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Abstract—The advances in wheeled-legged robots in recent 

years have led to their proliferation in human environments. 

However, these robots still face significant challenges regarding 

non-flat terrain. Stair climbing is particularly difficult for these 

robots and restricts their functionality in human facilities. We 

implemented a goal conditioned deep reinforcement learning 

algorithm to develop a position-based controller that allows 

Wheely, a wheeled-legged quadrupedal robot, to blindly climb 

stairs up to a record breaking 10  cm in height or 33% of 

Wheely’s maximum body height. By training the reinforcement 

learning algorithm on a single environment each time, we create 

specialized policies that excel at their own specific terrain type. 

Through the independent training, we create a controller with a 

mixture of experts architecture that does not need to 

compromise between different environments, leading to a more 

optimal policy for each scenario. To maintain robustness, a 

selector neural network selects the policy based on past 

observations, allowing the robot to function independently in 

dynamic environments. 

I. INTRODUCTION 

The creation of mobile robots have allowed robots to 
become increasingly involved in human life. The two primary 
terrestrial locomotion methods available to humans are 
wheeled and legged locomotion. Wheels allow for greater 
speed and efficiency on flat surfaces, while legged locomotion 
provides adaptability for rugged terrain. Therefore, combining 
wheeled and legged locomotion into one mechanism would 
improve both flat and uneven terrain traversal [1], [2], [3]. 
However, wheeled-legged locomotion is more dynamically 
complex compared to either wheeled or legged locomotion 
alone, resulting in greater difficulty in the development of 
control [4]. Thus, deep reinforcement learning is a promising 
method for developing ways to control such robotic systems, 
allowing for robust performance and adaptability [5], [6].  

 In this work, we studied the problem of stair climbing for 
wheeled-legged quadrupedal robots and explored the usage of 
a mixture of experts system to address negative policy 
generalization behavior which allows the robot to maintain 
expert level robustness in all terrain as opposed to a more jack 
of all trades policy approach. To select the appropriate policy 
to use, we created another neural network to determine the 
correct policy to use based on past observation states. In 
simulation, we used Wheely, an economic wheeled-legged 
quadrupedal robot, as the primary platform for the 
reinforcement learning. Our research combines deep 
reinforcement learning with a mixture of experts system to 
enhance the capability and adaptability of mobile robots in 
complex environments.  
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Figure 1.  Wheely Training Stair Climbing 

II. LITERATURE REVIEW 

A. Model Predictive Control 

 Model predictive control (MPC) has proven to be a 
powerful tool for controlling legged and wheeled-legged 
robots, enabling robust locomotion and stability. MPC uses 
predictive models of the robot's kinematics and dynamics for 
control, allowing robots to adapt to various terrain and 
maintain stability. MPC is used in both legged and wheeled-
legged robots  and is shown to excel [7], [8], [9], [10]. Despite 
these advantages, MPC has several drawbacks: computational 
complexity, detailed modeling requirements, and difficult 
parameter tuning. MPC requires the online solving of 
optimization problems, something computationally taxing for 
high-dimensional systems like mobile robots [4], [11]. This 
necessitates powerful onboard computing capabilities which is 
costly and can lead to sluggish response times. Another issue 
is MCP’s reliance on accurate models of the robot and 
environment. Inaccurate models or unmodeled dynamics can 
significantly degrade MPC performance, leading to 
suboptimal control [11]. Furthermore, tuning MPC 
parameters, such as prediction horizon and cost function 
weights, requires significant expertise and trial-and-error [11].  

B. Reinforcement Learning 

 In contrast to MCP, reinforcement learning has emerged 
to quickly and simply create robust locomotion policies for 
legged robots. This approach has notably been implemented 
on ANYmal, Unitree A1, and Cassie, with Rudin et al. creating 
a novel simulation method that allows for the simultaneous 
simulation of thousands of robots in parallel, resulting in 
robust policies within 20 minutes [1], [12], [13], [14]. Another 
work involving Cassie and reinforcement learning shows RL’s 
ability to create robust and stable locomotion behaviors [15]. 
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Moreover, hierarchical RL frameworks have been utilized to 
integrate high-level navigation planning with low-level 
locomotion control by Lee et al. [5]. Their work on 
autonomous navigation for wheeled-legged robots combines 
model-free RL techniques with privileged learning, enabling 
smooth transitions between walking and driving modes [5]. 
Reinforcement learning has also allowed legged robots to gain 
advanced locomotion skills such as those necessary to conquer 
parkour challenges involving jumping, climbing, and 
crouching [16], [17], [18]. Furthermore, reinforcement 
learning provides great freedom in locomotion behavior, 
resulting in more complex and creative locomotion methods 
[18]. Another example of reinforcement learning being 
implemented on legged robots is the work on MIT Mini 
Cheetah by Margolis et al., allowing the robot to run up to 
3.9m/s [6], [19].  

III. METHODOLOGY 

In our setup, there are three key components, the PPO 
algorithm, the supervised learning algorithm, and Isaac gym. 
An overview of Wheely’s training is seen in Figure 2, 3  and 5 
which shows the structure of RL training, deployment, and 
terrain selector training respectively. Training consists of two 
parts as locomotion and terrain selection are trained separately 
while both locomotion and terrain selection are used in tandem 
during deployment. 

A.  Reinforcement Learning Simulator 

We chose to use Isaac Gym as our physics simulator 
because of its RL focused design. Isaac Gym boasts an 
incredibly RL friendly GPU based parallelism capabilities that 
allow for rapid training [20]. Compared to other simulators 
such as MuJoCo or Pybullet, the speed afforded by Isaac 
Gym’s architecture enables much faster training and iteration 
[21], [22]. 

B. Learning Algorithm 

We used proximal policy optimization (PPO) to train our 
locomotion policies, specifically the open-source PPO by the 
ETH Robotics Systems Lab [12]. For training, we used a single 
desktop workstation equipped with a Nvidia 4060 GPU and 16 
GB of memory.  

C. Terrain 

Our training environment consists of 10m x 10m squares 
organized in a 20x10 grid of individual environments. While 
we only used one environment type during training, we still 
used the 20x10 grid format for easier monitoring as anything 
smaller would quickly become crowded and difficult to 
inspect. Each row of the grid has the same difficulty level with 
the difficulty increasing as the row number increases. We 
tested four types of environments: stairs, smooth slopes, rough 
slopes, and flat planes. Each environment had two 1x10 m 
sections of flat terrain for the robot to spawn and end on. 
Between the start and end areas are continuous specialized 
terrain: stairs, smooth slopes, and rough slopes. While the 
robot could begin anywhere on the 10 meter wide horizontal 
axis in the starting area, to promote robustness in turning and 
lateral locomotion, we set the end point to be a circle 0.2 m in 
diameter. This end point is always centered at the midpoint of 

the horizontal axis of the environment. The robot always 
spawned facing perpendicular to the horizontal axis with its 
head pointing toward the opposite side of the environment to 
promote turning behavior.  

 

Figure 2.  Reinforcement Learning Training Process 

 

Figure 3.  Deployment Structure 

1) Stairs: The stair environments had two versions, 
ascending and descending. The stairs were  structurally 
identical with the only difference being vertical displacement 
being reversed. Each step was 1m in length.  

2) Smooth Slopes: Similar to the stair environments, the 
slopes also had ascending and descending variants. Each 
slope’s height level was changed linearly across the length of 
the environment, excluding the spawn and end sections. The 
angle of the incline ranged from 0° to 14.5° depending on the 
difficulty.  

3) Rough Slopes: The rough slope was made in the same 
format as the smooth slope, except the height of the slope was 
given an extra randomized height a ± 5cm variation. 

4) Flat Plane: The flat plane was of the same dimensions 
as the other environments and had the same task formulation. 

 

Figure 4.  Terrain Configurations 

Top Row: Stairs, Smooth Slope, Rough Slope (All Ascending) 

Bottom Row: Stairs, Smooth Slope, Rough Slope (All Descending)  

The target point is marked with a yellow wireframe sphere 
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Figure 5.  Selection Training Process 

D. Terrain Selection 

The RL policy is selected using a selector network trained 
by a supervised learning algorithm that takes in previous 
observation states and makes a prediction using them about the 
terrain type. The terrain selection takes in the previous 5 
seconds of robot state data to predict its terrain type. Based on 
this prediction, the RL policy corresponding to the terrain is 
selected and run. The algorithm learns using the Adam 
optimizer [23].  

E.  Task Formulation 

 We modeled our RL task off of Rudin et al.’s position 
based task formulation that allowed for greater complexity in 
behavior [18]. Each episode lasts 60 seconds with the primary 
objective being to move the robot from the start area to the end 
point.  

1) Observations and Commands:  

We used a completely blind observation set with only base 
inertial information and joint states given. The algorithm is 
also given two commands, a boolean value to indicate whether 
the robot has reached the target location and a heading error 
value between the robot’s heading and the target. No other 
information is provided to the algorithm to model real world 
deployment.  

2) Actions:  

The RL algorithm outputs a vector of joint position and 
velocity targets. In simulation, these values are then converted 
by a PID controller to torque control. Joint positions are given 
for leg joints while velocity targets are provided for the wheels.  

3) Rewards:  

We modified and added to the rewards given in the 
framework by Rudin et al. [12]. Most notably, we added the 
proximity, position, and heading rewards. Proximity is the 
distance between the robot base and the target point. This 
encourages the robot to get as close to the point as possible 
even if it is not able fully arrive at the target. Position reward 
is a positive reward for when the robot is able to arrive within 
25cm of the end point. This gives a flat reward determined by 
the position reward coefficient. Similarly, if the robot is able 
to trigger the success termination (distance between robot and 
goal < 0.1), any negative termination rewards related to 
episode length are canceled and an extra reward is given.  

TABLE I.  REWARD DEFINITION 

Name Formula Coeff. 

Proximity −√(𝑥𝑟𝑜𝑏𝑜𝑡 − 𝑥𝑔𝑜𝑎𝑙)2 − (𝑦𝑟𝑜𝑏𝑜𝑡 − 𝑦𝑔𝑜𝑎𝑙)2 0.01 

Position 
If −√(𝑥𝑟𝑜𝑏𝑜𝑡 − 𝑥𝑔𝑜𝑎𝑙)2 − (𝑦𝑟𝑜𝑏𝑜𝑡 − 𝑦𝑔𝑜𝑎𝑙)2 < 0.25  

Reward +1 
10 

Heading −|𝜃𝑟𝑜𝑏𝑜𝑡 𝑡𝑜 𝑤𝑜𝑟𝑙𝑑 − 𝜃𝑟𝑜𝑏𝑜𝑡 𝑡𝑜 𝑔𝑜𝑎𝑙| 1 

Positive 
End 

If −√(𝑥𝑟𝑜𝑏𝑜𝑡 − 𝑥𝑔𝑜𝑎𝑙)2 − (𝑦𝑟𝑜𝑏𝑜𝑡 − 𝑦𝑔𝑜𝑎𝑙)2 < 0.1 

Termination Penalty = 0 

Reward +1 

10 

 

4) Curriculum:  

We trained using a set of 2048 robots, equally distributed 
among the first 8 difficulties. This is largely inspired by the 
game-like curriculum by Rudin et al. which we modified to be 
based on position instead of speed [12]. If the robot 
successfully reached the end point, it would be promoted to the 
next level in difficulty, and if the robot failed to reach the end 
point, it would stay at the difficulty level or be demoted if it 
has not traveled more than half of the distance to the end point. 
After completing the highest level, the robot is returned to a 
random lower level to prevent forgetting.  

IV. EXPERIMENTS 

After training, Wheely was tested on each terrain for 
successful traversal, energy use, and speed.  

A. Upper Limits 

Using the RL policy, Wheely is able to climb stairs that are 
10 cm tall or 33% of its maximum body height while being 
completely autonomous. Compared to the previous open loop, 
bezier curve based controller, the RL policy doubled the 
maximum stair height that Wheely is able to surmount and 
drastically increased its reliability [3] [24]. Wheely is now able 
to traverse slopes of up to 30° incline, a novel skill developed 
using deep RL.  

TABLE II.  TERRAIN DIFFICULTY 

Difficulty 

Level 

Stairs 
Smooth 

slope 
Rough Slope  

Step Height  Slope Angle  

Slope Angle 

Randomized Height: 

±5cm Variation 

1 1 cm 0° 0° 

2 2 cm 2.87°  2.87° 

3 3 cm 4.30° 4.30° 

4 4 cm 5.74° 5.74° 

5 5 cm 7.18° 7.18° 

6 6 cm 8.63° 8.63° 

7 7 cm 10.1° 10.1° 

8 8 cm 11.5° 11.5° 

9 9 cm 13.00° 13.00° 

10 10 cm 14.5° 14.5° 
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Figure 6.   Success Rate by Terrain Difficulty 

B. Success Rates 

Across all terrain types and difficulty, success rate, the 
percent of robot reaching the goal before the time limit, 
generally remained greater than or near 90%. On the upper end 
of Wheely’s capabilities, as seen in Fig. 6, Wheely was able to 
surmount 10cm tall steps with 67% success with success rate 
climbing to 90% at 8cm tall steps. Compared to the previous 
maximum step height of 5cm, achieved with an open loop, 
bezier curve based control system, the reinforcement learning 
doubled the maximum stair height and greatly enhanced the 
reliability of Wheely [3]. Smooth and rough slope success 
rates remained high until 30° of incline where it dropped 
significantly to near zero as the robot could no longer grip the 
surface.  

C. Energy Consumption 

While climbing 10cm high stairs, Wheely exerted an 
average 84.99 N-m of torque. The whole episode lasted 34 
seconds. Over the course of the experiment approximately 2.5 
Watts of energy was used by Wheely to reach the goal. Other 
terrain had similar torque usage with smooth slope climbing 
averaging 89.37 N-m and rough slope climbing averaging 
86.45 N-m.  

 

Figure 7.  Torque Usage Climbing 10cm High Stairs 

  

Figure 8.  Velocity Climbing 10cm Stairs 

D. Speed 

Wheely’s speed on the 10cm steps, as shown in Fig. 8, 

reflects a unique bounding behavior in which Wheely jumps 

on its hind legs to “bound” forward. The spikes in velocity are 

the robot using its legs to jump forward, clearing the stairs. 

This unconventional locomotion behavior most likely arose 

from the position-based task formulation which allows for 

more complex and creative behavior [18]. In testing, Wheely 

achieved a record maximum velocity of 3.37 m/s with an 

average velocity of 1.57 m/s, a significant increase from the 

previous maximum average velocity of only 0.093 m/s [3]. 

Compared to the pure legged or pure wheeled locomotion of 

the previous control system, the hybrid RL based control 

system resulted in a robot 16 times faster than before with no 

changes to hardware [3].  

V. CONCLUSIONS 

In this work, we developed a new approach for deep 

reinforcement learning to minimize the need to compromise 

policies between environments, resulting in a more optimal 

policy for individual environments. To maintain robustness, 

we created a mixture of experts control system that selects the 

specialized policy that best fits the environment. We 

implemented this to improve stair climbing and general 

locomotion in non-flat terrain in the blind, wheeled-legged 

quadrupedal robot Wheely. We achieved a significant 

milestone of enabling Wheely to climb stairs up to 10 cm in 

height, 33% of its maximum body height. This 

accomplishment demonstrates a substantial improvement 

over previous control systems, which only managed a 

maximum stair height of 5 cm [3].  

A. Limitations and Future Work 

While successful in simulation, our RL method has not 

been tested in the real world which may reveal significant 

sim-to-real gaps. Furthermore, simulations can never 

perfectly model the real world; thus, specialized 

environments trained for within simulation may be at greater 

risk of not translating perfectly into real-world applications. 

Future efforts to validate real-world efficacy of this method 

should be considered.  
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