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Introduction
Welcome to the first iteration of the OWASP Top 10 for Large Language Models (LLMs) Applications.


This document marks an exciting new chapter in the ongoing efforts to enhance security in the rapidly evolving field of artificial intelligence.

This initiative is the culmination of the tireless efforts of our first expert team, a diverse group of security 
specialists, AI researchers, developers, and industry leaders. Since our inception just a month ago, our ranks 
have swelled to over 370 members, with more than 100 experts actively contributing. This remarkable 
growth is a testament to the gravity and immediacy of the challenge we face, and the dedication of those 
working to meet it head on.

The heartiest of congratulations and deepest gratitude is due to our team. The knowledge, time, and passion 
they have dedicated to this project have been invaluable. This endeavor wouldn't have been possible without 
their profound insights and unwavering commitment.

A GROUNDBREAKING EFFORT

The purpose of our group, as outlined in the OWASP Top 10 for LLM Applications Working Group Charter, is 
to identify and highlight the top security and safety issues that developers and security teams must consider 
when building applications leveraging Large Language Models (LLMs). Our objective is to provide clear, 
practical, and actionable guidance to enable these teams to proactively address potential vulnerabilities in 
LLM-based applications.

The ultimate aim is to provide a robust foundation for the safe and secure utilization of LLMs across a wide 
array of scenarios, from small-scale individual projects to large-scale corporate and governmental 
implementations. We firmly believe that by understanding and mitigating the top vulnerabilities associated 
with LLMs, we can contribute to a safer and more reliable digital environment for everyone.

OUR PURPOSE

This document, Version 0.5, serves as a crucial milestone in our ongoing journey. It encapsulates the 
collective insights and understanding of our group, at this early stage, of the unique vulnerabilities inherent 
to applications leveraging LLMs. It's important to note that this is not the final version of the OWASP Top 10 
for LLMs. Instead, consider it a 'preview' of what's to come.

We are committed to refining, expanding, and deepening our work over the coming month as we work 
towards the true Version 1.0. We invite you to explore this preliminary list, to share your feedback, and to join 
us in our mission to create a safer, more secure future for AI.

Once again, we extend our heartfelt thanks to our expert team and the broader community for their 
continued support. Together, let's navigate the exciting and complex world of LLMs with an eye towards 
security, safety, and inclusivity.

Project Lead, OWASP Top 10 for LLM AI Applications

Twitter: @virtualsteve

Steve Wilson

ABOUT THIS VERSION

http://twitter.com/@virtualsteve
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OWASP Top 10 for LLM
This is a draft list of important vulnerability types for Artificial Intelligence (AI) applications built on 

Large Language Models (LLMs).

Plugins connecting LLMs to external resources can be 
exploited if they accept free-form text inputs, enabling 
malicious requests that could lead to undesired behaviors 
or remote code execution.

LLM10: Insecure Plugins

Overreliance on LLMs can lead to misinformation or 
inappropriate content due to "hallucinations." Without 
proper oversight, this can result in legal issues and 
reputational damage.

LLM09: Overreliance

When LLMs interface with other systems, unrestricted 
agency may lead to undesirable operations and actions. 
Like web-apps, LLMs should not self-police; controls must 
be embedded in APIs.

LLM08: Excessive Agency

Data leakage in LLMs can expose sensitive information or 
proprietary details, leading to privacy and security 
breaches. Proper data sanitization, and clear terms of use 
are crucial for prevention.

LLM07: Data Leakage

Lack of authorization tracking between plugins can enable 
indirect prompt injection or malicious plugin usage, 
leading to privilege escalation, confidentiality loss, and 
potential remote code execution.

LLM06: Permission Issues

LLM supply chains risk integrity due to vulnerabilities 
leading to biases, security breaches, or system failures. 
Issues arise from pre-trained models, crowdsourced data, 
and plugin extensions.

LLM05: Supply Chain

An attacker interacts with an LLM in a way that is 
particularly resource-consuming, causing quality of 
service to degrade for them and other users, or for high 
resource costs to be incurred.

LLM04: Denial of Service

LLMs learn from diverse text but risk training data 
poisoning, leading to user misinformation. Overreliance on 
AI is a concern. Key data sources include Common Crawl, 
WebText, OpenWebText, and books.

LLM03: Training Data Poisoning

These occur when plugins or apps accept LLM output 
without scrutiny, potentially leading to XSS, CSRF, SSRF, 
privilege escalation, remote code execution, and can 
enable agent hijacking attacks.

LLM02: Insecure Output Handling

Prompt Injection Vulnerabilities in LLMs involve crafty 
inputs leading to undetected manipulations. The impact 
ranges from data exposure to unauthorized actions, 
serving attacker's goals.

LLM01: Prompt Injections
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Prompt Injection Vulnerabilities occur when attackers manipulate a trusted large 
language model (LLM) using crafted input prompts, via multiple channels. This 
manipulation often goes undetected due to inherent trust in LLM's output.

Two types exist: Direct, where the attacker influences the LLM's input, and 
Indirect, where a 'poisoned' data source affects the LLM.

Outcomes can range from exposing sensitive information to influencing 
decisions. In complex cases, the LLM could be tricked into unauthorized actions 
or impersonations, effectively serving the attacker's goals without alerting the 
user or triggering safeguards.

First Published: July 1st, 2023

LLM01: Prompt Injection

Example 1: An attacker introduces a malicious prompt in a webpage, which is 
then accessed by the LLM, leading to manipulated responses.

Example 2: The LLM is tricked into divulging sensitive information or 
manipulating output to downstream systems.

Example 3: An attacker exploits the LLM's interaction with plugins, triggering 
unauthorized actions like unauthorized purchases, undesired social media posts, 
deleted emails, etc.

Common Vulnerabilities

Privilege Control: Limit the privileges of an LLM to the least necessary for its 
functionality. Prevent the LLM from altering the user’s state without explicit 
approval.

Enhanced Input Validation: Implement robust input validation and sanitization 
methods to filter out potential malicious prompt inputs from untrusted sources.

Segregation and Control of External Content Interaction: Segregate untrusted 
content from user prompts and control the interaction with external content, 
especially with plugins that could result in irreversible actions or exposure of 
personally identifiable information (PII). 

Manage Trust: Establish trust boundaries between the LLM, external sources, 
and extensible functionality (e.g., plugins or downstream functions). Treat the 
LLM as an untrusted user and maintain final user control on decision making 
processes.

HOW TO PREVENT

EXAMPLE ATTACK SCENARIOS

Scenario B: A malicious user 
uploads a resume with a 
prompt injection. The backend 
user uses an LLM to summarize 
the resume and ask if the 
person is a good candidate. 
Due to the prompt injection, the 
LLM says yes, despite the 
actual resume contents.

Scenario C: A user enables a 
plugin linked to an e-commerce 
site. A rogue instruction 
embedded on a visited website 
exploits this plugin, leading to 
unauthorized purchases.

Scenario A: A user employs an 
LLM to summarize a webpage 
containing a hidden prompt 
injection. This then causes the 
LLM to solicit sensitive 
information from the user and 
perform exfiltration via 
JavaScript or Markdown.

REFERENCE LINKS

 ChatGPT Plugin Vulnerabilities - Chat 
with Cod

 ChatGPT Cross Plugin Request Forgery 
and Prompt Injectio

 Defending ChatGPT against Jailbreak 
Attack via Self-Reminde

 Prompt Injection attack against LLM-
integrated Application

 Inject My PDF: Prompt Injection for 
your Resum

 ChatML for OpenAI API Call
 Not what you’ve signed up for: 

Compromising Real-World LLM-
Integrated Applications with Indirect 
Prompt Injectio

 Threat Modeling LLM Application
 AI Injections: Direct and Indirect 

Prompt Injections and Their 
Implications

https://embracethered.com/blog/posts/2023/chatgpt-plugin-vulns-chat-with-code/
https://embracethered.com/blog/posts/2023/chatgpt-plugin-vulns-chat-with-code/
https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://www.researchsquare.com/article/rs-2873090/v1
https://www.researchsquare.com/article/rs-2873090/v1
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2306.05499
https://kai-greshake.de/posts/inject-my-pdf/
https://kai-greshake.de/posts/inject-my-pdf/
https://github.com/openai/openai-python/blob/main/chatml.md
https://arxiv.org/pdf/2302.12173.pdf
https://arxiv.org/pdf/2302.12173.pdf
https://arxiv.org/pdf/2302.12173.pdf
https://arxiv.org/pdf/2302.12173.pdf
http://aivillage.org/large%20language%20models/threat-modeling-llm/
https://embracethered.com/blog/posts/2023/ai-injections-direct-and-indirect-prompt-injection-basics/
https://embracethered.com/blog/posts/2023/ai-injections-direct-and-indirect-prompt-injection-basics/
https://embracethered.com/blog/posts/2023/ai-injections-direct-and-indirect-prompt-injection-basics/
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An Insecure Output Handling vulnerability is a type of prompt injection 
vulnerability that arises when a plugin or application blindly accepts large 
language model (LLM) output without proper scrutiny and directly passes it to 
backend, privileged, or client-side functions. Since LLM-generated content can be 
controlled by prompt input, this behavior is akin to providing users indirect 
access to additional functionality.

Successful exploitation of an Insecure Output Handling vulnerability can result in 
XSS and CSRF in web browsers as well as SSRF, privilege escalation, or remote 
code execution on backend systems. The impact of this vulnerability increases 
when the application allows LLM content to perform actions above the intended 
user's privileges. Additionally, this can be combined with agent hijacking attacks 
to allow an attacker privileged access into a target user's environment.

First Published: July 1st, 2023

LLM02: Insecure Output Handling

Example 1: LLM output is entered directly into a backend function, resulting in 
remote code execution. Example 2: JavaScript or Markdown is generated by the 
LLM and returned to a user. The code is then interpreted by the browser, resulting 
in XSS

Common Vulnerabilities

Treat the model as any other user and apply proper input validation on responses 
coming from the model to backend functions. Prevention Step 2: Likewise, 
encode output coming from the model back to users to mitigate undesired 
JavaScript or Markdown code interpretations.

HOW TO PREVENT

EXAMPLE ATTACK SCENARIOS

Scenario B: A user utilizes a 
website summarizer tool 
powered by a LLM to generate a 
concise summary of an article. 
The website includes a prompt 
injection instructing the LLM to 
capture sensitive content from 
either the website or from the 
users conversation. From there 
the LLM can encode the 
sensitive data and send it out to 
an attacker-controlled server

Scenario C: A malicious user 
instructs the LLM to return a 
JavaScript payload back to a 
user, without sanitization 
controls. This can occur either 
through a sharing a prompt, 
prompt injected website, or 
chatbot that accepts prompts 
from a GET request. The LLM 
would then return the 
unsanitized XSS payload back 
to the user. Without additional 
filters, outside of those 
expected by the LLM itself, the 
JavaScript would execute 
within the users browser.

Scenario A: An application 
utilizes an LLM plugin to 
generate responses for a 
chatbot feature. However, the 
application directly passes the 
LLM-generated response into 
an internal function responsible 
for executing system 
commands without proper 
validation. This allows an 
attacker to manipulate the LLM 
output to execute arbitrary 
commands on the underlying 
system, leading to unauthorized 
access or unintended system 
modifications.

REFERENCE LINKS

 Arbitrary Code Execution- Snyk Vulnerabilit
 ChatGPT Plugin Exploit Explained: From Prompt Injection to Accessing Private Dat
 New prompt injection attack on ChatGPT web version. Markdown images can steal your 

chat data
 Don't blindly trust LLM responses. Threats to chatbots
 Threat Modeling LLM Applications

https://security.snyk.io/vuln/SNYK-PYTHON-LANGCHAIN-5411357
https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection/
https://systemweakness.com/new-prompt-injection-attack-on-chatgpt-web-version-ef717492c5c2?gi=8daec85e2116
https://systemweakness.com/new-prompt-injection-attack-on-chatgpt-web-version-ef717492c5c2?gi=8daec85e2116
https://embracethered.com/blog/posts/2023/ai-injections-threats-context-matters/
https://aivillage.org/large%20language%20models/threat-modeling-llm/
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Large language models (LLMs) use diverse raw text to learn and generate 
outputs. However, training data poisoning, where an attacker introduces 
vulnerabilities, can compromise the model, exposing users to incorrect 
information. The OWASP List for LLMs highlights the risk of overreliance on AI 
content. Key data sources include Common Crawl, used for models like T5 and 
GPT-3; WebText and OpenWebText, containing public news and Wikipedia; and 
books, which make up 16% of GPT-3's training data.

First Published: July 1st, 2023

LLM03: Training Data Poisioning

Example 1: A malicious actor, or a competitor brand intentionally creates 
inaccurate or malicious documents which are targeted at a model’s training data

 The victim model trains using falsified information which is reflected in 
outputs of generative AI prompts to it's consumers.

Example 2: In reverse, unintentionally, a model is trained using data which has 
not been verified by its source, origin or content.

Example 3: The model itself has unrestricted access or inadequate sandboxing 
to gather datasets to be used as training data which has negative influence on 
outputs of generative AI prompts as well as loss of control from a management 
perspective.

Common Vulnerabilities

 Verify supply chain of the Training Data if sourced externally as well as 
maintaining attestations, similar to SBOM (Software Bill of Materials) 
methodology

 Prevention Step 2: Verify legitimacy of data sources and data within
 Prevention Step 3: Craft different models via separate Training Data for 

different use-cases to create a more granular and accurate generative AI 
output

 Prevention Step 4: Ensure sufficient sandboxing (LLM03:2023 - Inadequate 
Sandboxing) is present to prevent the model from scraping unintended data 
sources

 Prevention Step 5: Use strict vetting or input filters for specific Training Data, 
or categories of data sources to control volume of falsified data

 Prevention Step 6: Implement dedicated LLM's to benchmark against 
undesired consequences and train other LLM's using reinforcement learning 
techniques

 Optional Prevention Step 7: Perform LLM-based red team exercises or LLM 
vulnerability scanning into the testing phases of the LLM's lifecycle.

HOW TO PREVENT

EXAMPLE ATTACK SCENARIOS

Scenario B: If the training data 
is not correctly filtered, a 
malicious user of the 
application may try to influence 
and inject toxic data into the 
model for it to adapt to the 
unbiased and false data.

Scenario C: A malicious actor, 
or a competitor brand 
intentionally creates inaccurate 
or malicious documents which 
are targeted at a model’s 
training data. The victim model 
trains using falsified 
information which is reflected 
in outputs of generative AI 
prompts to it's consumers.

Scenario A: The LLM 
generative AI prompt output 
can mislead users of the 
application which can lead to 
unbiased opinions, followings 
or even worse, hate crimes etc.

REFERENCE LINKS

 Stanford Resarch Pape
 AI Hypocrisy: OpenAI, Google, and 

Anthropic train using others' content, 
but wont let others use their conten

 Inject My PDF: Prompt Injection for 
your Resum

 How data poisoning attacks corrupt 
machine learning model

 LLM10:2023 - Training Data Poisoning

https://owasp.org/www-project-top-10-for-large-language-model-applications/descriptions/Inadequate_Sandboxing.html
https://owasp.org/www-project-top-10-for-large-language-model-applications/descriptions/Inadequate_Sandboxing.html
https://wandb.ai/ayush-thakur/Intro-RLAIF/reports/An-Introduction-to-Training-LLMs-Using-Reinforcement-Learning-From-Human-Feedback-RLHF---VmlldzozMzYyNjcy
https://wandb.ai/ayush-thakur/Intro-RLAIF/reports/An-Introduction-to-Training-LLMs-Using-Reinforcement-Learning-From-Human-Feedback-RLHF---VmlldzozMzYyNjcy
https://www.anthropic.com/index/red-teaming-language-models-to-reduce-harms-methods-scaling-behaviors-and-lessons-learned
https://github.com/leondz/garak
https://github.com/leondz/garak
https://stanford-cs324.github.io/winter2022/lectures/data/
https://www.businessinsider.com/openai-google-anthropic-ai-training-models-content-data-use-2023-6
https://www.businessinsider.com/openai-google-anthropic-ai-training-models-content-data-use-2023-6
https://www.businessinsider.com/openai-google-anthropic-ai-training-models-content-data-use-2023-6
https://kai-greshake.de/posts/inject-my-pdf/
https://kai-greshake.de/posts/inject-my-pdf/
https://www.csoonline.com/article/3613932/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://www.csoonline.com/article/3613932/how-data-poisoning-attacks-corrupt-machine-learning-models.html
https://owasp.org/www-project-top-10-for-large-language-model-applications/descriptions/Training_Data_Poisoning.html
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An attacker interacts with an LLM in a way that is particularly resource-
consuming, causing quality of service to degrade for them and other users, or for 
high resource costs to be incurred.

First Published: July 1st, 2023

LLM04: Denial of Service

Example 1: Posing queries that lead to recurring resource usage through high-
volume generation of tasks in a queue, e.g. with LangChain or AutoGPT

Example 2: Sending queries that are unusually resource-consuming, perhaps 
because they use unusual orthography or sequences

Common Vulnerabilities

 Cap resource use per reques
 Cap resource use per step, so that requests involving complex parts execute 

more slowl
 Limit the number of queued actions and the number of total actions in a 

system reacting to LLM responses

HOW TO PREVENT

EXAMPLE ATTACK SCENARIOS

Scenario B: A piece of text on a 
webpage is encountered while 
an LLM-driven tool is collecting 
information to respond to a 
benign query. That piece of text 
leads to the tool making many 
more web page requests. The 
query ends up leading to large 
amounts of resource 
consumption, and receives a 
slow or even absent response, 
as do any other queries from 
similar systems that end up 
encountering the given piece of 
text.

Scenario A: An attacker 
repeatedly sends multiple 
requests to a hosted model that 
are difficult and costly for it to 
process. Many resources are 
allocated, leading to worse 
service for other users and 
increased resource bills for the 
host.

REFERENCE LINKS

 LangChain max_iteration
 Sponge Examples: Energy-Latency 

Attacks on Neural Networks

https://twitter.com/hwchase17/status/1608467493877579777
https://arxiv.org/abs/2006.03463
https://arxiv.org/abs/2006.03463
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The supply chain in LLMs can be vulnerable impacting the integrity of training 
data, ML models, deployment platfoms and lead to biased outcomes, security 
breaches, or complete system failures. Traditionally, vulnerabilities focused on 
software components but is extended in AI because of the popularity of transfer 
learning, re-use of pre-trained models, as well as crowdsourced data. In public 
LLMs such as OpenGPT extension plugins are also an area susceptible to this 
vulnerability.

First Published: July 1st, 2023

LLM05: Supply Chain

Example 1: Use of Vulnerable Model used for Transfer Learning

Example 2: Use of poisoned crowd-sourced data

Example 3: Tampered model or data by an out-sourcing supplier

Example 4: Traditional third-paty Package Vulnerabilities

Common Vulnerabilities

 Careful Vetting of sources and supplier
 Vulnerabilities scanning of components, not only when deploying to 

production but before used in development and testing; model development 
environment

 Use own curated package repositories with vulnerability check
 Code Signin
 Avdersarial robustness tests on supplied models and data for tampering and 

poisoning and throughout the MLOps pipelin
 Implement adversarial robustness training to help detect extraction queries
 Review and Monitor Supplier Security and Acces
 Auditing

HOW TO PREVENT

REFERENCE LINKS

 ChatGPT Data Breach Confirmed as Security Firm Warns of Vulnerable Component 
Exploitatio

 What Happens When an AI Company Falls Victim to a Software Supply Chain Vulnerabilit
 Plugin review proces
 Compromised PyTorch-nightly dependency chai
 Failure Modes in Machine Learnin
 ML Supply Chain Compromis
 Transferability in Machine Learning: from Phenomena to Black-Box Attacks using 

Adversarial Sample
 BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chai
 VirusTotal Poisoning

EXAMPLE ATTACK SCENARIOS

Scenario B: An attacker 
exploits a malicious or 
vulnerable ChatGPT plugin to 
exfiltrate data, bypass 
restriction,s execute code, span 
a user or produce malicious 
content. Although this is a 
supply-chain vulnerability, 
because of the ChatGPT plugun 
integration models it is also 
covered in Insecure Plugin 
Integration

Scenario C: An attacker 
exploits the PyPi package 
registry to trick model 
developers to download a 
compromised package and 
exfiltrate data or escalate 
privilege in a model 
development environment.

Scenario D: An attacker 
poisons or tampers a copy of 
publicly available model pre-
built model (e.g. LlaMa ) to 
create a backdoor or trojan 
horse deploys it for others to 
use either directly or for 
transfer learning

Scenario E: An attacker 
poisons or tampers a copy of 
publicly available data set (e.g. 
Kaggle ) to help create a 
backdoor or trojan horse in 
other models.

Scenario A: An attacker 
exploits a vulnerable package 
to compromise a system. The 
recent OpenAI breach, was due 
to a vulnerable third party 
package

https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://securityboulevard.com/2023/05/what-happens-when-an-ai-company-falls-victim-to-a-software-supply-chain-vulnerability/
https://platform.openai.com/docs/plugins/review
https://pytorch.org/blog/compromised-nightly-dependency/
https://learn.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
https://atlas.mitre.org/techniques/AML.T0010/
https://arxiv.org/pdf/1605.07277.pdf
https://arxiv.org/pdf/1605.07277.pdf
https://arxiv.org/abs/1708.06733
https://atlas.mitre.org/studies/AML.CS0002
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/blob/main/0_5_vulns/JohnSotiropoulos_InsecurePluginIntegration.md
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/blob/main/0_5_vulns/JohnSotiropoulos_InsecurePluginIntegration.md
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Authorization is not tracked between plugins, allowing a malicious actor to take 
action in the context of the LLM user via indirect prompt injection, use of 
malicious plugins, or other methods. This can result in privilege escalation, loss 
of confidentiality, and even remote code execution, depending on available 
plugins.

First Published: July 1st, 2023

LLM06: Permission Issues

Example 1: Authentication is performed without explicit authorization to a 
particular plugin.

Example 2: A plugin treats all LLM content as being created entirely by the user, 
and performs any requested actions without requiring additional authorization.

Example 3: Plugins are chained together without considering the authorization of 
one plugin to perform an action using another plugin.

Common Vulnerabilities

 Require manual authorization of any action taken by sensitive plugins
 Call no more than one plugin with each user input, resetting any plugin-

supplied data between calls
 Prevent sensitive plugins from being called after any other plugin
 Perform taint tracing on all plugin content, ensuring that plugin is called with 

an authorization level corresponding to the lowest authorization of any plugin 
that has provided input to the LLM prompt.

HOW TO PREVENT

EXAMPLE ATTACK SCENARIOS

Scenario B: An attacker uses 
indirect prompt injection to 
abuse a Slack integration, 
sending a Slack message to 
@everyone in all available 
Slacks with an obscene and 
defamatory comment.

Scenario A: Indirect prompt 
injection is used to induce an 
email plugin to deliver the 
contents of the current user's 
inbox to a malicious URL via 
POST request.

REFERENCE LINKS

 Plugin Vulnerabilities: Visit a Website 
and Have Your Source Code Stole

 ChatGPT Plugin Exploit Explained: 
From Prompt Injection to Accessing 
Private Data

https://embracethered.com/blog/posts/2023/chatgpt-plugin-vulns-chat-with-code/
https://embracethered.com/blog/posts/2023/chatgpt-plugin-vulns-chat-with-code/
https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
https://embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forgery-and-prompt-injection./
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Data leakage occurs when an LLM accidentally reveals sensitive information, 
proprietary algorithms, or other confidential details through its responses. This 
can result in unauthorized access to sensitive data or intellectual property, 
privacy violations, and other security breaches. It's important to note that users 
of an LLM application should be aware of how to interact with an LLM and 
identify the risks present on how they might unintentionally input sensitive data. 
Vice versa, an LLM application should perform adequate data sanitization and 
scrubbing validation in aid to prevent user data from entering the training model 
data. Furthermore, the company hosting the LLM should have appropriate Terms 
of User policies available to make users aware on how data is processed.

First Published: July 1st, 2023

LLM07: Data Leakage

Example 1: Incomplete or improper filtering of sensitive information in the LLM’s 
responses.

Example 2: Overfitting or memorization of sensitive data in the LLM’s training 
process.

Example 3: Unintended disclosure of confidential information due to LLM 
misinterpretation, lack of data scrubbing methods or errors.

Common Vulnerabilities

 Integrate adequate data sanitization and scrubbing techniques in aid to 
prevent user data from entering the training model data

 Implement robust input validation and sanitization methods to identify and 
filter out potential malicious inputs

 Maintain ongoing supply chain mitigation of risk through techniques such as 
SAST (Static Application Security Testing) and SBOM (Software Bill of 
Materials) attestations to identify and remediate vulnerabilities in 
dependencies for third-party software or packages

 Implement dedicated LLM's to benchmark against undesired consequences 
and train other LLM's using reinforcement learning techniques

 Perform LLM-based red team exercises or LLM vulnerability scanning into the 
testing phases of the LLM's lifecycle.

HOW TO PREVENT

EXAMPLE ATTACK SCENARIOS

Scenario B: User A targets a 
well crafted set of prompts to 
bypass input filters and 
sanitization from the LLM to 
cause it to reveal sensitive 
information (I.E PII) about other 
users of the application.

Scenario C: Personal data such 
as PII is leaked into the model 
via training data due to either 
negligence from the user 
themselves, or the LLM 
application. This case could 
increase risk and probability of 
scenario 1 or 2 above.

Scenario A: Unsuspecting 
legitimate user A is exposed to 
certain other user data via the 
LLM when interacting with the 
LLM application in a non-
malicious manner.

REFERENCE LINKS

 AI data leak crisis: New tool prevents 
company secrets from being fed to 
ChatGP

 Lessons learned from ChatGPT’s 
Samsung lea

 Cohere - Terms Of Use

https://wandb.ai/ayush-thakur/Intro-RLAIF/reports/An-Introduction-to-Training-LLMs-Using-Reinforcement-Learning-From-Human-Feedback-RLHF---VmlldzozMzYyNjcy
https://www.anthropic.com/index/red-teaming-language-models-to-reduce-harms-methods-scaling-behaviors-and-lessons-learned
https://github.com/leondz/garak
https://www.foxbusiness.com/politics/ai-data-leak-crisis-prevent-company-secrets-chatgpt
https://www.foxbusiness.com/politics/ai-data-leak-crisis-prevent-company-secrets-chatgpt
https://www.foxbusiness.com/politics/ai-data-leak-crisis-prevent-company-secrets-chatgpt
https://cybernews.com/security/chatgpt-samsung-leak-explained-lessons/
https://cybernews.com/security/chatgpt-samsung-leak-explained-lessons/
https://cohere.com/terms-of-use
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An LLM may be granted a degree of agency - the ability to interface with other 
systems in order to undertake actions. Without restriction, any undesireable 
operation of the LLM (regardless of the root casue; e.g., halucination, direct/
indirect prompt injection, or just poorly-engineered benign prompts, etc) may 
result in undesireable actions being taken. Just like we never trust client-side 
validation in web-apps, LLMs should not be trusted to self-police or self-restrict; 
controls should be embedded in the APIs of the systems being interefaced with.

First Published: July 1st, 2023

LLM08: Excessive Agency

Example 1: Undesireable Actions Performed: The LLM triggers actions outside of 
the LLM that are unintended or undesireable, leading to second order 
consequences on downstream systems and processes.

Common Vulnerabilities

 Reduce the permissions granted to the LMM to the minimum necessary to 
limit the scope of undesirable actions

 Implement rate-limiting to reduce the number of undesirable actions
 Utilize human-in-the-loop control to require a human to approve all actions 

before they are taken.

HOW TO PREVENT

EXAMPLE ATTACK SCENARIOS

Scenario B: A customer service 
LLM has an interface to a 
payments system to provide 
service credits or refunds to 
customers in the case of 
complaints. The system prompt 
instructs the LLM to limit 
refunds to no more than one 
month's subscription fee, 
however a malicious customer 
engineers a direct prompt 
injection attack to convince the 
LMM to issue a refund of 100 
years of fees. This could be 
avoided by implementing the 
'one month max' limit within the 
refund API, rather than relying 
on the LMM to honour the limit 
in it's system prompt.

Scenario A: A personal 
assistant LLM is granted 
access to an individuals's 
mailbox in order to summarise 
the content of incoming emails. 
The LMM is vulnerable to an 
indirect promot injection attack, 
whereby a maliciously-crafted 
incoming email tricks the LLM 
into sending spam messages 
from the user's mailbox. This 
could be avoided by only 
granting the LLM read-only 
access to the mailbox (not the 
ability to send messages), or by 
requiring the user to manually 
review and hit 'send' on every 
mail drafted by the LLM. 
Alternatively The damage 
caused could be reduced by 
implementing rate limiting on 
the mail-sending interface.
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Overreliance on LLMs is a security vulnerability that arises when systems 
excessively depend on LLMs for decision-making or content generation without 
adequate oversight, validation mechanisms, or risk communication. LLMs, while 
capable of generating creative and informative content, are also susceptible to 
"hallucinations," producing content that is factually incorrect, nonsensical, or 
inappropriate. These hallucinations can lead to misinformation, 
miscommunication, potential legal issues, and damage to a company's 
reputation if unchecked.
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LLM09: Overreliance

Factually Incorrect Information: An LLM provides incorrect information as a 
response, leading to misinformation. For example, an LLM may inaccurately 
describe historical events, resulting in misleading outputs.

Nonsensical Outputs: An LLM generates grammatically correct but logically 
incoherent or nonsensical text. For instance, the LLM might generate a poem or a 
story that doesn't make logical sense.

Source Conflation: LLM conflates information from different sources, creating 
misleading content. It might combine historical data with current events in an 
incorrect manner.

Overindulgence: LLM might generate an output that could incorrectly be seen as 
disclosure of confidential information.

Inadequate Risk Communication: Tech companies fail to adequately 
communicate the inherent risks of using LLMs to the end users, leading to 
potential negative consequences.

Common Vulnerabilities

 Continuous Monitoring: Regularly monitor and review the outputs of the LLM 
to ensure they are factual, coherent, and appropriate. Use manual reviews or 
automated tools for larger scale applications

 Fact Checking: Verify the accuracy of information provided by LLMs before 
using it for decision-making, information dissemination, or other critical 
functions

 Model Tuning: Tune your LLM to reduce the likelihood of hallucinations. 
Techniques can include prompt engineering, parameter efficient tuning (PET), 
and full model tuning

 Set Up Validation Mechanisms: Implement automatic validation mechanisms 
to check the generated output against known facts or data

 Improve Risk Communication: Follow best practices from risk 
communication literature and lessons from other sectors to facilitate 
dialogue with users, establish actionable risk communication, and measure 
the effectiveness of risk communications on an ongoing basis.

HOW TO PREVENT

EXAMPLE ATTACK SCENARIOS

Scenario B: An LLM is used in a 
news organization to assist in 
generating news articles. The 
LLM conflates information from 
different sources and produces 
an article with misleading 
information, leading to the 
dissemination of 
misinformation and potential 
legal consequences.

Scenario C: A user 
communicates with an AI 
chatbot based on an LLM. The 
user, unaware of the limitations 
and risks of the AI, acts on 
harmful content generated by 
the model due to the lack of 
effective risk communication 
from the tech company.

Scenario A: A corporation uses 
an LLM to generate customer-
facing content. Due to a 
hallucination, the LLM 
generates incorrect information 
about a product, leading to 
customer confusion, potential 
loss of sales, and damage to 
the company's reputation.

REFERENCE LINKS

 How Should Companies Communicate 
the Risks of Large Language Models to 
Users

 Understanding LLM Hallucinations

https://techpolicy.press/how-should-companies-communicate-the-risks-of-large-language-models-to-users/
https://techpolicy.press/how-should-companies-communicate-the-risks-of-large-language-models-to-users/
https://techpolicy.press/how-should-companies-communicate-the-risks-of-large-language-models-to-users/
https://towardsdatascience.com/llm-hallucinations-ec831dcd7786
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A plugin designed to connect an LLM to some external resource accepts free-
form text as an input instead of parameterized and type-checked inputs. This 
allows a potential attacker significant latitude to construct a malicious request to 
the plugin that could result in a wide range of undesired behaviors, up to and 
including remote code execution.
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LLM10: Insecure Plugins

A plugin designed to call a specific API hosted at a specific endpoint accepts a 
string containing the entire URL to be retrieved, instead of query parameters to be 
inserted into the URL.

A plugin designed to look up information from a SQL database accepts a raw 
SQL query rather than paramters to be inserted into a fully parameterized query.

Common Vulnerabilities

 Plugin calls should be strictly parameterized wherever possible, including type 
and range checks on input

 When freeform input must be accepted, it should be carefully inspected to 
ensure that no potentially harmful methods are being called

 The plugin should be designed from a least-privilege perspective, exposing as 
little functionality as possible while still performing its desired function.

HOW TO PREVENT

EXAMPLE ATTACK SCENARIOS

Scenario: A plugin prompt 
provides a base URL and 
instructs the LLM to combine 
the URL with a query to obtain 
weather forecasts in response 
to user requests. The resulting 
URL is then accessed and the 
results shown to the user. A 
malicious user crafts a request 
such that a URL pointing to a 
domain they control, and not 
the URL hosting the weather 
service API, is accessed, 
allowing the malicious user to 
obtain the IP address of the 
plugin for further 
reconnaisance, as well as to 
inject their own text into the 
LLM system via their domain, 
potentially granting them 
further access to downstream 
plugins.
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