CF Millhaven Battery Energy Storage System

LOYALIST TOWNSHIP – PROJECT CONCEPT PLAN DOUG DEEKS

Project Location

FIGURE 1: CF MILLHAVEN 250MW BESS LOCATION ADDRESS: MILLHAVEN RD ODESSA ON K0H2H0

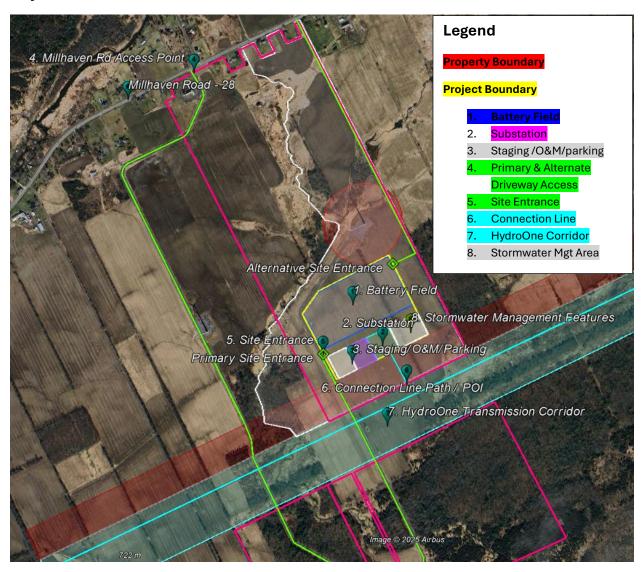


FIGURE 2: CARBONFREE CONCEPT PLAN – 250MW CF MILLHAVEN BESS

PROPERTY: 451290215

Project Concept Plan and Overview

- Project purpose: To provide long-duration grid capacity, reliability services, and energy shifting to support the IESO LT2c procurement.
- Typical operation: Charge during low-demand hours (overnight-weekend / low-price) and discharge during peak demand or when instructed by IESO/market operator.
- Expected construction duration: ~12–18 months (site prep, civil, installation, commissioning 2027).

Site plan Figure 2

Map key:

- 1. Battery Field (rows of containers housing battery units)
- 2. BESS Substation & step-up transformer(s)
- 3. Staging / laydown/parking/Operations building
- 4. Municipal Road entrance
- 5. Site entrance / interior access road
- 6. Route to POI / tap line to transmission corridor
- 7. HydroOne Transmission Line Corridor

Key Project Components

- 1. Battery Field Modular containerized battery units. Arranged in rows with internal access roads and separation distances for safety and maintenance. Containers house battery racks, inverters/PCS and HVAC/controls.
- 2. Transformer Station (TS) Step-up transformer(s) convert site MV to transmission voltage required at the Point of Interconnection (POI). The TS is in a fenced, secured yard with oil containment and spill prevention.
- 3. Switchyard & Interconnection High-voltage equipment, relays and protection, and the tap line connection to the nearby transmission corridor or substation. This is coordinated with the utility and built to strict safety standards.
- 4. Control / Operations Building Offices, control room (SCADA/EMS), maintenance workshop, and parking. This is a small building with limited staff

- 5. Fire Protection Fire water tank and hydrant network; separation corridors and access lanes sized for emergency vehicles. Project includes emergency response planning and coordination with local fire services.
- 6. Stormwater Management Basins, swales and erosion control to manage runoff and protect local waterways. Designed to meet municipal stormwater and environmental requirements.
- 7. Access & Security Controlled entry gate, perimeter fencing, security cameras and lighting designed to minimize offsite light spill.
- 8. Tap Line / Route to POI The route of the short connection line to the transmission corridor or substation is shown; where possible, the route uses existing utility corridors to reduce new disturbance.

Area allocation (approx.)

- Battery field (containers + access lanes): ∼15 acres
- Transformer station & switchyard: ~lacres
- Control building & parking: ~0. 5acre
- Stormwater / environmental buffers: ~2 acres
- Landscaping, setbacks & security: ~2 acres
- Total (illustrative): ~20 acres

Safety & community protections

- The site uses engineered fire separation, monitoring systems, and onsite suppression water supply. Battery systems include thermal monitoring and automatic shutdown protocols.
- The project will develop an Emergency Response Plan with the local fire department and first responders. Training and site familiarization will be provided for emergency personnel.
- The project is setback >1km from nearest residential and commercial neighbours and from the nearest municipal road. Noise from inverters and transformers will be controlled via equipment selection, acoustic enclosures and landscaping buffers; expected operational noise is typically below municipal limits at property lines.
- Visual impact minimized with landscaping, low-height equipment placement and darksky-compliant lighting.