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Abstract—We describe the design, implementation and use of a

middleware system, called DiscoRT, to support the development

of virtual and robotic conversational agents. The use cases for this

system include handling conversational and event-based interrup-

tions, and supporting engagement maintenance behaviors, such as

turn-taking, backchanneling, directed gaze and face tracking. The

multi-threaded architecture of the system includes both “hard”

and “soft” real-time scheduling and integrates with an existing

collaborative discourse manager, called Disco. We have used the

system to build a substantial conversational agent that is about

to undergo long-term field studies.
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I. INTRODUCTION

Embodied conversational agents, both virtual and robotic, are
becoming increasingly common and sophisticated in their
interaction with humans. Originally, the transition from ex-
isting conversational agents (which typically interacted with
users via alterating text input and output) to the “embodied”
versions focused on animating a virtual face and/or body with
expressions and gestures to complement the agent’s utterances.
More recently, however, conversational agents have acquired
sensors, such as microphones, webcams and KinectsTM, which
are used to recognize users’ speech and track their faces and
bodies. Furthermore, many conversational agents now have
real bodies, in the form of robots [1].

Along with these developments have come increasing ex-
pectations for more “natural” real-time interactions between
agents and humans than the simple turn-taking of the earliest
conversational agents. Unfortunately, the computational archi-
tectures underlying conversational agents have not evolved to
keep up with the addition of sensors and bodies. Most such
agent architectures, including several that we have built, have
basically added an ad-hoc collection of real-time mechanisms
to what is underlyingly the “letter” model of interaction
discussed below. The goal of this work has been to make a
fresh start and design a principled architecture that supports
the continuous mutual signaling model discussed below.

Figure 1(a) shows the “letter” model of interaction, which
still underlies most conversational agent implementations. In
this model, one participant constructs an utterance (letter)
containing the information to be communicated, sends it to the
other participant, and waits. When the utterance is received, the
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Figure 1. (a) Letter versus (b) continuous mutual signaling model.

other participant interprets it, thinks about the content, reacts
(perhaps by performing an action) and then constructs a reply,
if any, sends it back and waits. The cycle then repeats.

This is a very poor model of how co-present humans
naturally interact. In reality, human conversation is a kind of
“continuous mutual signaling,” as shown in Figure 1(b). In this
model, both participants are continuously and simultaneously
producing, observing and responding to behaviors, both verbal
and nonverbal. Furthermore, the exact timing (synchronization)
of these behaviors is a crucial part of the interaction.1

Thus communication in real conversations is multi-channel
(multi-modal). The phenomenon of verbal turn-taking is just
a strategy for managing the signal interference characteristics
of one particular communication channel, namely audio (as
compared to vision, for example, in which multiple signals
can more easily co-exist). And in fact, people talk at the same
time quite often, e.g., for barge-in (interrupting someone while
they are talking) or verbal backchanneling (e.g, saying “Uh-
huh” while someone else is talking).

We have designed, implemented and tested a new multi-
threaded real-time architecture, called DiscoRT (Disco for
Real-Time) to support the continuous mutual signaling model
for embodied conversational agents. Disco is the name of
the collaborative discourse (dialogue) manager that is a key
component of the architecture—see Section V.

After first discussing related work in the next section, we
will briefly introduce the Always-On project,2 which motivated
the development of DiscoRT. In this project, we are using
DiscoRT to develop a conversational agent, with both virtual
and robotic embodiments, to provide social support for isolated

1Herbert Clark’s keynote address at the AAAI 2010 Fall Symposium on
Dialogue with Robots, titled “Talk and Its Timing,” explained this well and
strongly motivated this work.

2See http://www.cs.wpi.edu/⇠rich/always
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older adults. Next we will focus on nine key use cases
that guided our design. Following that, we will describe the
implemented architecture and explain how it supports each of
the use cases. Finally, in the conclusion, we will share our
experience thus far in using the architecture.

II. RELATED WORK

Broadly speaking, this work falls into the technical area of
“behavior coordination mechanisms”—see review articles by
Pirjanian [2] and by Scheutz and Andronache [3]. In particular,
we are using what Pirjanian calls a priority-based arbitration
model. The seminal example of such a model is Brooks’
subsumption architecture [4]. Such models were a response
to the observation that agents often have multiple and some-
times conflicting goals, i.e., goals that require different and
incompatible behaviors.

We also use Arkin’s [5] concept of parallel perception and
action schemas, which is motivated in part by brain theory and
psychology.

The Petri-net synchronization mechanism described in Sec-
tion V-E is modeled on the Behavior Markup Language (BML)
[6] developed for scripting the animation of the first generation
of embodied virtual agents.

Other researchers whose work is most similar to ours
include Thorisson [7], Bohus and Horvitz [8], and Chao and
Thomaz [9]. Thorisson’s architecture is more subsumption-like
than ours, with three layers of “feedback loops” (schemas)
in a fixed priority, whereas our system has only two layers
and arbitrates between schemas with variable priorities. Bohus
and Horvitz incorporate Bayesian statistics into their model,
which we do not. Chao and Thomaz use Petri nets, as we do,
to implement synchronization between multimodal behaviors,
but do not support arbitration between conflicting behaviors.
None of these systems includes a dialogue manager similar to
Disco.

Finally, an important real-time issue that our architecture
does not directly address is incrementality, especially with
respect to natural language processing. For example, as soon
as someone says, “the red ball...”, before they finish the rest
of the sentence, hearers will start to direct their gaze toward
a red ball if it is easily visible in the immediate environment.
Scheutz [10] and Traum et al. [11] have implemented this
kind of incremental processing for interaction with robots and
virtual agents.

III. THE ALWAYS-ON PROJECT

Before presenting the use cases for DiscoRT below, we first
briefly describe the Always-On project to provide a source of
some concrete behavioral examples.

The Always-On project is a four-year effort, currently in its
fourth year, supported by the U.S. National Science Foundation
at Worcester Polytechnic Institute and Northeastern University.
The goal of the project is to create a relational agent that will
provide social support to reduce the isolation of healthy, but
isolated older adults. The agent is “always on,” which is to say
that it is continuously available and aware (using a camera and
infrared motion sensor) when the user is in its presence and
can initiate interaction with the user, rather than, for example
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Figure 2. Embodied conversational agent in Always-On project.

requiring the user to log in to begin interaction. Our goal is for
the agent to be a natural, human-like presence that “resides” in
the user’s dwelling for an extended period of time. Beginning
in the winter of 2014, we will be placing our agents with about
a dozen users for a month-long, four-arm, evaluation study.

We are experimenting with two forms

Figure 3. Reeti.

of agent embodiment. Our main study
will employ the virtual agent Karen,
shown in Figure 2, that comes from
the work of Bickmore et al. [12] Karen
is a human-like agent animated from a
cartoon-shaded 3D model. She is shown
in Figure 2 playing a social game of cards
with the user. Notice that user input is
via a touch-screen menu. Also, the speech
bubble does not appear in the actual in-
terface, which uses text-to-speech gener-
ation. We are also planning an exploratory study substituting
the Reeti3 tabletop robot, shown in Figure 3, for Karen but
otherwise keeping the rest of the system as much the same as
possible.

In total, the conversational agent or robot can interact
with the user in more than ten different activities including:
discuss the weather, learn about the agent, play a social game
of cards, talk about family/friends, record a life story to the
agent, promote exercise, promote nutrition, hear a humorous
tale from the agent, get health tips from the agent, speak with
a friend/family member via SkypeTM (with all the details of
Skype managed by the agent), and manage a personal calendar
for the user.

A typical interaction with the agent might start with some
greetings (specific to the time of day) and then some discussion
of the weather. The weather discussion can be as short as
today’s weather forecast or extend to the next day, weather
in other cities, and weather where friends or family live. At
the user’s choice, weather might be followed by a social game
of cards where the agent’s and user’s hands in the game and
the way the game is played out are commented upon. If the
user and agent are somewhat well acquainted, thereafter might
follow discussion of the user’s family and friends.

3See http://www.reeti.fr



IV. THE USE CASES

The evaluation of software tools or middleware can be prob-
lematic for experimentally-focused disciplines, such as human-
computer interaction. Straightforward application of the con-
trolled experiment methodology suggests having two parallel
development efforts implementing the same system require-
ments (one using the new software and one using something
else) and then comparing measures of both the development
process, such as time spent, and the performance of the result-
ing systems. Unfortunately, this approach is seldom practical,
especially if the tool is designed for professional developers
working on large, challenging systems. An experiment with a
small, simple system is not likely to show the benefits of the
tool.

We have therefore adopted a methodology from software
engineering called use cases [13], which is particularly well-
suited to the domain of interactive systems. In this approach,
one identifies at the beginning of the design process a collec-
tion of archetypal behaviors (the “use cases”) that the system
should support and then evaluates the implemented system
in terms of how well it supports each of these behaviors.
Furthermore, the use cases should be chosen to cover the most
challenging aspects of the system’s required behavior.

We present nine such use cases for DiscoRT below and
then return in Section VI to evaluate how our middleware
architecture supports each of them. The point here is not that
these use cases are unique to DiscoRT (these are well known
behaviors) but rather that DiscoRT is the first agent architecture
to support them in a principled, unified design.

Notice that the design of DiscoRT aims to support virtual
agents and robots that, unlike in the Always-On project, can
use their hands and arms to point at and manipulate objects in
their environment. DiscoRT is also designed to support fully
spoken interaction, as well as the menu-based interaction mode
of the Always-On project.

A. Engagement Use Cases

The first group of six use cases for DiscoRT concern support-
ing engagement between the agent and the user. As defined by
Sidner et al. [14], engagement is “the process by which two
(or more) participants establish, maintain and end their per-
ceived connection during interactions they jointly undertake.”
Furthermore, as we will see below, engagement involves both
verbal and (a lot of) nonverbal behavior.

Case 1) Walking Up to the Agent: The first use case
relates to establishing engagement. Specifically, when the user
walks by and triggers the motion detector, the agent should
awake out of its quiescent state and issue a greeting, such
as “good morning.” If the user then responds by approaching
the computer (which the agent can notice with face detection
software on the webcam), the agent should continue start
face tracking (see next use case) and continue with a further
engaging utterance, such as “how did you sleep?”

The next four use cases relate to maintaining engagement.
In later work, we identified four types of what they called
“connection events” that function to maintain engagement [15],
[16]. We have a use case corresponding to each type of con-
nection event. In general, these use cases involve crucial timing
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Figure 4. Time line for directed gaze.

constraints between the verbal and/or nonverbal behaviors of
the user and the agent.

Case 2) Face Tracking: Face tracking is the agent’s attempt
to achieve what is technically called mutual facial gaze [17]
with the user. When the agent is face tracking, it should orient
its gaze toward where it detects the user’s face. In addition
to being the agent’s default gaze behavior for maintaining
engagement, mutual facial gaze can have other interaction
functions. For example, it is typical to establish mutual facial
gaze at the end of a speaking turn (see next use case).

Case 3) Turn-Taking: Even though, as discussed in Sec-
tion I, a conversational interaction entails much more than turn-
taking, an embodied conversational agent nevertheless does
need to manage speaking turns, particularly in a menu-based
system. In linguistics, an adjacency pair [18] is the term used
to refer to two utterances by two speakers, with minimal
overlap or gap between them, such that the first utterance
provokes the second utterance. A question-answer pair is a
classic example of an adjacency pair. Thus, after producing the
so-called “first turn” of an adjacency pair, the agent should wait
until the user responds (or until some specified timeout occurs).
In some conversational circumstances, the user’s response can
also be followed by a “third turn” in which the agent, for
example, acknowledges the user’s response.

Importantly, we generalize the concept of adjacency pair
beyond the traditional linguistic definition to include both
verbal and nonverbal responses. So for example, a nod can
be the answer to a question, instead of a spoken “yes,” or
the performance of an action can be the nonverbal response
to a verbal request, such as, “please pass the salt.” Adjacency
pairs, of course, also often overlap with the other nonverbal
behaviors, such as face tracking and directed gaze (see Use
Case 5).

Case 4) Backchanneling: A backchannel is an interaction
event in which a listener directs a brief verbal or nonverbal
communication back to the speaker during the speaker’s utter-
ance. Typical examples of backchannels are nods and/or saying
“uh, huh.” Backchannels are typically used to communicate
the listener’s comprehension of the speaker’s communication
(or lack thereof, e.g., a quizzical facial expression) and/or
desire for the speaker to continue. A conversational agent
should be able to both generate appropriate backchannels and
interpret backchannels from the user. For example, in the
Always-On life-story recording activity, the agent should nod
appropriately, even though it does not understand the content
of the story that being recorded.



Case 5) Directed Gaze: Finally, Figure 4 shows the time
line for the last, and most complex, engagement maintenance
use case, called directed gaze [19]. In this behavior, one person
(the initiator) looks and optionally points at some object in
the immediate environment in order to make it more salient,
following which the other person (the responder) looks at
the same object. This behavior is often synchronized with
the initiator referring to the object(s) verbally, as in “now
spread the cream cheese on the cracker” (pointing first to the
cream cheese and then to the cracker). By turning his gaze
where directed, the responder intends to be cooperative and
thereby signals his desire to continue the interaction (maintain
engagement).

In more detail (see Figure 4), notice first that the act of
pointing (1), if it is present, begins after the initiator starts
to look (2) at the object. (This is likely because it is hard to
accurately point at something without looking to see where
it is located.) After some delay, the responder looks at the
salient object (4). The initiator usually maintains the pointing
(1), if it is present, at least until the responder starts looking
at the object. However, the initiator may stop looking at the
object (2) before the responder starts looking (4), especially
when there is pointing. (This is often because the initiator
looks at the responder’s face, assumedly to check whether the
responder has directed his gaze yet.) Finally, there may be a
period of shared gaze, i.e., a period when both the initiator (3)
and responder (4) are looking at the same object.

Case 6) Walking Away: The last use case in this section
relates to ending engagement. Hopefully, most of the time
disengagement between the agent and user will occur as the
result of an explicit leave-taking conversational exchange, such
as, “Goodbye; See you later.” However, the agent should also
be prepared to deal with the user simply walking away at any
time.

B. Interruption Use Cases

The remaining three use cases relate to various kinds of
interruption behaviors. The ability to do more than one thing at
a time and smoothly shift between them is a key requirement
for a natural conversational agent.

Case 7) Scheduled Event: One reason for interrupting an
activity is to due the (imminent) occurrence of a scheduled
event. For example, in the Always-On project, the agent helps
the user keep a personal calendar of events such as lunch
dates, doctor appointments, etc. If the user has a lunch date at
noon, the agent should interrupt whatever the agent and user
are doing together (e.g., playing cards) ten or fifteen minutes
before noon to remind the user of the lunch date and to wrap
up or postpone the current activity.

Case 8) Changing Topic: A conversational agent should be
able to, either of its own volition, or in response to the user’s
behavior, smoothly change the topic of the conversation and
then, if appropriate, smoothly return to the original interrupted
topic. For example, in the Always-On project, activities such
as playing cards are viewed as social “containers,” within
which other topics can also be discussed. In one of our target
scenarios, at the end of the user’s turn in a card game, the agent
says, “By the way, have you thought about my suggestions for
how to get more exercise?” After a short discussion of exercise,

the agent returns to the card game by saying, “Ok, so I think
it’s your turn now.”

Case 9) Barge-In: Barge-in is a common conversational
phenomenon similar to backchanneling (Case 4), in that the
listener starts communicating before the speaker’s turn is fin-
ished. In the case of barge-in, however, the listener’s intention
is for the speaker to stop and let the listener “take” the turn.
A conversational agent should be able to respond to the user’s
barge-in by promptly ceasing to talk. In a purely spoken
language system, the user can barge in simply by starting to
speak. A menu-driven system, such as the Always-On project,
can support user barge-in by displaying a menu for the user
to click on while the agent is still speaking.

The case of a conversational agent barging in on the user
is less common. However, Chao and Thomaz [20] describe a
strategy, called minimum necessary information, for a robot to
start acting before the user has finished speaking instructions.

V. SYSTEM ARCHITECTURE

Figure 5 shows the architecture of the DiscoRT system that
we have designed, implemented and used in the Always-On
project to support the use cases above in a principled and
general way. Four key features of this architecture are:

1) Multiple Threads: Supporting the continuous mutual
signaling model of interaction obviously requires a highly
parallel architecture with multiple threads. Each input and
output modality and the internal decision making processes
needs to function independently without blocking one other.

2) Resource Arbitration: We think of the agent’s face,
voice, hands and gaze as resources that can be used for differ-
ent (and sometimes competing) purposes in an interaction. For
example, the agent’s gaze can be used to achieve mutual facial
gaze (Case 2) or it can be used direct the user’s gaze to a salient
object in the environment (Case 5). Similar to a computer
operating system, one of the key functions of DiscoRT is to
arbitrate between competing demands for a given resource.

3) Real-Time Control: Timing is critical in all of the use
cases. However, there is more margin for error in some use
cases than in others. For example, an inappropriate delay
of even a fraction of a second in the agent’s response to
a user-initiated directed gaze or barge-in will be noticeable
and degrade the believability of the agent. On the other hand,
changing topics or reminding the user of an upcoming sched-
uled event can be delayed a second or two without harmful
effect. We call these “hard” and “soft” real-time constraints,
respectively, and handle them separately in the architecture.

4) Dialogue Management: A unique feature of our archi-
tecture is its integration with the Disco dialogue manager.
Among other things, Disco provides a focus stack for helping
to manage interruptions.

We return now to Figure 5 for a high-level tour of the
architecture, following which we will discuss several aspects
in more detail.

Starting at the left of the figure, we see the perceptors,
which implement the input side of the system’s multimodal
interface with the user. At the bottom of the figure are the
resources which the system needs to control/manage, such as
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Figure 5. DiscoRT system architecture.

the agent’s face, voice, hands, gaze and so on (the specific
resources may vary between agents). Notice that Disco’s focus
stack is also viewed as a resource; the implications of this
will be discussed below. Along the top of the figure are an
open-ended collection of schemas, which in parallel make
proposals for behaviors using particular resources. Resource
conflicts between behavior proposals are arbitrated by the
resource arbitration (soft) real-time process—the loop in the
middle of the figure. Each behavior that survives the arbitration
process results in instantiation of a realizer process(the loops in
the figure that intersect the resources) that handles the (hard)
real-time synchronization of behavioral events involving the
assigned resource(s). Finally, the right side of the figure shows
the Disco dialogue manager, which has a plan tree and focus
stack as its two main data structures.

A. Perceptors

Perceptors are the system’s abstraction for sensing capabil-
ities, such as face detection, motion detection, menu input,
speech recognition, and so on. The specific perceptors may
vary between agents, depend on the hardware and software
configuration of the agent.

Some perceptors simply abstract the output of a single
hardware sensor, such as the infrared motion detector in
the Always-On project. However, perceptors can also fuse
information from multiple input modes, such as an emotion
recognition perceptor that combines facial expression infor-
mation from a camera with tone of voice information from a
microphone. A single item of hardware, such as a camera, may
also serve multiple perceptors, such as face detection and gaze
tracking. In the Always-On project, the touch-screen menu is
also modeled as a perceptor.

Each perceptor runs on its own thread with a loop cycle
rate depending on its needs, such as the frame rate of the
camera. The output of the perceptors is used by both the
schemas and the realizers (discussed in more detail below).
For example, face detection and motion perception are used
by the schema that establishes engagement. Gaze tracking is
used by the realizer that implements the direct-gaze behavior
discussed in Case 5. Perceptors support both polling and event-
based API’s.

B. Schemas

Schemas are the core of the DiscoRT architecture. In the
Always-On project there is a schema corresponding to each
social activity that the agent can do with the user, such as
talking about the weather, playing cards, etc. These schemas
are created and destroyed as the system runs. A few other
schemas, such as the schema that manages engagement, are
always running.

The fundamental function of a schema is to continually
propose behaviors. Each schema runs on its own thread with a
loop cycle rate depending on its needs and typically maintains
its own internal state variables. In order to decide what
behavior to propose at a given moment (it is allowed to propose
no behavior), a schema can consult its own state variables
and the system’s perceptors, as well as external sources of
information. For example, the weather schema downloads up-
to-date weather information from the internet.

Conceptually, a behavior specifies a “program” (called
the realizer—see Section V-E) to be executed using one or
more resources. For example, when a schema wants to “say”
something, it proposes a text-to-speech behavior that specifies
the utterance string and requires the voice resource. A more



complex example is the directed gaze behavior (see Figure 4),
which requires three resources (voice, hand and gaze) and
includes a complex realizer program to synchronize the control
of the resources with input from the perceptors.

Some schemas, such as for talking about the weather, are
purely conversational, (see Section V-D), and some, such as
playing cards, also involve the manipulation of shared artifacts,
such as cards. In the case of a virtual agent, such manipulations
use the GUI resource. In the Always-On project, playing
cards is a social activity, that involves both manipulation and
conversation about the game, e.g., “I’ve got a terrible hand.”

There are no restrictions in DiscoRT on the internal
implementation of a schema. In the Always-On project we
have primarily implemented schemas as state machines and
using D4g [21], which is an enriched formalism for authoring
dialogue trees.

C. Resource Arbitration

The resource arbitration thread/loop runs approximately once
per second and gathers up the collection of behavior pro-
posals from all of the running schemas. Proposals with non-
overlapping resource requirements are directly scheduled, i.e.,
an instance of the specified realizer is created and started
running (unless it is already running). Resource conflicts
between proposals are resolved using a simple system of per-
schema priorities with some fuzzy logic rules [22] to make
the system more stable, i.e., to prevent switching behaviors
too quickly between closely competing schemas. The behavior
proposals that are chosen are then scheduled.

D. Dialogue Management

Since DiscoRT is designed to support conversational agents,
it includes specialized machinery for dialogue management.
We are using the Disco dialogue manager, which is the open-
source successor to Collagen [23], [24]. Disco has two key
data structures: a plan tree and a focus stack. Each of these
has a point of integration with DiscoRT, as shown in Figure 5.

The plan tree, which is typically provided from another
component outside of DiscoRT, represents the agent’s goals
for its interaction with user as a hierarchical task network
[25]. This formalism includes optional and repeated goals and
partial ordering constraints between subgoals. Thus the typical
interaction example, starting with greetings, etc., described in
Section III above is formalized as a plan tree. The plan tree
can be updated while the system is running.

DiscoRT includes a predefined schema, called the goals

schema in Figure 5, that is always running and automatically
starts the schema(s) corresponding to the currently live goal(s)
in the plan tree. Thus, for example, when the “discuss the
weather” goal becomes live, the goals schema starts the
weather schema. When the schema exits, the corresponding
goal in the plan tree is automatically marked as done.

The focus stack is stack of goals4, which captures the
familiar phenomenon of pushing and popping topics in human
conversation. For example, in the middle of a card game,

4Technically, a stack of focus spaces, each of which includes a goal, called
the discourse segment purpose; but this is beyond the scope of this paper.

the agent might temporarily suspend (push) playing cards to
talk about exercise or to remind the user about an upcoming
appointment in her calendar, and then return (pop) to playing
cards.

In DiscoRT, this kind of interaction is achieved by making
the focus stack a resource that represents control of the current
topic of conversation. Schemas that involve conversation, such
as the cards schema, the exercise schema, and the calendar
schema in the example above, require the focus stack in their
behavior proposals. When the resource arbitrator starts a new
behavior realizer that requires the focus stack, it pushes the
goal associated with the proposing schema onto the stack
(unless it is already there). When the behavior realizer finishes,
the goal is automatically popped off the stack. (See Case 7 in
Section VI for detailed example.)

This integration between the dialogue model and the
schema architecture in DiscoRT is very powerful and flexible.
For example, it is possible and sometimes useful for a schema
to propose a speech behavior without requiring the focus stack.
If you poke a robot, it might respond by saying “Ouch!”
without changing the conversational focus. We are also exper-
imenting with providing hooks in DiscoRT for automatically
producing generic transition language when the stack is pushed
and popped, such as “excuse the interruption, but. . . ” or “now,
returning to. . . ”

E. Behavior Realizers

The behavior realizers (bottom of Figure 5) implement the
hard real-time event synchronization in the system, such as
responding to user-initated directed gaze. A behavior realizer
in DiscoRT is very similar (hence the name) to a BML realizer.
However, for the reasons discussed in detail in [26], we use an
event-driven Petri net rather than a fixed schedule as in most
BML realizers.

Further, in DiscoRT there can be multiple realizers in-
dependently controlling non-overlapping resource sets (think
of a robot “rubbing its tummy and patting its head” at the
same time). Each behavior realizer has a separate thread that
runs by default at 10Hz. Realizers often get information from
perceptors.

A simple realizer, such as for a smile behavior, uses only
one resource (e.g., face) and does not get information from
perceptors (e.g., it just waits until the smile is completed).
More complex realizers, such as for a directed gaze behavior,
use multiple resources (e.g., voice, hand and gaze) and access
one or more perceptors (e.g., hand and gaze tracking) to
implement multimodal synchronization.

A realizer starts execution when the resource arbitrator
accepts a schema’s behavior proposal as described above. If
the schema stops proposing that behavior, then the realizer
is automatically stopped. The realizer program can also stop
itself (e.g., if has completed the behavior), in which case the
proposing schema is notified, so that it can update its internal
state for making future proposals.

Our realizers support all of the essential timing relation-
ships of BML (synchronize, before, after and fixed delay). We
did not implement the complete BML specification because
much of it concerned specific gestural actions; we wanted a



more general framework. Also, our realizer programming API
uses Java rather than XML.

VI. EVALUATION OF THE USE CASES

In this section, we describe how each of the use cases defined
in Section IV is handled by the DiscoRT architecture.

Case 1) Walking Up to the Agent: The engagement schema
(implemented as a state machine) continually polls the motion
perceptor (which abstract the IR motion detector hardware).
When motion is detected, the schema proposes a speech behav-
ior (e.g., “Good morning”) and enters a state in which it starts
polling the face perceptor (which abstracts the output of face
detection software operating on the webcam output). When a
face is detected, the schema proposes another speech behavior
and enters the engaged state; otherwise, after a timeout, the
schema returns to the motion perceptor polling state.

Case 2) Face Tracking: Face tracking is implemented by a
behavior realizer that requires the gaze resource and uses the
face detection perceptor. The realizer simply runs a loop that
updates the agent’s gaze to where it currently sees the user’s
face. The face tracking behavior that causes the realizer to be
started is proposed by the engagement schema when it enters
the engaged state (see Case 6 for stopping the realizer).

Case 3) Turn-Taking: Turn-taking is implemented by an
abstract state machine that is reused in all of the schemas that
include conversational behavior, such as weather, cards and
calendar. The agent’s utterances are produced by proposing
speech behaviors. In menu-based systems, the state machine
waits for the user’s response by waiting for an event from the
menu perceptor (which abstracts the menu GUI) or the speech
perceptor (which abstracts speech recognition).

Case 4) Backchanneling: Backchanneling is a hard real-
time phenomenon, so it must be implemented by a behavior
realizer that receives events from a perceptor that detects
appropriate moments at which to produce backchannels, such
as the end of phrases or sentences in the user’s speech.
The schema that proposes the backchanneling behavior is
responsible for deciding what form of backchannel should be
used (e.g., positive or negative) and for re-proposing a new
behavior when the form of backchannel should be changed.

Case 5) Directed Gaze: As discussed in Section V-E, the
time line for directed gaze (Figure 4) is implemented as a
behavior realizer. Any schema can propose a directed gaze
behavior.

Case 6) Walking Away: The engagement schema state
machine includes a timeout to notice when there has been no
face or motion perceived. When this occurs, it stops proposing
face tracking and enters the waiting for engagement state
described in Case 1.

Case 7) Scheduled Event: While the user and agent are
playing cards together, both the card schema and the calendar
schema are running, but the calendar schema is not making
any behavior proposals. The card schema’s behavior proposals
require the focus stack, so the card playing goal stays on
the top of the stack. Then, triggered by the clock time, the
calendar schema proposes a speech behavior that requires the
focus stack. Because the calendar schema has a higher priority,

the arbitrator gives it control of the focus stack, which causes
the calendar reminder goal to be pushed on top of the card
playing goal. The calendar reminder goal remains on the top of
the stack throughout the (sub)dialogue regarding the upcoming
appointment. When this reminder dialogue is completed, the
calendar schema stops making proposals, the calendar goal is
popped, and the arbitrator gives the focus stack resource back
to the card schema, which has been continuously proposing
the next behavior in the game, but never getting the needed
focus stack resource.

Case 8) Changing Topic: Changing topic is handled sim-
ilarly to Case 7, except that instead of the calendar schema
deciding to make the interruption, the decision that the new
topic has a higher priority than the current topic is made
by some other schema based on cognitive reasoning that is
outside of the scope of DiscoRT. The mechanism of pushing
and popping the focus stack is identical, however. Furthermore,
the interrupted schema may stop proposing the old topic, in
which case it is never returned to.

Case 9) Barge-In: Barge-in is handled in the speech
behavior realizer, which in addition to controlling the text-
to-speech engine (voice resource), listens for events from the
menu or speech perceptor (depending on the type of system).
When such an event is received, the realizer immediately stops
the text-to-speech engine and terminates.

VII. CONCLUSION

DiscoRT has succeeded in its design goal of supporting the
specified use cases in a principled and general way and has
been extremely useful in implementing the Always-On project.
Furthermore, we feel that the use cases themselves are a
research contribution towards evaluating other systems for
similar purposes. Our only negative report on DiscoRT is that it
has been challenging to master the schema-based programming
approach. This is not entirely surprising, since programming
highly-parallel systems is well-known to be difficult. DiscoRT
is implemented in Java and is available from the authors under
an open-source license.
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