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Abstract

Using a recently developed method for proving asymptotics via orthogonal polynomial du-

ality [KZ23], we prove that the dynamic ASEP introduced in [Bor20] has asymptotics which

are either distributed as the Tracy–Widom F2, or are almost surely bounded. Using a different

duality, we also provide contour integrals formulas for multi–species ASEP, which generalize

results for the single–species ASEP.
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1 Introduction

In recent years, the authors have developed a method [KZ23] to

prove asymptotic fluctuations of models which have so–called “or-

thogonal polynomial duality.” (See [CFGGR19, ACR21, CFG21,

FG19, Gro19, KLLPZ21, Zho21, FKZ22, FRS22, BBKLUZ23, GW23]

for papers on the topic of orthogonal polynomial duality). The es-

sential idea is that a desired observable, such as the height function,

decomposes over an orthogonal basis consisting of duality functions.

This basis is indexed by the state space of the dual process; and

in the context of interacting particle systems, are orthogonal with

respect to certain “blocking” measures. One can then analyze the

height function through this decomposition.

This paper will apply that method to so–called “dynamic” models,
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introduced in [Bor20] and studied further in [Agg18, BC20, CGM20].

In these dynamic asymmetric models, the asymmetry parameter

“dynamically” changes depending on the height function. In the case

of the dynamic ASEP, the asymmetry reverses as the particles drift.

Although it is well established by now that for models in the KPZ

universality class with step initial conditions, the asymptotic fluctu-

ations will be Tracy–Widom F2, there had not even been conjectures

for the asymptotic fluctuations of asymmetric dynamic models (see

[Agg18] and [BC20] for asymptotics of symmetric dynamic models).

In [KZ23], the authors prove that the dynamic stochastic six vertex

model with step initial conditions has Tracy–Widom F2 fluctuations,

just as in the non–dynamic stochastic six vertex model.

In this paper, we prove that the dynamic ASEP with step initial

conditions either has F2 fluctuations or are almost surely bounded,

depending on the value of the dynamic parameter. Based on these

results, it would seem that dynamic asymmetric models have the

same asymptotic fluctuations as the usual asymmetric models with

asymmetry parameter q or q−1. There is a subtlety here to be noted:

for ASEP, inverting the asymmetry parameter reverses the direction

of the drift; in contrast, the stochastic six vertex model is totally

asymmetric, and inverting the asymmetry parameter does not re-

verse the direction of the drift.

Our method will utilize duality functions found by [GW23], which

discovered duality functions between dynamic (generalized) ASEP

and a usual (generalized) ASEP. The duality functions are writ-

ten in terms of q–Hahn orthogonal polynomials, which degenerate

to duality functions expressed in terms of quantum q–Krawtchouk

orthogonal polynomials. The latter duality functions are duality

functions for the usual (generalized) ASEP. Using the previously
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found methods of [KZ23] and estimates on the duality function and

blocking measures, this allows one to compare the asymptotics of

the dynamic ASEP to the usual ASEP.

Additionally, we will present some contour integral formulas for

certain observables in multi–species ASEP (introduced in [Lig76]).

These formulas are derived using contour integral formulas in [Kua19]

and dualities of [BS18, Kua17] (see also [Kua16, BS15b, BS15a] for

the two–species case; and [Sch97] for the one–species case). These

formulas generalize formulas found those in [TW08].

2 Background

2.1 q–notation and orthogonal polynomials

In this subsection, we define q–notation and some orthogonal poly-

nomials.

Recall the q–Pochhammer

(a; q)n = (1− a)(1− aq) · · ·
(
1− aqn−1

)
, n ∈ N

and the q–hypergeometric series

r+1φr

(
a1, . . . , ar+1

b1, . . . , br
; q, z

)
=

∞∑
n=0

(a1; q)n · · · (ar+1; q)n
(b1; q)n · · · (br; q)n

zn

(q; q)n
.

If some ak = q−l for some non–negative integer l, then the series will

terminate because (q−l; q)l+1 = 0. It will sometimes be helpful to

define the q–binomial is:[
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
=

(q−n; q)k
(q; q)k

(−qn)k q−
1
2k(k−1). (1)
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The q–Hahn polynomial (section 14.6 of [KLS]) is defined by

Pn

(
q−x;α, β,N | q

)
= 3φ2

(
q−n, αβqn+1, q−x

αq, q−N
; q, q

)
, n = 0, 1, 2, . . . , N

and satisfy the orthogonality relations∑N
x=0

(αq,q−N ;q)
x

(q,β−1q−N ;q)x
(αβq)−xPm (q−x;α, β,N | q)Pn (q

−x;α, β,N | q)

=
(αβq2;q)

N

(βq;q)N (αq)N
(q,αβqN+2,βq;q)

n

(αq,αβq,q−N ;q)n

(1−αβq)(−αq)n

(1−αβq2n+1) q(
n
2)−Nnδmn

The quantum q–Krawtchouk polynomial is defined by (section 14.14

of [KLS])

Kqtm
n (q−x; p, c; q) := 2φ1(q

−x, q−n; q−c; q, pqn+1)

and is related to the q–Hahn polynomial by

lim
α→∞

Pn

(
q−x;α, p,N | q

)
= Kqtm

n

(
q−x; p,N ; q

)
and satisfy the orthogonality relations∑N

x=0
(pq;q)N−x

(q;q)x(q;q)N−x
(−1)N−xq(

x
2)Kqtm

m (q−x; p,N ; q)Kqtm
n (q−x; p,N ; q)

= (−1)npN (q;q)N−n(q,pq;q)n
(q,q;q)N

q(
N+1
2 )−(n+1

2 )+Nnδmn, p > q−N .

Also define the one–site duality function

kqtm(n, x;λ, ρ, v,N ; q) = Kqtm
x

(
n; p̂, N ; q2

)
,

where p̂ = v−1qρ−λ−N−1

2.2 Definitions of models

First, we will define the models that will be discussed in this paper.
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2.2.1 Definition of dynamic ASEP

Here, we will essentially copy the definition of dynamic ASEP used

by [GW23].

Definition 1. ASEPR(q, ρ) is a continuous-time Markov jump pro-

cess on the state space X = {0, 1}Z depending on parameters q > 0

and ρ ∈ R. Given a state ξ = (ξk)
∞
k=−∞ ∈ X we define the height

function
(
h+
k

)∞
k=−∞ by

h+
k = h+

k,ρ(ξ) = ρ+ k +
∞∑
j=k

2ξj.

The generator is given by

LR
q,ρf(ξ) =

∑
k∈Z

CR,+
k (ξ)

[
f
(
ξk,k+1

)
− f(ξ)

]
+CR,−

k+1(ξ)
[
f
(
ξk+1,k

)
− f(ξ)

]
.

Then a particle on site k jumps to site k + 1 at rate

CR,+
k (ξ) = q−1

(
1 + q−2h+

k+1

)
(
1 + q−2h+

k+1−2
) ,

and a particle on site k jumps to site k − 1 at rate

CR,−
k (ξ) = q

(
1 + q−2h+

k

)
(
1 + q−2h+

k +2
) .

Note that we use the convention that the height function counts

particles to the right, so therefore step initial conditions will mean

particles are initially located at the negative integers; otherwise the

height function will be infinite.

The dynamic ASEP interpolates between an ASEP and a reversed

ASEP. For example, if ρ = ∞ and q > 1, then the (local) drift is to
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the left; while for ρ = −∞ and q > 1, the local drift is to the right.

As particles drift to the right the height function increases, and the

drift will move towards the leftward direction. Thus, the dynamic

ASEP has a tendency to push the height function downwards as it

increases. For the remainder of this paper, assume that q > 1. Note

that the q < 1 case can be obtained by symmetry; namely, replace

ρ with −ρ and invert the lattice.

2.2.2 Definition of (multi–species) ASEP

Although the main results of this paper only concern the single–

species ASEP, the multi–species (also called the “colored”) ASEP

will be used as a tool in the proofs. In this case, it suffices to consider

the “rainbow” case when there is at most one particle of each species.

We will additionally use an uncommon notation, which was used in

[Kua19].

In this case, the state space will consist of pairs (x, σ), where

x ∈ W+
N = {(x1 > x2 > . . . > xN) : xi ∈ Z} ⊂ ZN

and σ ∈ SN is a permutation on N letters. In more familiar notation

using occupation variables, we can define a map ι by defining η :=

ι(x, σ) as

η(x) =

0, if x /∈ x

σ(k), if x = xk ∈ x.

for any x ∈ Z. Here, η(x) = j means that there is a particle of type

(variously called species, color or class) j at lattice site x.

We now define two generators, L±
rainbow. These are defined by hav-
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ing off–diagonal entries

L±
rainbow((x, σ), (x

′, σ′))

=



1, if x′ = xx→x+1 for some x ∈ X and σ = σ′,

q, if x′ = xx→x−1 for some x ∈ X and σ = σ′,

1, if x′ = x and σ′ = σ ◦ (r r + 1) for some r and inv(σ′) = inv(σ)± 1,

q, if x′ = x and σ′ = σ ◦ (r r + 1) for some r and inv(σ′) = inv(σ)∓ 1,

0, else.

Here, the superscript x → x ± 1 in x′ indicates that x′ is obtained

from x by replacing x with x± 1. The notation inv(σ) indicates the

number of inversions of σ, which is the number of pairs (i, j) such

that i < j and σ(i) > σ(j). The diagonal entries Lrainbow((x, σ), (x, σ))

are defined so that the rows sum to 0.

We describe this process in words. The set x indicates the loca-

tions where the sites are occupied by particles and σ indicates the

ordering of the species (or colors) particles. The right jump rates

are 1 and the left jump rates are q. Particles with higher “priority”

swap places with particles of lower “priority” by ignoring their ex-

istence. Such swaps change the number of inversions in σ by 1 or

−1. The choice of ±1 determines whether particles of type i have

priority over particles of type j, or vice versa, for fixed i < j.

We also note that there is something called a “color–blind” Markov

projection from colored (multi–species) models to the usual (single–

species) model. More specifically, we have that for all σ ∈ SN ,∑
σ′∈SN

L±
rainbow((x, σ), (x

′, σ′)) = LASEP(x,x
′)

where LASEP is the generator of ASEP with right jump rates 1 and
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left jump rates q.

2.3 Previously known results

2.3.1 Orthogonal Dualities for dynamic ASEP

Proposition 4.1(i) of [GW23] gives a duality between a dynamic

ASEP and a usual ASEP, in terms of q–Hahn polynomials. In the

usual ASEP, left jump rates are q and right jump rates are q−1.

Since we are assuming that q > 1 this means that the dual process

has drift to the left. They have a more general result for a duality

between two dynamic generalized ASEPs (where up to Nk particles

may occupy the lattice site k), in terms of q–Racah polynomials, but

for reasons of brevity we do not state that result here.

Define the one–site duality function by (equation (4.2) of [GW23])

p(n, x;λ, ρ, v,N ; q) = cp(n, x;λ, ρ, v,N ; q)Px

(
n;α, β,N ; q2

)
,

(α, β) =
(
−vqρ+λ−N−1, v−1qρ−λ−N−1

)
where the coefficient is found in appendix A:

cp(n, x;λ, ρ, v,N ; q) = vn
(
−vqρ+λ−N+1; q2

)
x

(
vq2n−ρ+λ−N+1; q2

)
N

qn(n+ρ+λ−N) (vq−2x−ρ+λ+N+1; q2)x+n

.

The duality function on L sites is:

P v
R(η, ξ) =

L∏
k=1

p
(
ηk, ξk;h

−
k−1,0(η), h

+
k+1(ξ), v, Nk; q

)
here ξ is the original dynamic model and η is the dual model.

The orthogonality relation is in Proposition 4.4 (of [GW23]):∑
η∈X P v

R(η, ξ)P
v
R (η, ξ′)ωp(|η|)w(η; N⃗ ; q) =

δξ,ξ′

ωp
R(|ξ|)WR(ξ;N⃗ ,ρ;q)∑

ξ∈X P v
R(η, ξ)P

v
R (η′, ξ)ωp

R(|ξ|)WR(ξ; N⃗ , ρ; q) =
δη,η′

ωp(|η|)w(η;N⃗ ;q)
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where the ω weights are

ωp(x) =
v−2xqx(2x−1)

(
−vqρ−|N⃗ |+1; q2

)
x(

vq−ρ+2x−|N⃗ |+1; q2
)
|N⃗ |−x

ωp
R(x) =

(
vq−ρ−2x+|N⃗ |+1; q2

)
x(

−vqρ−|N⃗ |+1; q2
)
x

and the w,W weights are

w(η, N⃗ ; q) = q
∑M

k=1 ηkNkq−2
∑M

k=1

∑k
j=1 ηkNj

M∏
k=1

qηk(ηk−Nk)

[
Nk

ηk

]
q2

,

WR(ξ; q, ρ) =
∏
k∈Z

W
(
ξk; q, 1, h

+
k+1(ξ)

)
.

For this paper, we are considering only the dynamic ASEP, where

N = 1. Thus, the latter weights simplify to

W (x; q, 1, ρ) =
1 + q4x+2ρ−2

1 + q2ρ−2

(
−q2ρ−2; q2

)
x

(−q2ρ+2; q2)x

q−x(2ρ+1+x−2)

(−q−2ρ; q2)1

Next, we discuss the degeneration to the quantum q–Krawtchouk

orthogonal polynomial. Define (note we take ρ to ∞ because q > 1)

Kv
qtm(η, ξ) = lim

ρ→∞

(
v−2q−2ρ

)|η|
cv(|η|, |ξ|; 0, 0)Cv(|η|, |ξ|; 0, 2ρ)

P vqρ

R (η, ξ)

then

Kv
qtm(η, ξ) =

L∏
k=1

kqtm
(
ηk, ξk;h

−
k−1,0(η), h

+
k+1,0(ξ), v, Nk; q

)
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where

c(ζ, ξ) := cv(|ζ|, |ξ|;λ, ρ)

=
L∏

k=1

(
vq2ζk−h+

k+1(ξ)+h−
k−1(ζ)−Nk+1; q2

)
Nk(

vq−2ξk−h+
k+1(ξ)+h−

k−1(ζ)+Nk+1; q2
)
ξk+ζk

=

(
vqλ−ρ+2|ζ|−|N⃗ |+1; q2

)
|N⃗ |−|ζ|(

vqλ−ρ−2|ξ|+|N⃗ |+1; q2
)
|ξ|

and

Cv(|ζ|, |ξ|;λ, ρ) =
L∏

k=1

(
−vqh

+
k+1(ξ)+h−

k−1(ζ)−Nk+1; q2
)
ξk(

−vqh
+
k+1(ξ)+h−

k−1(ζ)−Nk+1; q2
)
ζk

=

(
−vqλ+ρ−|N⃗ |+1; q2

)
|ξ|(

−vqλ+ρ−|N⃗ |+1; q2
)
|ζ|

The degenerations of the weights are:

ωqtm(x) = v−xqx(x+|N⃗ |−1)
(
vq2x−N+1; q2

)
|N⃗ |−x

ωqtm
R (x) = vxqx(|N⃗ |−x+1)

(vq1+|N⃗ |−2x;q2)
x

2.3.2 Dualities and particle positions for multi–species ASEP

A previous result of [Kua19] calculates formulas for so–called “q–

exchangeable” particle distributions in multi-species ASEP in terms

of combinatorics of the symmetric group and contour integral for-

mulas.

Given q–exchangeable initial conditions supported at y, the “rain-

bow” ASEP on Z satisfies

Prob((X, σ); t)

=

(
1

2πi

)N
qinv(σ)

N ]!q

∑
σ∈SN

∫
Cr
· · ·
∫
Cr
Aσ

∏
i

ξ
xi−yσ(i)−1

σ(i) e(1+q)
∑

i ϵ(ξi)tdξ1 · · · dξN ,
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where ϵ(ξ) = ξ−1 + qξ − 1 and

Aσ =
∏

(β,α) is an inversion of σ

S(β,α).

with

Sα,β = −1 + qξαξβ − ξα
1 + qξαξβ − ξβ

.

There is also a self–duality function for the multi–species ASEP,

found in [Kuan, Thm 2.5(b) and Proposition 5.2]; see also and

[Belitsky-Schutz]. We write the dual process in terms of occupa-

tion variables, so the finite sets A1, . . . , An ⊆ Z denote the locations

of the species 1, 2, . . . , n particles. This duality is “triangular” in

the sense that it can be expressed as a triangular matrix for some

indexing of the state spaces. First, let us define the set I on which

the duality function is nonzero. The set I will consists of pairs of

states of multi–species ASEP. Let A = (A1, . . . , An) denote a state

in the dual process. Then the set I is defined by setting

I = {((x, σ),A) : ∀j ∈ [1, n] and ∀x ∈ Aj, x = xk for some k and σ(k) ≥ j}.

In words, this means that for every species j particle in A, the

corresponding lattice site in (x, σ) has a particle of species ≥ j. The

duality function is then

D̂((x, σ),A) = 1((x,σ),A)∈I

n∏
j=1

∏
z∈Aj

q−2z+2N j,−
z ((x,σ))

where N j,−
z ((x, σ)) is the number of particles of species ≥ j to the

left of z. In symbols,

N j,−
z ((x, σ)) = |{y ≤ z : y = yk ∈ x where σ(k) ≥ j}| .
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2.3.3 Tracy–Widom contour integral formulas

Theorem 3.1 of [TW08] gives a contour integral formula for the left–

most particle of ASEP when there are exactly N particles. That

paper uses α for the left jump rates and β for the right jump rates,

normalized to α + β = 1. To match with the notation here, let

α = q/(q−1 + q) and β = q−1/(q−1 + q); note that α/β = q2.

Assume initial conditions Y = (y1 < · · · < yN). Then the distri-

bution of the left–most particle is

P (x1(t) = x) = qN(N−1)/2

∫
Cr
· · ·
∫
Cr
I(x, Y, ξ)dξ1 · · · dξN

where

I(x, Y, ξ) =
∏
i<j

ξj − ξi
q + q−1ξiξj − ξi

1− ξ1 · · · ξN
(1− ξ1) · · · (1− ξN)

∏
i

(
ξx−yi−1
i eε(ξi)(1+q)t

)
and ε(ξ) = qξ−1 + q−1ξ − 1 and Cr are circles centered at the origin

with radius r < 1.

In equation (1.6) they prove the symmetrization identity (where

α + β = 1)∑
σ∈SN

sgnσ
(∏

i<j

(
α + βξσ(i)ξσ(j) − ξσ(i)

)
× ξσ(2)ξ

2
σ(3)ξ

3
σ(4)···ξ

N−1
σ(N)

(1−ξσ(1)ξσ(2)ξσ(3)···ξσ(N))···(1−ξσ(N−1)ξσ(N))(1−ξσ(N))

)
= αN(N−1)/2

∏
i<j(ξj−ξi)∏
j(1−ξj)

(2)

For later asymptotic analysis, the substitution ξi = (zi− 1)−1 will

be more convenient.

2.4 Matching of notation

In this section, we match notation between various papers. Matching

notation only requires looking at one lattice site. The figure below
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summarizes the various dualities. This paper uses only the q–Hahn

and quantum q–Krawtchouk polynomials, but more information is

provided for reference.

q–Racah (with free parameter)
d.b. two dynamic models [GW23]

q–Hahn (with free parameter)
d.b. dynamic and non–dynamic models [KZ23],[GW23]

quantum q–Krawtchouk (without and with free parameter*)
d.b. two non–dynamic models [FKZ22,GW23]

q–Krawtchouk (no free parameter)
d.b. dynamic and non–dynamic models [GW23]

Figure 1: The various degenerations of named duality functions. The abbreviation “d.b.” means
“duality between.”

2.4.1 Dualities from [KZ23]

The duality function is (where N is the number of lattice sites)

Dc(µ, ξ) =

N∏
i=1

(
e−2πiλq2(−c+N[1,i−1](µ+ξ−2J)+µi−2Ji); q2

)
2Ji−µi

×3φ2

(
q−2(2Ji−µi), q−2ξi , e−2πiλq2(2N[1,i−1](µ−J)+µi−2Ji)q−4Ji , e−2πiλq2(−c+N[1,i−1](µ+ξ−2J)+µi−2Ji); q2, q2

)
× q−4JiN[1,i−1](ξ)−2ξiN[1,i](µ)

If there is only one lattice site then we obtain(
e−2πiλq2(−c+µ−2J); q2

)
2J−µ

3φ2

(
q−2(2Ji−µi), q−2ξi, e−2πiλq2(µi−2Ji)

q−4Ji, e−2πiλq2(−c+µi−2Ji)
; q2, q2

)
q−2ξiµi

which can be written in terms of the q–Hahn polynomial.
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2.4.2 Dualities from [FKZ22]

The duality function is given by the quantum q–Krawtchouk poly-

nomial

Dθ
αi
(ξi,ηi) =

L∏
x=1

Kqtm
ηxi

(
q−2ξxi , pxi (ξi,ηi) , θ

x, q2
)

with

pxi (ξi,ηi) = α−1
i q−2(N−

x−1(ξi)−N+
x+1(ηi))+2N−

x−1(θ)−1.

To match notation, we have that θ = 2J. If there is only one lattice

site, we have

Kqtm
η (q−2ξ, α−1q−1, 2J, q2)

2.5 From duality to asymptotics

A previous proposition by the authors [KZ23] gave a general method

for proving asymptotics from orthogonal duality. The remainder of

this subsection is essentially a verbatim repetition of that paper.

Consider a filtered probability space (Ω,F , (Ft)t≥0,P). Let Xλ
t be

a stochastic process, depending on a parameter λ, with values in a

countable state space S. Let Qλ(t) denote the probability measure

on S which is the pushforward of P under Xλ
t . In other words, for

any state x ∈ S, let Qλ(t, x) denote the probability P(Xλ
t = x).

Suppose that there is a family of measures, depending on λ on the

state space S, which defines an inner product on the Hilbert space

Hλ = L2(S,Wλ).
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In other words,

⟨f, g⟩λ =
∑
x∈S

f(x)g(x)Wλ(x).

Suppose that the Hilbert space Hλ has an orthogonal basis with

respect to Wλ, denoted by {DS
λ} where S indexes the basis. In other

words, ∑
x∈S

DS
λ (x)D

S
λ (x)Wλ(x) = δSS nS

λ (3)

for some non–negative normalization nS
λ .

Let h(L) be a function on the state space S, and we assume that

h(L) is an element of the Hilbert space Hλ for all values of λ, but

h(L) only depends on a large parameter L and not on λ. In the

context of this paper, the letter h stands for “height function.”

The previous paper states that if five inequalities hold for all val-

ues of λ, then the asymptotics of the height function h(L) are the

same for all values of λ. Below, we will assume that t = L for sim-
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plicity. If, for all S and L, and all pairs λ, λ we have∑
y∈S

h(L)[y] ·
∣∣∣(nS

λ)
−1/2DS

λ (y)Wλ(y)− (nS
λ
)−1/2DS

λ
(y)Wλ(y)

∣∣∣
 ≤ C1L

2

(4)∑
y∈S

h(L)[y](nS
λ)

−1/2DS
λ (y)Wλ(y) ≤ C2L

2

(5)∑
x∈S

∣∣∣(nS
λ
)−1/2DS

λ
[x]Qλ(L, x)

∣∣∣ ≤ M1(L, S)

(6)(∑
x∈S

(nS
λ)

−1/2DS
λ [x] (Qλ(L, x)−Qλ(L, x))

)
≤ M2(L, S)

(7)

where ∑
S

L2Mj(L, S) < ∞, lim
L→∞

L2Mj(L, S) = 0.

Furthermore, assume

lim
L→∞

∑
S

(∑
x∈S

∣∣∣(nS
λ)

−1/2DS
λ [x]− (nS

λ
)−1/2DS

λ
[x]
∣∣∣ · |Qλ(L, x)|

)

×

∑
y∈S

∣∣∣h(L)[y](nS
λ)

−1/2DS
λ (y)Wλ(y)

∣∣∣
 = 0 (8)

Then

lim
L→∞

∑
x∈S

|h(L)[x]Qλ(L, x)− h(L)[x]Qλ(L, x)| = 0
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3 Main Results

3.1 From Orthogonal Duality to Determinants

In this subsection, we significantly streamline the statements in sec-

tion 2.5, at the cost of (slightly) losing generality.

Proposition 1. Use the same notation as in section 2.5. Let γ(L)

be some real–valued function. Assume that for all S and L and all

pairs λ, λ we have∑
y∈S

|h(L)[y](nS
λ)

−1/2DS
λ (y)Wλ(y)| ≤ Cγ(L) (9)∑

x∈S

|(nS
λ)

−1/2DS
λ (x)Qλ(L, x)| ≤ M(L, S) (10)

where for each S, the function γ(L)M(L, S) is monotone in L and

limL→∞ γ(L)M(L, S) = 0. Then

lim
L→∞

∑
x∈S

|h(L)[x]Qλ(L, x)− h(L)[x]Qλ(L, x)| = 0.

Remark 1. The astute reader may notice that the normalization nS
λ

can be absorbed into the constants. Indeed, it is orthogonality of

the duality functions that it signifcant, not the orthonormality.

Remark 2. In (10), if λ = λ then the left hand side can be re–written

as Ex[D
S
λ (x(L))]. By duality this equals ES[D

S(L)
λ (x)]. This allows

one to intuit its growth before any rigorous calculations.

3.2 Asympotics of dynamic ASEP

The next theorem state asymptotics of dynamic ASEP, using the

proposition in the previous subsection.

Theorem 1. Let s be any finite number and suppose that ξ(t) being

18



with step initial conditions at time t = 0 (i.e. all lattice sites left of

0 are occupied, and all lattice site right of 0 are empty). Then, for

q > 1 and any ρ ∈ [−∞,∞),

h+
s (ξ(t))

F (t)
→ 0

in mean for all positive monotonic functions F (t) such that limt→∞ F (t) =

∞.

When ρ = ∞, one obtains the well–known Tracy–Widom F2 asymp-

totics of ASEP with step initial condition [TW09, BCS12].

3.3 Particle locations in (multi–species) ASEP

This theorem is a generalization of a result in Theorem 2.1 of [TW08].

Proposition 2. Consider a N–particle ASEP with exactly one par-

ticle of each species. Let the initial condition consist of particles

at y = (y1 < . . . < yN) with q–exchangeable distribution; in other

words

Prob(y, σ) =
qinv(σ)

[N ]!q

For 1 ≤ i ≤ N , let zi(t) denote the location of the ith species particle

at time t. For any fixed K < N and any x1, . . . , xK, let ω ∈ S(K)

denote the permutation satisfying xω(1) < . . . < xω(K). Assume that
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x1, . . . , xK ≥ MK+1 ≥ . . . ≥ MN . Then

Prob(z1(t) = x1, . . . , zK(t) = xK , zK+1(t) ≥ MK+1, . . . , zN(t) ≥ MN)

=
qinv(ω)

[K]!q

∑
σ∈S(N)

(
1

2πi

)N

×
∫
Cr

· · ·
∫
Cr

Aσ

K∏
i=1

ξ
xi−yσ(i)−1

σ(i)

N∏
i=K+1

ξ
Mi−yσ(i)−1

σ(i)

1− ξσ(i)
e
∑N

i=1(pξ
−1
i +qξi−1)tdξ1 · · · dξN .

(11)

Note that setting K = 0 and M1 = . . . = MN , we can symmetrize

to recover Theorem 2.1 of [TW08], which gives the master equation

for ASEP with N particles.

For the next proposition, we define the rainbow step initial con-

ditions η(0) = {ηx(0) : x ∈ Z} by

ηx(0) =

x, if x ≥ 1

0, if x ≤ 0.

Proposition 3. Let M1 ≥ · · · ≥ Mn and consider some sequence

of positive integers c1 < . . . < cn. Let (x(0), σ(0)) be rainbow step

initial conditions. Let A be the particle configuration with a particle

of type cj at Mj for all j. Then

E

[∑
τ∈Sn

qinv(τ)

[n]!q
1((x(t),σ(t)),A)∈I

n∏
j=1

q−2Mj+2N
cτ(j),−
z ((x(t),σ(t)))

]

equals the contour integral in Proposition 2 when K = 0.

Remark 3. By using the color–blind Markov projection, we can con-

sider the case when c1 = · · · = cn. This results a sum over τ ∈ S1,

and then there are no permutations in the observable.
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4 Proofs

4.1 Proof of Proposition 1

This follows from proving that equations (9) and (10) imply equa-

tions (4)–(8). Setting λ = λ proves (5) and (6), while taking distinct

values proves (4) and (7). Equation (8) then follows from (9) , (10)

, and (4)–(7). We replaced∑
S

γ(L)M(L, S) < ∞

with the monotonicity condition to allow for an application of the

monotone convergence theorem instead of the dominated conver-

gence theorem.

4.2 Proof of Propositions 2 and 3

4.2.1 Proof of Proposition 3

The key observation here is that for a certain choice of x, σ, the du-

ality function D̂ becomes an indicator function on particle positions.

Let A(0) be the same as in the pposition. Note that for rain-

bow step initial conditions η(0), the duality function D̂(η(0), A(t))

becomes an indicator function:

D̂(η(0),A(t)) =

1, if Aj(t) ⊆ [Mj,∞) for all j

0, else

Therefore, by the duality result,

E[D̂(η(t),A(0))] = E[D̂(η(0),A(t))] = P
(
Aj(t) ⊆ [Mj,∞)

)
.

This completes the proof, pending the proof of Proposition 2 in the

next section.
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4.2.2 Proof of Proposition 2

We first provide heuristics. We will take the summation of

qinv(τ)
∑
σ∈SN

∫
Cr
· · ·
∫
Cr
Aσ

∏
i

ξ
xi−yσ(i)−1

σ(i) e(1+q)
∑

i ϵ(ξi)tdξ1 · · · dξN

which we want to show equals

qinv(ω)
∑
σ∈SN

∫
Cr

· · ·
∫
Cr

Aσ

K∏
i=1

ξ
xi−yσ(i)−1

σ(i)

N∏
i=K+1

ξ
Mi−yσ(i)−1

σ(i)

1− ξσ(i)
e(1+q)

∑
i ϵ(ξi)tdξ1 · · · dξN .

If this summation is done naively, by ignoring the permutations and

contour integrals, and allowing for two particles to occupy the same

site, then the result would follow immediately from the geometric

series ∑
xi≥Mi

ξxi =
ξMi

1− ξ
.

In a sense, the quantity inv(τ) “accounts” for exclusion in a way

that this naive summation produces the correct answer.

Now note that for q = β/α, where α + β = 1,

1

1− ξi
− qξj
1− ξj

=
1− (1 + q)ξj + qξiξj

(1− ξi)(1− ξj)
= α−1 α + βξiξj − ξj

(1− ξi)(1− ξj)
. (12)

which matches one of the terms in the symmetrization identity (2).

We first show that

∫
Cr

· · ·
∫
Cr

∑
σ∈S(N)

Aσ

[
k−1∏
j=1

ξ
x̄j−yσ(j)−1

σ(j)

]
ξ
−M−yσ(k)−1

σ(k) ξ
−M−yσ(k+1)−1

σ(k+1)

 N∏
j=k+2

ξ
x̄j−yσ(j)−1

σ(j)


×
(

1

1− ξσ(k)
−

qξσ(k+1)

1− ξσ(k+1)

)
e−

∑
i(1+q)ϵ(ξi)tdξ1 · · · dξN = 0. (13)

We will see shortly that the q in the numerator arises from the
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quantity qinv(τ) and that the contour integrals are not needed.

We partition S(N) into two sets S(N) = S+
k (N) ∪ S−

k (N), where

S+
k (N) = {σ ∈ S(N) : σ(k) < σ(k+1)}, S−

k (N) = {σ ∈ S(N) : σ(k) > σ(k+1)}

Noticing that σ ∈ S+
k (N) if and only if σ(k) := σ · (k k+1) ∈ S−

k (N),

and σ(j) = σ(k)(j) for all j ̸= k, k+1, the integrand can be rewritten

as (using (12))

∑
σ∈S+

k (N)

[
k−1∏
j=1

ξ
x̄j−yσ(j)−1

σ(j)

]
ξ
−M−yσ(k)−1

σ(k) ξ
−M−yσ(k+1)−1

σ(k+1)

(1− ξσ(k))(1− ξσ(k+1))

 N∏
j=k+2

ξ
x̄j−yσ(j)−1

σ(j)


×α−1

(
Aσ(α + βξσ(k)ξσ(k+1) − ξσ(k+1)) + Aσ(k)(α + βξσ(k)ξσ(k+1) − ξσ(k))

)
× e−

∑N
j=1(αξ

−1
i +βξi−1)t

Noticing that Aσ(k) = AσSσ(k),σ(k+1) for σ ∈ S+
k (N), we thus have

Aσ(α + βξσ(k)ξσ(k+1) − ξσ(k+1)) + Aσ(k)(α + βξσ(k)ξσ(k+1) − ξσ(k)) = 0.

This shows that (13) is true.

Next, we use an additive property of inv. Namely, let τ ∈ SN

and let H be a normal subgroup of SN . Then there is a unique

decomposition τ = aω such that ω ∈ H and a ∈ SN/H with

inv(τ) = inv(a) + inv(ω). We will apply this for H = SK .

We can now complete the proof. By (13), including values where
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xk = xk+1 does not contribute to the summation. Therefore

Prob(z1(t) = x1, . . . , zK(t) = xK , zK+1(t) ≥ MK+1, . . . , zN(t) ≥ MN)

=
N∑

j=K+1

∑
xj≥Mj

∑
τ

(
1

2πi

)N
qinv(τ)

[N ]!q

×
∑
σ∈SN

∫
Cr
· · ·
∫
Cr
Aσ

∏
i≤K

ξ
xi−yσ(i)−1

σ(i)

∏
i≥K+1

ξ
xi−yσ(i)−1

σ(i) e(1+q)
∑

i ϵ(ξi)tdξ1 · · · dξN .

The sum over τ is actually a sum over a ∈ SN/SK where τ = aω.

Since ∑
a∈SN/SK

qinv(a) =
[N ]!q
[K]!q

,

using the geometric series completes the proof.

4.3 Proof of Theorem 1

This is an application of Proposition 1. For ρ = −∞, the usual

ASEP, we know that h+
s (ξ(t))/F (t) → 0 almost surely [BF87], and

Proposition 1 allows us to show convergence to 0 in mean. We need

to show the two inequalities in the conditions of the proposition

hold. First, we will match the notation, and then prove estimates

on the duality function D, the weights W,w and the normalization

n.

4.3.1 Matching Notation

Recall that in the notation DS
λ (y), the symbol y denotes a state in

the “original” process, while the symbol S denotes a state in the

“dual” process. The parameter λ is the dynamic parameter, which

we allow to take values in [0,∞]. Recall that ρ ∈ (−∞,∞) is related

to λ by λ = eρ.
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Recall that the orthogonality relation can be written∑
ξ∈X

P v
R(η, ξ)P

v
R (η′, ξ)ωp

R(|ξ|)WR(ξ; N⃗ , ρ; q) =
δη,η′

w(η; N⃗ ; q)ωp(|η|)

and that there is the rescaling

Kv
qtm(η, ξ) = lim

ρ→∞

(
v−2q−2ρ

)|η|
cv(|η|, |ξ|; 0, 0)Cv(|η|, |ξ|; 0, 2ρ)

P vqρ

R (η, ξ).

We then define

DS
λ (ξ) =

(
v−2q−2ρ

)|S|
cv(|η|, |ξ|; 0, 0)Cv(|S|, |ξ|; 0, 2ρ)

P vqρ

R (S, y)

and

Wλ(ξ) =

( (
v−2q−2ρ

)|S|
cv(|η|, |ξ|; 0, 0)Cv(|S|, |ξ|; 0, 2ρ)

)−2

WR(ξ; N⃗ , ρ; q)ωp
R(|ξ|)

and

nλ(S) =
1

w(S; N⃗ ; q)ωp(|S|)
With this notation, we have that∑

ξ∈X

DS
λ (ξ)D

S
λ (ξ)Wλ(ξ) = δS,Snλ(S)

which is equation (3), the orthogonality relationship necessary to

apply Proposition 1.
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Also recall the explicit values

ωp(x) =
v−2xqx(2x−1)

(
−vqρ−|N⃗ |+1; q2

)
x(

vq−ρ+2x−|N⃗ |+1; q2
)
|N⃗ |−x

ωp
R(x) =

(
vq−ρ−2x+|N⃗ |+1; q2

)
x(

−vqρ−|N⃗ |+1; q2
)
x

and

cv(|ζ|, |ξ|;λ, ρ) := c(ζ, ξ)

=
M∏
k=1

(
vq2ζk−h+

k+1(ξ)+h−
k−1(ζ)−Nk+1; q2

)
Nk(

vq−2ξk−h+
k+1(ξ)+h−

k−1(ζ)+Nk+1; q2
)
ξk+ζk

=

(
vqλ−ρ+2|ζ|−|N⃗ |+1; q2

)
|N⃗ |−|ζ|(

vqλ−ρ−2|ξ|+|N⃗ |+1; q2
)
|ξ|

and

Cv(|ζ|, |ξ|;λ, ρ) =
L∏

k=1

(
−vqh

+
k+1(ξ)+h−

k−1(ζ)−Nk+1; q2
)
ξk(

−vqh
+
k+1(ξ)+h−

k−1(ζ)−Nk+1; q2
)
ζk

=

(
−vqλ+ρ−|N⃗ |+1; q2

)
|ξ|(

−vqλ+ρ−|N⃗ |+1; q2
)
|ζ|

For the proof, it is important the state S in the duality process

only has finitely particles, so we write it in terms of particle variables

S = {s1, . . . , sl}

where l is the number of particles in the particle configuration S. We

write l = l(S) to emphasize the dependence on S. Then the duality

function is expressed over occupied sites on S, or in other words:

P v
R(S, ξ) =

l(S)∏
j=1

p
(
1, ξsj ;h

−
sj−1,0(S), h

+
sj+1(ξ), v, Nk; q

)
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here ξ is the original dynamic model and S is the dual model.

4.3.2 Rescaling as lattice size M diverges

Note that the previous results of [GW23] assumed a finite lattice

size M, while in this paper we assume an infinite lattice size. The

arguments for taking this limit are standard: one simply rescales

the duality function by a constant. We briefly state that argument

here.

If the reader checks every term in the duality function, she will no-

tice that the only dependence on the lattice size occur in the weights

WR(ξ), ω
p(|S|), ωp

R(|ξ|) and constants cv, Cv. TheWR(ξ) term is more

straightforward because h+
k+1(ξ) → ∞, so in the expressions

WR(ξ; q, ρ) =
∏
k∈Z

W
(
ξk; q, 1, h

+
k+1(ξ)

)
,

W (x; q, 1, ρ) =
1 + q4x+2ρ−2

1 + q2ρ−2

(
−q2ρ−2; q2

)
x

(−q2ρ+2; q2)x

q−x(2ρ+1+x−2)

(−q−2ρ; q2)1

=


1

1+q−2ρ , x = 0[
1+q2ρ+2

1+q2ρ−2
1+q2ρ−2

1+q2ρ+2

]
q−2ρ

1+q−2ρ , x = 1

the weight converges to a finite value with no rescaling in the q–

Pochhammer in the denominator. (Note that in the x = 1 case the

terms in the brackets cancel). The numerator requires a rescaling

in qM from the value of the height function h+
k+1(ξ). Even more

straightforwardly,

ωp
R(|ξ|) =

(
vq−ρ−2|ξ|+|N⃗ |+1; q2

)
|ξ|(

−vqρ−|N⃗ |+1; q2
)
|ξ|

→ const
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by setting |ξ| = |N⃗ |.
For the other terms, first note that

ωp(|S|) ∼ v−2|S|q|S|(2|S|−1)

(1− vq−ρ+2|S|−|N⃗ |+1) · · · (1− vq−ρ+2|S|+2(|N⃗ |−|S|−1)+1)
,

cv(S, ξ, 0, 0) ∼ (1− vq2|S|−|N⃗ |+1) · · · (1− vq|N⃗ |+1)

(1− vq−2|ξ|+|N⃗ |+1) · · · (1− vq|N⃗ |+1)
.

where f ∼ g means that lim f/g → 1. Note that the cv term simpli-

fies, because in the limit we can take |ξ| = |N⃗ |. Then

cv(S, ξ, 0, 0) ∼ 1

(1− vq−|N⃗ |+1) · · · (1− vq2|S|−|N⃗ |−1)

∼ (−v−1)|S|+1q(|S|+1)(|N⃗ |)q−(|S|+1)(|S|+2)/2

A similar calculation holds for ωp, with the key observation being

that it does not depend on S except through |S|.

4.3.3 Bounds on the weights ωp
R,W

Recall that these are weights on ξ, the original dynamic process. As

a reminder,

ωp
R(|ξ|) ≤ const.

Furthermore, after re–normalization,

WR(ξ; q, ρ) ≤
∏
s≥0
ξs=1

q−2h+
s+1(ξ) (14)
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4.3.4 Bounds on the duality function

Plugging in h−
sj−1,0(S) = j − 1, we then have

P v
R(S, ξ) =

l(S)∏
j=1

p
(
1, ξsj ; j − 1, h+

sj+1(ξ), v, 1; q
)

=

l(S)∏
j=1

cp(1, ξsj , j − 1, h+
sj+1(ξ), v, 1, q)

× Pξsj
(q−2,−vq

h+
sj+1(ξ)+j−3

, v−1q
h+
sj+1(ξ)−j+1

, 1; q2)

The constant

cp(n, x;λ, ρ, v,N ; q) = vn
(
−vqρ+λ−N+1; q2

)
x

(
vq2n−ρ+λ−N+1; q2

)
N

qn(n+ρ+λ−N) (vq−2x−ρ+λ+N+1; q2)x+n

can be bounded above by

C(v, S, ξ, ρ)q
h+
sj+1(ξ)

for some constant C depending on the free parameter v and the

states S, ξ and the dynamic parameter ρ.

Meanwhile, the q–Hahn polynomial can be expressed as

Pξsj
(q−2,−vq

h+
sj+1(ξ)+j−3

, v−1q
h+
sj+1(ξ)−j+1

, 1; q2)

= 3φ2

(
q−2, q−2ξsj ,−q

2h+
sj+1(ξ)+2j−6

q
2h+

sj+1(ξ)−2j+2
q2ξsj+2;−vq

2h+
sj+1(ξ)+2j−6

, q−2; q2, q2
)

=


1 +

(q−2;q2)1(q
−2;q2)1

(
q
4h+sj+1(ξ);q2

)
1

(q−2;q2)1

(
−vq

2h+sj+1(ξ)+2j−6
;q2
)

1

q2

(q2;q2)1
ξsj = 1,

1, ξsj = 0.

Therefore, define the function, while recalling that the height func-
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tion h depends on ρ,

B(s, j, v, ξ, ρ) = 1− 1− q4h
+
s+1(ξ)

1 + vq2h
+
s+1(ξ)+2j−6

.

We obtain the bound

DS
λ (ξ) ≤

∏
1≤j≤l(S)
ξsj=1

C(v, |S|, |ξ|, ρ)qh
+
sj+1(ξ)B(s, j, v, ξ, ρ)

where C(v, |S|, |ξ|, ρ) is some constant. So finally

∣∣DS
λ (ξ)

∣∣ ≤ C(v, |S|, |ξ|, ρ)

 ∏
1≤j≤l(S)
ξsj=1

q
2h+

sj+1(ξ)

 (15)

for some constant C.

4.3.5 Proof of (9)

Set γ(L) = 1/F (L). We will prove∑
y∈S

|(nS
λ)

−1/2h(L)[y]DS
λ (y)Wλ(y)| ≤ Cγ(L).

Plugging in the above bounds (15) and (14) for the duality function

and weights, respectively, and absorbing (nS
λ)

−1/2 into the constant

C we see that it suffices to show

∑
ξ

h+
r (ξ)

F (L)

 ∏
1≤j≤l(S)
ξsj=1

q
2h+

sj+1(ξ)


∏

s≥0
ξs=1

q−2h+
s+1(ξ)

 ≤ A

F (L)
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4.3.6 Proof of (10)

We want to prove∑
x∈S

|(nS
λ)

−1/2DS
λ (x)Qλ(L, x)| ≤ M(L, S)

where M(L, S)/F (L) is monotone in L and

lim
L→∞

M(L, S)/F (L) = 0.

We will show that taking M(L, S) to be a sufficiently large constant

will work.

The inequality in (15) gives an upper bound on the duality func-

tion DS
λ (x); in fact the upper bound is the duality function from

[BCS12], which we denote DBCS(S, ξ). This is a duality function for

the usual ASEP and its space reversal. Since Qλ(L, ξ) is the weight

for ξ at time L in the dynamic ASEP, it thus suffices to bound

Estep[DBCS(S, ξ(L))].

Because the dynamic parameter has the effect of pushing the height

function down, we can couple the dynamic ASEP ξ(L) with the

usual ASEP ξ′(L) such that

Estep[DBCS(S, ξ(L))] ≤ Estep[DBCS(S, ξ
′(L))].

By the duality relation, the term on the right–hand–side equals

ES[DBCS(S(L), ξ
′(0))]

where S(L) is an ASEP starting at initial condition S with drift to

the right. Since ξ′(0) is step initial conditions with particles to the

left of the origin, we thus obtain a constant as an upper bound. This
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completes the proof.

5 Computer Simulations

An animation of dynamic ASEP can be found in the first author’s

IPAM talk; slides are downloadable from [TSB2].

Figure 2: Both figures on the top show 5000 samples of the height function hx(t) of dynamic ASEP
at time t = 1000 and spatial parameter x = 0. For both figures, the value of the dynamic parameter
is 1.1, while the asymmetry parameter q is 0.9 for the figure on the left and 1.1 for the figure on
the right.

Figure 3: In contrast, the ASEP for q = 0.9 has fluctuations which have larger values.
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Wolter Groenevelt and Frank Redig. Orthogonal Dualities of

Markov Processes and Unitary Symmetries. SIGMA 15, 053,

2019 https://doi.org/10.3842/SIGMA.2019.053

[CFG21] Gioia Carinci and Chiara Franceschini and Wolter Groen-

evelt. q−Orthogonal dualities for asymmetric particle sys-

tems. Electronic Journal of Probability, 26, 1–38, 2021.

https://doi.org/10.1214/21-EJP663

[CGM20] Ivan Corwin, Promit Ghosal, and Konstantin Matetski

Stochastic PDE limit of the dynamic ASEP Comm. Math. Phys.

Volume 380, pages 1025–1089 (2020).

[FRS22] Simone Floreani, Frank Redig and Federico Sau. Orthogo-

nal polynomial duality of boundary driven particle systems and

non-equilibrium correlations. Ann. Inst. H. Poincaré Probab.
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