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Abstract— We have developed a systematic methodology for
designing emotional facial expressions for humanoid robots, es-
pecially those with limited degrees of freedom. The methodology
is firmly grounded in the psychological literature on human
static and dynamic emotional facial expressions. We demon-
strate the methodology by applying it to a recent humanoid
robot and evaluate the results, confirming that the observed
confusion matrix agrees qualitatively with the predictions of
the methodology. We also investigate how robot facial emotion
recognition compares for dynamic versus static expressions.

I. INTRODUCTION

Facial expressions and, more specifically, emotional facial
expressions play a key role in human interaction. They
convey a person’s motivational states and attitudes, which
can help to improve collaboration. We therefore believe that
the ability of robots to produce emotional facial expressions
is similarly important for human-robot interaction. Some
robot face designers, e.g., hansonrobotics.wordpress.com,
have approached this problem by trying to build androids,
i.e., robots whose faces duplicate human facial musculature
and movements as closely as possible, which leads to very
expensive mechanisms. However, most modern robots—even
humanoid ones—have faces that are much simpler (fewer
degrees of freedom) than human faces, often to the point
of being schematic or cartoonish. Futhermore, because these
robots vary widely in design, the approaches typically used to
express emotions on their faces [1], [12], [18] have been ad
hoc and highly robot-specific. In contrast, our work provides
a systematic robot-independent design methodology that is
firmly grounded in the psychological literature.

There is significant overlap, obviously, between the prob-
lems of designing emotional expressions for virtual agents,
e.g., [13], and designing emotional expressions for robots.
However, as a practical matter, since robotic faces have to
be mechanically operated, their complexity lags far behind
current graphical rendering techniques. Thus current work
on emotional expression for virtual agents is not very useful
for robots other than androids.

Most psychological research on emotional facial expres-
sion falls into two major camps. First, there are discrete
(evolutionist) emotion theories, such as Ekman’s [5], that
focus on static facial patterns corresponding to each of
the so-called basic emotions, such as happiness, sadness,
anger, fear, surprise and disgust. There are also componential
emotion models, such as Scherer’s [9], [14], [21], that instead
try to connect facial patterns to the results of an ongoing
cognitive appraisal process, leading to a dynamic view of
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emotional expression. We will discuss these approaches in
more detail in Section II.

The heart of our methodology, de-

Fig. 1. Melvin

scribed in more detail in Section III,
is to systematically explore, using the
concept of confusion matrices, the map-
ping from standardized human facial
action units to the degrees of freedom
offered by a given robot. We demon-
strate this methodology by applying it
to our current robot, Melvin (see Fig. 1),
constructed for us by Francois Michaud at U. Sherbrooke.

In Section IV, we describe a controlled study in which
we show that our methodology qualitiatively predicts where
there will be confusion in human recognition of Melvin’s
emotional facial expressions. Secondly, we investigate how
robot facial emotion recognition compares for dynamic
versus static expressions. We conclude in Section V with
discussions of the implications and applications of this work.

II. BACKGROUND

The discrete (evolutionist) perspective on emotional fa-
cial expression makes five central claims: Emotional facial
expressions (1) occur universally in emotionally arousing
situations; (2) are linked with subjective experience; (3) are
part of a coherent package of emotional responses; (4) are
judged universally and discretely; and (5) have important
social functions. This school of thought dates to Darwin and
is recently associated most strongly with Ekman [4], [10].

For simplicity and to aid comparison with most other work
in this area, we adopt Ekman’s six basic emotions (happiness,
sadness, fear, anger, surprise and disgust) as our starting
point. However, it should be acknowledged that this notion
of basic emotions is not accepted by all pyschologists [16].

A. Facial Action Coding System

The Facial Action Coding System (FACS) [7], and its
later specialization EMFACS, were developed by Ekman
and his colleagues as an objective method for coding facial
expressions in terms of component movements (actions).
In FACS, any observed facial expression is decomposed
into standardized action units (AU’s). An action unit may
correspond to the activity of one or several muscles in the
face [6]. Each action unit also has an associated intensity
coded from A (low) to E (high).

Ekman’s initial goal was to distinguish all possible vi-
sually distinguishable facial expressions without including
behavioral interpretation. He then used this coding system
to empirically determine which action units were universally
used to express which emotions. This coding system is
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thus an excellent basis for a systematic design methodology.
FACS has been used by others [24] for designing robotic
faces, but never in a systematic methodology.

B. Static Facial Expression

The leftmost two columns of TABLE I show Ekman’s
coding of the six basic emotions. The action units shown
in the second column are the required action units for
each emotion. There are also optional action units for each
emotion that are listed in [7] and will be referenced in
Section III-D. The light horizontal lines in some boxes
indicate alternative codings for that emotion. The difference
between bold and non-bold action units has to do with the
relationship between this column and the third column of the
table, which will be explained in Section III-A.

Notice that this approach is based on the analysis of static
photos or schematic drawings of facial expressions at their
apex of their component movements, e.g., when the eyebrows
are the most raised and the mouth is the most open, etc.

C. Dynamic Facial Expression

Other psychologists [3], [8], [23] point out that it is rare
for emotional judgments to take place on the basis of a
face caught in a single snapshot of time. They found that
in natural dynamic situations, people start responding to
emotional faces before the component motions have reached
their apex. There are also human brain studies [15] showing
more brain regions are active while a person is observing
dynamic as compared to static facial expressions. One of the
hypotheses we evaluated in our controlled study (Section IV)
is that, at least for some emotions, recognition rates will be
higher for dynamic facial expressions than for static.

There have been many different approaches to analyzing
dynamism in emotional facial expressions. Scherer [16], [17]
has focused on the temporal order and continuity of discrete
action units. Others [11] have tried to represent emotional
facial expressions in a continuous multi-dimensional space.
Because it is more compatible with Ekman’s framework, we
are essentially following Scherer’s approach in this work.

Thus we are concerned with the coordinated temporal
trajectories of each action unit composing a basic emotion
from its neutral position to its apex position. This temporal
information has two aspects. First there is the order in which
the action units occur. For example, for some emotions, such
as happiness, the lower face (mouth and related areas) moves
before the upper face (eyes and related areas). For other
emotions, such as anger, the upper face moves first [2], [19],
[20]. There are also durational differences, e.g., surprise is
typically held for a short time, while sadness and fear are
held longer. Space does not allow us to present the complete
timing details for all of the basic emotions we tested. Fig. 4
shows an example of the temporal dynamics of the transition
from a neutral to a sad face on Melvin.

III. DESIGN METHODOLOGY

A design methodology is a sequence of steps that a
designer can follow to solve a problem. Each step specifies a

question to ask, an artifact to build, a rule of thumb to apply,
etc. Methodologies are important because they are a way of
passing knowledge from experts to novices in a design field
and are more efficient than ad hoc, trial and error techniques.

Our methodology for designing emotional facial expres-
sions for a given robot has four basic steps, which we will
demonstrate below by applying them to Melvin (depicted
in Fig. 1). The first step involves independently mapping
action units to the degrees of freedom (DOF) on the robot’s
face. The second step involves applying this mapping to the
action units for each basic emotion to obtain an initial set of
servo motor commands for each emotion (which will almost
certainly contain conflicts). Step three involves analyzing the
conflicts and making tradeoffs with the help of a confusion
matrix. Step four involves using optional action units and
other ideas (such as cartoons) to mitigate remaining problems
in the confusion matrix. In our evaluation of the methodology
(Section IV) we will show that the final confusion matrix
does a good job of predicting the confusions that humans
will have in distinguishing the robot’s facial expressions.

A. Mapping Action Units to DOF

This is the first step of the methodology. The inputs to
this step are the degrees of freedom for the given robot, e.g.,
Fig. 2 for Melvin, and the second column (titled “Ekman’s
EMFACS”) of TABLE I, which shows all possible action
units used in the six basic emotions. The output of this step is
the assignment of one or more DOF (including a +/- direction
for each DOF) to each action unit, if possible. This output for
Melvin is illustrated in TABLE II. Notice that, for simplicity,
we are ignoring the AU intensity information here and just
considering two values for each DOF, i.e., the corresponding
servo motor is fully turned in one or the other direction.

The basic idea of this step is to think about how to
most closely approximate each human action unit with the
facilities available on the given robot. Studying a standard
reference, such as [7], with pictures of the action units (for
humans) is helpful for this process. In this step, you should
think about each action unit independently, without worrying
about how they will combine into emotions.

Some choices in this mapping process will be obvious,
others will be less ideal. The goal here is to make the best
approximation you can (there will be a chance to change
your mind in the next step). For some robots, there will be
no reasonable choice for some AU’s.

Compared to a human face,

Fig. 2. DOF on Melvin’s face

Melvin’s facial features are ex-
tremely sparse and their mo-
tions have many constraints.
His face has no skin, so AU’s
involving furrows and other
subtle movements are simply
not possible. Melvin has four
servo motors (DOF 1-4) de-
signed to flex his rubber mouth
parts into smiles, frowns, etc. Using these DOF, in the
appropriate directions, are thus a good choice for AU 12 (Lip



Emotion Ekman’s FACS 
Melvin’s 

Translation 

Improved 
Melvin’s 

Translation 
Melvin 

Happiness 

AU12 (Lip Corner Puller) 1- , 2- , 3- , 4- 
1- , 2- , 3- , 4- , 

7- , 8- , 

6+, 
11+ 

 

AU6 (Cheek Raiser), AU12 (Lip Corner 
Puller) 1- , 2- , 3- , 4- 

AU7 (Lid Tightener), AU12 (Lip Corner 
Puller) 1- , 2- , 3- , 4- 

Sadness 

AU1 (Inner Brow Raiser) 7- , 8- 7- , 8- , 

1+ , 2+ , 3+ , 4+ , 
5+ , 6- , 

9+ , 10- 
 

AU1 (Inner Brow Raiser), AU4 (Brow 
Lowerer) 7- , 8- 

Fear 

AU1 (Inner Brow Raiser), AU2 (Outer 
Brow Raiser), AU4 (Brow Lowerer) 7- , 8-  7- , 8- , 

1- , 2+ , 3- , 4+ , 
6+, 
11+ 

 

AU20 (Lip Stretcher)  

Disgust 

AU9 (Nose Wrinkler)  1+ , 
7+ , 
5- , 6+ , 
9- , 10+ 

 

AU10 (Upper Lip Raiser) 1+  

Anger 
AU4 (Brow Lowerer), AU5 (Upper Lid 
Raiser) 7+ , 8+ 

7+ , 8+ , 
6- ,  
4- 

 

Surprise 

AU1 (Inner Brow Raiser), AU2 (Outer 
Brow Raiser), AU5 [low] (Upper Lid 
Raiser) 

7- , 8- 
7- , 8- , 

1+ , 2+ , 3- , 4- , 

6+ , 
11+ 

 

AU1 (Inner Brow Raiser), AU2 (Outer 
Brow Raiser), AU26 (Jaw Drop) 

7- , 8- , 

1+ , 2+ , 3- , 4- 
AU1 (Inner Brow Raiser), AU2 (Outer 
Brow Raiser), AU5 [low] (Upper Lid 
Raiser), AU26 (Jaw Drop) 

7- , 8- , 

1+ , 2+ , 3- , 4- 

   Neutral Face:  

 
 

TABLE I
SUMMARY OF DESIGN METHODOLOGY



TABLE II
MAPPING ACTION UNITS TO MELVIN’S DOF

Corner Puller). On the other hand, notice that AU 9 (Nose
Wrinkler) does not appear in TABLE II, because Melvin has
nothing approximating a nose. Action units in column two
of TABLE I that do appear in TABLE II are indicated in
bold; the non-bold action units had no mapping for Melvin.

Finally, notice that Melvin’s neck and eye servos (DOF
5-6 and 9-11) are not used in TABLE II. These are available
for use in the final step of the design methodology, in which
optional action units and cartoon ideas are incorporated.

B. Six Basic Emotions

The second step of the methodology is algorithmic. Simply
apply the mapping in TABLE II to all the bold action units
in column two of TABLE I. In other words, wherever a
bold action unit appears, substitute the corresponding DOF
value(s). For example, for AU 10 in Disgust, substitute 1+.
Ignore the non-bold action units.

Notice that this step may introduce conflicts whenever,
after the mapping, the same DOF appears in a given emotion
(alternative) with different direction settings. In other words,
since there is only one servo, it cannot be in two positions at
once. Such conflicts need to resolved in the next step of the
methodology. In the case of Melvin, there were no conflicts.

C. Predicted Confusion Matrix

A confusion matrix (see examples in Tables III and IV) is
a very useful tool for resolving DOF conflicts within a single
emotion (see preceding section) and analyzing the tradeoffs
between using different DOF for different emotions. The
columns of a confusion matrix represent the emotions that
the robot intends to express; the rows represent the emotions
that the human recognizes. The contents of each cell in the
matrix can be either a percentage recognition rate (each row
and column sums to 100%), as in TABLE VI, or a qualitative
value, as in TABLE III. The cells on the diagonal of the
matrix represent correct recognition; all other cells represent
confusion, e.g., if surprise is intended, but fear is recognized.
Thus for an ideal system, all the diagonal cells are 100%.

The third step in the methodology is to populate a pre-
dicted confusion matrix based on the following two rules of
thumb. First, the greater the proportion of required action
units in a given emotion that can be mapped to DOF in the
robot (i.e., are in bold), the better the recognition will be
for that emotion. We call this the “coverage” rule. Second,
the fewer DOF in a given emotion that overlap with other
emotions, the better the recognition will be for that emotion
(or said conversely, the more DOF overlapping between
two emotions, the more likely the two emotions are to be
confused). We call this the “overlap” rule.

Applying these two rules of thumb to Melvin results in
TABLE III, showing three qualitative levels of predicted
recognition: good, medium and poor. Also, the ?’s in this
table indicate where we expect confusions to occur due
to overlap. Notice that predicted confusion matrices are
symmetric, because we have no basis on which to make
different predictions, for example, between intending sadness
and recognizing fear versus intending fear and recognizing
sadness. Observed confusion matrices, such as Tables VI and
VII, are not necessarily symmetric.

Happiness in TABLE III is predicted to have good recogni-
tion because the first alternative coding has perfect coverage,
i.e., the only required action unit is mapped to DOF, and
there are no expected confusions with other emotions due
to overlap (no ?’s in the happiness column). Sadness and
surprise have only medium predicted recognition because of
the confusing overlaps on DOF 7 and 8. Anger has medium
predicted recognition because it has only 1/2 coverage. Fear
has even lower coverage and two confusing overlaps, so it
is predicted to have poor recognition. Finally, disgust is a
special case: it is predicted to have less than good (i.e.,
medium) recognition, even though one alternative is fully
covered, because the DOF mapping in this case is very weak
(servo 1 doesn’t really curl up one side of the robot’s mouth).

D. Optional AU’s and Cartoon Ideas

The fourth and last step of the design methodology is the
most open-ended and leaves the most room for creativity. The
goal of this step is to improve the predicted confusion matrix.
The basic strategy in this step is to reduce the degree of
overlap between the confused pairs of emotions in the matrix
(indicated by ?’s) by adding additional (different) DOF to
each emotion. These additional DOF come from two sources:
optional action units and cartoon ideas.

In addition to the required action units for each of the
six basic emotions listed in TABLE I, Ekman [7] also
reports optional action units for each emotion. These optional
units include eye closings, blinks, winks, and other small

TABLE III
PREDICTED CONFUSION MATRIX

TABLE IV
IMPROVED PREDICTED CONFUSION MATRIX



movements that are sometimes, but not always, associated
with certain emotions. Unfortunately, Melvin does not have
eyelids (many other similar robots do) or any of the other
facial features used in the optional action units, so we were
not able to draw on this source to help reduce confusion.

Artists, and especially cartoonists, know a lot about how to
express emotions graphically. It is therefore worth studying
an artist’s reference, such as [22], for ideas that may be
applicable to a cartoonish robot like Melvin.

Focusing on the confusions between sadness and fear or
surprise in TABLE III, and the fact that Melvin’s neck (5-6)
and eye (9-11) DOF were not used in TABLE II we came
up with the cartoonish idea of adding different neck and
eye movements to Melvin’s expressions of sadness, fear and
surprise to decrease their degree of overlap with one another.
We also decreased the degree of overlap between sadness and
fear by adding some distinguishing mouth movements (DOF
1-4). The details can be seen numerically in the third column
and pictorially in the rightmost column of TABLE I.

TABLE IV is Melvin’s predicted confusion matrix after
these improvements are incorporated. Since the two con-
fusions have been mitigated, the predicted recognition of
sadness has now been improved from medium to good. Also
notice that, as a side effect of the changes made in this step
of the design, the predicted confusion between sadness and
surprise has “moved” to happiness and surprise. This is a
good tradeoff because happiness has such strong coverage.

IV. EVALUATION

We conducted a controlled study to evaluate whether our
methodology qualitatively predicts which emotions will be
most correctly recognized in static facial expressions and
also to compare the recognition of dynamic versus static
expressions. We first present the experimental procedure and
results, and then discuss the results.

A. Experimental Procedure

The study was conducted in our laboratory space at WPI
(see Fig. 3). Each participant was seated across a narrow
table from Melvin. On the table at their right was an open
laptop, on which the participants answered a questionnaire;
at their left was a small keypad that they used to sequence
to the next robot face.

There were total of 45 participants (average age 20 years)
in the study, randomly and evenly assigned to two conditions
(16 male and 4 female in the static; 16 male and 3 female
in the dynamic). Each participant spent approximately 15
minutes in the study. Six participants’ results were discarded

Fig. 3. Experimental setup

because of a robot hardware failure during their sessions. All
the participants were WPI students. The participants were
told in advance that the study concerned “robot emotions,”
but were given no other details. There was no photography
or video recording during the study, but an experimenter
watched the participants via a ceiling-mounted camera from
a hidden location nearby.

Each participant was presented with 18 faces, comprising
three identical instances of each of the six basic emotions,
in a random order with the constraint that the same intended
emotion was never presented twice in a row. The presentation
of each face was triggered by the participant pressing any key
on the keypad. Melvin’s face always starts out in the neutral
face, shows an expression for some period of time (see
below) and then returns to the neutral face. The participants
were allowed to take as long as they wished to answer the
questionnaire (see TABLE V) after the face was presented,
but were not allowed have the face presented again.

1) Static and Dynamic Conditions: In the static condition,
as soon as the participant presses the keypad, all of Melvin’s
servos are simultaneously commanded to move as quickly as
possible to their final (apex) positions. Within 1/10 second
all of the facial features (DOF 1-4, 7-11) are at apex; within
1/2 second for the neck DOF 5-6. The apex configuration is
held for 1.5 seconds and then the face is returned as quickly
as possible to the neutral face.

As discussed in Section II-C, the timing in the dynamic
condition is much more complicated and different for each
emotion. Fig. 4 shows an example of the temporal dynamics
of Melvin’s transition from the neutral to the sad face. The
overall transition takes about 4 seconds. Also, the mouth
(lower face) starts moving first, followed by the eyebrows
(upper face). The neck starts moving somewhere in between.
Melvin then holds the final pose for 2 seconds before
returning as quickly as possible to the neutral face. The other
emotions have comparable but different temporal dynamics,
based as much as possible on the psychological literature
and filling in missing details using our own intuitions.

2) Questionnaire: The results of the study described
above validate our design methodology by showing that the
(final improved) confusion matrix predicted by the method-
ology agrees qualitatively with the actual confusion matrix
observed in the study (in the static condition). Results in the
dynamic case are inconclusive.

3) Static Condition Results: TABLE VI is the confusion
matrix observed in the static conditions. Notice that this
matrix includes an extra row, labeled Other, that contains
the percentage of participants in each case who selected the
“Other emotion” choice in the questionnaire (see TABLE V).
Which of the following emotions best describes the robot’s
static condition: current facial expression?
dynamic condition: facial movements that you just watched?
Choose more than one emotion only if you cannot distinguish between them.

� Anger � Happiness � Sadness
� Disgust � Fear � Surprise
� Other emotion (please specify in text box below)

TABLE V
PARTICIPANT QUESTIONNAIRE AFTER EACH FACE



Fig. 4. Temporal dynamics of transition from neutral to sad face

The complete list of values entered into the text box associ-
ated with this choice is: no emotion, I do not know, confused,
not sure, unsure, shock, worry, mild surprise, thoughtful,
skeptisism, weirded out, disappointment, crazy, demented,
intimidating, doubt, disbelief, disapproval.

In addition to the percentage recognition rates in the
cells of this confusion matrix, we also show Cohen’s Kappa
coefficient for each intended emotion. Kappa is a standard
way of evaluating “inter-coder reliability,” which in this case,
indicates how reliably participants correctly distinguished
between the intended emotion and all the other choices. The
greater the kappa value, the better the reliability, and a kappa
above 0.75 is generally considered good reliability.

TABLE IV predicts that happiness and sadness will have
good recognition, fear will have poor recognition, and the
other three emotions (anger, surprise and disgust) will be in
between. In TABLE VI we see that happiness and sadness
both have kappa values in the good range, fear has the lowest
kappa value, and the other three emotions are in between,
just as predicted. This is the primary result of the evaluation
confirming our design methodology. (Note that the kappa
for disgust is much lower than the other two medium values,
which is likely due to the lip curl problem discussed earlier.)

4) Dynamic Condition Results: TABLE VII is the con-
fusion matrix observed in the dynamic condition. In this
condition, the predictions of the methodology are only partly
confirmed: happiness has a kappa value in the good range
and fear has the lowest kappa value, as predicted, but all four
of the other emotions are in the middle, with anger having
an almost-good kappa that is higher than sadness.

Comparing the dynamic and static conditions, we see that
four of the diagonal values in TABLE VII are lower than
in TABLE VI, and two are higher. TABLE VIII looks at
this data in another way, comparing the correct recognition
percentages overall and for each emotion in the static versus
dynamic conditions. The only one of these comparisons
which is close to being significant (2-tailed t-test p = .088)
is happiness, where the static case has better recognition.

TABLE VI
OBSERVED CONFUSION MATRIX (STATIC)

TABLE VII
OBSERVED CONFUSION MATRIX (DYNAMIC)

5) Successive Answers: TABLE IX shows the overall
correct recognition percentages separately for the first, sec-
ond and third instances that each participant saw the same
intended face during their session (these three answers are
averaged in the results presented above). Notice that the
correctness gets worse on successive answers, with almost
identical statistics in both conditions. Furthermore, a 2-
tailed t-test indicated that the difference between the first
and third answers is statistically significant (p < .001) in
both conditions. The same effect shows up looking at the
recognition statistics for each emotion individually.

B. Discussion

The primary result of the study is a very strong one.
Our design methodology qualitatively predicted the observed
confusion matrix in the static condition. It is not surprising
that the prediction of the confusion matrix in the dynamic
condition was less successful, since there were many aspects

TABLE VIII
CORRECT RECOGNITION PERCENTAGES

TABLE IX
OVERALL CORRECT RECOGNITION PERCENTAGES BY ANSWER



of the dynamic expressions, such as the order of onset of
action units and their durations, which were not explicitly
considered in the design methodology.

We expected the overall recognition rates to be higher with
dynamic expressions than with static expressions, because of
the psychological literature and because dynamic expressions
intuitively seem to have more “information.” However, the
data did not bear this out, for which we have no explanation
other than to speculate that we did not get the dynamic
temporal details right.

The decreasing correctness results on successive answers
were a big surprise. We expected exactly the opposite, i.e.,
a typical learning curve in which the third answers would
be the best. Our speculation on the cause of this effect
is that, when participants see their first face, they are less
aware of the possible overlaps between faces. As they see
more faces, however, they become more confused by the
expanding overlap possibilities, in a sort of “avalanche”
effect. The implication of this effect would be that overlap
between two faces hurts not only the recognition of the two
faces involved, but overall recognition also.

V. CONCLUSION

We have developed and documented

Fig. 5. Elvo

a step-by-step methodology that allows
any roboticist to design static emotional
facial expressions for his or her robot
without having to spend a lot of time
delving into the relevant pyschologi-
cal literature. We demonstrated the ap-
plication of this methodology to our
own robot, Melvin, and showed that we
could qualititively predict how people will recognize the
resulting emotional expressions.

In future work, we plan to apply and evaluate our method-
ology with another robot in our laboratory, Elvo (see Fig. 5).
Elvo has a similar number of DOF to Melvin, but a very
different style of face. Instead of moveable fixed features,
Elvo has simulated skin that is pushed and pulled from inside
his head by motors. This will allow Elvo to perform a number
of action units, such as wrinkling of the upper brow, that
were not available to Melvin. Elvo even has a special DOF
to curl up one side of his mouth, since this was one of Elvis
Presley’s hallmark gestures (which should be very useful for
expressing disgust).

Finally, there is much room for future work extending our
methodology to explicitly deal with the temporal details of
dynamic expressions.
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