Intriguing Minimization

Problem with Many

Solutions: Geometry to Calculus

Tom Reardon

Youngstown State University, 40 years

Texas Instruments Senior Math Advisor, 15 years

Fitch High School, 35 years

All materials can be downloaded at: bit.ly/mnctm2024

The Mast Problem

BA + AD is a minimum.

Justify your answer.

What is that minimum value?

Locate point A on segment CE such that

Attempt to solve in as many ways as possible.

(revised)

"I'm so glad I learned about parallelograms instead of how to do taxes.

It's really handy this parallelogram season."

- Unknown

The Mast Problem
(revised)
Locate point A on segment CE such that
BA + AD is a minimum.
What is that minimum value?
Justify your answer.
Attempt to solve in as many ways as possible.

The solution paths are the emphasis

of this session - NOT the final answer!

It's the journey!!

Hold off on the geometry solution until LAST.

Table of Contents to the Various Solutions

- p. 5 TI-Nspire solution withOUT calculus but using data capture to check model equation
- p.22 TI-84 CE solution withOUT calculus
- p.26 TI-84 CE solution WITH calculus
- p.31 Use TI-Nspire CAS to solve WITH calculus
- p.39 1st Geometry solution
- p.68 2nd Geometry solution
- p.74 Angle of Incidence = Angle of Reflection
- p.78 TI-84 CE solution with a form of data capture

Open the file "The_Mast_Problem..." using

TI-Nspire CAS.

Do pages 1.1, 1.2, 1.3.

$$\begin{array}{c|c}
B \\
12 \\
12 \\
24 \\
A
\end{array}$$

MINIMIZE.
$$S(x) = \sqrt{12^2 + x^2} + \sqrt{5^2 + (24 - x)^2}$$

How can we be sure that this is THE correct modeling equation?

How can we be sure that this is THE correct modeling equation?

TI-Nspire page 1.4, ...

Pull point A back and forth on segment CE

appears to be the minimum when = 16.968, minimum sum is 29.411

CA

While we were pulling point A, the calculator was "capturing" the data:

the distance CA (cp2) and the sum (sum2) into a lists and spreadsheet

1.2 1.3 1.4 ▶ *The_MONS RAD		
	А ср2	B sum2 C
=	=capture('ca,1)	=capture('sum1,1)
1	3.08129	33.8972
2	2.57814	34.2715
3	2.47752	34.3487
4	2.37689	34.4268
5	2.27626	34.5057
A1	=3.0812893081761	

Now we can plot this data: sum2 versus cp2

Now we can plot this data: sum2 versus cp2

Then we can test to see if our modeling equation exactly matches the collected data

Then we can test to see if our modeling equation exactly matches the collected data

it's a perfect match! So we know our modeling equation can be used to answer the questions.

it's a perfect match! So we know our modeling equation

can be used to answer the questions.

using the minimum tool:

TI-84 CE solve graphically

withOUT Calculus

How to solve without calculus?

$$S(x) = \sqrt{12^2 + x^2} + \sqrt{5^2 + (24 - x)^2}$$


```
WINDOW

Xmin=-1

Xmax=25

Xscl=5

Ymin=-1

Ymax=35

Yscl=5

Xres=■

△X=0.098484848484848

TraceStep=0.1969696969697
```


$$S(x) = \sqrt{12^2 + x^2} + \sqrt{5^2 + (24 - x)^2}$$

TI-84 CE solve graphically

WITH Calculus

How to solve WITH calculus?

$$S(x) = \sqrt{12^2 + x^2} + \sqrt{5^2 + (24 - x)^2}$$

Y2 has the derivative

Look to see where the derivative is = 0

MINIMIZE:

$$S(x) = \sqrt{12^2 + x^2} + \sqrt{5^2 + (24 - x)^2}$$

Look to see where the derivative is = 0

derivative is = 0 at

$$x = 16.941$$

derivative is = 0 at

MINIMIZE:
$$S(x) = \sqrt{12^2 + x^2} + \sqrt{5^2 + (24 - x)^2}$$

x = 16.941

Check to ensure that this is

a relative minimum and not

a maximum

evaluate 2nd derivative at the critical number found

2nd derivative is along x-axis

$$\frac{d}{dx}(f3(x))$$
 $\frac{x-24}{\sqrt{x^2-48\cdot x+601}} + \frac{x}{\sqrt{x^2+14x^2}}$

$$\frac{d}{dx}(f3(x)) \qquad \frac{x-24}{\sqrt{x^2-48\cdot x+601}} + \frac{x}{\sqrt{x^2+144}}$$

$$\left\langle \sqrt{x^2 - 48 \cdot x + 601} \quad \sqrt{x^2 + 144} \right\rangle = \left\{ \frac{288}{17} \right\}$$

$$\frac{d}{dx}(f3(x))$$
 $\frac{x-24}{\sqrt{x^2-48\cdot x+601}} + \frac{x}{\sqrt{x^2+144}}$

$$\frac{d}{dx}(f3(x))$$
 $\frac{x-24}{\sqrt{x^2-48\cdot x+601}} + \frac{x}{\sqrt{x^2+144}}$

288

Since the second derivative is positive at this critical number,

this critical number yields a

relative minimum.

Use TI-Nspire CAS to find the solutions using Calculus (could also be done "by hand")

288

But wait...

there's more!

Use TI-Nspire CAS to find the solutions using Calculus (could also be done "by hand")

288 17

RAD |

16.9412

But wait...

there's more!!

17 $f3\left(\frac{288}{17}\right)$ $f3\left(\frac{288}{17}\right)$ 29.4109

*The_Mast...try

1.9

288.

A geometric solution!

Reflect DE over CE

Reflect DE over CE

Reflect DE over CE

Draw line BD'

Draw line BD'

Draw line BD'

Label the point of intersection with

CE, point A.

Draw line BD'

Label the point of intersection with

CE, point A.

Draw line BD'

Label the point of intersection with

CE, point A.

Draw segment AD.

Draw line BD'

Label the point of intersection with

CE, point A.

Draw segment AD.

Draw line BD'

Label the point of intersection with

CE, point A.

Draw segment AD.

Notice?

Draw line BD'

Label the point of intersection with

CE, point A.

Draw segment AD.

Notice?

Triangles AED and AED' are congruent. (SAS)

Draw line BD'

Label the point of intersection with

CE, point A.

Draw segment AD.

Notice?

Triangles AED and AED' are congruent.

$$\frac{BC}{D'E} = \frac{CA}{EA}$$

$$\frac{12}{5} = \frac{2}{24}$$

$$\frac{BC}{D'E} = \frac{CA}{EA}$$

$$\frac{12}{5} = \frac{2}{34-2}$$

$$12(34-2) = 5$$

$$\frac{BC}{D'E} = \frac{CA}{EA}$$

$$\frac{12}{5} = \frac{2}{34-2}$$

$$12(34-2) = 52$$

$$288-12x = 52$$

$$\frac{BC}{D'E} = \frac{CA}{EA}$$

$$\frac{12}{5} = \frac{2}{34-2}$$

$$12(34-2) = 52$$

$$288-12x = 52$$

$$288=17x$$

Since triangles AED and AED' are congruent:

$$BA + AD = BA + AD'$$

Since triangles AED and AED' are congruent:

$$BA + AD = BA + AD'$$

The shortest distance between two points is a line (segment):

BD = BA +AD = 29.411

Alternative way to find the length of BD'

Alternative way to find the length of BD'

Extend BC

Alternative way to find the length of BD'

Extend BC

Perpendicular from D' to line BC

Alternative way to find the length of BD'

Extend BC

Perpendicular from D' to line BC

Alternative way to find the length of BD'

Extend BC

Perpendicular from D' to line BC

$$(BF)^2 + (FD')^2 = (BD')^2$$

Alternative way to find the length of BD'

Extend BC

Perpendicular from D' to line BC

$$(BF)^2 + (FD')^2 = (BD')^2$$

$$17^2 + 24^2 = (BD')^2$$

$$865 = (BD')^2$$
 $865 = (BD')^2$
 $865 = BD = BA + AD$

What about the angle of incidence is equato the angle of reflection - when the minimum distance is found?

What about the angle of incidence is equal to the angle of reflection - when the minimum distance is found?

What about the angle of incidence is equal the angle of reflection - when the minimum distance is found?

$$L1 = L2$$
 (NERTICAL LS)
 $L2 = L3$ ($= L3$)
 $L1 = L3$ (TRANSITIVE)

What about the angle of incidence is equal the angle of reflection - when the minimum stance is found?

The Mast TI-84 CE

Solved using a form of data capture with the TI-84 CE

NORMAL FLOAT AUTO RE	AL RADIAN MP
Y4	30.4865681
Ä	10
Y4	30.20720887
Ä	11
■	

NORMAL	FLOAT	AUTO	REAL	RADIAN	MP	Ū
Y4						. אדי
				30.20	7208	387.
••						.11.
Y 4				29.43		
Ä		•••••				16
						

NORMAL FLOAT AUTO REAL RADIAN MP	1
Y4	
29.41097731	
29.44355733	
A 18	

TrailOff TrailOn

→ → → → → → AB17

Step=0.1∎

GRAPH

MOKINE FEUNI HOTO KENE KNDINN FIF
1/
Y4 29.44355733
18
Y4 29.41092862
H 16.9

NODMAL FLOAT ALITO DEAL DANTAN MD

"Mathematics is the garment that we continuously alter with our students and technology should be seamlessly interwoven throughout its fabric."

- Tom Reardon

Math teacher from Ohio