
■tuple (immutable)

■ sequence of values of any data type, enclosed within
round brackets e.g., ([1, 2], 'Ann', 3.3)

Python Programming, 3/e 4

Accessing Elements via Indexing

■We can access the individual elements
in a sequence through indexing.

■The positions in a sequence are
numbered from the left, starting with 0.

■The general form is <seq>[<expr>],
where the value of expr determines
which element is selected from the
sequence.

Python Programming, 3/e 5

Indexing From Left

H e l l B o b

0 1 2 3 4 5 6 7 8

■ In a string of n characters, the last character is
at position n-1 since we start counting with 0.
>>> greet = "Hello Bob"
>>> greet[0]
'H'
>>> print(greet[0], greet[2], greet[4])
H l o
>>> x = 8
>>> print(greet[x - 2])
B

Python Programming, 3/e 6

Indexing From Right

H e l l o B o b

0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

■We can index from the right side using negative
indexes, starting with -1.

>>> greet[-1]
'b'
>>> greet[-3]
'B'

Python Programming, 3/e 7

Accessing Contiguous Elements

■Slicing: Accessing a contiguous sequence of
elements.

■<seq>[<start>:<end>]
■start and end should both be
int ■The slice contains

■ the elements beginning at position
start, and

■ runs up to but doesn’t include the
element at position end.

Python Programming, 3/e 8

Accessing Elements via Slicing

H e l l o B o b

0 1 2 3 4 5 6 7 8

>>> greet[0:3]

<seq>[<start>:<en
d>]
If either expression is
missing, then the start or
the end of the sequence
are used.

'Hel'
>>> greet[5:9] ' Bob'
>>> greet[:5] 'Hello'
>>> greet[5:] ' Bob'
>>> greet[:] 'Hello
Bob'

Python Programming, 3/e 9

Combining Elements

■Concatenation “glues” two sequences
together (+)

■Repetition builds up a string by multiple
concatenations of a string with itself (*)
>>> t1 = (1, 2)
>>> t2 = (3,)
>>> t1 + t2
(1, 2, 3)
>>> t2*5
(3, 3, 3, 3, 3)

Python Programming, 3/e 10

Length and Looping

■The function len will return the length
of a sequence.

>>> len("spam")
4

■ Iteration through elements in sequence

>>> for ch in "Spam!":
print (ch, end=" ")

S p a m !

Python Programming, 3/e 11

Summary

Operator Meaning

+ Concatenation

* Repetition

<sequence>[] Indexing

<sequence>[:] Slicing

len(<sequence>) Length
for <var> in <sequence> Iteration through

characters

Python Programming, 3/e 12

Mutable vs Immutable
■ Lists are mutable, meaning they can be changed.

■Strings and tuples are immutable, their values can
not be changed.

>>> myList = [34, 26, 15,
10] >>> myList[2]
15
>>> myList[2] = 0
>>> myList
[34, 26, 0, 10]
>>> myString = "Hello
World" >>> myString[2]
'l'

>>> myString[2] = "p"

Traceback (most recent call
last):

File "<pyshell#16>", line
1, in -toplevel-

myString[2] = "p"
TypeError: object doesn't
support item assignment

Python Programming, 3/e 13

Useful String Functions
■split

■ split a string into substrings

■based on spaces.
>>> "Hello string methods!".split()

['Hello', 'string', 'methods!']

■based on character, supplied as a a parameter.

coords = input("Enter the point coordinates
x,y):").split(",")
x,y = float(coords[0]), float(coords[1])

Python Programming, 3/e 14

More String Methods
s.capitalize() Copy of s with only the first

character capitalized
s.lower() Copy of s with all characters in lowercase

s.upper() Copy of s with all characters in uppercase
s.title() Copy of s; first character of each word

capitalized
s.count(substr) Count the number of occurrences of

substr in s

Python Programming, 3/e 15

More String Methods
s.center(width) Center s in a field of given width
s.rjust(width) Like center, but s is right-justified
s.ljust(width) Like center, but s is left-justified

s.join(list) Concatenate list of strings into one large
string using s as separator.

s.lstrip() Copy of s with leading whitespace removed

s.rstrip() Copy of s with trailing whitespace removed

Python Programming, 3/e 16

More String Methods
s.count(substr) Count the number of occurrences of

substr in s
s.find(sub) Find the first position where sub occurs

in s
s.rfind(sub Like find, but returns the right most

position

s.replace(oldsub,
newsub)

Replace occurrences of
oldsub in s with newsub

str(expr) Convert expr to string

Python Programming, 3/e 17

String Formatting
■<template-string>.format(<values>)
"The total value of your change is ${0:0.2f}".
format(total)

■{} : “slot” into which the value is inserted.

■Each slot has description that includes format specifier
{0:0.2f}

<width>.<precision><type>

<index>:<format-specifier>

Python Programming, 3/e 18

String Formatting
>>> "Hello {0} {1}, you may have won ${2}" .format("Mr.", "Smith",
10000) 'Hello Mr. Smith, you may have won $10000'

>>> 'This int, {0:5}, was placed in a field of width
5'.format(7) 'This int, 7, was placed in a field of width 5'

>>> 'This int, {0:10}, was placed in a field of witdh
10'.format(10) 'This int, 10, was placed in a field of witdh 10'

>>> 'This float, {0:10.5}, has width 10 and precision
5.'.format(3.1415926) 'This float, 3.1416, has width 10 and precision 5.'

>>> 'This float, {0:10.5f}, is fixed at 5 decimal places.'.format(3.1415926)
'This float, 3.14159, has width 0 and precision 5.'

>>> "Compare {0} and {0:0.20}".format(3.14)
'Compare 3.14 and 3.1400000000000001243'

Python Programming, 3/e 19

String Formatting
■Numeric values are right-justified and strings

are left- justified, by default.
■You can also specify a justification before the

width.
>>> "left justification:
{0:<5}.format("Hi!") 'left justification:
Hi! '
>>> "right justification:
{0:>5}.format("Hi!") 'right justification:
Hi!'
>>> "centered: {0:^5}".format("Hi!")
'centered: Hi! '

Python Programming, 3/e 20

Lists Methods
l.append(item) Add item at the end of a list
l.insert(pos, item)
Add item at the specified

position of a list

l[pos] = value Replace element at pos with value
L[start:end] =
sequence
Replace elements at pos

start, up to but with
elements in sequence

l.remove(item) Remove item in list
l.pop(pos) Remove item at pos in list
l.clear() Remove all items in list

list(sequence) Convert sequence to list

Python Programming, 3/e 21

Files: Multi-line Strings
■A file is a sequence of data stored in

secondary memory (disk drive).
■Files can contain any data type, but we

focus on text.
■A file usually contains more than one line

of text.
■Python uses the standard newline

character (\n) to mark line

breaks.

Python Programming, 3/e 22

Multi-Line Strings

Hello
World

Goodbye 32

■When stored in a file:
■Hello\nWorld\n\nGoodbye 32\n

\n affects print but not evaluation.

Python Programming, 3/e 23

File Processing
■Opening a file associates the file on disk

with an object in memory.
■Once opened, the file is manipulated through

this object.

■Closing the file completes any outstanding
operations and bookkeeping for the file ■

In some cases, not properly closing a file could
result in data loss.

Python Programming, 3/e 24

File Processing
■Associate a disk file with a file object using

the open function
■<filevar> = open(<name>, <mode>)

■name is a string with the actual file name
on the disk.

■The mode is either ‘r’ or ‘w’ depending on
whether we are reading or writing the file.

infile = open("numbers.dat",
"r") outfile =
open("mydata.out", "w")

Python Programming, 3/e 25

File Methods
<file>.read() Returns the entire remaining

contents of the file as a single
(possibly large, multi-line) string

<file>.readline() Returns the next line of the file. This
is all text up to and including the
next newline character

<file>.readlines() Returns a list of the remaining lines
in the file. Each list item is a single
line including the newline characters.

file.close() Closes file and release resources

Python Programming, 3/e 26

File Processing
infile = open(someFile, "r")
outfile = open("mydata.out", "w")

for line in
infile.readlines(): # Line

processing here
print(<expressions>, file=outfile)

infile.close()
outfile.close()

If an existing file is
opened for writing, its
contents will be cleared.

If the named file does
not exist, a new one is

created.

Python Programming, 3/e 27

File Dialogs
■Python will look in the “current” directory for files if

no path indicated.

■File names are in a form: <name>.<type> where
type is a short indicator of what the file contains.
E.g., C:/users/susan/Documents/Python_Programs/users.txt

■Alternatively, allow the users to browse the file
system visually and navigate to the file

Python Programming, 3/e 28

File Dialogs
■To ask the user for the name of a file to
open, you can use askopenfilename from
tkinter.filedialog.

Python Programming, 3/e 29

File Dialogs

Python Programming, 3/e 30

File Dialogs

■To ask the user for the name of a file to
save, you can use asksaveasfilename
from tkinter.filedialog.

from tkinter.filedialog import
asksaveasfilename
…
outfileName =
asksaveasfilename() outfile =
open(outfileName, "w")

Python Programming, 3/e 31

File Dialogs

Python Programming, 3/e 32

Simple Decisions

■Control structures allow us to alter
sequential program flow.

■Decision structures allow program to
execute different sequences of
instructions for different cases, allowing
the program to “choose” an appropriate
course of action.

Python Programming, 3/e 33

One-way Decisions

Input the temperature in
degrees Celsius(call it
celsius) Calculate fahrenheit as
9/5 celsius + 32

Output fahrenheit
If fahrenheit > 90
print a heat warning
If fahrenheit > 30
print a cold warning

Python Programming, 3/e 34

One-way Decisions

if <condition>:
<body>

■The body of the if either executes or not
depending on the condition.

■ In any case, control then passes to the next
statement after the if.

Python Programming, 3/e 35

One-way Decisions

def main():
celsius = float(input("What is the Celsius
temperature? "))
fahrenheit = 9 / 5 * celsius + 32

print("The temperature is", fahrenheit,
"degrees fahrenheit.")
if fahrenheit >= 90:
print("It's really hot out there, be
careful!")
if fahrenheit <= 30:
print("Brrrrr. Be sure to dress warmly")

Python Programming, 3/e 36

Forming Simple Conditions

<expr> <relop> <expr>
Python

<

Mathematic

s <

Meaning

Less than

<= ≤ Less than or equal to

== = Equal to
ndicates ≥ Greater than or equal to

> > Greater than

!= ≠ Not equal to

=
i

assign
ment

Python Programming, 3/e 37

Forming Simple Conditions

Boolean conditions
▪ type bool
▪ values - true and false
represented by the literals True and False.

>>> 3 < 4
True

>>> 3 * 4 < 3 + 4
False
>>> "hello" == "hello"
True
>>> "Hello" < "hello"
True

Python Programming, 3/e 38

Logical Operators
The Boolean operators and and or are used
to combine two Boolean expressions and
produce a Boolean result.
<expr> and <expr>
<expr> or <expr>

P
T

Q
T

P and Q
T

T F F

F T F

F F F

P

T

Q

T

P or Q

T

T F T

F T T

F F F

Python Programming, 3/e 39

Logical Operators

The not operator computes the opposite of
a Boolean expression.
not is a unary operator, meaning it
operates on a single expression.

P

T

not P

F

F T

Python Programming, 3/e 40

Precedence of Logical Operators

Consider
a or not b and c

The order of precedence, from high to low, is not,
and, or.

This statement is equivalent to
(a or ((not b) and c))

Python Programming, 3/e 41

Two-Way Decisions

if <condition>:
<statements>
else:
<statements>

Python Programming, 3/e 42

Two-Way Decisions

import math

def main():
print "This program finds the real solutions to a
quadratic\n"
a = float(input("Enter coefficient a: "))

b = float(input("Enter coefficient b: ")) c
= float(input("Enter coefficient c: "))
discrim = b * b - 4 * a * c
if discrim < 0:
print("\nThe equation has no real roots!")

else:
discRoot = math.sqrt(b * b - 4 * a * c) root1 =
(-b + discRoot) / (2 * a) root2 = (-b - discRoot) /
(2 * a) print ("\nThe solutions are:", root1, root2
)

Python Programming, 3/e 43

Multi-Way Decisions

if <condition1>:
<case1
statements>
elif <condition2>:
<case2
statements>
elif <condition3>:
<case3
statements>
…
else:
<default statements>

Python Programming, 3/e 44

Multi-Way Decisions

if discrim < 0:
print("\nThe equation has no real roots!")
elif discrim == 0:
root = -b / (2 * a)
print("\nThere is a double root at", root)
else:
discRoot = math.sqrt(b * b - 4 * a * c) root1
= (-b + discRoot) / (2 * a) root2 = (-b -
discRoot) / (2 * a) print("\nThe solutions
are:", root1, root2)

Python Programming, 3/e 45

Study in Design: Max of Three

def main():
print("Please enter three values,
separated by <ENTER>: ")
x1 = int(input())
x2 = int(input())
x3 = int(input())

missing code sets max to the value of
the largest

print("The largest value is", maxval)

Python Programming, 3/e 46

Strategy 1: Compare Each to All

This looks like a three-way decision, where we
need to execute one of the following:
maxval = x1
maxval = x2
maxval = x3
All we need to do now is preface each one of
these with the right condition such as:
if x1 >= x2 >=
x3: maxval = x1

This syntax is not available

in most languages.
This condition is NOT right!

Python Programming, 3/e 47

Strategy 1: Compare Each to
All We can separate these conditions with
and!
if x1 >= x2 and x1 >= x3:
maxval = x1
elif x2 >= x1 and x2 >= x3:
maxval = x2
else:
maxval = x3

We’re comparing each possible value against all
thothers to determine which one is largest.

What would happen if we were trying to find

the max of five values?
Python Programming, 3/e 48

Strategy 2: Decision Trees

Python Programming, 3/e 49

Strategy 2: Decision Trees

if x1 >= x2:
if x1 >= x3:
maxval = x1
else:
maxval = x3
else:
if x2 >= x3:
maxval = x2
else
maxval = x3

Python Programming, 3/e 50

Strategy 3: Sequential Processing

Python Programming, 3/e 51

Strategy 3: Sequential Processing
maxval = x1
if x2 > maxval:
maxval = x2
if x3 > maxval:
maxval = x3

This process is repetitive and lends itself to using a loop.
We prompt the user for a number, we compare it to our
current max, if it is larger, we update the max value, repeat.

for i in range(n-1):
x = float(input("Enter a number >> "))
if x > max:
max = x

Python Programming, 3/e 52

Strategy 4: Library

Functionprint("The largest value is",

max(x1, x2, x3))

Python Programming, 3/e 53

