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Abstract

This paper provides unified calculations regarding certain measures and transfor-
mations in interacting particle systems. More specifically, we provide certain general 
conditions under which an interacting particle system will have a reversible measure, 
gauge transformation, or ground state transformation. Additionally, we provide a 
method to prove that these conditions hold. This method uses certain quantum groups, 
and in that context the general conditions specialize to a q–exchangeable property.

1 Introduction
In recent years, there have been developments in constructing interacting particle 

systems and Markov chains using algebraic machinery. Using certain symmetries 
arising from algbraic objects, one can construct a stochastic matrix satisfying cer-
tain “nice” properties, such as Yang–Baxter integrability or Markov duality. The 

necessary algebraic background is somewhat abstract, and often not presented 

in a way that’s easily digestible to probabilists. In this short set of notes, we 

provide an exposition of these methods that “distills” the necessary probabilistic 

properties, in a way that is more readable to those without an algebraic back-
ground. 

More specifically, given a Hamiltonian with an eigenvector, we provide a 

small set of assumptions which allow the Hamiltonian to be conjugated into 

a matrix with the sum–to–unity property (this is sometimes called a “ground 

state transformation”). Additionally, the conjugation can be explicitly found 

from the eigenvector. Furthermore, if the Hamiltonian satisfies the Yang–Baxter 
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equation, then a “gauge transformation” will result in a matrix also satisfy-
ing Yang–Baxter with a sum–to–unity property. This set of assumptions oc-
cur naturally in the context of q–exchangable measures and Mallows measures. 
[GO10, GO11, BC24, BB24, Buf20, BN22] This appears to be approximately the 

minimal set of assumptions necessary; for example, a further of weakening of the 

assumptions [KZ23] causes the properties to no longer hold.
Acknowledgments. I would like to thank Lafay Augustin for a helpful conver-
sation at the Institute for Pure and Applied Mathematics’ workshop on “Vertex 

Models: Algebraic and Probabilistic Aspects of Universality.” I would also like to 

thank Erik Brodsky and Lillian Stolberg for pointing out a mistake in an earlier 
version of these notes.

2 Probabilistic Results

2.1 Definitions and Assumptions

First we define the state space. Let µ = (µ1, . . . , µn) denote a sequence of n non–
negative integers. We will use |µ| to denote µ1 + . . .+ µn. Let BJ  denote the set 
of all mu whose absolute value is J. The notation BJ  is chosen with its algebraic 

context, where it will be a basis for a vector space. In a mathematical physics or 
probabilistic setting, each µ is sometimes interpreted as a particle configuration 

at a single lattice sites, with µi particles of “type/species/color” i.

We let the state space be the set

BJ × · · · ×BJ

so that L is the number of lattice sites. Let H denote the global Hamiltonian on 

L sites, written as:
H = H12 +H23 + . . .+HL−1,L

where the subscripts i, i+1 indicate that the local Hamiltonian H acts on lattice 

sites i and i+ 1.

Assume that there is an eigenvector w of H with eigenvalue a, or in other 
words Hw = aw. We would like to construct w which is an eigenvector of H. To 

do this, we need to make an assumption on w :

Assumption. Assume that H is weight–preserving in the sense that 〈ν, ν ′|H|η, η′〉
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is nonzero only if ν + ν ′ = η + η′. Suppose that w  has the form

w =
∑
η,η′

W (η, η′)|η, η′〉,

where the function W  satisfies the property that ∏
k<L+1

W (ηk, ηL+1)

only depends on the value of η1+. . .+ηL and ηL+1. Assume also that the quantity

L−1∏
k=1

W (ηk, ηL)W (ηk, ηL+1)

depends only on the values of η1 + . . .+ ηL−1 and ηL + ηL+1.
Remark. An example of a function W  satisfying this assumption is: 

W (η, η′) = q2
∑

i<j ηiη
′
j .

2.2 Eigenvectors of Hamiltonians

Theorem 2.1. Make the assumption above and define w by

w =
∑

η1,...,ηL

WL(η1, . . . , ηL)|η1, . . . , ηL〉,

where
WL(η1, . . . , ηL) =

∏
k<l

W (ηk, ηl)

Then
Hw = (L− 1)aw.

 Proof.  Proceed by strong induction on L. The base case L = 2 holds by 

assumption, so now assume the theorem holds for the values from 2 to L− 1.
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We first re–write the proposed eigenvector w, as

w =
∑

η1,...,ηL+1

WL+1(η1, . . . , ηL+1)|η1, . . . , ηL+1〉

=
∑

η1,...,ηL+1

( ∏
1≤i<j≤L

W (ηi, ηj)
∣∣∣η1, . . . , ηL〉⊗

∏
k<L+1

W (ηk, ηL+1)
∣∣∣ηL+1

〉)
.

Since tensor products are bi–linear, we can write this as 

w =
∑

η1,...,ηL

 ∏
1≤i<j≤L

W (ηi, ηj)
∣∣∣η1, . . . , ηL〉⊗

∑
ηL+1

∏
k<L+1

W (ηk, ηL+1)
∣∣∣ηL+1

〉
 Recall that the global Hamiltonian H is weight–preserving and that∏

k<L+1

W (ηk, ηL+1)

only depends on the value of η1+ . . .+ηL and ηL+1. Since the global Hamiltonian 

conserves the former quantity, this means that

(H12 + · · ·+HL−1,L)w = (L− 1)aw,

by the induction hypothesis.
So it remains to show that HL,L+1w = aw. This time we write the proposed 

eigenvector as

∑
ηL,ηL+1

( ∑
η1,...,ηL−1

WL−1(η1, . . . , ηL−1)

L−1∏
k=1

W (ηk, ηL)W (ηk, ηL+1)|η1, . . . , ηL−1〉 ⊗W (ηL, ηL+1)|ηL, ηL+1〉
)
.

As before, the quantity

L−1∏
k=1

W (ηk, ηL)W (ηk, ηL+1)

depends only on the values of η1 + . . .+ ηL−1 and ηL + ηL+1.The latter quantity 

is conserved by the local Hamiltonian, so therefore HL,L+1w = aw.
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2.3 Ground State Transformation

The ground state transformation is actually a special case of Theorem 2.1. The 

definition we use for the ground state transformation is the following:
Definition.  Given a Hamiltonian H,  a ground state transformation is a 

diagonal matrix G such that all the rows of G−1HG  have the same sum.
The requirement that all the rows have the same sum is naturally relevant 

for generators of continuous–time processes and for stochastic matrices.

Theorem 2.2. Make the same assumption above, and additionally assume that 
the function W  is always nonzero. Then a ground state transformation for the 

global Hamiltonian H always exists, and its entries are given by the entries of 
w.

Proof.  Since w  is an eigenvalue of the global Hamiltonian H,  then for all x
we have ∑

y

H(x, y)G(y) =
∑
y

H(x, y)w(y) = (Hw)x = (L− 1)aG(x).

Dividing by G(x) completes the proof.

2.4 Gauge Transformation and Yang–Baxter

Given an R–matrix satisfying the Yang–Baxter equation, we wish to find a “gauge 

transformation” also satisfying the Yang–Baxter equation, such as in [KMMO16].

Theorem 2.3. Suppose that there is an R–matrix satisfying the Yang–Baxter 
equation

R12R13R23 = R23R13R12.

Furthermore, suppose there is a diagonal matrix G which defines a gauge trans-
formation by

Sij = G−1
ji RijGij.

Also assume that for any distinct i, j, k, there are diagonal matrices Ai,jk, Bi,jk
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acting on the j, k sites such that the following relations hold:

G−1
ik RjkGik = Ai,jkRjkA

−1
i,jk,

G−1
ij RjkGij = A−1

i,jkRjkAi,jk,

G−1
ki RjkGki = A−1

i,jkRjkAi,jk,

G−1
ji RjkGji = Ai,jkRjkA

−1
i,jk.

Then the S–matrix also satisfies the Yang–Baxter equation, i.e.

S12S13S23 = S23S13S12.

Proof.  We want to prove that

G−1
21 R12G12G

−1
31 R13G13G

−1
32 R23G23 = G−1

32 R23G23G
−1
31 R13G13G

−1
21 R12G12.

Using the relations, we can move the G terms all the way to the left or all the 

way to the right. More specifically, on the left–hand–side move G12 and G13 all 
the way to the right, and move G−1

31  and G−1
32  all the way to the left. On the 

right–hand–side, move G23, G13 all the way to the right, and move G−1
31 , G

−1
21  all 

the way to the left. When making these moves, all the A terms cancel because:

R12G
−1
31 G

−1
32 = G−1

31 G
−1
32 R12,

G12G23R23 = R23G12G23

R23G
−1
31 G

−1
21 = G−1

21 G
−1
31 R23,

G23G13R12 = R12G13G23,

G12R13G
−1
32 = G−1

32 R13G12

G23R13G
−1
21 = G−1

21 R13G23.

After all the moves, the G terms cancel, and then the result follows because the 

R–matrices satisfy the Yang–Baxter equation.
Q.E.D.
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3 Algebraic Context
In this section, we provide some algebraic contexts for why the assumptions 
should hold. Roughly speaking, q–exchangeable measures occur naturally when 

there is an underlying algebraic structure. For exclusion processes, q–exchangeable 

(or Mallows) measures are defined by the property that swapping adjancent par-
ticles multiples the measure by q, although for partial exclusion processes the 

definition is more involved [Kua19].
In particular, if there are reversible measures which are q–exchangeable mea-

sures, then it follows that the eigenvector w can be constructed with eigenvalue 

0. We provide three separate contexts in which these measures can be con-
structed. We also note that one only needs the measure on the two–lattice 

process, which avoids more complicated calculations such as the q–exponential 
[CGRS16b, CGRS16a, Kua18].

We introduce some algebraic notation. Let VJ  be a vector space with basis 
BJ . Suppose that |λ〉 ∈ VJ , such that the local Hamiltonian H satisfies

H|λ, λ〉 = 0, SkH = HSk,

where {Sk} are some operators on VJ ⊗ VJ . We will also assume that VJ  is 
generated by all possible products of {Sk} on|λ, λ〉. In other words, VJ  is irre-
ducible over {Sk}. This irreducibility assumption will ensure that the ground 

state transformation is nonzero, barring miraculous cancelations.

3.1 Quantum Groups

Quantum groups have found use in interacting particle systems, such as [Sch97], 
[BS15b, BS15a, BS18], [CGRS16b, CGRS16a], [FKZ22, KZ23], [KLLPZ20, BBKLUZ23,
RLY23], [Kua16, Kua18, Kua18, Kua22]. Here, we briefly explain its relationship 

to the content of the present paper 
Here, we define an algebra which is similar to a quantization of D̃n−1, the 

type D Lie algebra. We choose this because it is a simply–laced Lie algebra, and 

contains the other simply–laced Lie algebras as Lie subalgebras. Here we only 

use the positive Borel subalgebra, to maintain more generality.

Definition 3.1. Let U  denote the algebra with generators E1, . . . , En−1, K1, . . . , Kn−1
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and E ′
1, E

′
n−1, K

′
1, K

′
n−1 and relations

E ′
iE

2
i −

(
q + q−1

)
EiE

′
iEi + E2

i E
′
i = 0

Ei±1E
2
i −

(
q + q−1

)
EiEi±1Ei + E2

i Ei±1 = 0

KiEi = q2EiKi, K ′
iE

′
i = q2E ′

iK
′
i, [Ki, Kj] = [Ki, K

′
j] = [K ′

i, K
′
j] = 0.

K ′
iEi±1 = q−1Ei±1K

′
i, KiEi±1 = q−1Ei±1Ki.

Remark.  Note that the algebra does not contain the F  elements that 
occur in a quantum group. These elements would be relevant for establishing 

the commutation relations SkH = HSk. However, recent work has found other 
methods for establishing these relations, and therefore do not include the F

elements in the algebra.
We will define a representation, using the “ket” notation from mathematical 

physics. For any non–negative integer n, define its q–deformation by

[n]q =
qn − q−n

q − q−1
.

As some more notation, let

ε′i = (0, . . . , 0, 1, 1, 0, . . . , 0)

consist of a sequence of n integers, where there is a 0 everywhere, except for a 1

at the i and i+ 1 entries. Similarly, let

εi = (0, . . . , 0, 1,−1, 0, . . . , 0)

consist of a sequence of n integers, where there is a 0 everywhere, except for a 1

at the i entry and −1 at the i+ 1 entries.

Proposition 3.1. The following defines a representation of U :

Ei|µ〉 = [µi+1]q |µ+ εi〉 E ′
i|µ〉 = |µ+ε

′

i〉 Ki|µ〉 = qµi−µi+1|µ〉 K
′

i |µ〉 = qµi+µi+1|µ〉.

Proof. It is a straightforward calculation that this is a representation. For 
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example:

KiEi|µ〉 = Ki |µ+ εi〉 = qµi−µi+1+2 |µ+ εi〉 = q2EiKi|µ〉
K ′

iE
′
i|µ〉 = K ′

i |µ+ ε′i〉 = qµi+µi+1+2 |µ+ ε′i〉 = q2E ′
iK

′
i|µ〉

 Meanwhile, the Serre relations (the first two relations) follow from

[µi+1 − 1]q [µi+1]q −
(
q + q−1

)
[µi+1]

2
q + [µi+1]q [µi+1 + 1]q = 0,

The remaining calculations are similar. Q.E.D. 
In this setting, the vector |λ〉 is 0, 0, . . . , J  and the symmetrices are E1, . . . , En−1.

Some possible ways of showing commutation with the Hamiltonian are with the 

Casimir [CGRS16b, CGRS16a, Kua18] or the R–matrix [Kua18]. We also refer 
to the review paper [CRV] for relationships between the quantum group and the 

Zamolodchkov algebra. 

3.2 Hecke algebras

Associated to any Coxeter group is a corresponding Iwahori–Hecke algebra. For 
simplicity, we consider the type A Coxeter group, which is simply the symmetric 

group. Hecke algebras have found use in interacting particle systems [Buf20,
Kua22].

This Hecke algebra is generated by elements T1, . . . , TL−1 with relations

TiTi±1Ti = Ti±1TiTi±1, TiTj = TjTi for |i− j| ≥ 2, (Ti − q)(Ti + 1) = 0.

For any dimension d, there is a representation on CJ ⊗ · · · ⊗ CJ︸ ︷︷ ︸
L tensor products

 by letting Ti

act on the i, i+ 1 tensor powers as the R–matrix∑
i<j

Eji ⊗ Eij + q−1
∑
i<j

Eij ⊗ Eji + (1− q1)
∑
i<j

Ejj ⊗ Eii +
∑
i

Eii ⊗ Eii,

where Eij indicates a matrix with a 1 at the i, j–entry and 0 elsewhere.
Commutation with the Hamiltonian can be shown with Schur–Weyl duality 

with the quantum groups [Kua22] or with the Temperley–Lieb algebra, although 

the latter has not been pursued in a probabilistic setting. 
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3.3 q–KZ equations

We also mention a relationship of multi–species ASEP to q–KZ (Knizhnik–
Zamolodchikov) relations. This construction produces different algebraic results 
[CGW20] from the quantum group approach. In this setting, one considers a 

polynomial–valued vector |Φ〉 ∈ C[z1, . . . , zL] ⊗ V ⊗L where V  is a vector space. 
The q–KZ relations then read

si|Φ〉 = R(zi/zi+1)|Φ〉

where si permutes zi and zi+1 in the polynomial ring and R is the R–matrix. 
Note that this differs from the presentation of the R–matrix above, where it is 
presented as the “universal” R–matrix with no spectral parameters zi.

It turns out that for V = Cn, this can be related to the (n−1)–species ASEP. 
More specifically, the q–KZ relations can be written as L|Phi〉 = M |Phi〉where 

L acts on the polynomial ring as a multi–species ASEP generator, and M  acts 
on V ⊗L as a multi–species ASEP generator. See [CGW20] for more details. Due 

to the algebraic background of the q–KZ relations, it may be possible to extend 

these results to CJ  where there is partial exclusion, but this has not yet been 

pursued in the literature.
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