%Actionable yile™

Actionable Agile
Metrics for Predictability

An Introduction

Daniel S. Vacanti

Actionable Agile Metrics for Predictability

An Introduction

Daniel S. Vacanti

This book is for sale at http://leanpub.com/actionableagilemetrics
This version was published on 2015-03-23

[\

Leanpub

* ko ok ok 3k

This is a Leanpub book. Leanpub empowers authors and publishers
with the Lean Publishing process. Lean Publishing is the act of publishing
an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once
you do.

k %k %k %k Xk

© 2015 Daniel S. Vacanti
ISBN for EPUB version: 978-0-9864363-0-7
ISBN for MOBI version: 978-0-9864363-1-4

http://leanpub.com/actionableagilemetrics
http://leanpub.com/
http://leanpub.com/manifesto

1o Ann, Skye, Sicily, and Manhattan: the only measures of value in my

life.

Table of Contents

Preface

PART ONE - FLOW FOR PREDICTABILITY
Chapter 1 - Flow, Flow Metrics, and Predictability
Chapter 2 - The Basic Metrics of Flow

Chapter 3 - Introduction to Little’s Law

PART TWO - CUMULATIVE FLOW DIAGRAMS FOR
PREDICTABILITY

Chapter 4 - Introduction to CFDs
Chapter 5 - Flow Metrics and CFDs

Chapter 6 - Interpreting CFDs

Chapter 7 - Conservation of Flow Part |

Chapter 8 - Conservation of Flow Part II
Chapter 9 - Flow Debt

PART THREE - CYCLE TIME SCATTERPLOTS FOR
PREDICTABILITY

Chapter 10 - Introduction to Cycle Time Scatterplots

Chapter 10a - Cycle Time Histograms

Chapter 11 - Interpreting Cycle Time Scatterplots

Chapter 12 - Service Level Agreements

PART FOUR - PUTTING IT ALL TOGETHER FOR
PREDICTABILITY

Chapter 13 - Pull Policies

Chapter 14 - Introduction to Forecasting

Chapter 15 - Monte Carlo Method Introduction

Chapter 16 - Getting Started

PART FIVE - A CASE STUDY FOR PREDICTABILITY
Chapter 17 - Actionable Agile Metrics at Siemens HS

Acknowledgements

Bibliography
About the Author

Preface

Your process i1s unpredictable. What you may not realize, though, is that
you are the one responsible for making it that way. But that is not
necessarily your fault. You have been taught to collect the wrong metrics,
implement the wrong policies, and make the wrong decisions. Together, we
can do better.

Up until now you have probably assumed that the reason your process
is unpredictable is due to circumstances completely outside of your control.
However, you have much more control over the way you work than you
think you do. Whether explicit or not, you have put policies in place that
specifically prevent you from being predictable. Amongst other things you
start new work at a faster rate than you finish old work, you work on too
many items at the same time, you ignore systemic dependencies and
impediments, and you expedite requests that do not need to be expedited.
You, in effect, initiate a denial of service attack on yourself, and then
wonder why it takes so long for things to get things done.

But all of those policies are under your control.

If we, as knowledge workers, want to get to a predictable world, we
must first start by controlling the policies we can control. Taking this
control will seem uncomfortable at first. It will mean saying no to customer
requests to start new work immediately. It will mean placing much less
emphasis on upfront estimation and planning. It will mean looking at a
different set of metrics than the ones you have been trained to track. Those
metrics will tell you how predictable you are and what actions to take to
improve. If you choose to collect the metrics suggested by this book, you
will see that the data provided by them will immediately reflect policies you
have in place. That data will in turn suggest the changes to your policies
necessary to be more predictable. Those policy changes will themselves be
reflected in the new data you collect after the change. And so on and so on.

Your process is unpredictable. You know it. Your customers know it.
Now it is time to do something about it.

Why Write this Book?

Because our customers demand predictability. Because you need someone
on your side who has been asked tough questions and has found a way to
give meaningful answers. Because most organizations that I visit are either
uninformed or have been misinformed about what metrics and analytics
they need to track to be predictable.

But to get you where you need to be, I am going to ask you
provocative questions. I am going to challenge your assumptions about
what true Agility is. [may make you uncomfortable with some of the
conclusions that I draw. I hope you will forgive me for all of these as my
only intention 1s to make your process better. After all, as I just said, [am
on your side.

Who Should Read this Book

Anyone who has ever been asked to give an estimate should read this book.
Likewise, anyone who has ever asked for an estimate should read this book.
Analysts, developers and testers need to know how to stop giving
estimates and how to start making accurate predictions.

Product owners, project managers, and executives need to know what
makes for a meaningful prediction and how to hold teams accountable to
make those predictions.

Conventions Used

All metrics and analytics will be capitalized. For example: Work In
Progress, Cycle Time, Throughput, Cumulative Flow Diagram, Scatterplot,
etc.

I am also going to capitalize all methodology names. For example:
Agile, Scrum, Kanban, etc.

Lastly, I am going to use the words “process” and “system”
interchangeably. I will try to make the distinction clear when a distinction is
necessary.

How to Read

This book is intended to be read in order as the concepts in later chapters
are built on the concepts developed in earlier ones. However, each chapter
can stand alone, and, where possible, when I re-examine a concept that has

already been explained, I will try to reference the part of the book that
contains the more detailed explanation.

PART ONE - FLOW FOR PREDICTABILITY

Chapter 1 defines my notion of predictability. It introduces the
metrics that are necessary to track to become predictable, and it will explain
what it means to turn those metrics into actionable interventions.

Chapter 2 is a detailed discussion of the basic metrics of flow. The
rest of the book will assume knowledge of what those metrics are and how
they are defined.

Chapter 3 is an introduction to Little’s Law. If you want to be
predictable, you have to understand why Little’s Law works. Period.

PART TWO — CUMULATIVE FLOW DIAGRAMS FOR
PREDICTABILITY

Chapter 4 is an in depth explanation of what Cumulative Flow
Diagrams (CFDs) are and what they are not. This chapter is a must read
because most previous agile publications that deal with CFDs are erroneous
and most agile electronic tools build them incorrectly. I will attempt to
remedy all of that.

Chapter 5 explains how to read all of the basic metrics of flow off of a
CFD. The ability to read these metrics is one of the biggest reasons to use
CFDs in the first place.

Chapter 6 explains how to interpret the results of a generated CFD.
Many common patterns that appear in CFDs are explained.

Chapter 7 begins the exploration of the assumptions behind Little’s
Law and CFDs by looking at process arrivals and departures. If you get
these right then you have gone a long way toward predictability. Not
inconsequentially, arrivals and departures represents the first part of a
principle known as the Conservation of Flow

Chapter 8 continues the discussion of Little’s Law’s assumptions by
looking at the second part of the principle of Conservation of Flow. This
second part explains why just-in-time commitments and just-in-time
prioritization is possible and necessary for predictability.

Chapter 9 introduces the little-known concept of Flow Debt, how to
see it on a CFD, and why it kills predictability. What actions to take when it
accumulates are also discussed.

PART THREE — CYCLE TIME SCATTERPLOTS FOR
PREDICTABILITY

Chapter 10 is an in depth examination of the second most important
analytical chart: the Cycle Time Scatterplot.

Chapter 11 explains how to interpret a Cycle Time Scatterplot. Many
common patterns that appear on Scatterplots are explained.

Chapter 12 introduces one of the least known and least understood
practices needed for predictability: the Cycle Time Service Level
Agreement (SLA). Some thoughts on how to set SLAs and manage to them
are explored.

PART FOUR - PUTTING IT ALL TOGETHER FOR
PREDICTABILITY

Chapter 13 explores pull policies and how those policies are one of
the main sources of variability in your process.

Chapter 14 presents a survey of some forecasting techniques and the
pros and cons of each.

Chapter 15 is my take on some of the advantages and pitfalls of the
Monte Carlo Method as they pertain to predictability.

Chapter 16 presents a short guide on how to get started and outlines
some pitfalls to watch out for as you begin. If you get overwhelmed with
your own data initiative, this chapter is a good place to start.

PART FIVE — A CASE STUDY FOR PREDICTABILITY

Chapter 17 re-examines a previously published case study from
Siemens Health Services. This case study has been updated with an
emphasis on how Siemens put into practice all of the principles in this
book.

There is another disclaimer I should mention up front. The concepts in
the book are based on the principles of flow. What flow is and how to
achieve it is a topic for a whole book in itself, so I will not spend much time
on those definitions. I refer you to the work of Don Reinertsen and some of
the other authors listed in the Bibliography for a more detailed discussion of
flow.

Also, I believe the concepts presented throughout are relevant
regardless of your chosen Agile implementation. Where applicable, I will
try to point out how actions might differ based on a specific Agile
methodology.

Lastly, this book has a distinct software development bent to it, but
you need not be in the software product development industry nor do you
need to be familiar with any Agile methodology to understand these

principles. They can be equally applied to any process regardless of
domain.

ActionableAgile.com

Finally, and unless otherwise noted, all of the analytics presented in this

book were built using the ActionableAgile™ Analytics tool. This tool is
one that I helped to develop and can be found at:

Q https://actionableagile.com

In addition to the tool, accompanying blog posts, book updates and
errata, videos, etc. can also be found at this website.

PART ONE - FLOW FOR PREDICTABILITY

Chapter 1 - Flow, Flow Metrics, and Predictability

I first met Bennet Vallet in the spring of 2012. At the time, Bennet was a
Director of Product Development for Siemens Health Services (HS) located
just outside of Philadelphia, Pennsylvania. We met one night at an Agile
Philly event where I was giving a talk on the principles of flow. He came up
to me after my presentation and asked if we could set up some time later to
discuss the problems he was facing at HS. Of course I agreed.

We spoke on the phone the following day and during that call Bennet
outlined his thoughts on all the issues he was facing at HS. Those issues are
fully documented in the case study presented in Chapter 17 so I will not go
into any detail here. Suffice it to say, however, that toward the end of the
call, I suggested to Bennet that to fix these problems we must first consider
what 1s most important to his customers. In other words, if [were to speak
to his customers, what would they tell me were the three most important
things to them?

“Oh, that’s easy,” Bennet replied. “The three most important things to
our customers are predictability, predictability, and predictability.”

Predictability

“When will it be done?”

That is the first question your customers ask you once you start work
for them. And, for the most part, it is the only thing they are interested in
until you deliver. Whether your process is predictable or not is judged by
the accuracy of your answer. Think about how many times you have been
asked that question and think how many times you have been wrong.

Now think about some of the practices you have put in place to come
up with your answer. Maybe you have an Agile methodology you are fond
of. Maybe you prefer a more traditional project management approach. But
are either of those practices actually helping?

As a case in point, Bennet had been working with mature Agile teams
for a long time, and those teams had been adhering to established Agile
practices. In his mind he was doing everything right, so he reasonably

believed that predictability would inevitably follow. Yet he constantly
struggled to accurately answer the most important questions that his
customers were asking.

To illustrate why Bennet struggled (and why you probably struggle as
well), I would like you to look through the following set of questions and
see 1f one or more apply to your current situation: - Are you constantly
asked to start new work before you have had a chance to finish old work? -
Are you constantly asked to expedite new requests in addition to being
expected to get all of your other current work done according to original
estimates and commitments? - How many features do you start but do not
finish because they get cancelled while you are working on them? How
likely is it that the new items that replace the cancelled work will
themselves get cancelled? - When something that you are working on gets
blocked (for whatever reason), do you simply put that blocked work aside
and start to work on something new? - Do your estimates give consideration
to how many other items will be in progress at the time you start work? -
Do you ignore the order in which you work on items currently in progress?
- Do you constantly add new scope or acceptance criteria to items in
progress because it is easier to modify an existing feature rather than to
open a new one? - When an item takes too long to complete, have you ever
said or heard someone say “it is just bigger than we thought it was” and/or
“it will get done when it gets done”? - When things take too long to
complete, is management’s first response always to have the team work
overtime?

I could list many more, but the point is that these behaviors are
symptomatic of something seriously wrong with your process. Regrettably,
your chosen project management framework (including any Agile
methodology you may be using) may be perpetuating the underlying illness.
When it comes to unpredictability, the thing that really ails you is a lack of
flow.

Flow and the Basic Metrics of Flow

Simply stated, flow is the movement and delivery of customer value
through a process. In knowledge work, our whole reason for existence is to
deliver value to the customer. Therefore, it stands to reason that our whole
process should be oriented around optimizing flow.

If your process is unpredictable, the first thing to investigate is poor
flow. A telltale sign of a suboptimal flow is a large buildup of work
somewhere in your process. This buildup of work 1s most commonly called
a “queue”. Large queues generally mean no flow.

Queues form when work items that have been started just get stuck
somewhere in your process (without completing). Items may get stuck
because: - There are no more resources available to continue working on
them. - Some manager mandates that more new work be started before
current work has finished. - Resources that are actually doing the work are
constantly pulled in multiple different directions and are not allowed to
focus on any one thing. - There is a dependency on some external team or
vendor.

Work may get stuck for all of those reasons and more. Management of
flow, therefore, usually begins by attempting to “unstick™ stuck work.

Unfortunately, your project management framework makes you blind
to queues. You are blind to them because you are never asked to look for
them in the first place. If you are doing some sort of Agile, then you might
assume that iterations or sprints insulate you from large queues. However, if
you answered “yes” to any of the questions I asked above, then there is a
good chance you have a large buildup of work somewhere in your process.

Even though you do not see these large queues, you are constantly
feeling their effect. The most obvious effect that you feel is that work takes
too long to complete. Traditional project management responses to
elongated completion times might be to constantly refigure project plans, to
continuously revisit resource assignments, and to force teams to work
overtime. Not only do those actions not solve the core problem, but in most
instances they tend to make things worse.

But what if we could see these problems before they happen? What if
we could take action to prevent them from happening in the first place?
That is where actionable metrics come in.

Actionable Metrics for Predictability

The best way to fix the problem of large queues is not to allow them to form
in the first place. To do that we must somehow measure our queues. The
best way to measure a queue is to simply count the number of items you are
working on at any given time. When that number gets too big then no new
work gets started until something old has finished. The total count of items

currently being worked on is the flow metric commonly known as Work In
Progress.

As I just mentioned, the direct consequence of large buildup of work is
that all of that queued work itself takes longer to complete. The flow metric
that represents how long it takes for work to complete is called Cycle Time.
Cycle Time ultimately answers the question of “When will it be done?” A
process with elongated Cycle Times makes it harder to answer that
question.

The direct consequence of elongated Cycle Times 1s a decrease in
Throughput. Throughput is the metric that represents how much work
completes per unit of time. A decrease in Throughput therefore means that
less work is getting done. The less work that gets done, the less value we
deliver.

To manage flow we are going to need to closely monitor those three
metrics:

1. Work In Progress (the number of items that we are working on at any
given time),

2. Cycle Time (how long it takes each of those items to get through our
process), and

3. Throughput (how many of those items complete per unit of time).

The rest of this book will explain that if your process is not
predictable, or is veering away from predictability, these metrics will
suggest specific interventions that you can make to get back on track. In a
word, these metrics are actionable.

, Actionable Metrics for Predictability: The set of metrics that will suggest specific
J interventions that will result in the outcomes you are expecting.

Once we know what metrics to track, we can visualize those metrics in
flow-based analytics. These analytics will bring visibility to any problems
with flow much more quickly so that we can proactively deal with issues
rather than retroactively fight fires.

Items taking too long? Not enough getting done? These metrics and
analytics will give us some of the magic levers we can pull to make things
better.

Why These Metrics

In addition to being actionable, there are certain other criteria that must be
met when deciding what metrics to capture. Eric Reis, of Lean Startup
fame, gives one perspective: “The only metrics that entrepreneurs should
invest in are those that help them make decisions.” Well said. Troy
Magennis, of Lean Forecasting fame, goes even further: “If a metric does
not offer predictive power, then capturing that metric 1s waste.” I discussed
earlier how the important questions that our customers ask are going to
require us to make predictions. I have further suggested that these flow
metrics in and of themselves are the answers to those questions. By
definition, then, tracking these metrics offer predictive power and will help
us make better decisions.

Yet another vital criterion exists that should be considered when
determining what metrics to capture: cost. There is no point in tracking a
metric if it is going to bankrupt you to do so. Herein lies yet another
advantage of tracking these metrics of flow: these metrics are very
inexpensive to gather. Any Agile tool should track these metrics (how easy
it 1s to mine this data from a given tool and how accurately those tools
display the analytics is a different story that we will get to in Chapter 16).
Even if you do not have an Agile tool, these metrics are very easy to
manually track using a simple spreadsheet. WIP, Cycle Time, and
Throughput take very little time to collect, and offer the biggest bang for the
buck in terms of gaining precious insight into the overall health,
performance, and predictability of your process.

Why Not Traditional Agile Metrics?

For the most part, the types of actionable metrics and analytics to be
discussed in this book do not exist in traditional Agile guidance and
traditional methodologies. They do not exist because, as I discussed earlier,
most of those earlier methodologies were not designed from the premise
that managing flow is the best strategy for predictability. Further, traditional
Agile metrics and analytics give no visibility nor any suggestion of what to
do when things go wrong. “Work Harder”, “Estimate Better”, “Plan Better”,
“Hope”, “Pray”, “Cry” are not viable nor sustainable strategies.

Adding to this problem is that all of the tooling that has been
developed around these legacy Agile metrics provide incorrect or

incomplete information. In the absence of a tool to do it for them, a team’s
only option is to manually track flow metrics and build the corresponding
analytics themselves. However, most teams do not want to invest in
manually collecting new types of data when they have already made an
investment in their current toolset. Therefore these metrics never get
collected and the proper analytics never get built. Because of these points,
even when presented with the correct metrics, most teams do not know how
to interpret or take action on them.

What Makes these Metrics Lean and Agile?

To begin with a counterexample, it is incomprehensible to me that metrics
like Story Points and Velocity are accepted as Agile. I am being
purposefully provocative here, but those metrics—and the corresponding
analytics like Burn Down charts—are about as far from Agile as one can
get. Let’s explore why for a second.

Part of the Agile Manifesto mentions “Customer Collaboration™. |
fully support that notion that our work should involve close collaboration
with the customer. However, to me, collaboration means speaking the
language of the customer. And that language should extend to cover all the
metrics and analytics that we use. Have you ever had to explain what a
Story Point is to a customer? How about Velocity? If you do not like
yourself very much, march into your CFO’s office someday and try to
explain what a Story Point is.

However, I guarantee all of your stakeholders understand the concept
of elapsed time. I guarantee they understand the concept of the total number
of features to be delivered in a release. If we truly want to be Agile, we are
going to have to adopt the language of our customers. To that end, we must
choose words and concepts that they are comfortable with—not force them
to learn a new, arbitrary, and unhelpful vocabulary.

Additionally, one of the key tenants of Lean is respect for people. To
demonstrate why flow and flow metrics are Lean, I would like you to try
the following experiment at home sometime (if you have a spouse or
partner). I have a wife so I will explain it with her in mind. In this
experiment, I would start by asking my wife to do something for me. The
particular task I ask her to do does not really matter as long as it will take a
non-trivial amount of time to complete. Before she is finished I will ask her
to stop what she is working on to do something else for me. Before she is

finished with that new task, I will ask her to stop and do something else. At
some point after [have requested her to do the third or fourth thing I will
ask her why she is not finished with the first thing I requested and why it is
taking so long. I will continue to do this until the nearest blunt instrument
she beats me to death with is marked as “Prosecution’s Exhibit A”.

The Solution to Poor Predictability

Today’s economic climate has caused a heated competition for companies
to acquire customers, retain them, and deliver the products they want when
they want them.

You know this all too well because you bear the brunt of this heated
competition; because you are expected to create, manage, and maintain the
products that customers desire; because you are expected to reduce the time
and resources needed to launch products quickly to meet ever-changing
customer demands.

Solving these problems will require a new strategy. That new strategy
is to focus on the management of flow. A focus on flow necessitates not
only a shift in thinking (away from capacity utilization and estimation and
planning) but also a shift in the quantities used to evaluate process
performance (away from ideal hours, level of effort, points, velocity, etc.)

That is where the metrics of flow come in. Observing and measuring
flow is going to provide the missing component that you need to make your
process more predictable. If you can get to a process that has stable,
predictable flow, then the act of estimating and planning—the act of making
predictions—becomes trivial. The measurement of flow and its resultant
metrics will take care of all that for us.

I began this chapter by talking about Bennet’s predictability problems
at HS. In the months that followed our first meeting in Philadelphia, I had
the great opportunity to work with Bennet and to reflect with him on the
relationship between flow and predictability. During one of those
conversations, Bennet said, “You know, most people think of predictability
as a noun. It’s not. It’s a verb.” Exactly right. It is not that you are
predictable or are not predictable. It is that you “do” predictability.
Predictability is proactive and not reactive. The actions you take today have
the biggest impact on your predictability tomorrow.

Key Learnings and Takeaways

To get more predictable in knowledge work, we must abandon old
project management paradigms and adopt new ones. The new
paradigm we must adopt is the focus on and the management of flow.
A lack of flow manifests itself as a buildup of work (large queues of
work). The best way to fix the problem of large queues is not to allow
them to form in the first place.

Managing for flow necessitates a new, different set of metrics than
traditional project management frameworks would ever prescribe or
suggest.

Observing and measuring the metrics of flow is the true path to
predictability.

Flow metrics are defined in the language of the customer and are the
proper metrics to track in order to be lean and agile.

Flow metrics will suggest the actionable interventions needed to make
us more predictable.

Chapter 2 - The Basic Metrics of Flow

As I discussed in the previous chapter, understanding flow and managing for
it requires a different paradigm than that espoused by traditional processes
and frameworks. The answers to the essential questions of predictable
process execution are not found in project plans, resource utilization charts,
or team members’ estimates. The answers will come from the monitoring,
measurement, and management of a specific set of metrics. This chapter is
all about defining these metrics: Work In Progress (WIP), Cycle Time, and
Throughput.

The good news is that these flow metrics are exactly the ones we need
to track in order to answer the questions that our customers are asking. The
customer question “How long to complete?” is best answered by the flow
metric known as Cycle Time. The customer question “How many new
features am I going to get in the next release?” is a question best answered
by the flow metric known as Throughput. The last of the three, Work In
Progress (WIP), does not directly answer any particular customer question,
but it is the metric that will most greatly influence the other two. For that
reason, I will start this discussion with it.

Work In Progress

Work In Progress is the most important flow metric to track for two reasons.
First, as we will see in the coming chapters, WIP is the best predictor of
overall system performance. Second, the other two metrics of flow—Cycle
Time and Throughput—will themselves both be defined in terms of WIP.

Even so, WIP is probably the hardest metric to define. That is because
the definition of WIP is two dimensional: it must cover both the notion of
“work” and the notion of “in progress”.

Let’s look at the idea of work first. For the purposes of this book, |
regard any direct or indirect discrete unit of customer value as a candidate
for work. The generic term I will use for these candidate units of customer
value is “work item”. A work item might be a user story, an epic, a feature,
or a project. It might be a requirement, use case, or enhancement. How you

capture work as work items and how name your work items is entirely up to
you.

Secondly, to define in progress we must first consider the boundaries of
your process. To do so, let’s use the metaphor of a simple queuing system. I
would argue that all processes can be modelled in the manner depicted in
Figure 2.1:

H |
Arrlgz?\ls " System: Items being worked on ﬁiDepgl?'tur(-zisr

— —— — —_— —

or waiting to be worked on o 7 -

Figure 2.1: A Simple Queuing System

In a queuing system there 1s work that arrives to a process and there is
work that departs a process. When making a determination of whether
something counts as in progress or not, the first aspect of system that needs
to be considered is what does it mean for something to have “arrived”? That
is to say, your team needs to define a specific point where a unit of work
transforms from being just some arbitrary idea into being a legitimate work
item that is to immediately be acted on and completed. Before that arrival
point, the item is just some candidate for work. After that arrival point, the
item 1s counted as Work In Progress.

In a pull-based system, an entry (or boundary) point is fairly easy to define. That is because in
a pull system, a team only starts work when it has capacity to do so. Thus, a work item can
only count as Work In Progress if it has been voluntarily pulled into the process by the
individual, team, or organization responsible for operating that process. The “arrival point” of
the system, therefore, is the point at which the team performs its first pull transaction on the
work. After that first pull transaction, an item is considered WIP until it departs the process.
(This arrival point is also considered a point of “commitment”. An in-depth look at how just-
in-time commitment and just-in-time prioritization work are topics that I will cover in Chapter
8).

For push-based systems, an entry point is much harder to define. That is because there is no
consideration for a team’s capacity when deciding when work should be started. In a push
system work can be considered started when any stakeholder has a reasonable expectation that
work has been committed to (whether the team responsible for performing the work knows
about it or agrees to it or not). This expectation could be set for such arbitrary reasons as the
work has been requested, the project has been funded, or some manager somewhere thinks it is
a good idea to start—regardless of whether there is any capacity to do so.

Obviously I have a bias for pull systems over push systems, but the concept of WIP applies
regardless of context. If you find yourself operating within a push system, then the best, first
predictability exercise you might want to undertake is to define the boundaries around your
process. Getting a handle on what you consider WIP is a necessary (but unfortunately not
sufficient) step down the road to predictability.

For a work item to no longer count as in progress, there must be a
specific point of departure from the process. Departure could be defined as
delivery to an actual end user or delivery to some other downstream team or
process. For example, if a development team is responsible for its own
deployments to production, then that team might consider an item only to
have departed once a deployment to production has been made. Or a
different team who is not responsible for deployments might consider an
item to only have departed once it has been reasonably handed off to a
downstream operations team who would then handle deployments. Again,
the definition of a point of departure holds true whether you are operating a
pull or a push system.

To sum up, for in progress definition purposes your team must a
specific point when it considers work to have arrived to the process and it
must define a specific point where work has departed the process. The
definition of those two system boundaries is the crucial starting point in
predictable process design. Once you have made those decisions, then all
work items between those two points will count as Work In Progress:

,J WIP: All discrete units of customer value that have entered a given process but have not
exited.

If defining WIP is the hard part, then measuring it is the easy part. To
calculate WIP you simply count the discrete number of work items within
your process boundaries as defined above. That’s it: just count.

Your natural objection might be, “doesn’t that mean you have to make
all of your work items the same size?” After all, the work items that come
through your process are of different durations, are of disparate
complexities, and may require a wide mix of resources to work on them.
How can you possibly account for all of that variability and come up with a
predictable system by just counting work items? While that is a reasonable
question, it is not something to get hung up on.

I will spend more time on this topic a little bit later, so I am going to
ask you to just suspend disbelief here and accept that when it comes to WIP
and predictability, there is no requirement to have all of your work items be
of the same size or complexity. There is not going to be need for any further
complexity to be added to the calculation such as estimating your WIP in
Story Points or assigning ideal hours to each work item. This concept is

probably very uncomfortable to those of you who are used to thinking about
work in terms of relative complexity or level of effort. As I mentioned in the
introduction, you need to abandon that type of thinking if you truly want to
build predictable processes.

For those of you who do not want to wait, an explanation of why size
does not matter (said the actress to the bishop) will be given in Chapter 3
(the chapter on Little’s Law). For now, all you need to know is that WIP is
calculated by counting individual work items.

Nor is there any restriction on the level at which you track work items.
You can track WIP at the portfolio, project, feature, epic, or story level—just
to name a few. All of these types of decisions will be completely up to you.

For you Kanban practitioners out there, you will also want to note that
there 1s a difference between WIP and WIP limits. You cannot calculate WIP
simply by adding up all the WIP limits on your board. It should work that
way, but it does not. This result should be obvious as most Kanban boards do
not always have columns that are at their full WIP limit. A more common
situation is to have a Kanban board with WIP limit violations in multiple
columns. In either of those cases simply adding up WIP limits will not give
you an accurate WIP calculation. Even in a Kanban world, you still have to
actively track the total number of work items in your process.

An implication of all of this is that most often items located in a
backlog do not meet the definition of being included in a WIP calculation.
There is a subtlety here that is going to require further discussion as it refers
to the “point of commitment” that [mentioned a little earlier (for this deeper
discussion, please see Chapter 8). Just know that—for the most part—when |
talk about WIP, I do not include backlog items in that discussion.

As an interesting aside, you should know that you will have the option
to segment and report on your WIP as you see fit. In some contexts it may be
beneficial to lump all of your WIP together and examine it from a holistic
system’s view. Or it may be beneficial to segment that WIP into types or
categories and examine each one of those subgroups on its own.

For example, let’s say your team performs work for the sales
department, the marketing department, and the finance department. Let’s
also say that your team is responsible for maintenance on a variety of
existing applications. When looking at WIP you may want to combine all of
those requests together into one big group. Or your team may choose to just
look at the part of your WIP that pertains to sales. Or your team may choose

to look at the part of your WIP that pertains to marketing. Or you may just
want to look at how your maintenance items are doing. From a metrics
perspective, performing that type segmentation is not only going to be
perfectly okay, but also, as mentioned earlier, in some instances is going to
be desirable. If your team does segment WIP into different categories, then it
is also going to be valid to talk about the Cycle Time and Throughput of
those different type segments. Segmenting (or filtering) WIP into different
types may also be important from a reporting and analytics perspective
which is why I will revisit this topic in the flow analytics chapters to come
(Chapter 5 and Chapter 10).

Not only are the other two metrics of flow defined in terms of WIP, but
—it turns out—those other two are also best predicted by WIP. This result is
so important that I am going to dedicate much of the following chapters to it.
My point here is only to suggest that if your team ever wants to have any
hope of operating a predictable process, then you are going to have to get
control of WIP. If you are not currently tracking WIP, then you are going to
want to start. Sooner is better than later.

Cycle Time

As I mentioned in Chapter 1, the first question our customers ask when we
start work for them is “When will it be done?” Answering that question will
require us to measure the flow metric of Cycle Time. Measuring Cycle Time
becomes much easier now that you have a basic understanding of WIP.

In the previous section I stated that a process has specific arrival and
departure boundaries and that any item of customer value between those two
boundaries can reasonably be counted as WIP. Once your team determines
the points of delineation that define Work In Progress, the definition of
Cycle Time becomes very easy:

,J Cycle Time: The amount of elapsed time that a work item spends as Work In Progress.

This definition is based on one offered by Hopp and Spearman in their
Factory Physics book and, I believe, holds up well in most knowledge work
contexts. Defining Cycle Time in terms of WIP removes much—if not all—
of the arbitrariness of some of the other explanations of Cycle Time that you

may have seen (and been confused by) and gives us a tighter definition to
start measuring this metric. The moral of this story is: you essentially have
control over when something 1s counted as Work In Progress in your
process. Take some time to define those policies around what it means for an
item to be “Work In Progress” in your system and start and stop your Cycle
Time clock accordingly.

Not only does defining Cycle Time in terms of Work In Progress make
it more concrete and easier for people to understand, but it also brings some
needed consistency when talking about Cycle Time with respect to Little’s
Law (Chapter 3) and with respect to how Cycle Time is (or is not!)
visualized on a Cumulative Flow Diagram (Chapter 5).

Lastly, notice the emphasis on “elapsed time”. The use of elapsed time
is probably very different from the guidance you have previously been
given. Most other methodologies ask you to measure only the actual amount
of time spent actively working on a given item (if they ask you to measure
time at all). I happen to think this guidance is wrong. I have a couple of
reasons why.

First, and most importantly, your customers probably think about the
world in terms of elapsed time. For example, let’s say that on March 1, you
communicate to your customers that something will be done in 30 days. My
guess would be that your customer’s expectation would be that they would
get their item on or before March 31. However, if you meant 30 “business
days” then your expectation is the customer would get something sometime
around the middle of April. I am sure you can see where that difference in
expectations might be a problem.

Second, if you only measure active time, you are ignoring a large part
of your predictability problem. It is the time that an item spends waiting or
delayed (i.e., not actively being worked) that is usually where most of your
unpredictability lies. It is precisely that area that we are going to look at for
most substantial predictability improvements. Remember, delay is the enemy
of flow!

Lead Time vs. Cycle Time

If you have been exposed to Lean or Kanban concepts before reading this book, then what |
have just defined as Cycle Time may sound a lot like what you have come to recognize as
Lead Time. I understand that most people in the Kanban community prefer the term Lead
Time to Cycle Time, but I am not one of them. My intention here is not to dive headlong into
an academic (and ultimately useless) debate about which nomenclature is better, but I feel that

I should at least present my thoughts on why I have chosen the terms that I have. You may
agree or disagree with my reasoning, but I hope you understand my intention here is not to be
provocative or antagonistic (yet). I am going to talk about nomenclature in general a little later,
but these specific terms require some special attention.

So why choose the term Cycle Time over Lead Time? My first argument is that regardless of
whether you are talking about Cycle Time or Lead Time, you still have to qualify the
boundaries of your time calculation. That is do say, both terms are very dependent on one’s
perspective: one person’s Lead Time is another person’s Cycle Time and vice versa. For
example, the development team’s Lead Time is just the Product Manager’s Cycle Time
through the development phase. While it is true that Lead Time gives more of a sense of an
end-to-end calculation, what “end-to-end” means must still be defined for any given context.
Given that in both cases boundaries must be qualified, I see no clear advantage of the term
Lead Time over the term Cycle Time. Further, defining Cycle Time in terms of when
something is counted as WIP clears up a lot of this ambiguity.

Secondly, I do not buy the argument that we, the Lean-Agile community, should shy away
from using the term Cycle Time because the manufacturing industry has already defined it in a
different way that may or may not be in agreement with how we use the name. I do not
subscribe to the thinking that the “Lean” we are talking about here is just manufacturing
theory wholly and blindly applied to knowledge work. I fully reject this thesis. The fact that
manufacturing has its own definition of Cycle Time should be neither influential nor
consequential to how we in knowledge work choose to define the term.

Lastly, and, I must stress, most importantly, the authors that [quote most—Reinertsen and
Little—both favor the use of the term Cycle Time. If it is good enough for them, then it is
good enough for me.

By the way, Hopp and Spearman also sometimes refer to Cycle Time as “Flow Time”. I would
suggest that the term “Flow Time” might be a better way for us to communicate what we
really mean by Cycle Time in our context anyway. Even so, for the rest of the book, I will use
the more common term, Cycle Time, and I will use it in the way that I have defined it here.

As I will show you in the chapter on Forecasting (Chapter 14), Cycle
Time is going to be one of the main metrics you will need to come up with
an accurate forecast for a project’s (or story’s or feature’s) completion. That
is to say, the reason that you want to track Cycle Time is because it provides
the answer to the question, “When will it be done?”” While that is certainly
true, there are other important reasons to track Cycle Time.

The first supporting reason is that Cycle Time can be a rather good
predictor of cost. Very generally speaking, the longer something takes to
complete the more it is going to cost. Project, feature, or even user story cost
can be one of the biggest determiners of whether a company chooses to
invest in development or not. Like it or not, we are going to need Cycle
Time data to figure out development cost.

There is still a more important reason to understand Cycle Time. Cycle
Time represents the amount of time it takes to get customer feedback.

Customer feedback is of vital importance in our knowledge work world.
Value itself is ultimately determined by the customer, which means your
team 1s going to want to make sure it gets that value feedback as quickly as
possible. The last thing you want is to develop something that the customer
does not need—especially if it takes you forever to do so. Shortening Cycle
Time will shorten the customer feedback loop. And to shorten Cycle Time,
you are going to first need to measure it.

A final reason to monitor Cycle Time is that it can give you an overall
picture of your process’s health. The diagnostic tool needed for that is
something called Flow Efficiency. Simply put, Flow Efficiency is the ratio of
the total elapsed time that an item was actively worked on to the total
elapsed time that it took for an item to complete (its total Cycle Time).
There’s a subtlety in this definition that bears some explanation. As an item
is flowing through a process it is in either one of two states. It is either being
actively worked on or it is not being actively worked on. Examples of an
item not being actively worked on is it is blocked by some external
dependency (team, vendor, etc.), or it is queuing waiting to be pulled. In
both of those examples, an item is accumulating Cycle Time but no one is
actively working on it. To get Flow Efficiency, you take the Total Cycle
Time, subtract out inactive time and then divide that result by the Total
Cycle Time.

It is not uncommon for teams just starting out with managing for flow
to have Flow Efficiencies in the 15% range. Think about that for a second. If
a user story took 20 days to complete and had a Flow Efficiency of 15% that
means that it spent only 3 days having someone actively work on it and it
spent 17 days in some type of inactive state. If a user story took only 3 active
days of work yet had 17 days of inactivity built into its Cycle Time, where
do you think you should focus your process improvement activities? It is
probably going to be very hard to improve on that 3 days of active time, but
my guess there are tons of opportunities to get that 17 day number down.
Any reduction of inactive time will by definition improve overall Cycle
Time. Looking at wait time is usually the best, easiest, cheapest area to
investigate first for process improvement.

Throughput

I have saved the easiest metric to define for last. Simply put, Throughput is
defined as:

’J Throughput: the amount of WIP (number of work items) completed per unit of time.

Stated a slightly different way, Throughput is a measure of how fast
items depart a process. The unit of time that your team chooses for your
Throughput measurement is completely up to you. Your team can choose to
measure the number of items that it gets done per day, per week, per
iteration, etc. For example, you might state that the Throughput of your
system as “three stories per day” (for a given day) or “five features per
month” (for a given month).

A further thing to know about Throughput, however, is that this metric
as I have defined it here is very different from the Scrum metric of
“Velocity”. Velocity, as you may know, is measured in terms of Story Points
per sprint or iteration. You have to remember, though, that for Throughput I
am talking about actual counts of work items (e.g., actual number of discrete
stories and not Story Points) per unit of time. As I have just mentioned, the
unit of time you choose for Throughput is completely up to you. The
implication being that your choice of a time period need not necessarily
coincide with an iteration boundary. I say all of this because many agile
coaches and consultants use the words “Velocity” and “Throughput”
interchangeably. Just know that these two terms are definitely not
SYnonymous.

If Throughput is how fast items depart from a process, then Arrival
Rate is how fast items arrive to a process. I mention this fact here because
depending on your perspective, Arrival Rate can be thought of as an analog
to Throughput. For example, let’s say that the “Development” step and
“Test” step are adjacent in your workflow. Then the Throughput from the
“Development” step could also be thought of as the Arrival Rate to the
“Test” step.

Even more importantly, though, comparing the Arrival Rate of one step
in your process to the Throughput in another, different step may give you
some much needed insight into predictability problems. I will be going into
much more detail about this comparison in the coming chapters. However,
my more immediate reason in discussing Arrival Rate is simply to point out
that how fast things arrive to your process could be just as important as how
fast things depart.

The Throughput metric answers the very important question of “How
many features am I going to get in the next release?”” At some point you are
going to need to answer that question, so track Throughput and be prepared.

As with the other metrics, though, the most obvious reason to track a
metric is not necessarily the best reason to do so. While I am on record as
being skeptical of applying the Theory of Constraints (ToC) to knowledge
work, I will acknowledge that understanding Throughput at each step of
your process will help you to identify the constraints in your workflow
(assuming variability has been taken into account—but more on that later).
Understanding what the constraints are and where they are will assist you in
trying to determine (among other things) the best places to look for overall
process improvement. Does your team require more staff? What type of staff
do you need? Should you introduce some type of automation? These are all
examples of questions that can only be answered by understanding and
tracking Throughput.

Conclusion

What I have shown here are just the basic metrics of flow to get you started:
WIP, Cycle Time, and Throughput. There are most certainly other metrics
that you will want to track in your own environment, but these represent the
metrics common to all flow implementations. If your goal is predictability,
then these are the metrics that you are going to want to track.

I would also like to say one final word on vocabulary. No doubt if you
have done any reading on this topic that you have come across different
names for the concepts that [have defined in this chapter (I discussed the
most contentious example of this in the “Lead Time vs. Cycle Time” section
above). As I mentioned earlier, the point of this discussion is not to spark
any religious wars over nomenclature. I am in no way trying to suggest that
the names that I use here are the only correct ones. The point of this chapter
is only to get you thinking about the basic concepts that are communicated
by these metrics.

For example, for us to have a conversation about predictability, we are
first going to need some notion of the total amount of items in a system. I am
choosing to call that notion Work In Progress. If you prefer the term Work in
Process or something else, then by all means use that name. We are also
going to need some notion of the amount of time that items spend in the
system. I am choosing to call that Cycle Time. If you prefer Lead Time,

Flow Time, Time In Process, or something else, then, please do not let me
stand in your way. Lastly, we need some notion of the amount of items that
leave the system per unit of time. I am choosing to call that Throughput. But
please feel free to use the terms Completion Rate, Departure Rate, or
anything else that you may make you comfortable (so long as you do not use
the term Velocity!).

Just know that it is the definitions of these concepts that are important
—not the names. However, to be clear, the rest of this book will utilize the
names and definitions of these metrics as [have outlined in this chapter.

Lastly, one of the fundamental hypotheses of this chapter is that all
processes can be modeled as queuing systems. When thinking about your
process in this way, you are able to bring to bear the real reason why it is so
crucial to track WIP, Cycle Time, and Throughput. This real reason is
because these flow metrics are inextricably linked by a fundamental and
powerful bond. Understanding this connection is going to be the key to
building and operating a predictable process. An exploration of this link is
where [will go next in my discussion of actionable metrics.

The name of this remarkable relationship, by the way, is Little’s Law.

Key Learnings and Takeaways

e Any work item can be counted as WIP when it is between the defined
entry point of a process and the defined exit point of a process.

e The choice of what work items you count as WIP when between those
two points is completely up to you.

e WIP can be segmented into several different types.

o [f WIP is segmented into several types, then it is also valid to talk about
the Cycle Time and Throughput of those type segments.

e Cycle Time and Throughput are always defined in terms of WIP.

e Cycle Time is the amount of elapsed time that an item spends as Work
In Progress.

e Throughput is the amount of Work In Progress completed during some
arbitrary interval of time.

e The names of metrics are not as important as their definitions. Use
whatever names you want for these metrics, but make sure you define
them as they are defined here.

e Track these metrics because they have predictive power, are
inexpensive to gather, and answer the important questions that your
customers are asking.

e Track these metrics because they form the basis for Little’s Law.

Chapter 3 - Introduction to Little’s Law

The previous chapter dealt with the basic metrics of flow: WIP, Cycle Time,
and Throughput. In what may be one of the most miraculous results in the
history of process analysis, these three metrics are intrinsically linked by a
very straightforward and very powerful relationship known as Little’s Law:

Q Average Cycle Time = Average Work In Progress / Average Throughput

If you have ever seen Little’s Law before, you have probably seen it in
the form of the above equation. What few Agile practitioners realize,
however, is that Little’s Law was originally stated in a slightly different
form:

,J Average Items In Queue = Average Arrival Rate * Average Wait Time

This fact is important because different assumptions need to be
satisfied depending on which form of the law you are using. And
understanding the assumptions behind the equation is the key to
understanding the law itself. Once you understand the assumptions, then
you can use those assumptions as a guide to some process policies that you
can put in place to aid predictability.

The math of Little’s Law is simple. But this chapter is about how we
do not care about the math. What we do care about—and I cannot stress this
point enough if we want to gain a greater appreciation of the law’s
applicability to our world—is looking far beyond the elegance of the
equation to get a deeper understanding of the background assumptions
needed to make the law work. That is where things get more complicated,
but it is also where we will find the greatest benefit. A thorough
comprehension of why Little’s Law works the way it does 1s going to be the

basis for understanding how the basic metrics of flow can become
predictably actionable.

We Need a Little Help

First, some background.

Dr. John Little spent much of his early career studying queuing
systems like Figure 2.1 (the queuing systems picture from the previous
chapter). In fact, one of the best definitions of such a queuing system comes
from Dr. Little himself: “A queuing system consists of discrete objects we
shall call items, which arrive at some rate to the system. The items could be
cars at a toll booth, people in a cafeteria line, aircraft on a production line,
or instructions waiting to be executed inside a computer. The stream of
arrivals enters the system, joins one or more queues and eventually receives
service, and exits in a stream of departures. The service might be a taxi ride
(travelers), a bowl of soup (lunch eaters), or auto repair (car owners). In
most cases, service 1s the bottleneck that creates the queue, and so we
usually have a service operation with a service time, but this is not required.
In such a case we assume there is nevertheless a waiting time. Sometimes a
distinction is made between number in queue and total number in queue
plus service, the latter being called number in system.” The diversity of
domains that he mentions here is extraordinary. While he does not
specifically mention software development or knowledge work in general, I
am going to suggest that these areas can also be readily modeled in this
way.

In 1961, Dr. Little set out to prove what seemed to be a very general
and very common result exhibited by all queuing systems. The result that he
was researching was a connection between the average Arrival Rate of a
queue, the average number of items in the queue, and the average amount of
time an item spent in the queue (for the purpose of this chapter, when I say
“average” I am really talking about “arithmetic mean”). Mathematically, the
relationship between these three metrics looks like:

Equation (1): L =A* W
’J quation (1)

Where:

L = the average number of items in the queuing system.

A = the average number of items arriving per unit time.

W = the average wait time in the system for an item.

Notice that Equation (1) is stated strictly in terms of a queuing
system’s Arrival Rate. This point is going to be of special interest a little
later in this chapter.

Also notice that—if it is not obvious already—Little’s Law 1s a
relationship of averages. Most knowledge work applications and
discussions of the law neglect this very important detail. The fact that
Little’s Law is based on averages is not necessarily good or bad. It is only
bad when people to try to apply the law for uses that it was never intended.

Dr. Little was the first to provide a rigorous proof for Equation (1) and,
as such, this relationship has since been known as Little’s Law. According
to him, one of the reasons why the law is so important is the fact that
(emphasis is mine): “L, A, and W are three quite different and important
measures of effectiveness of system performance, and Little’s Law insists
that they must obey the ‘law.’... Little’s Law locks the three measures
together in a unique and consistent way for any system in which it applies.
Little’s Law will not tell the managers how to handle trade-offs or provide
innovations to improve their chosen measures, but it lays down a necessary
relation. As such, it provides structure for thinking about any operation that
can be cast as a queue and suggests what data might be valuable to collect.”

The great advantage of Little’s Law is the overall simplicity of its
calculation. Specifically, if one has any two of the above three statistics,
then one can easily calculate the third. This result is extremely useful as
there are many situations in many different domains where the
measurement of all three metrics of interest is difficult, expensive, or even
impossible. Little’s Law shows us that if we can measure any two attributes,
then we automatically get the third.

To illustrate this point, Dr. Little used the very simple example of a
wine rack. Let’s say you have a wine rack that, on average, always has 100
bottles in it. Let’s further say that you replenish the rack at an average rate
of two bottles per week. Knowing just these two numbers (and nothing
else!) allows us to determine how long, on average, a given bottle spends
sitting in the rack. By applying Equation (1), we have L equal to 100 and A
equal to 2. Plugging those numbers into the formula tells us that a given
wine bottle spends, on average, 50 weeks in the rack.

Before we get much further, it is worth exploring what necessary
contextual conditions are required for the law to hold. When stated in the
form of Equation (1) the only assumption necessary is that the system under
consideration has some guarantee of being in a steady state. That’s it.
Really, that’s it. To illustrate the things we do not need, notice that we can
arrive at the wine rack result without tracking the specific arrival or
departure dates for each or any individual bottle. We also do not need to
know the specific order that the bottles were placed in the rack, or the
specific order that the bottles were taken off the rack. We do not need to
understand anything fancy like the underlying probability distributions of
the Arrival and Departure Rates. Interestingly, we do not even need to track
the size of the bottles in the rack. We could have some small 20cl bottles or
some large 2 litre bottles in addition to the more standard 750ml bottles.
The variation in size has no impact on the basic result. (You should know
that, in the interest of thoroughness, I am in the process of independently
verifying this wine rack result on my own. Rest assured that no detail has
been overlooked in the research of this book.)

As remarkable as all of this may be, the mathematics are not really
what is important for our purposes here. What is important is that we
acknowledge that the fundamental relationship exists. Understanding the
inextricable link among these metrics is one of the most powerful tools at
our disposal in terms of predictable process design.

But before we can get into how Little’s Law can help us with
predictability, it is probably helpful to first state the relationship in more
familiar terms.

Little’s Law from a Different Perspective

In the late 1980s (or early 1990s depending on whom you ask) Little’s Law
was usurped by the Operations Management (OM) community and was
changed to emphasize OM’s focus on Throughput. The OM crowd thus
changed the terms in Little’s Law to reflect their different perspective as
shown by Equation (2):

,J Equation (2): Cycle Time = Work In Progress / Throughput

Where:

1. Cycle Time (CT) = the average amount of time it takes for an item to
flow through the system.

2. Work In Progress (WIP) = the average total inventory in the system.

3. Throughput (TH) = the average Throughput of the system.

In the interest of completeness, it is ok to perform the algebra on
Little’s Law so that it takes the different, yet still valid forms:

,J Equation (3): TH=WIP/CT

and

Q Equation (4): WIP =CT * TH

Where CT, WIP, and TH are defined the same way as in Equation (2).

Because of its roots in Operations Management, the Lean and Kanban
knowledge work community has adopted this “Throughput” form of Little’s
Law as their own. If you have seen Little’s Law before, you have almost
certainly seen it in the form of Equation (2)—even though Equation (2)
does not represent the law’s original format.

The upshot of Little’s Law is that, in general, the more things that you
work on at any given time (on average) the longer it is going to take for
each of those things to finish (on average). As a case in point, managers
who are ignorant of this law panic when they see that their Cycle Times are
too long and perform the exact opposite intervention of what they should
do: they start more work. After all, they reason, if things take so long, then
they need to start new items as soon as possible so that those items finish on
time—regardless of what is currently in progress. The result is that items
only take longer and longer to complete. Thus, managers feel more and
more pressure to start things sooner and sooner. You can see how this
vicious cycle gets started and perpetuates itself. After studying Little’s Law,
you should realize that if Cycle Times are too long then the first thing you

should consider is lowering WIP. It feels uncomfortable, but it is true. In
order to get stuff done faster, you need to work on less (again, on average).

What Dr. Little demonstrated is that the three flow metrics are all
essentially three sides of the same coin (if a coin could have three sides). By
changing one of them, you will almost certainly affect one or both of the
other two. In other words, Little’s Law reveals what levers that we can pull
when undertaking process improvement. Further, as we are about to see,
Little’s Law will suggest the specific interventions that we should explore
when our process is not performing the way we think it should.

At the risk of repeating myself, what I am talking about here is simple,
incontrovertible mathematical fact. A change in one metric almost always
results in a change in the others. Most companies that I talk to that complain
of poor predictability are almost always ignorant of the negative implication
of too much WIP on Cycle Time or Throughput. Ignore this correlation at
your own peril.

It is all about the Assumptions

This 1s all straightforward enough so far, right? Well, unfortunately, it is not.
Remember I said at the outset that Little’s Law is deceptively simple? Here
1s where things get more complicated.

It is easy to see from a purely mathematical perspective that Equation
(1) 1s logically equivalent to Equation (2). But it is more important to focus
on the difference between the two. As [mentioned earlier, Equation (1) is
expressly stated in terms of the Arrival Rate to the system whereas
Equation (2) is expressly stated in terms of the Departure Rate from the
system. This emphasis on Throughput in Equation (2) probably seems more
comfortable to us as it reflects the usual perspective of a knowledge work
process. Typically, in our context, we care about the rate at which we are
finishing our work (even though, as we shall soon see, we should care just
as much about the rate at which we start work). What is nice to know is that
Little’s Law can morph to match this required perspective.

At first glance, this change may not otherwise seem all that significant.
However, this transformation from the perspective of arrivals to the
perspective of departures has a profound impact in terms of how we think
about and apply the law. When we state Little’s Law in terms of a system’s
Throughput then we must also immediately consider what underlying

assumptions must be in place in order for the departure-oriented law to be
valid.

Earlier when I first introduced Equation (1) I had stated that there was
really only one assumption that needed to be in place for it to work. Well, in
the interest of completeness, technically there were three. For Equation (1)
we need:

1. A steady state (i.e., that the underlying stochastic processes are
stationary)

2. An arbitrarily long period of time under observation (to guarantee the
stationarity of the underlying stochastic processes)

3. That the calculation be performed using consistent units (e.g., if wait
time is stated in days, then Arrival Rate must also be stated in terms of
days).

By the way, the point here is to not give you an advanced degree in
statistics or queuing theory. Do not worry if you do not know what
“stochastic” or “stationary” means. You do not need to. As I have just said,
I mention these things for completeness only.

When we shift perspective to look at Little’s Law from the perspective
of Throughput rather than from the perspective of Arrival Rate, however,
we also need to change the assumptions necessary for the law to be valid.
This point is so important, [want to place it in its own callout:

’ Looking at Little’s Law from the perspective of Throughput rather than from the
J perspective of Arrival Rate necessitates a change in the assumptions required for the
law to be valid.

When applying the Throughput form of Little’s Law (Equation (2)),
there are two basic cases to consider. Each case is going to require its own
assumption to be valid.

The first case is if the total amount of WIP in our process is ever
allowed to go to zero. If so, then Little’s Law 1s exact between any two time
instances where total process WIP is zero. Yes, I did say exact. Further,
only one additional assumption (other than a start and end with zero WIP) is
needed for the law to work in this case. All we require is that everything
that enters the system eventually exits. No other assumptions about stable

systems or no other assumptions about the length of the time period.
Nothing. Reflect on this result for second and see if you can think of any
circumstance where you start a time period with zero WIP and end the time
period with zero WIP. Two examples immediately come to my mind. An
ideal software “project” would start with zero WIP and end with zero WIP.
If that is the case, then at the end of the project, using Little’s Law we could
exactly determine the average of any of the three basic metrics of flow
assuming we collected data on the other two. Another good example would
be any Scrum sprint. If you are doing canonical Scrum, then, by definition
you start each sprint with zero WIP and you end each sprint with zero WIP
(remember, we are talking textbook Scrum here—I know practice usually
falls far short of prescription). If so, then just as in the previous example,
you could use Little’s Law to calculate an average of any of the three basic
metrics of flow assuming that you have collected the data for the other two.

Unfortunately, though, most of us do not live in a world where we ever
run out of WIP. Some examples for this might be: we work on multiple
projects at a time or there is never a clean break between when one project
starts and another finishes, we are forced to do maintenance requests and
production support in addition to project work, we never finish all the work
that we had started at the beginning of sprints, etc.

Which brings us to the second case: when WIP never goes to zero. In
this case we have to be much more careful about the assumptions that are
required for a valid application of Little’s Law.

When WIP never goes to zero, then the assumptions about our process
that are necessary to make Little’s Law (in the form of Equation (2)) work
are:

1. The average input or Arrival Rate (1) should equal the average output
or Departure Rate (Throughput).

2. All work that is started will eventually be completed and exit the
system.

3. The amount of WIP should be roughly the same at the beginning and
at the end of the time interval chosen for the calculation.

4. The average age of the WIP is neither increasing nor decreasing.

. Cycle Time, WIP, and Throughput must all be measured using

consistent units.

N

As a quick aside, even if the assumptions do not hold for the entire
time period under consideration, Little’s Law can still be used as an
estimation. However, the “goodness” of the estimation depends on how
badly the assumptions have been violated.

The first two assumptions (#1 and #2) comprise a notion known as
Conservation of Flow. I will spend a lot of time talking about this principle
in Chapter 7 and Chapter 8. The second two assumptions (#3 and #4) speak
to the notion of system stability. I will also spend a lot of time talking about
one way to recognize unstable systems in Chapter 9.

The last assumption (#5) is necessary for the math (and any
corresponding analysis) to come out correctly (you will notice this is the
same assumption necessary when stating the law in terms of arrivals). The
necessity for using consistent units when performing a Little’s Law
calculation should be intuitively obvious, but it is fairly easy to get tripped
up over this. When we say “consistent” units what we are really saying is,
for example, if we are measuring average Cycle Time using the unit of time
“day”, then the average Throughput must be in the form of the number of
items per that same unit of time (day), and the average WIP must be the
average amount of items for one unit of time (day). As another example, if
you want to measure average Throughput in terms of items per week (i.e.,
the unit of time here is “week”), then average Cycle Time must be stated in
terms of weeks, and average WIP must be the average for each week. - You
might think I am wasting your time by mentioning this, but you would be
surprised how many teams miss this point (one is immediately reminded of
when NASA slammed an orbiter into the side of Mars because one team
used metric units while another used English units—moral of the story: do
not do that). For example, I saw one Scrum team that was measuring their
velocity in terms of story points per sprint (as Scrum teams are wont to do).
For their Little’s Law calculation, they proceeded to plug in their velocity
number for Throughput, their WIP number as total number of user stories
(actual stories—not story points) completed in the sprint, and expected to
get a Cycle Time number in days. You can imagine their surprise when the
numbers did not come out quite the way that they expected.

Assumptions as Process Policies

Understanding these foundational assumptions is of monumental
importance. Despite what many people will tell you, the true power of

Little’s Law is not in performing the mathematical calculation by plugging
numbers into its formula. Even though I have spent so much time on it
already, I want you to forget about the arithmetic. In truth, most of us will
never need to compute Little’s Law. As [mentioned in the previous chapter,
the three flow metrics’ data is so easy to capture that you should never have
to compute one of them—just go look at the data!

Rather, the true power of Little’s Law lies in understanding the
assumptions necessary for the law to work in the first place. If there are
three things that I want you to have taken away from this conversation
about Little’s Law they are:

1. It 1s all about the assumptions.
2. It 1s all about the assumptions.
3. It is all about the assumptions.

Every time you violate an assumption of Little’s Law your process
becomes less predictable. Every time. This increased unpredictability may
manifest itself as longer Cycle Times or more process variability or both.
Or, worse still, these violations may not even immediately show up in your
data. The whole time you are violating Little’s Law your data may be
showing you a rosier picture of the world than is really occurring. The
danger here is that you may be basing some forecast on this overly
optimistic view—only to find that things are much worse than they seemed.

Of course, we live in the real world and there are going to be times
when violating these assumptions is going to be unavoidable or even
necessary. But that is exactly why it is all the more important to understand
the implications when these violations occur. There are always going to be
things that happen to us that are outside of our control. However, the last
thing we want to do is compound those uncontrollable events by allowing
bad things to happen that were in our control and could have easily
prevented. Control what you can control and then try to eliminate or
mitigate the things you cannot.

The above principles (especially the first four) are going to help us do
just that. We can use these assumptions as the basis for some simple
policies that will govern the operation of our process. These policies will
serve to control the things that we can control. These policies will serve to
make our process more predictable.

Based on the assumptions above, some process policies might include
(but certainly would not be limited to): - We will only start new work at
about the same rate that we finish old work. - We will make every
reasonable effort to finish all work that is started and minimize wasted
effort due to discarded work items (this will necessitate some notion of late-
binding “commitment”). - If work becomes blocked we will do everything
we can do unblock that work as expeditiously as possible. - We will closely
monitor our policies around the order in which we pull items through our
system so that some work items do not sit and age unnecessarily.

The design of your process is really just the sum of all the policies you
have in place. How well your system performs or does not perform is
directly attributable to those policies and to how well you adhere or do not
adhere to them. When I talk about designing for predictability, what [am
talking about is giving you some clues—some insights—into appropriate
policies that you can build into the day to day operation of your process.
These policies will serve to normalize and stabilize your system in order to
give your process the predictability that you are looking for. It is only from
this stable base that we can even hope to implement real, long-lasting
process improvement.

As my friend and colleague Frank Vega so often likes to say, “your
policies shape your data and your data shape your policies”. The policies
that [have mentioned here will in no small way influence the data that you
collect off of your process. That is a good thing, by the way. It is a good
thing because that data in and of itself is potentially going to further suggest
where our process policies are deficient. It is this virtuous cycle that [am
talking about when I say “actionable metrics for predictability”.

Segmenting WIP

I mentioned in Chapter 2 that it is possible to segment your WIP into
several different types. For example it might be useful to think of your WIP
not as just generic work items, but categorize it into types like “user
stories”, “production defects”, “maintenance request”, etc. This is a
perfectly valid approach and actually may be desirable in most
circumstances. The good news is that if you choose to segment your WIP in
such a manner then Little’s Law will apply to both the overall WIP in the

system as well as to each type or groups of types.

For example, we might want to use Little’s Law to analyze all work
flowing through our system, or we may want to use it to just look at our
work items that are of type “user story”. We might want to investigate how
badly our production defects are violating the assumptions of the law. Or
maybe it is our maintenance requests grouped together with defects that are
the culprit. In most cases this type of segmentation is very useful and could
provide a more sophisticated approach to analyzing process performance.

For those of you thinking ahead and for those of you familiar with
Kanban systems, you will notice that I have purposefully not used the term
“Class of Service” here. Not to spoil the punchline, but, yes, you can use
Little’s Law 1f you choose to segment your WIP along different Classes of
Service. This tactic has a particular significance when it comes to process
predictability (spoiler alert: it is usually bad) which is why I have devoted a
whole chapter (Chapter 13) to Class of Service later.

Kanban Systems

From a WIP perspective, it may seem that running a Kanban system
guarantees Little’s Law’s assumptions are taken care of. There are several
reasons why that may not be the case:

1. It is possible that changing WIP limits may have no effect on total
average WIP (e.g., decreasing or increasing a WIP limit after a clear
systemic bottleneck). This may be one reason you do not get the
“forecasted” behavior you might expect from Little’s Law.

2. Setting a WIP limit is not necessarily the same as limiting Work In
Progress. I cannot tell you how many teams I come across that set WIP
Limits but then routinely violate them. And violate them egregiously.

3. Average WIP over a time period is highly dependent on pull policies in
place. E.g., are as many items as possible pulled in order to satisfy
WIP limits at all times?

The point here is that if you are using a Kanban system, you cannot
just simply add up all the WIP Limits on your board and think that you have
calculated WIP for your process (as discussed previously in Chapter 2). You
are going to have actually track physical WIP. Fortunately, [am going to
show you a very easy way to do that in the next chapter!

Lastly, most people think that Little’s Law is the single greatest reason
to implement a Kanban-style Agile process. While I would not strictly
disagree with that statement, I would offer a better way of stating it. I would
say that Little’s Law is the single greatest reason to move to a more WIP-
limited, pull-based, continuous flow process. The thing is, once we do that,
we can then start to use Little’s Law as our guide for process predictability.

Size Does Not Matter

I have one last topic I want to cover before wrapping up. Notice how in the
assumptions for Little’s Law I made no mention a requirement for all work
items to be of the same size. That is because no such requirement exists.
Most people assume that an application of Little’s Law specifically—and
limiting WIP in general—necessitates that all work items be of the same
size. That is simply not true. The precise reasons why would fill up a
chapter in its own right, so [am going to limit my comments to two brief
points.

First, work items size does not matter because for Little’s Law we are
dealing with relationships among averages. We do not necessarily care
about each item individually, we care about what all items look like on
average.

Second, and more importantly, the variability in work item size is
probably not the variability that is killing your predictability. Your bigger
predictability problems are usually too much WIP, the frequency with
which you violate Little’s Law’s assumptions, etc. Generally those are
easier problems to fix than trying to arbitrarily make all work items the
same size. Even if you were in a context where size did matter, it would be
more about right-sizing your work and not same-sizing your work (but
more on that in Chapter 12).

Forecasting

As this is a book about predictability, my guess is that you were expecting
me to say that once you understand Little’s Law all you need to do is to
plug in the numbers and out will pop the forecasting result that you are
looking for (a la Newton’s F = ma or Einstein’s E=mc?). However, nothing
could be further from the truth.

The first thing that you need to know about Little’s Law is that it is
concerned with looking backward over a time period that has completed. It
1s not about looking forward; that is, 1s not meant to be used to make
deterministic predictions. As Dr. Little himself says about the law, “This is
not all bad. It just says that we are in the measurement business, not the
forecasting business”.

This point requires a little more discussion as it is usually where
people get hung up. The “law” part of Little’s Law specifies an exact
relationship between average WIP, average Cycle Time, and average
Throughput, and this “law” part only applies only when you are looking
back over historical data. The law 1s not about—and was never designed for
—making deterministic forecasts about the future. For example, let’s
assume a team that historically has had an average WIP of 20 work items,
an average Cycle Time of 5 days, and an average Throughput of 4 items per
day. You cannot say that you are going to increase average WIP to 40, keep
average Cycle Time constant at 5 days and magically Throughput will
increase to 8 items per day—even if you add staff to the keep the WIP to
staff ratio the same in the two instances. You cannot assume that Little’s
Law will make that prediction. It will not. All Little’s Law will say is that
an increase in average WIP will result in a change to one or both of average
Cycle Time and average Throughput. It will further say that those changes
will manifest themselves in ways such that the relationship among all three
metrics will still obey that law. But what it does not say is that you can
deterministically predict what those changes will be. You have to wait until
the end of the time interval you are interested in and look back to apply the
law.

But that restriction is not fatal. The proper application of Little’s Law
in our world is to understand the assumptions of the law and to develop
process policies that match those assumptions. If the process we operate
conforms—or mostly conforms—to all of the assumptions of the law then
we get to a world where we can start to trust the data that we are collecting
off of our system. It is at this point that our process is probabilistically
predictable. Once there we can start to use something like Monte Carlo
simulation on our historical data to make forecasts and, more importantly,
we can have some confidence in the results we get by using that method.

There are other, more fundamental reasons why you do not want to use
Little’s Law to make forecasts. For one thing, I have hopefully by now

beaten home the point that Little’s Law is a relationship of averages. I
mention this again because even if you could use Little’s Law as a
forecasting tool (which you cannot), you would not want to as you would
be producing a forecast based on averages. There are all kinds of reasons
why you should not forecast based on averages—too many to go into here.
It turns out we can do better than averages, anyway, when collecting metrics
data and there are going to be much better tools at our disposal when we are
ready to do forecasting. Luckily for you, I will discuss some of those tools
in Chapter 14 and Chapter 15 (I have just mentioned one of them in the
previous paragraph).

Having said all that, though, there is no reason why you cannot use the
law for quick, back-of-the-envelope type estimations about the future. Of
course you can do that. I would not, however, make any commitments, staff
hiring or firing decisions, or project cost calculations based on this type of
calculation alone. I would further say that it is negligent for someone to
even suggest to do so. But this simple computation might be useful as a
quick gut-check to decide if something like a project is worth any further
exploration.

Remember that being predictable is not completely about making
forecasts. The bigger part of predictability is operating a system that
behaves in a way that we expect it to. By designing and operating a system
that follows the assumptions set forth by the Little’s Law, we will get just
that: a process that behaves the way we expect it to. That means we will
have controlled the things that we can control and that the interventions that
we take to make things better will result in outcomes more closely aligned
with our expectations.

Conclusion

I know I have said it before, but I need to say it again: Little’s Law is not
about understanding the mathematics of queuing theory. It is about
understanding the assumptions that need to be in place in order for the law
to work. We can use those assumptions as a guide, or blueprint, or model
for our own process policies. Whenever your process policies are in
violation of the assumptions of Little’s Law then you know that you have at
least diminished—or possibly eliminated—your chance of being
predictable.

As you operate your process think about the times and reasons why
work flows in at a faster rate than work flows out. Think about why items
age unnecessarily due to blockages or poor pull policies. Think about why
work is abandoned when only partially complete (and how you account for
that abandonment). Think about how these occurrences are violating the
assumptions Little’s Law and how they are ultimately affecting your ability
to be predictable. But more importantly, think about how your
understanding of Little’s Law should result in behavior changes for you and
your team. When violations of Little’s Law occur, it is usually because of
something you did or chose (intentionally or not) not to do. Remember, you
have much more control over your process than you think you do.

Now that we have an understanding of Little’s Law and the basic
metrics of flow, it is time to turn our attention to how these concepts are
visualized through the use of flow analytics. As we are about to see, it is the
quantitative and qualitative interpretation of these unique analytics that will
make our process truly predictable, and will make the flow metrics truly
actionable.

Key Learnings and Takeaways

o Little’s Law relates the basic metrics of flow in an elegant,
fundamental equation.

o Little’s Law is a relationship of averages.

e Do not get distracted with the math of Little’s Law—the significance
of the law does not necessarily come from plugging numbers into the
equation.

e When stating it in terms of Equation #2, for contexts with continuous
WIP, there are five assumptions necessary for Little’s Law to work,
they are:

o The average input or Arrival Rate (1) should equal the average
Throughput (Departure Rate).

o All work that is started will eventually be completed and exit the
system.

o The amount of WIP should be roughly the same at the beginning
and at the end of the time interval chosen for the calculation.

o The average age of the WIP is neither increasing nor decreasing.

o Cycle Time, WIP, and Throughput must all be measured using
consistent units.

Use these assumptions as a guide for your process policies. The more
you violate these assumptions, the less chance you have of being
predictable.
Even if the assumptions do not hold for the entire time period under
consideration, Little’s Law can still be used as an estimation. However,
the “goodness” of the estimation depends on how badly the
assumptions have been violated.
Little’s Law is not for forecasting. To do forecasting we will need
other tools. If someone tells you that you can forecast with Little’s
Law or shows you an example of how to do it, you have my
permission to slap them (I put that in to see if you were still reading).
If you segment your WIP into different types, then Little’s Law can be
applied to each of the different type segments.

PART TWO - CUMULATIVE FLOW
DIAGRAMS FOR PREDICTABILITY

Chapter 4 - Introduction to CFDs

Over the next three chapters I will go into a fair amount of detail about what
a Cumulative Flow Diagram (CFD) is, what information it can provide, and
how to interpret the results. You might be tempted to skip this section if you
believe you are already familiar with CFDs. I would ask that you do not. 1
say this because much of what has been published about CFDs’ application
to knowledge work is at best misleading and at worst completely wrong.
This chapter aims to clear up some of the prevailing myths and
misconceptions about these truly incredible charts. In order to clear up these
myths, I need to introduce CFDs much differently than they are normally
presented. My hope is to arm you with information you need to take full
advantage of one of the most effective analytic tools at your disposal.

What makes a CFD a CFD?

The very first thing to know about Cumulative Flow Diagrams is that they
are all about arrivals and departures. In fact, when researching this book, the
very first reference that I could find to a CFD appeared in the 1960s and that
article actually labeled the chart as a “Cumulative Arrival and Departures
Diagram”. I am not entirely sure when the name got changed to Cumulative
Flow Diagram. However, as I have demonstrated in the previous chapters,
the concepts of arrivals and departures are central to the idea of flow, so the
name change makes perfect sense.

As its name suggests, therefore, a Cumulative Flow Diagram is an
excellent way to visualize the flow of work through a process. CFDs are
among the least known, and therefore one of the least understood charts in
all of Agile analytics; yet, they represent one of the most powerful process
performance gauges available to us. They are a powerful tool for a couple of
reasons. First, these charts offer a concise, coherent visualization of the three
metrics of flow that I introduced in Chapter 2. Second, they offer massive
amounts of information at just a glance, or by just doing some very simple
calculations. Visualizing flow via a CFD gives us both quantitative and
qualitative insight into problems—or potential problems—in our process.

Gaining an understanding of actual process performance is one of the
necessary first steps for introducing overall system predictability.

In order to gain this insight, however, we have to be very precise in
terms how we define exactly what a CFD is, and—more importantly—how
to construct one. In a point that I will hammer over and over in this and the
next two chapters, an improperly constructed CFD can lead to improper
conclusions about process problems. Worse, improperly constructed CFDs
can lead to team or management apathy amid claims that the charts are just
not very useful.

So, without any further ado, let’s get to it.

If you have never seen a Cumulative Flow Diagram before, then here is

your chance:
Home

Histogram Projection Source Data

Cumulative Flow Scatterplot

Work ltems
w
o
o

Sep 1, 2012 Oct 1, 2012 Nov 1, 2012

Copyright 2014 Actionable Agile, Inc. (http://actionableagile.com)

Figure 4.1: A Basic CFD

It may not look like much to you right now, but as I just mentioned this
chart is actually communicating a lot of information.

To get you oriented with what you are looking at, I first want to spend
some time going over the anatomy of a CFD. Once you have got that under
your belt, then we can move on to what this graph is actually telling us.

The first thing to note about a CFD is that across the bottom (the X-
axis) is some representation of a progression of time. It could be said that the
X-axis represents a timeline for our process. The tick marks on the X-axis
represents our choice of labels for that timeline. When labeling the X-axis,

Jul 1,2012 Aug 1, 2012

you can choose whatever frequency of labels you want. In this particular
CFD, we have chosen to label every month. However you can choose
whatever label is best for your specific needs. You can choose to label every
two weeks, every month, every day, etc.

A very important point here is that these labels can be very different
than the reporting interval that you choose to build your CFD. The reporting
interval is the frequency that you choose to add data to your chart. Just as
with the labels, your reporting interval is up to you. You can choose to report
on your process data every day, every week, every month, etc. Just note that
whatever reporting interval that you choose will change the shape of your
diagram (choosing a different reporting interval may certainly be the tweak
you want to make in order to get a clearer picture of what’s going on in the
CFD). Further note that the reporting interval and the labels need not be of
the same frequency. On the above graph, the reporting interval is every day,
yet you can see that we have only labeled the timeline at every month.

Lastly, I should point out that in Figure 4.1 I have chosen to show the
timeline progression from left to right. This is not a requirement, it is only a
preference. I could have easily shown time progression from right to left.
The vast majority of CFDs that you will come across (unless your name is
Frank), however, will show the progression of time from left to right. Thus,
for the rest of this chapter (and this book), I will show all CFD time
progressions from left to right. Further, know that all properties of CFDs that
I am about to describe assume a CFD with a time progression from left to
right.

If across the bottom is a progression of time, then up the side (the Y-
axis) 1s a cumulative count of items in the process. To build our CFD, at
each reporting interval we are going to calculate the total number of items at
each step in our process and plot them on our graph (how to properly
“count” items will be explained a little later in this chapter). Just as with
labels and reporting intervals, you can choose whatever scale you want for
the work item axis. Choosing different scales will cause the picture to
change, but, again, that may just be the adjustment you need in order to
“sharpen” your chart’s picture.

As you plot items at each reporting interval, then over time “bands”
will emerge on your chart. Those bands will correspond to each of the
workflow steps in your process, as in in Figure 4.2.

Home Cumulative Flow Scatterplot Histogram Projection

(23
o
o

Work ltems

Jul 1, 2012 Aug 1, 2012 Sep 1, 2012 Oct 1, 2012 Nov 1, 2012
Copyright 2014 Actionable Agile, Inc. (http://actionableagile.com)

Figure 4.2: Anatomy of a CFD

A quick note about what [mean by “bands” on a CFD versus what |
mean by “lines” on a CFD. By “band” I mean each different colored section
on the graph. By “line” I mean the demarcation boundary of any band. Any
band on a CFD is always going to be bounded by two lines: a top line and a
bottom line. The bottom line of a given band will be the same as the top line
of the succeeding band—should such a subsequent band exist. The chart in
Figure 4.2, for example, has six bands corresponding to each of the process
states and it has seven lines that mark the boundaries. For clarification,
technically, the bottom line of the “Done” band in Figure 4.2 is the line that
runs along the bottom of the chart at the X-axis. For the purposes of CFD
definition, though, this line can be ignored.

Note: unless otherwise specified, when I say “top line of a CFD” |
mean the top line of the top-most band. When I say “bottom line of a CFD” I
mean the top line of the bottom-most band. This is illustrated in Figure 4.3:

Home Cumulative Flow Scatterplot Histogram Projection Source Data «

1%}
£
2300
¥
o
2

JuIT, 2012 Aug 1, 2012 Sep 1, 2012 Oct 1, 2012 Nov 1, 2012
Copyright 2014 Actionable Agile, Inc. (http://actionableagile.com)

Figure 4.3: The Top and Bottom Line on a CFD
I began this section by pointing out that the most important thing to

remember about CFDs is that they are fundamentally about process arrivals
and departures. Any chart that does not model or graph these arrivals and
departures properly or any chart that includes extraneous information not
considered an arrival or departure cannot be properly called a Cumulative
Flow Diagram. This brings us to the first of several fundamental properties
of CFDs:

, CFD Property #1: The top line of a Cumulative Flow Diagram a/ways represents the
cumulative arrivals to a process. The bottom line on a CFD always represents the
cumulative departures from a process.

When [say “always” I mean “always”. Any chart that contains
additional outside lines that do not represent process arrivals and departures
is not a CFD. Also note the use of the word “cumulative” (this is a
Cumulative Flow Diagram, after all). Any chart that does not account for
cumulative arrivals and departures properly is not a CFD (more on this
later). It is important to remember—as mentioned in Chapter 2—that the
definition of the boundaries of your process is essentially up to you.
However, once chosen, those boundaries will be represented by the lines on
your graph as defined above. You can have as many bands that represent as

many workflow steps as you want in between your two boundaries. As we
will see, it can be very advantageous and strongly recommended—but by no
means necessary—to represent those additional states on your diagram. If
you do choose to include those additional states, then the top and bottom line
of the band at each workflow step represents that state’s arrivals and
departures, respectively.

For example, let’s say I have a process that looks like:

4 4 4

Analysis Development Test Done

Active Done Active Done

Figure 4.4: Example Process

Those of you familiar with Kanban may recognize this as a Kanban
board, but the following discussion is equally applicable to a more Scrum or
XP style of process that has columns as simple as “To Do”, “Doing”, and
“Done” (how Kanban can be used to model a Scrum or XP process is well
beyond the scope of this book; however, the principles discussed here apply
regardless of the particular methodology that has been chosen).

In this example, arrivals to the process are denoted by the “Analysis
Active” column, and departures from the process are denoted by the “Done’
column. A simple CFD that models only the overall cumulative arrivals and
departures in this process might look like:

b

Home Cumulative Flow Scatterplot Histogram Projection Source Data

Work ltems
w
(=]
o

Legend
|/ Done

Aug 1, 2012 Sep 1, 2012 Oct 1, 2012 Nov 1, 2012
Copyright 2014 Actionable Agile, Inc. (http://actionableagile.com)

Figure 4.5: Total Process Arrivals and Departures Only on a CFD

Notice that there are only two bands on this diagram. As always, the top
line of the top band represents the cumulative arrivals to the “Analysis”
column and the top line of the bottom band represents the cumulative
departures to the “Done” column. Figure 4.5 is a perfectly valid CFD for the
process shown in Figure 4.4. One question that you may want to keep in the
back of your mind as you go through this discussion is: what do you think
the advantages or disadvantages of visualizing your flow as only two lines
and bands as shown in Figure 4.5?

If we wanted a little more detail about our process, we could easily
include in the above diagram the cumulative arrivals and departures for each
of the intermediate workflow steps between “Analysis Active” and “Done”.
If we were interested in doing so, then our CFD would morph into the
diagram depicted in Figure 4.6:

Jul 1, 2012

Home Cumulative Flow Scatterplot Histogram Projection Source Data

Work ltems
w
o
o

Jul 1, 2012 Aug 1, 2012 Sep 1, 2012 Oct 1, 2012 Nov 1, 2012

Copyright 2014 Actionable Agile, Inc. (http://actionableagile.com)

Figure 4.6: A Basic CFD

The several lines in Figure 4.6 now correspond to the cumulative
arrivals and departures at each step in the workflow.

One quick thing before I proceed: you will notice that in this picture I
have shown the queuing states or “Done” columns for Analysis and
Development rather than just showing the Analysis and Development steps
each as their own layer on the CFD. I have become a big fan of this
approach as I believe this has the potential to give us greater insight into
flow problems. For example, in the above chart we will potentially want to
pay particular attention to the bands that represent the “Analysis Done” and
“Development Done” columns. A widening of these layers could hint at
something going wrong in our process—but [am getting a little ahead of
myself here.

The final thing to know about CFDs is they are intrinsically linked with
Little’s Law. In fact, Dr. Little has used CFDs in several of his publications
when explaining his eponymous law. I spent so much time in the last chapter
discussing Little’s Law’s assumptions because many times a violation of one
of those assumptions will clearly show up on a CFD. That is the good news.
The bad news is that many times an assumption violation will not clearly
reveal itself on a CFD. This is why it is so important to know the
assumptions behind the law and be able to map them to the context in which
the data was collected. If you understand the assumptions then you will be

able to make the necessary process adjustments for improved predictability.
The last bit of good news is that [am going to spend the next several
chapters explaining exactly how to make those adjustments.

Constructing a CFD

The next step in learning how a CFD can help us is to understand how to
construct one. To start, most people will tell you that to create a CFD, all you
need to do is physically count all work items in progress at each step of your
process and then just plot those counts on your chart at regular reporting
intervals. I call this approach “building a chart based on counts”. Not to put
too fine a point on it, but building a chart just by counting items in progress
is, in a word, dubious.

To explain why, I would like to explore an example that might illustrate
the point better. For this example, I am going to use the same metaphor that
Dr. Little himself has used in several of his publications.

Suppose that the system we wish to model is that of a supermarket. This
particular shop may have set hours that it opens and closes each day, or it
may be—as is the case with more and more American shops—open twenty-
four hours a day and seven days a week. At various times throughout its
hours of operation, it will have customers who enter and leave the shop.
Some customers will make purchases while others will leave empty-handed.

Having this image in mind, let’s explore two very important facts about
our shop example:

1. Given its physical structure, it is very obvious to determine when
customers have entered the shop and when customers have left the
shop. Another way of saying this is that our shop has a very clear point
at which customers are said to have arrived to the shop, and there is a
very clear point at which customers are said to have departed the shop.

2. Every customer who enters the shop ultimately departs the shop. There
are no customers who magically disappear. Even in the case of the
continuously open shop, customers must inevitably and eventually
leave. This fact is true regardless of how long customers spend in the
shop or regardless of whether they made a purchase or not.

Going forward, let’s assume we are dealing with a shop that is
continuously open and that we are tracking hourly arrivals and departures

(the “open-close” scenario will be discussed later).

In this example, how might we visualize the flow of customers on a
CFD? Well, as I have just stated, a CFD is all about arrivals and departures,
so the first thing we need to ask ourselves: how do we determine if someone
has arrived or departed our shop? One of the reasons I chose this particular
example is because answering that question in this scenario is actually very
easy. An arriving customer is anyone who enters the shop from the outside,
and a departing customer is anyone who leaves the shop from the inside. To
calculate these arrivals and departures, we could easily install turnstiles at all
doors and count the number of people who enter and exit over time. These
turnstiles would not track how long each individual spent in the shop, nor
would they be able to tell us if a departing individual made a purchase or
not. They would, however, increment an arrival count for each customer
who entered the shop (went from the outside in) and increment a departure’s
count for each customer who exited (went from the inside out). Every hour
we could go and read those counts off the turnstiles and plot them our graph.
If we were tracking those counts in a spreadsheet, the data might look like
Figure 4.7:

Hour |Entered Shop |Exited Shop
8:00 11 0
9:00 24 8

10:00 30 15
11:00 31 23
12:00 57 31
13:00 66 48
14:00 74 62
15:00 80 69
16:00 95 71

Figure 4.7: Cumulative Count of Arrivals and Departures for the Shop Example
If using a spreadsheet, this data could easily be converted into an Area
Chart. That Area Chart, in this case, would be a CFD. Using the data from
above, our Cumulative Flow Diagram for this example might look like
Figure 4.8:

Shop Arrivals and Departures

100

80

60

40

20

0
8:00 9:00 10:00 11:00 12:00 13:00 1400 1500 16:00

Time (hours)

Cumulative Count

m Entered Shop mExited Shop

Figure 4.8: Excel CFD for Shop Example
Let’s say now that we want to add a process step that is “checkout”.
Let’s further say our shop has a single queue that feeds all cashiers. We
could then install one turnstile that all customers go through to get to the
checkout queue and count arrivals as before. Additionally, let’s say that after
completing their purchase, all customers must exit the shop through the
overall shop departures turnstile. Our data might now look like Figure 4.9:

Hour |Entered Shop [Checkout |Exited Shop
8:00 11 1 0
9:00 24 12 8

10:00 30 19 15

11:00 31 26 23

12:00 57 42 31

13:00 66 53 48

14:00 74 67 62

15:00 80 76 69

16:00 95 88 71

Figure 4.9: Adding a Checkout Step to the Shop Example
And our CFD would now look like Figure 4.10:

Shop Arrivals and Departures
100
80
60
40

20

0
8:00 9:00 100 1100 1200 1300 1400 1500 1600

Time (hours)

Cumulative Count

mEntered Shop mCheckout m Exited Shop

Figure 4.10: Adding Checkout Line to Shop CFD in Excel

This example is straightforward enough so far, but it gets very tricky
when we start consider some special cases. For instance, how do we account
for those customers who enter the shop but then immediately turn around
and leave for any number of reasons: maybe they forgot their shopping list,
maybe they got a call and need to go outside for better reception or privacy,
etc.? Do we really want to count those customers as having “arrived” and
“departed” the shop? Maybe. Maybe not. Similarly, what about those
customers who enter the checkout queue but leave immediately because they
realize that they failed to pick up an item, because they picked up the wrong
items, or because they decide that they do not want to make any purchase
after all? Do we really want to count those customers as having “arrived”
and “departed” the checkout queue?

The skeptics out there might be thinking that the answer to this problem
is easy. In these special cases, simply decrement the arrival count. However,
if this decrementing of arrival count happens across the reporting interval,
the net effect is that the lines on our CFD will go down. That is to say, if our
reporting interval is every hour on the hour, and four customers arrive at
9:59am (and we increment our arrival count), but they then leave at 10:01am
for one of the special cases above (and we decide to decrement our arrival
count) then the data in our spreadsheet will look like Figure 4.11:

Hour |Entered Shop |Checkout |Exited Shop
8:00 11 1 0
9:00 24 12 8

10:00 30 19 15

11:00 27 26 23

12:00 57 42 31

13:00 66 53 48

14:00 74 67 62

15:00 80 76 69

16:00 95 88 71

Figure 4.11: Data for Non-Standard Departures
And our CFD will look like Figure 4.12:

Shop Arrivals and Departures
100
80
60
40

20

0
8:00 9:00 10:00 11:00 12:00 13:00 1400 1500 16:00

Time (hours)

Cumulative Count

mEntered Shop ®mCheckout m Exited Shop

Figure 4.12: Excel CFD for Non-Standard Departures

The difference between Figure 4.9 and Figure 4.11 is subtle but
important. Note that the “Entered Shop” line in Figure 4.11 actually goes
down. You might be thinking “No problem. We have modeled exactly what
happened.” But did we? I would argue that we did not. That customer
physically arrived to our shop and then left. If we first increment then
subsequently decrement our arrival count then we have a possibility of a
negative arrival rate (which, by the way, violates the whole principle of a
Cumulative Flow Diagram). But in the real world it is not possible to have a
negative arrival rate. Arrivals are binary: either something has arrived or it

has not. To handle the case of a non-standard departure, we essentially have
two choices: (1) count a customer as having arrived and then departed; or (2)
not count a customer as having arrived at all—i.e., it was a mistake to ever
have incremented our arrival count in the first place.

This is where building a CFD based on counts breaks down and why it
is very difficult—and not at all recommended—to build a CFD just by
counting items.

So if we cannot use counts, what do we use to create a CFD? The best
approach would be to give each individual customer a timestamp for when
they entered the shop, for when they entered the checkout queue, and for
when they departed the shop. An example of this data might be what is
shown in Figure 4.13:

Customer ID |Entered Shop |Checkout |Exited Shop
5 8:10 9:12 9:19
6 8:17 8:34 8:58
7z 8:18 8:19
8 8:22 8:33
9 9:01

Figure 4.13: Timestamps for Customers

If a customer now exits the shop for any reason other than a “normal”
one then we could reflect that in our data in one of two ways. First, we could
choose to enter a departure timestamp and then “tag” that departure with a
special reason. This would give us an opportunity to filter out that “bad” data
if we choose to do so when building our CFD (this tag and filter strategy
could be employed for other work item types as well, but more on that later).
This particular approach is potentially best for customers who leave a queue

and we do not expect them to return. A spreadsheet that shows this approach
might look like Figure 4.14:

Customer ID |Entered Shop |Checkout |Exited Shop |[Exception
5 8:10 9:12 9:19
6 8:17 8:34 8:58
7 8:18 8:19/Went to wrong shop
8 8:22 8:33
9 9:01

Figure 4.14: “Tagging” a customer with an Exception Reason
Second, we could choose to simply delete the arrival timestamp as if
the customer never entered the particular downstream queue. This strategy
would be an acknowledgement that it was a mistake to ever have counted the

arrival in the first place. This case might be a better solution for items that
we expect to return to the queue at a later date (e.g., the situation where a
customer leaves the checkout queue to go pick up additional items but who
will ultimately return to checkout).

When building a proper CFD, either of these approaches is valid. This
brings us to the second fundamental principle of CFDs:

,J CFD Property #2: Due to its cumulative nature, no line on a CFD can ever decrease (go
down).

You can immediately spot that a CFD has not been constructed properly
if you see lines on the chart that go down. A properly constructed CFD
always has lines that are either increasing (going up) or are flat. Not to
belabor the point, but this non-decreasing effect is precisely why these charts
are called Cumulative Flow Diagrams.

I hope you see how this example very closely parallels the types of
decisions that we make every day in our knowledge work process. A
customer who enters a shop but then abruptly leaves is akin to an item that
arrives to the Analysis Active column of the board shown in Figure 4.4 but
then gets taken off the board for whatever reason (de-prioritized, de-scoped,
etc.). In this case it might be best to simply remove the timestamp that had
been given to the item when it was placed in the Analysis Active column and
proceed as if it had never arrived.

A customer who enters the checkout queue but then leaves for whatever
reason is akin to an item that has made it to the Test column in Figure 4.3,
but then it is determined the item should not be in Test. If the reason it
should not be in test is because it is so broken that it cannot even be tested,
then the item should be moved back to an appropriate prior step
(Development, Analysis, etc.) and the timestamp for the Test column should
be erased. If the item should not be in Test because it is determined that the
item 1is no longer needed, then it should be moved directly to Done, given a
departure timestamp and potentially flagged as—for example—"no longer
needed”. (By the way, the normal discovery of defects in the test column, to
me, does not normally constitute an egregious enough offense to cause the
item to be moved back to the development column.)

Thus, in knowledge work, in order to properly construct a CFD, what
we really need to do is track the date that a particular item enters each step of

our work flow. An example of what that data might look like is shown in

Figure 4.15:

Story_|D [Analysis Active |Analysis Done Development Active|Development Done|Testing Dane
1 06/25/2012 06/25/2012 06/26/2012 06,/28/2012| 06/29/2012|06/29/2012
2 06/25/2012 06/25/2012 06/27/2012 06/29/2012| 06/29/2012|06/25/2012
3 06,/21/2012 06/21/2012 06/21/2012 06/27/2012| 06/27/2012|07/02/2012
4 06/21/2012 06/21/2012 06/21/2012 06/27/2012| 06/27/2012|07/02/2012
) 06/21/2012 06/21/2012 0&/21/2012 06/28/2012| 07/02/2012|07/02/2012
6 06/21,2012 08/22/2012 06/22/2012 06/28/2012| 0&/28/2012|07/02/2012
7 06/25/2012 06/25/2012 06/25/2012 06/26/2012| 06/29/2012{07/02/2012
8 06/25/2012 06/25/2012 06/25/2012 06/26/2012| 06/29/2012|07/02/2012
g 06/21,2012 06/22/2012 06/22/2012 06/28/2012| 05/28/2012|07/03,/2012
10 06/25/2012 07/02/2012 07/02/2012 07/05/2012| 07/06/2012| 07/06/2012

Figure 4.15: Example Data for building a CFD

As mentioned previously, it is rather straight forward to turn this data
into a format we can use to build a CFD. The added bonus of using this
format is that by collecting dates this way, we now have all the data we will
need to calculate all the metrics and analytics to be discussed in the rest of
this book. I cannot stress this particular point enough: by collecting data in
this way, not only are we assured of being able to build a correct CFD, but
we also get all the data we need to build an array of other very useful charts
—i.e., the analytics we need to help us along the path toward predictability.

I have mentioned several times now that you should not create a CFD
from counting work items in progress at each step in your workflow at every
reporting interval. Why do I make that statement when probably every other
reference you have read about CFDs says that you should create your charts
from item counts?

The only time you can use counts to create a CFD is if your data
satisfies both of the following conditions:

1. You never have items that move backward in your workflow

2. You never have items that are just completely removed from your
process before they are completed (presumably never to be heard from
again)

I do not know about you, but I happen to live in the real world and in
every process I have ever been a part of, I have had at least one—if not both
—of these things happen and usually on multiple occasions.

Let’s take point #2 first. I hope it is easy to imagine that if all you are
doing is tracking counts, and items are simply removed from the process (by

any other means than going to your Done state) then it is quite possible to
have lines that go down (decrease) on your CFD. This situation quite
obviously violates CFD Property #2. You could easily remedy this problem
by making sure that every item that exits the process gets counted as part of
the items in your “Done” state. This solution is perfectly legitimate and,
further, I would recommend you do this regardless of how you collect your
data (it might be further beneficial to tag these items that do not complete
“correctly” with some metadata).

Which brings us to point #1. If you will remember, this is exactly the
situation that I outlined in the shop metaphor section, so I will refer you to
that section for the more detailed discussion of backward flow. Very quickly,
though, remember that items that move backward—if not accounted for
properly—can cause the lines on our CFD to go down, which, again, violates
Property #2 of CFDs.

Lastly, and I really cannot stress this point enough, to do any more
serious analysis of your flow, you are going to need to capture date data as
opposed to counts anyway (to measure things like Cycle Time and to build
some of the other analytics that we will discuss in later chapters). So since
you can create a CFD from dates, why not just use those?

Another thing that you have probably noticed by now that none of the
CFD examples I have shown have a line labelled “backlog”. There are some
very good reasons for that. For example, why cannot I have a picture that
looks like Figure 4.16:

Curreslative Flow

ok Berm

apt 1, 2013 May 1, 2013 a1, 2083 41,2003 pa—
Figure 4.16: Showing a Backlog on a Chart

For the most part, any diagram that shows a backlog is not a CFD. To
explain why, I would first like to describe my problem with the word
“backlog” itself.

I am not trying to denigrate any particular process here, but,
unfortunately, the word backlog is so prevalent nowadays that its use carries
with it connotations that are counter-productive. Whether or not those
connotations are correct is a different debate; the point here is to just
acknowledge that they exist.

It has been my experience that people immediately assume two things
when using the term backlog:

1. That items placed in a backlog are somehow committed to (or that they
otherwise inherently have value), and,
2. That items placed in a backlog are somehow prioritized.

A backlog, therefore, is merely a convenient container for these
candidate ideas. Commitment does not happen until a team actually has
capacity, and prioritization does not happen until at the time of commitment
(see Chapter 8 for how just-in-time commitment and prioritization work).

To be clear, you could definitely have a CFD that looks like Figure
4.16, but then it would be subject to all the properties of a CFD that | have
outlined in this chapter. If you do not want to signal that items in your

backlog have been committed to, then do not include a backlog band on your
chart. If you do want communicate that backlog items have been committed
to, then, by all means, display the backlog. That decision, as we are about to
see, could have serious ramifications for your Cycle Time calculation.

[am not saying that a chart that shows a backlog is not useful—far
from it. However, for the most part, a diagram that has a backlog on it is not
a CFD. But, you may ask, “How then are we to do projections of when we
will be done?” First, if you would like to do projections on a graph, then
what you want is a something other than a CFD. Second, if you are truly
serious about projections, then what you really should be doing is some type
of probabilistic modeling like Monte-Carlo simulation. Projections, Burn-
Ups, Release Planning, and Monte-Carlo simulation will all be covered in
Chapter 14 and Chapter 15.

Conclusion

Mapping cumulative arrivals and departures to a process over time is one of
the best tools you have at your disposal to visualize flow. Observing flow in
this way allows us to discern an impressive amount of useful information
regarding the health of our process.

To suitably construct a CFD, therefore, we must account for arrivals
and departures appropriately. One of the best ways to ensure that arrivals and
departures are displayed correctly is to make sure that we capture the date
that items enter each step of our workflow (as illustrated in Figure 4.14).
Those dates can then easily and accurately be converted into the data we
need to build a proper CFD.

Now that you know what CFDs are all about and how to construct
them, it is time to get on to understanding what these graphs are telling us.

Key Learnings and Takeaways

e CFDs demonstrate the cumulative arrivals and departures to a process
over time, and, as such, are one of the best tools available for
visualizing flow.

o This type of visualization communicates a lot of quantitative and
qualitative information at a glance.

e The anatomy of a CFD is:

o The X-axis represents the process timeline.

o The Y-axis represents the cumulative count of items in the process
at each reporting interval.
o The labels and reporting intervals on the chart are at the sole
discretion of the graph’s creator.
Understanding the correct way to construct a CFD is essential to
knowing how to interpret it.
CFD Property #1 is that the top line of a Cumulative Flow Diagram
always represents the cumulative arrivals to a process. The bottom line
on a CFD always represents the cumulative departures from a process.
CFD Property #2 is that due to its cumulative nature, no line on a CFD
can ever decrease (go down).
The best way to capture data for a CFD is to track the date at which an
item enters each step of your process workflow. You are going to need
those data points for other analysis anyway, so you might as well
collect those from the start.
Three easy ways to spot if a CFD has not been constructed properly:
o If any line on the chart slopes downward on any part of the graph.
o If something that sounds like a “backlog” has been graphed
(remember, a visualized backlog may not necessarily be bad—but
it usually is!).
o [f some type of projection has been plotted.

Chapter S - Flow Metrics and CFDs

The reason I was so pedantic about how to correctly collect data to build
CFDs in the previous chapter is because only with a properly constructed
CFD can we accurately perform the analysis techniques that we need for
predictability. Those techniques are precisely what I plan to present in this
chapter and the next. We begin our discussion with some quantitative
analysis.

Work In Progress

Since the top line of a CFD represents the cumulative arrivals of items to
our process, and the bottom line of a CFD represents the cumulative
departures of items from our system, then the vertical difference between
those two lines at any reporting interval represents the total Work In
Progress in the system. As you have probably figured out, this principle can
easily be extended such that we can measure the Work In Progress between
any two points in the system at any point in time. That is to say, we can
quickly measure the Work In Progress in the Analysis Active step, in the
Development Done step, or the total Work In Progress between Analysis
Done and Test (just to name a few examples). Thus, our next fundamental
principle of CFDs is:

’ CFD Property #3: The vertical distance between any two lines on a CFD is the total
amount of work that is in progress between the two workflow steps represented by the
two chosen lines.

Figure 5.1 shows the total WIP as 90 work items on September 1:

Cumulative Flow

Jul 1, 2012 g 1, 2012 Sep 1, 2012 Oet 1, 2012 Mew 1, 2012

Figure 5.1: Reading Total Work In Progress off of a CFD

In this example, we got to the number 90 by subtracting the number of
work items (or y-value) of the bottom line of the CFD on September 1 from
the number of work items of the top line on September 1. Specifically, the
bottom line on the chart shows a value of 200 work items on September 1.
The top line shows a value of 290 work items on September 1. Subtracting
the bottom line number of work items from the top line number of work
items (290 — 200) gives us a total WIP of 90 work items.

Reading WIP off of each step in the workflow is accomplished in
much the same way as shown in Figure 5.2:

Cumulative Flow

Jul 1,2012 Aug 1, 2012 Sep 1, 2012 et 1, 2012 Mov 1, 2012

Cogreagihl 2014 Assoratls A5, S D Machonabis apls 0]

Figure 5.2: Reading WIP at Each Step of the Workflow
The calculation of these numbers was performed in exactly the same
way as the total WIP calculation; i.e., by subtracting the y-value of the
bottom line of a given band from the y-value of the top line of a given band.

Approximate Average Cycle Time

Continuing the same example, the horizontal difference between the top
line of a CFD and bottom line of a CFD at any point along the graph is your
process’s Approximate Average Cycle Time. To approximately calculate
how long—on average—it took for items to complete at a particular
reporting interval, we choose the point on the bottom line of the CFD that
corresponds with the date that we are interested in, and then we draw a
horizontal line backward until it intersects the top line of the CFD. We then
look to see what date corresponds with that top line intersection and
subtract it from the date we just got from the bottom line. This subtraction
will give you the Approximate Average Cycle Time for the items that
finished on the bottom line date of interest.

This leads us to the next fundamental property of CFDs:

’ CFD Property #4: The horizontal distance between any two lines on a CFD represents
J the Approximate Average Cycle Time for items that finished between the two
workflow steps represented by the chosen two lines.

Continuing on from the previous example, let’s say we want to know
what the Approximate Average Cycle Time was for items that finished on

September 1st. In this case our calculation would look like Figure 5.3:
- Cumulative Flow ——-. Pt

Jul 1, 2012 Aug 1, 2012 Sep 1, 2012 Oct 1, 2012 Mov 1, 2012
Cognrghl 1D ACTradle Aoie, IR (D MaKTonabie agie Lo

Figure 5.3: Overall Process Approximate Average Cycle Time Calculation
In this example, to calculate the Approximate Average Cycle Time for
stories that finished on September 1 (which is this example is 24 days), you
perform the following steps. (Please note that in this case the reporting
interval i1s days. These steps would be the same for whatever time unit you
choose to report your data; e.g., weeks, months, etc.):

1. Start with date you are interested in on the bottom line of the graph. In
this case, that date is September 1.

2. Draw a horizontal line backward from that point on the bottom line
until the line intersects a point on the top line of the CFD.

3. Read the date value of the top line of the CFD at that intersection
point. In this case that date is August 9.

4. Subtract top line date from the bottom line date. In this case,
September 1 minus August 9 is 23 days.

5. Add 1 to the result. In this case, 23 plus 1 is 24 days.

Why add one day in Step #5? I always advise the addition of one “time
unit” (in this case that time unit is days) because I would argue the shortest
amount of time that an item can take to complete is one unit. For example,
if a given work item starts and completes on the same day (e.g., September
1), what is its Cycle Time? If we were just to subtract September 1 from
September 1 we would get a Cycle Time of zero days. I think that result 1s
misleading. After all, zero days suggests that no time whatsoever was spent
completing that item. That is not reflective of reality which is why one day
needs to be added. Further, the addition of one day makes the calculation
more inclusive. For example, if a work item starts on September 1 and
finishes on September 2, what is its Cycle Time? If all we did is subtract
those two dates, we would get a Cycle Time of one day. But I would
suggest that since time was spent on that item on both September 1 and
September 2 that the more representative Cycle Time is two days. Which
means that we would again need to add one day to our calculation. You
might disagree with this advice for your own particular situation. And that
is ok (as long as you are consistent in your calculations). You will just want
to note, though, that all Cycle Time calculations in this book follow the
“addition of one time unit” rule.

Getting back to our original discussion, the fact that you can draw a
horizontal line on a CFD and subtract two dates to come up with an
Approximate Average Cycle time should be amazing to you for a couple of
reasons. The first is that to normally calculate an average you simply add up
a whole bunch of values and then divide by the total number of values that
you have added up. However, in this case all we are doing is subtracting
two dates to come up with an average. Seems strange that that would work,
but it does.

The second reason that this result i1s remarkable, 1s that the items that
started in the Analysis Active column (the first column on the board) are
not necessarily the stories that have finished in the Done column (the last
column on the board), yet this calculation will still yield an Approximate
Average Cycle Time. Interestingly enough, how good an approximation this
calculation is will depend on how well we are adhering to the assumptions
that make Little’s Law work.

As with the Work In Progress calculation, this property can also be
extended to handle the calculation between any two arbitrary points on your
chart. That means we can draw horizontal lines to calculate the
Approximate Average Cycle Time through Analysis Active, or through
Test, or the Approximate Average Cycle Time from Analysis Done through
Development Done (again, to name a few examples). Pictorially, some of
these examples would look like Figure 5.5:

Cumulative Flow

<]
Aug 1, 3012 ‘S‘.ip1:.2,ﬂ12 Ot 1, 2012 Mov 1, 2012

Copreght 2014 Acsorutile fods. ine (hep Vactonablesple comj

Figure 5.5: Approximate Average Cycle Times at Each Step in the Workflow

Note that this calculation is only valid for items that have finished.
That is to say, this horizontal line that you draw to make this calculation
must begin at the top line of the bottom band at the reporting interval that
you are interested in and be drawn “backward” until it intersects the top
line. Starting at the top line and drawing a line “forward” could cause you
to never intersect the top line of the bottom-most band. The implication
here is that CFDs are only good at exploring what already has happened in
your process. This point is so important that [am going to call it out as its
own property of CFDs:

, CFD Property #5: The data displayed on a CFD depicts only what Aas happened for a
J given process. Any chart that shows any type of projection is not a CFD.

Again, | am not saying here that projections are not important—far
from it. All I am saying is that projections forward about what will or could
happen in your process will require a completely different chart—and more
probably a completely different approach (like Monte Carlo Simulation).
Just know that we cannot use CFDs for that forecasting purpose or that, if
you do, you cannot call the resulting projection graph a CFD. I will spend
much more time on projections later in the book (Chapter 14 and Chapter
15).

As you have probably noticed, I have gone through great pains to
stress the fact that this horizontal line calculation only gives us an
Approximate Average Cycle Time. I am being so pedantic about this
because there is a lot of misinformation or disinformation about CFDs out
there. If you were to go out and do some research on Cumulative Flow
Diagrams, you will probably find that many people will tell you that doing
this horizontal line calculation will give you an exact Cycle Time. It does
not. The reason is because the items that start on the top line of your
Cumulative Flow Diagram (at the beginning of your horizontal line) are not
necessarily the items that finish at the bottom line of your Cumulative Flow
Diagram (at the end of your horizontal line). Therefore, it would be
impossible to calculate an exact Cycle Time for those items using just the
diagram alone. Further, some people will tell you that this horizontal line
calculation will lead to an exact average Cycle Time. This statement is also
potentially incorrect. Unless we go in and look at the data that was used to
generate the chart, or we have an understanding of some of the policies that
have been put in place to generate the diagram the best we can say is that
this horizontal calculation will lead to an Approximate Average Cycle
Time. However, this approximation can be very good. In Chapters 5-7, I
will explain some policies that you can put in place within your own team,
or your own project, such that this calculation will give you an excellent
approximation.

There is another great (potentially most important) reason to
understand why this horizontal line represents only an Approximate
Average Cycle Time. It turns out the comparison of the Approximate
Average Cycle Time off of your CFD with the exact average Cycle Time
from your real data can give you tremendous insight as to the health of your

process. We will get into the specifics of that calculation and analysis in
Chapter 9.

Average Throughput

If the bottom line of your CFD represents the departures from your process,
then the slope of that line between any two points (reporting intervals) is
your exact average Throughput between those two points. This slope
calculation is the very same “rise over run” calculation that you may
remember from your previous mathematics training (it is ok if you do not
remember as I have included an example of this calculation in the
discussion after Figure 5.6). Furthermore, just to be clear, this is indeed an
exact average Throughput calculation, not an approximate average as in the
Cycle Time calculation above.

Likewise, if the slope of the bottom line of the CFD is your average
Throughput, then the slope of the top-most line is your average arrival rate.
The slope of that top line represents how fast work i1s coming into our
system, while the slope of the bottom line represents how fast work leaving
our system.

This leads to the last of our fundamental properties of Cumulative
Flow Diagrams:

’ CFD Property #6: The slope of any line between any two reporting intervals on a CFD
represents the exact Average Arrival Rate of the process state represented by the
succeeding band.

As you have probably already guessed, Property #6 is a direct result of
Property #1, but it is so important that [wanted to call it out on its own.
One important corollary to this property is that the slope of any line also
represents the exact average Throughput (or Departure Rate or Completion
Rate) for the preceding workflow step.

To visualize this result, let’s continue to look at the same example that
we used in the WIP and Cycle Time sections (Figure 5.1). To calculate the
Throughput of the overall process, we simply compute the slope of the
bottom line of the CFD (the top line of the Done state in Figure 5.6).
Likewise, to calculate the arrival rate we use the same slope calculation for
Analysis Active line. Both situations are shown in Figure 5.6:

Cumulative Flow

Jul 1, 2012 Aug 1, 2012 Sep 1, 2012 et 1, 2012 Mov 1, 2012

CoryFaghl DL Asmirutds A0 Il (N X BEban ki R E6T

Figure 5.6: Arrival Rate and Departure Rate on a CFD

To calculate Average Throughput you will first need to ascertain the
date range you are interested in. In this example (Figure 5.6) that date range
is June 21 — November 16. The number of days in that range is our “run”,
or, in this case, November 16 minus June 21 equals 148 days. Second, we
need to figure the “rise” of our bottom line work item data over that date
range. The number of items on the bottom line at June 21 is zero and the
number of items on the bottom line at Nov 16 is 517. Subtracting those two
numbers gives us our “rise”, or in this case 517 — 0 = 517. To calculate
Average Throughput, then, you simply divide the rise by the run. In this
case, our Average Throughput is 517 divided by 148 which equals 3.49
items per day. You can perform the exact same calculation for Average
Arrival rate by substituting the data for the top line of the CFD into your
rise over run formula.

Just as with WIP and Cycle Time, we can perform the slope
calculations to get the Average Arrival or Average Departure rate for any
step of the workflow as shown in Figure 5.7:

Cumulative Flow

ArrivalDepature Rale la.mi
Jun 21 - Mov 18 iy

Jul 1, 2012 Aug 1, 2012 Sep 1, 2012 et 1. 2012 Mew 1, 2012
Cogrrght M4 Astonitls Agde. . (T NacBonabieiple oo

Figure 5.7: Arrival/Departure Rates for Each Step of the Workflow

Conclusion

As you can see, one of the things that makes CFDs so powerful is that you
can easily visualize and/or compute all the important metrics of flow
mentioned in Chapter 2 off of just one diagram. Putting it all together
pictorially is shown in Figure 5.8:

Cumulative Flow

® Horizonta
distance is ‘xﬁ
approximate |

\\ average /

Vertical
distance is

Slope of top

E L
g line is process . -
~ cycle time._.
average sl
arrival rate g
4 Legerd

__S_lnpe c;f_x““\x
bottom line is \]

. process average /
i, throughput g

Aug 1, 2012 Cep 1, 2012 Oct 1, 2012
Cogright 2014 Assorabls Als. S [N VSEhon akis hle £Om)

Figure 5.8: The Three Basic Metrics of Flow on a CFD

Numerically, these calculations look like Figure 5.9:
L. Cumulstive Flaw Preget

o Asabyuin (e

Mow 1, 2012

Jul 1, 2012 Aug 1, 2012 ‘Elpi.ﬂ.'ﬂ!‘ Oct 1, 2012 Mov 1, 2012
Cogrrght 2014 Azsoratie Apis. Ine [hep Vachonabie hple oo

Figure 5.9: Numerical Representations of the Metrics of Flow
As I mentioned in Chapter 2, it is possible to segment WIP into several
constituent types (as also mentioned in Chapter 3 on Little’s Law). CFDs
are no different. As you may have guessed by now, when we collect our
flow data, we can either look at that dataset as a whole in a CFD, or we can

construct a CFD based on only one or more of the subtypes. For example,
we can look at a single CFD that shows just the data for the user story type,
or we can build a CFD based on just defects, or we can generate a CFD that
combines both user stories and maintenance—to just name a few. This
property of CFDs will open up all kinds of avenues of analysis for you. For
example, at the portfolio level, you may want to look at data combined
across all teams, or you may just want to filter based on an individual team.
Or maybe you want to filter by release. At the team level, you might want
to filter by some other custom field that is particularly relevant to your
context (as in the “bad data” example from above). All of these activities
are perfectly ok and I would challenge you to think about what data
attributes you might want to collect and then filter on when analyzing your
CFDs.

CFDs offer a concise way to simultaneously visualize the three basic
metrics of flow: WIP, Cycle Time, and Throughput (albeit sometimes in the
form of averages or approximate averages). You can only be guaranteed to
calculate these metrics, however, if your graph obeys all six properties of a
CFD:

CFD Property #1 is that the top line of a Cumulative Flow Diagram always represents the
cumulative arrivals to a process. The bottom line on a CFD always represents the cumulative
departures from a process.

CFD Property #2 is that due to its cumulative nature, no line on a CFD can ever decrease
(go down).

CFD Property #3 is that the vertical distance between any two lines on a CFD is the total
amount of work that is in progress between the two workflow steps represented by the two
chosen lines.

CFD Property #4 is that the horizontal distance between any two lines on a CFD represents
the Approximate Average Cycle Time for items that finished between the two workflow steps
represented by the chosen two lines.

CFD Property #5 is that the data displayed on a CFD depicts only what has happened for a
given process. Any chart that shows any type of projection is not a CFD.

CFD Property #6 is that the slope of any line between any two reporting intervals on a CFD
represents the exact Average Arrival Rate of the process state represented by the succeeding
band.

With a strong quantitative understanding of CFDs, we move now to a
more qualitative analysis—which is really where the predictability rubber
hits the road.

Key Learnings and Takeaways

CFD Property #3: The vertical distance between any two lines on a
CFD is the total amount of work that is in progress between the two
workflow steps represented by the two chosen lines.
CFD Property #4: The horizontal distance between any two lines on a
CFD represents the Approximate Average Cycle Time for items that
finished between the two workflow steps represented by the chosen
two lines.
CFD Property #5: The data displayed on a CFD depicts only what Aas
happened for a given process. Any chart that shows any type of
projection is not a CFD.
CFD Property #6: The slope of any line between any two reporting
intervals on a CFD represents the exact Average Arrival Rate of the
process state represented by the succeeding band.
A CFD is only a CFD if it obeys all six properties because only by
following all of these properties can you be guaranteed to derive the
correct quantitative metrics of flow off of your graph.
Consider building CFDs that show both “Active” and “Done” states
within workflow steps. For example, if your “Development” workflow
step if further segmented into “Active” and “Done”, then think about
showing both of those sub columns on your CFD.
Some common myths about CFDs:
o It is always correct to build a CFD from work item count data at
each reporting interval.
o A horizontal line represents an exact Cycle Time or an exact
average Cycle Time.
o [t is always ok to represent a traditional backlog on a CFD.
o [t is possible to make a qualitative assessment of a CFD without
understanding its context.

Chapter 6 - Interpreting CFDs

Now that you have a good grasp of how to do basic quantitative analysis on
a CFD, you will see that you have already built an intuition around how to
spot qualitative flow problems without doing any computations. An
exploration of how to interpret a Cumulative Flow Diagram is what this
chapter is all about.

First, though, some words of warning. The most important thing to
remember about any qualitative analysis of CFDs is that the diagrams
themselves are very context specific. If you look at a CFD without
understanding the context in which it was created, then all you are doing is
looking at a picture. Just like any visualization, a CFD is not going to tell
you exactly what is wrong with your process or exactly how to fix it, but it
is going to shine a light or a magnifying glass on the places to investigate.

To that point, you will be tempted to jump to snap judgments the next
time you see a Cumulative Flow Diagram. Do not. This is the trap that most
knowledge work blog posts and other publications on CFDs fall into. Be
better than that! The reason we visualize flow on a CFD is not so that we
can draw superficial conclusions about what is wrong with a given process.
Rather, the reason we visualize flow via a CFD is so that we can begin to
ask the right questions sooner. CFDs are not going to do our jobs for us.
They do not replace thinking.

One last thing: it may seem strange, but doing any qualitative analysis
on CFDs really requires sound knowledge of how to do quantitative
analysis on CFDs. If you have skipped ahead to this chapter because you
assumed you knew CFDs, you may want to go back and read both Chapter
4 and Chapter 5.

Keeping all that in mind, let’s take a look at some common CFDs
patterns and explore what questions we might ask when we see these shapes
emerge.

Mismatched Arrivals and Departures
Let’s say we had a CFD that looked like:

Jan 10,3013 A 38, 1047 a2 T0N2 B, 2017 16,2017 AT, 1082 a3, 1082 g b, 7012 A 13, 3017 g 70,3012
g i A, . i At g

Figure 6.1: Mismatched Arrivals and Departures

In this picture the slope of the top-most line is steeper than the slope of
the bottom-most line. This is a classic pattern that develops whenever items
arrive to our process faster than they depart. Most companies that I visit that
struggle with predictability have a CFD that looks something like this.

Why is this so bad? Any time that we have items that arrive to our
process faster than items depart from our process means that WIP will grow
over time. In Chapter 3 on Little’s Law, we learned that an increase in WIP
will almost certainly lead to an increase in Cycle Time (recall from that
chapter that having arrival rate equal departure rate—on average—is one of
the key assumptions for Little’s Law to work). It is impossible to be
predictable in a world where WIP constantly increases and Cycle Times
elongate.

By definition, a process that exhibits a shape similar to Figure 6.1 is
unstable. Process stability is fundamental to process predictability. So much
so that I will devote all of the next chapter (Chapter 7) to explaining some
causes and some remedies whenever the arrivals to your process exceed
departures.

Flat Lines

Another pattern that I look for on a CFD is whenever any lines that flatten
out over long periods of time (remember that lines can never go down!).

Figure 6.2 shows an example of this:

Cumdative Flow

R, 3m3 Aug 1. 2012 Sep 1, 2002
Figure 6.2: Flat Throughput Sections on a CFD

Depending on your perspective, these lines could represent either
periods of zero arrivals or periods of zero departures. Usually you will be
concerned about these flat lines as periods of zero departures. The reason
why is because zero departures means nothing is getting done. In other
words, no value is being delivered to the customer (or to a downstream
step).

There are all kinds of circumstances that could cause this pattern to
emerge. Maybe there is a period of several public holidays where most of
the staff is out (the two weeks around Christmas and New Year’s in the U.S.
is a good example). Maybe the team is blocked by some external event such
as the whole test environment being down such that testing cannot
complete.

Whatever the reason, think about what this zero Throughput is doing
to your predictability. If a horizontal line represents an Approximate
Average Cycle Time on your CFD, what do you think 1s happening to that
approximation during periods of long, flat Throughput? What happens
when we plug in a zero for average Throughput in Little’s Law, but average
WIP is non-zero? What does that do to Cycle Time?

The point here is that an emergent flat line on a CFD should trigger
some type of urgent conversation and that conversation should be about

answering at least two questions. The first question is “Why isn’t anything
getting done?” The second question 1s “What can we do to get things
flowing again?”

Stair Steps

A batch transfer in your process will manifest itself as “stair steps” on your
CFD. By stair steps I mean a flat period on a line (as discussed above)
immediately followed by a jump up in arrival rate as illustrated in Figure
6.3:

Cumredativn Flow

way 1. 200 [Jna, 2002 o 11, 3013 182002 35,3002 a2 2002 TR E
Figure 6.3: Batch on a CFD

For example, if your team has a reporting interval of every day on your
CFD, but—for whatever reason—you wait five days to replenish the input
column on your board. What you will see on your chart is five straight days
of a flat input line followed by an immediate increase when the column is
replenished. Similarly, what if the bottom line of your CFD represents a
deployment to production, but you only do that deployment every three
months? What is that going to look like on your CFD?

Some references you may have read suggest that these stair steps are
caused by a regular cadence—but they do not have to be. Any batch
transfer—whether due to a regular cadence or not—will cause these stair
steps to form. If due to a regular cadence, then the stair steps will be of
roughly uniform size and shape. Non-regular batch transfer will usually

have a more uneven appearance to the steps. Both of those situations are
shown in Figure 6.3.

It is important to note here, that batch in and of itself is not necessarily
a bad thing. What you will need to do when you see stair steps appear on
your Cumulative Flow Diagram is to have a think about how batch is
affecting (positively or negatively) the predictability of your system. Can
those periods of batch be reduced? Eliminated? Should they be? What
would it take to do that? What would the impact to Cycle Time be?

Bulging Bands

This is the one that most teams go after first. Any time that you see a
“bulging” band in a CFD, it clearly signals an explosion of WIP in that
particular workflow step. An example of this is shown in Figure 6.4:

Curmedative Flow

What's
going on
here?

Legend

ni . 2002 e i e i MY, W2 Ewp 1, 2002

Figure 6.4: Bulging Bands on a CFD

We know that large WIP is bad because it almost always results in
longer Cycle Times and poorer predictability. The obvious question we
need to ask 1s, “what is causing our increased WIP”? As always, that
answer will depend on your specific situation. Maybe the team is simply
ignoring WIP limits and starting new work arbitrarily. Maybe several key
team members have gone on holiday for extended periods of time. Maybe

work is progressing slowly due to poor requirements or poor design. Any of

these and more might explain any of the bulging bands in Figure 6.4. What
are some of the causes for a pile up of work at your job?

One thing to look out for in these situations, though, is that the cause
of the increased WIP may not necessarily be found in the workflow step
where the bulge appears. It could be due to a “push” from a previous step,
or it could be cause by some blockage in one or more downstream steps. Do
not be lulled into thinking the problem is always in the obvious place.

Additionally, remember earlier when I suggested that you should
consider separating your workflow steps into “Active” and “Done” and then
you should graph each of those sub-steps on your CFD? One reason I
recommend that approach is because those “Done’ sub-steps are clearly
queuing columns—i.e., they are columns where no value add work is
happening; work is just sitting there waiting to be pulled. I mention this
now because while a bulging band in general is bad, a bulging band in a
queuing step can be especially bad. Ideally, the bands on the CFDs that
represent the queuing states should be as thin as possible (I just told you
why). Whenever those bands are constantly thick or whenever they bulge,
then that pattern 1s suggesting something is going wrong with our process.

Disappearing Bands

Bands that disappear altogether on a Cumulative Flow Diagram could be
telling us one of several things. The first possibility is that the reporting
interval that we have chosen is too big. Consider, for example, that we
choose a reporting period of every week for our chart. Let’s further say that
the work in our Test column flows through very quickly (e.g., in a day or
two). In this case it is very likely that on any given reporting interval there
will be zero Work In Progress in the test column such that the test band on
the CFD will not show up. An example of bands disappearing is depicted in
Figure 6.5:

Curalativen Flow

Bug 1, 2012 Sap b, 2012 st 1, 3012 Mew 1, 2002
Figure 6.5: Disappearing Bands on a CFD

A second cause for a disappearing band may be that some upstream
variability in our process is causing downstream steps to be starved.

Another possibility, is that the team frequently decides to skip a certain
step in the workflow altogether resulting in that step not having any Work
In Progress at any given time. For example, it could be near the end of a
release and the team has decided to skip the Test step in the workflow,
deciding instead to push work directly from Development into production.
It would be up to you to decide given your particular context whether this is
good or bad. While obviously an exaggerated case, in this instance the Test
band on the CFD would completely disappear—much like what is shown in
Figure 6.5.

The S-Curve

Remember in the last chapter when I talked about the special case of Little’s
Law when system WIP is allowed to go to zero? I gave two classic
examples of when this might happen. First, a project usually begins with
zero WIP and (ideally) ends with zero WIP. At a more granular level, an
ideal Scrum sprint starts with zero WIP and ends with zero WIP.

I mention these examples again as the typical pattern that emerges on
CFD between any two time instances of zero WIP is something called an
“S-curve”. An S-curve is characterized by a flat beginning section, followed

by a steep middle section, and finishing again with a flat end period. This
flat, then steep, then flat pattern i1s what gives the graph its distinctive “S”
shape as in Figure 6.6:

Crmiatie Flow

0

CE S R
Figure 6.6: An S-Curve on a CFD

The phenomena that causes this “S” pattern to emerge is beyond the
scope of this section, but know that, as I have just stated, it usually happens
between any two time instances when WIP is allowed to go to zero. The
reason | mention this now is think about what this S-curve does from a
predictability standpoint. In this context, do you think it is always easy to
match arrival and departure rates? Is it even possible?

Take it a step further. From a predictability perspective, do you think
that it is optimal to manage projects this way (remember, I am talking about
predictability here, not necessarily about how accounting or finance sees the
world)? Do you think it is predicatively optimal to multiply this effect
several times during the course of a project by breaking it up into several
zero WIP-bounded sprints? How might we become more predictable day to
day, week to week, month to month by never allowing WIP to go to zero?

For example, in Figure 6.6 how do you think the team is doing at
matching arrivals to departures at both the beginning and end of this time
period? Whether reasonable or not, what we can say is that those flat spots
add inefficiencies and kill predictability. Is there a better way to manage
work such that we do not have those start-stops and flat lines?

Just something to think about...

A Boring CFD
Suppose you have a CFD like Figure 6.7:

Curredativn Flow

SR IZ SN Ses 20N ."'."':-:';f}?_- S ods Cetin I Damen oMol
Figure 6.7: A “Good-Looking” CFD

Everything looks rather good, right? If it truly is, then it is time to start
asking questions about other process improvement actions we might take.
For example, is it possible to get the lines even closer together by reducing
WIP and thus improving Cycle Time? What can we do to make the
Throughput line steeper?

The thing is, it is possible to get a very pretty CFD picture but still
have a very dysfunctional process underneath. The best example of this is
the accumulation of Flow Debt. But that topic is so important that it
deserves its own chapter as well (see Chapter 9).

You may have noticed that I have not explicitly mentioned anything
about using CFDs to spot bottlenecks in your process. That omission was
on purpose. It is because I am dubious about that approach. This may
surprise you as if you have read anything about CFDs, you have probably
read how useful they are to spot bottlenecks. I do not agree with this
language. I believe that the best you can do by just looking at a CFD is to
pose some questions about some variability that may be occurring. It is
impossible to spot a systemic bottleneck. This may seem like a subtle

distinction to you, but I prefer Deming’s and Shewhart’s language of
variability to that of Goldratt’s language of the Theory of Constraints. I
think you will get much more bang for the buck thinking about knowledge
work in this way. I feel so strongly about this that I a chapter to this
discussion later (Chapter 13).

Conclusion

A discussion of all possible patterns that could emerge on a CFD would be
a whole book in itself (hmmm...good idea). What I have given you here are
some of the more common things you will come across. I am hoping you
will use these examples along with your quantitative analysis knowledge to
discover the right questions to ask sooner. Remember that the point of CFD
analysis is not just about looking at a pretty picture. The point is to look at
the graph in the context in which it was generated and have a discussion
about what the patterns mean to overall process performance and
predictability. Thus, the real purpose for analyzing a CFD is to learn. You
learn by asking questions. “What’s going on with our flow?” “Is it a good
thing or bad thing?” “If good, how can we keep doing 1t?” “If bad, what
interventions can we take to make things better?” A CFD not only gets you
asking the right questions sooner, but will also suggest the right actions to
take for increased predictability.

I started my discussion of CFDs by saying that not only is most of the
information out there in the Agile-o-sphere incorrect concerning these
charts, but also that all tools that I have come across (at the time of this
writing) generate these graphs incorrectly (save the one which I will discuss
in a minute). So what are you to do?

One option is to capture the data manually as I have outlined here and
generate the chart yourself using something like Excel. This is a reasonable
approach and one that many teams utilize. The problem with Excel is it is
not a very dynamic or interactive way to analyze the data. It also becomes
cumbersome as your dataset gets very large.

The second option is to use the ActionableAgile™ Analytics tool.
This tool was built for the sole purpose of the advanced analysis of these
metrics of flow. At the risk of putting forth a shameless plug, the
ActionableAgile™ Analytics tool was created by my company, so you can
be sure that any and all charts that are created by it are generated correctly

(the ActionableAgile™ Analytics tool is also great tool for generating
Cycle Time Scatterplots—I will discuss Scatterplots in Chapters 10-12).

There 1s a lot of chatter out there about the uselessness of Cumulative
Flow Diagrams. Those discussions are disappointing because a lot of these
comments come from well-known persons within the industry. Obviously, I
am biased so all I want to suggest is that after reading this chapter (and this
book) you will make your own mind up about the utility of CFDs. I am
hoping to have persuaded you otherwise by the time you finish.

The last thing to note is that the predictive power of your CFDs
depends almost entirely on how well your process obeys the assumptions
behind Little’s Law (Chapter 3). This point is so important, that the next
three chapters will explain how to spot violations of Little’s Law on your
charts and what you can do to correct them.

Key Learnings and Takeaways

e On your CFD, does arrival rate match departure rate?

e Are there any bulges in the workflow step bands?

e Do any bands disappear?

» Are there any long periods of flat lines?

e Are there stair steps?

e [s there an S-curve?

e Think about improvements to consider if everything looks good on
your CFD.

Chapter 7 - Conservation of Flow Part I

Imagine, for a second, an airport where the rate at which planes landed far
exceeded the rate at which planes took off. Very little further imagination is
needed to come to the conclusion that, in this scenario, the total number of
planes situated at the airport would dramatically increase over time. It would
not be too long before all the available gates at the airport became occupied
and that air traffic control (ATC) would be forced to find creative places to
park the extra aircraft. If the situation continued, sooner or later all
reasonable space at the airport would fill up, including utilizing any space
available on active runways. As soon as runways were occupied, no new
planes would be able to land nor would any planes scheduled for departure
be able to take off.

Obviously, in the real world, air traffic control does everything it can to
avoid this nightmare scenario. It is for this precise reason why if a certain
airport—Ilet’s say Chicago’s O’Hare (ORD)—is experiencing weather or
some other reduction of capacity, that ATC slows down planes in the air
headed to ORD or they put a ground stop on all other airports that have
aircraft scheduled to travel to ORD. Anyone who travels with any amount of
regularity has probably experienced an incident like this. You can bet that
ATC is closely monitoring and managing the rate at which planes take off at
any given airport and they are doing everything they can to match that take
off rate to the pace at which planes land.

You do not have to think too long to come up with many similar
examples. The principle remains the same: any time you try to shove items
into a system at a faster rate than items can exit the system, you are met with
disastrous consequences. This principle seems immediately obvious and
intuitive. Yet, for whatever reason, we constantly ignore this rule when we
manage knowledge work. It is exactly this phenomenon that Little’s Law
assumption #1 is trying to address. Remember from Chapter 3 that:

, Little’s Law Assumption #1: The average input or Arrival Rate of a process should
J equal the average output or Departure Rate.

Stated in more layman’s terms, Little’s Law demands that we only start
work at about the same rate at which we finish old work (on average).
Assumption #1 constitutes the first part of a principle known of the
Conservation of Flow (CoF). Any time that flow is not conserved,
predictability suffers.

Defining Arrivals

To understand if flow is not being conserved in your process, you first need
to clearly define an arrival point, and clearly define departure point. I refer
you once again to Figure 2.1 (the queuing system diagram from Chapter 2).
To apply CoF to predictability, we must design a system that clearly mimics
what is going on in that diagram.

Let’s consider arrivals first. That is, we need to establish an explicit and
obvious entry point where teams can pull in new work such that it is counted
as WIP. This entry point usually takes the form of a WIP-limited column on
the front of your process, and you will normally see this column labeled as
“Input” or “Ready” or “To Do” or the like (more on how to set the WIP limit
on this column a little later in this chapter). An example of what this column
might look like is shown in Figure 7.1:

Design (3) Development (5)
Ready (8) Test (3) Deployed
Doing Done Doing Done

These - -
items have - - -
“arrived” : -
into our = -
system -

.]

Figure 7.1: Arrivals into a Kanban System
In Figure 7.1, items that have been placed onto the “Ready” column are
said to have arrived into the process. This column represents a clear,

unambiguous signal to the world that the team has accepted work.

Please note that this arrivals column is very different from a more
traditional backlog. It is not meant to be an ever-expanding repository for all
candidate customer requests. The WIP Limit on this column represents the
real-time capacity of the system to take on new work, and serves to force us
to only pull in new work in a just-in-time manner. This is one of the reasons
why—as [stated in Chapter 5—that this Ready column would be displayed
on a CFD while the backlog would not.

We implicitly stated a couple of policies here, so let’s make those
policies explicit. First, we have said that work items are only considered to
have arrived into our system once they are placed onto our “arrivals” column
(the “Ready” column in Figure 7.1). Second, this arrivals column will have a
WIP limit on it and that we will only pull new work into the system when
that WIP limit signals that we have capacity to do so. And third, since work
can only arrive via this first column, the downstream steps of our process
can only consider pulling work from there.

Since what we are ultimately looking for is an understanding of the rate
of arrivals into the system, then measuring that rate now simply becomes a
matter of counting the number of new work items placed onto that arrivals
column per unit time. The unit or interval of time you choose is completely
up to you (day, week, every two weeks), but one thing you must keep in
mind is that the unit of time you choose to measure the Arrival Rate must
match the unit of time that you choose to measure your Departure Rate (I
will discuss Departure Rate shortly). Thus, if you measure Arrival Rate in
weeks, then you should also measure the Departure Rate in weeks.

A very subtle but very important point to note here is that choosing the
same interval of time to measure arrivals and departures does not mean that
the cadence of arrivals and departures must be the same. For example, your
team could choose to deploy to production at a cadence of every two weeks,
but could also choose to replenish the input column every week. Not only is
staggering cadences like that perfectly acceptable, it might be optimal given
your specific context. However, it makes comparing Arrival Rates and
Departure Rates slightly more complicated. If your Throughput data is in
terms of two week intervals and your arrival data is in terms of one week
intervals, then you will have to do some conversion to get them to the same
unit of time. Whether you choose to convert Throughput data from two week
periods to one week periods or whether you choose to convert arrival data

from one week to two week periods 1s completely up to you. Just know that
whatever unit of time you choose for your reporting must be consistent
across all metrics. It will be an interesting and important exercise for you to
figure out the optimal reporting interval for your specific context.

Defining Departures

In a similar fashion, we are going to need to establish a clear, unambiguous
departure point for our system. Items that pass this point do not necessarily
have to be visualized—though most teams do choose to dedicate space on
their board for departures—but they do need to be counted. If the departure
column is visualized, then you will normally see it with the title “Done” or
“Deployed” or the like. Typically speaking, if a team chooses to represent
the departures column on their board, then it will not have a WIP Limit on it.
Regardless of the visualization employed, it is important to define the exact
point of the system where work departs, (hopefully) never to return. For
example, this could be the point where we deploy code to production or the
point at which we hand an item off to a downstream team (see Figure 7.2).

Design (3) Development (5)
Ready (6) : Test (3) Deployed
Doing Done Doing Done

- - - These
- - - items have
i] I 1 “departed”
from our

- . | system
] B
L

Figure 7.2: Items that have departed from the system
In Figure 7.2, the demarcation line between “in our process” and “not in
our process” is the line that separates the “Test” column from the
“Deployed” column. More importantly, the expectation here is that the team
has put in place a set of policies for what it means for items to move from

Test to Deployed, and that once those items are in Deployed, they no longer
count against the capacity of the team; i.e., they no longer count as WIP.

Measuring the rate of departures from the system is exactly the same as
measuring the rate of arrivals. We simply count the number of work items
placed into Deployed (that have “crossed the line” so to speak) per unit of
time. Again, the unit or interval of time is not important, only that you match
your departures interval to your arrivals interval as discussed above.

Once you have tracked your Arrival and Departure Rates for an
arbitrarily long period of time (though the amount of time needed for “good”
data might be much shorter than you think—perhaps as little as a few
weeks), then you can average those two rates and compare them. If those
two averages come out to be the same, then you are in good shape. My
guess, though, is that your two average rates will be different. I am going to
discuss what that difference means and some actions to take to correct them
in a minute, but first I would like to talk about a better method for
performing the above analysis.

Arrivals and Departures on a CFD

There is a much better way to visualize whether the Average Arrival Rate
equals the Average Departure Rate for your system. This better method is to
perform the preceding analysis using a Cumulative Flow Diagram.
Let’s suppose we are running a Kanban board that looks like the one in
Figure 7.3:
5 4 - 3

Input Analysis Development Test Done

Active Done Active Done

DHW FDD:m
[] N : []
] | m

- o o o . e e

Figure 7.3: Example Kanban Board
Note that this particular team has chosen to name their arrivals column
“Input”, and that they have limited that column to five work items in
progress at a time. Note also that the team has chosen to display the

departures column and that they have labelled that column “Done”. This
departures column is WIP unlimited and the implication is that they have put
in place explicit policies for what it means for items to be moved from
“Test” to “Done”.

So what might a CFD look like for a board like this? It might look like
the one shown in Figure 7.4:

Cumudative Flow

Summmary Tlatialicd fof Jun 3, 2T - Aug 39, P2
. Al Raly Throsghpd Dady WP Cycie Time

a7] oyaa e
372 4 00 13 58 B]

Wiork Nems

MIDE MRDE MEDZ MBDE WWDR Ageli A DR AgmIn
Figure 7.4: An Example CFD

From Chapter 4, we know that each layer of this CFD represents a step
in the workflow of the Kanban board shown in Figure 7.3. We also know
that the slope of the top line of the topmost layer represents the Arrival Rate
of the process and the slope of the top line of the bottommost band
represents the Departure Rate (or Throughput). You can see from Figure 7.4
that those rates have been calculated to be 3.72 items per day and 2.74 items
per day for the Arrival and Departure Rates, respectively. This calculation
tells us that items are arriving to the process faster than items are leaving the
process at about the rate of one item per day. What might the implications of
this situation be?

The nice thing about CFDs, however, is that we need not necessarily
perform this quantitative analysis to see that something is going wrong with
our system. CFDs are such a powerful visualization technique that we can

quite quickly do a qualitative assessment of the health of our system.

For example, imagine you had CFD that looked like the one in Figure
7.5:

Cumulative Quantity

Time

Figure 7.5: Quick Qualitative Assessment of CFD

It would not take you long to figure out that there was something wrong
with your process. In this picture it is quite obvious—without doing any
quantitative analysis—that work is arriving into your system at a much faster
rate than work is departing from you system. A few paragraphs ago I asked
you to think about the implication of this particular situation. To answer that
question we need to reexamine how WIP and Cycle Time are visualized on
CFDs. From Chapter 5, we know that WIP is the vertical distance between
arrivals and departures and that Approximate Average Cycle Time is the
horizontal distance between arrivals and departures. These properties are

summed up in Figure 7.6:

Cumulative Quantity

Time

Figure 7.6: Flow Metrics on a CFD

But look what was going on earlier on in this diagram. When the
Arrival Rate and Departure Rate lines were much closer together, you can
see that WIP was much smaller and Approximate Average Cycle Times were
much shorter. As arrivals continued to outpace departures—as the arrival
line diverged from the departure line—the amount of WIP in the system got
larger and larger and the Approximate Average Cycle Times got longer and
longer (as shown in Figure 7.7).

Cumulative Quantity

Time

Figure 7.7: The Implication of Arrivals faster than Departures

In a situation like this, you have almost no chance at predictability. The
actionable intervention suggested by a CFD that looks like Figure 5.5 is that
we must get arrivals to match departures.

So how exactly do we get arrivals to match departures? The first thing
we would do is to calculate the average Throughput off of the diagram. Let’s
say, for argument’s sake, that we deploy items off our process at a cadence
of once per week. Let’s additionally say that the average Departure Rate of
those deployed items comes out to five items per week (note here that we are
choosing “week’ as our unit of time). That number, five, gives us a clue as
to what the WIP limit should be on our arrivals column. Since we are
finishing five old items per week, that means we only want to start five new
items per week. The implication here being that we would want to set a WIP
Limit of five on the arrivals column (depending on the variability of our
system, we might want to make that WIP Limit a little larger—say six or so
—to make sure that our system is never starved for work). An important
subtlety here is that the WIP Limit of five on the arrivals column assumes
that you are replenishing the arrivals column at the same cadence as which

you are deploying; i.e., once per week. But remember from before, that this
need not be the case. If you wanted to replenish the input column once a day,
then you would need to divide the original Arrival Rate number, five, by the
number of times per week that you would do the replenishment (in this case
five). Since five divided by five is one, then your new WIP limit on the
arrivals column would be one.

Properly setting the WIP limit on the arrivals column will allow you to
match the average Arrival Rate of items into your system with the average
Departure Rate of items out of your system. When we do this, we will get a
CFD that looks something like Figure 7.8:

Cumulative Quantity

Time

Figure 7.8: Average Arrival Rate equals Average Departure Rate

It should be immediately obvious from looking at the CFD in Figure
7.8 that the situation here is much better than that illustrated in Figure 7.5.
As we will see in a subsequent chapter, having a pretty CFD is not a
guarantee of a healthy system, but it is certainly a pretty decent start.

By the way, any time you expressly limit WIP throughout your
workflow, and, more importantly, any time you honor the WIP limit(s) you
have set, you will get a picture that looks like Figure 7.8. What I am saying
is that you must operate a constant WIP style of pull system. Setting a WIP

limit on the arrivals column is a necessary—but not sufficient—means to
balancing arrivals and departures. For example, imagine that we have no
explicit limit on our Test column but that we do have a WIP limit on the
arrivals column. As work gets pulled (pushed, really) into Test because of
the lack of a WIP limit, then that action will ultimately cause a pull of work
from the arrivals column. Work getting pulled from the arrivals column will
signal to the world that there is capacity to start new work and thus the
arrivals column will be replenished even though no work has been
completed. I hope it is easy to see that in this scenario how we can have
items that arrive to our system faster than items that depart our system. So
do not think your work is done by just limiting WIP at the front of your
process. You must make sure that a constant amount of WIP (on average) is
maintained throughout the whole process. Remember, the further you stray
away from this principle, the less predictable you will be.

Limiting WIP on the arrivals column in the manner described here is
one way to ensure that not too much work is started and just queuing at the
beginning of your process. I have said it before, and I will say it again: delay
is the enemy of flow. This approach will ensure a proper balance between
having enough work to start such that your process is not starved and not
having too much work such that work begins but just sits.

By the way, once we get a picture that looks like Figure 7.8, we will
have taken the first—and probably most important—step to balance the
demand on your system against the supply that your team can offer. We are
now very far down the path to true process predictability.

Most Kanban boards have an explicit arrivals column at the front of the
process, but this is by no means a requirement. It is completely reasonable
that your particular work context allows your team to pull new work items in
an immediate, ad hoc manner. That is to say, you need no coordination with
any external stakeholder to prioritize items or you have a proxy for those
stakeholders embedded with your team. In this case the arrivals column
(e.g., the “To Do” or “Input” or “Ready” column) may be superfluous. This
situation is perfectly ok. As I just mentioned, the way to match arrivals to
departures in this context would be to make sure that a constant amount of
WIP is maintained through the process at all times. Constant WIP could be
maintained either by expressly limiting Work In Progress at each step of
your work flow or by setting one global limit for the whole process (or some

mixture of both). The point I am making here is that it does not really matter
how you limit WIP throughout the whole system just as long as you do.

It should be said, though, that even in this particular situation a team
could benefit from an arrivals column for many of reasons. Just know that an
explicit arrivals column is neither prescribed nor required for predictable
process design.

Conclusion

When you have a picture that looks like Figure 7.5 then your process is, by
definition, unpredictable. The direct consequence of an Arrival Rate that
exceeds a Departure Rate is a steady—if not dramatic—increase in WIP.
Little’s Law tells us that an increase in WIP will be matched by an increase
in Cycle Time. The implication here is that if WIP grows unbounded, then
Cycle Time will also essentially grow unbounded. If your Cycle Time is
ever-increasing, then it becomes impossible to answer the question, “how
long before this work item will done?”

In this chapter, I have purposefully not made any mention of how teams
choose what particular items go on to the arrivals column at replenishment
time. Nor have [made any mention of the order in which items should be
pulled through the system once they have been placed on that column. These
are very important questions and deserve ample consideration. The reason |
have left those questions unanswered—for now—is that this chapter is
simply about the mechanics of the first necessary step you need to take in
order to stabilize your system and thus have any hope of predictability.
Little’s Law assumption #1 states that the average Arrival Rate to a system
must equal the average Departure Rate of the system. I have shown you how
to do that here. The answers to the replenishment and pull order questions
will be addressed in the coming chapters.

I would argue that the arrivals column is one of—if not the most—
important columns for your process design. In this chapter we have explored
two very important reasons why this might be so:

1. The arrivals column acts as the throttle by which we constrain the
amount of work that can arrive to our system at any given time. It is the
mechanism by which we match the rate of arrivals in our process to the
rate of departures. The matching of these rates is what is going to yield
process predictability. And,

2. The arrivals column acts as our “commitment” point to start new work.
The implication being that when new work is committed to, we expect
it will flow completely through the process and depart the system. It is
only when work departs our system that customer value can truly be
recognized and our predictability be assessed.

In the real world, work item Cycle Times are not allowed to grow ad
infinitum. Projects get cancelled and features get abandoned when they take
too long to complete. This compounds the problem from a predictability
perspective because not only is your Cycle Time not predictable, but now
you cannot even be certain if a certain item that is started will ever finish.
Items that start but never finish is yet another a violation of an assumption of
Little’s Law (do you remember which one?) that carries its own impacts on
predictability. An exploration of that violation is where we will go next.

Key Learnings and Takeaways

e Little’s Law assumption #1 says that the average input or Arrival Rate
of a process should equal the average output or Departure Rate.

e Any predictable process needs a clear, unambiguous point at which it
considers items to have “arrived”.

e Any predictable process needs a clear, unambiguous point at which it
considers items to have “departed”.

e One of the best ways to visualize whether arrivals and departures are
balanced is to visualize them via a CFD.

e To balance arrivals and departures is going to require limiting WIP not
only at the arrivals column but also through the whole process.

e Once arrivals and departures are balanced, you have taken the
necessary first (emphasis on first) step toward process predictability.

o Pretty CFD pictures could still mask underlying process problems.

Chapter 8 - Conservation of Flow Part I1

I have never been skydiving, but I get the general gist. First, you pack a
bunch of nylon into a little bag and strap that bag to your back. Then, you
hop onto an airplane and fly up to a specified altitude. Finally, assuming you
are insane, you jump out.

Other than the immediate commencement of a real-time experiment of
Newton’s Second Law of Motion, a very important thing happened to you
once you jumped out of that airplane. Once outside the plane, you made a
very real commitment to fall back down to the ground. Up until the moment
of stepping off the plane, you had every opportunity to not make that
commitment. You could have checked your parachute and found it was not
packed properly. The plane could have not taken off due to bad weather. You
could have decided not to jump because you were too scared. Any number of
factors could have contributed to you not making that commitment.

Also notice that this commitment happened at the last responsible
(possible) moment. Your jumping out of that airplane was a clear and
unambiguous signal that you intended to fall back to earth.

Which brings us to my last point. Once outside the plane, you had every
expectation that you were going to make it all the way down to the ground.
The instant that you jumped it would take nothing short of an act of God to
not get you back down to earth.

Whether you knew it or not, what you had just experienced in this
situation was a perfect example of the second part of the Conservation of
Flow (CoF). In the previous chapter, we discussed the first part of CoF,
which also happened to be one of the necessary assumptions for Little’s Law
to work. In this chapter we will discuss the second part of CoF, which, as it
so happens, is also one of the foundational assumptions of Little’s Law:

’ Little’s Law Assumption #2: All work that is started will eventually be completed and
J exit (depart) the system.

The great benefit of implementing a pull system is that it is very easy to
define what it means for work to have “started”. A subtle side benefit that I
have not talked much about until now is that pull systems also allow for us
to perform just-in-time prioritizations and just-in-time commitments. It turns
out that just-in-time prioritizations and just-in-time commitments are going
to help us conserve flow.

Just-in-time Prioritization

I cannot tell you how many teams I have watched waste so much time,
grooming, pruning, and re-prioritizing their backlogs. The truth is that the
effort spent to maintain a backlog is waste. It is waste because the truth is
that much of what goes into a backlog will never get worked on anyway.
Why spend time prioritizing items that you have no clue nor confidence if or
when they will ever get worked? Worse, when you are ready to start new
work, new requirements will have shown up, or you will have gained new
information, or both, which will require a whole reprioritization effort and
will have rendered the previous prioritization activities moot.

Enter the concept of just-in-time prioritization. In a pull system, a
prioritization conversation only happens when there is a clear indication that
the team has capacity to do new work.

For example, let’s look at a Kanban board (Figure 8.1) not unlike the
one we discussed in the previous chapter:

Design (3) Development (5)
Ready (6) RSt IR R R e SO AR 3 A Test (3) Deployed

Doing

Figure 8.1: Just-in-time Prioritization

Notice that in Figure 8.1 the “Ready” or arrivals column has a Work In
Progress limit of six. That means that the capacity of this process is such that
a maximum of six new items can be started at any given time. What should
this team do when they try to decide how many items to work on next? As
they look at the board, they will see that there are already four items in the
Ready column. Since the column already has four items in it, and since the
WIP limit on the column is six, this means that the process is unambiguously
signaling that the team only has capacity to start work on two new items.
The prioritization conversation (i.e., which items should they choose) should
then be focused only on “what are the next two most important items that we
should start at this time?” Any discussion beyond deciding on just those two
items is waste (e.g., having a conversation, say, about prioritizing the top ten
items). Why? Because by the next time the team meets to replenish the
Ready column, there will have been several things about the business
environment that could have changed: business needs, customer feedback,
regulatory concerns, etc. These changing factors will constantly feed new
requirements the team’s way and these continuously changing business

needs means that the best strategy for prioritizing new work is in a just-in-
time manner.

This just-in-time prioritization concept is true even if you are running
what you assume to be a stable project. As you finish some project
requirements, you will have gained knowledge about the problem domain.
You will have gained that knowledge both through your own analysis and
development efforts, but also through the feedback you get from regularly
scheduled reviews with your customers. This newfound knowledge is bound
to result in changes in your to your backlog—which, again, would warrant a
just-in-time approach to the prioritization of work.

Just-in-time Commitment

Once prioritized and placed on the Kanban board, there is also an explicit
understanding that the new work items are now committed to. In a pull
system, work is not “committed to” when it is placed in the backlog! It is
only committed to in a just-in-time manner as determined by the team’s
explicit capacity.

But what do I mean by the word “commitment”? First, I mean
commitment with a small “c”. There should be no severe penalty for missing
a commitment. No one should get fired. No one should lose their bonus or be
denied a pay raise. But make no mistake. I do mean commitment. Once
agreed to, I do mean that the team should do everything in its power to meet
its commitments.

Second, commitment means that there is an expectation that, once
started, an item will flow all the way through the process until completion.
In other words, there is a commitment that flow will be conserved.

Lastly, commitment means communicating to our customers a Cycle
Time range and probability for the committed-to item. Remember that once
we commit to start work, the customer’s first question will be “When is it
going to be done?”” This point of commitment is when we answer that
question.

Allow me to further explain the three aspects of commitment by way of
example. The placement of a work item in the Ready column means that the
item has been both prioritized and committed to. This commitment means
that all reasonable effort will be undertaken to make sure the item will flow
all the way through the process to completion (just like in the sky diving
example). It also means that a communication will be made to our customers

regarding how long it should reasonably take that particular item to
complete. That communication should take the form of “we expect this item
to flow all the way through the process and exit in 14 days or less with an
85% probability of success”. Many of you will recognize this as the
language of “Service Level Agreements” or SLAs in Kanban. More on just
what exactly SLAs are and how to set them for your process can be found in
Chapter 12.

Not to get too off-topic here, but I hope this dispels another common
myth I hear about flow-based systems, and in particular, Kanban. I often
hear, “Kanban cannot work because there are no commitments”. Nothing
could be further from the truth. It is just that the approach to commitments is
very different than, say, Scrum. Scrum commitments are made at the sprint
level. At the beginning of a sprint, a team commits to getting some number
of stories finished by the end of the sprint. That commitment is based more
on upfront estimation and planning. In a flow-based approach, teams commit
at the individual work item level. Once an item is pulled into the process a
commitment is made as to when that item should be done. That commitment
is based more on measurement and observation rather than planning and
estimation. The point here is not to denigrate Scrum, but to get you to think
about—especially if you are using a method like Scrum—how you might
incorporate more flow-based principles into your current process.

Exceptions to Conservation of Flow

As with all of these “rules”, there are always exceptions. There might be—
and probably are—perfectly good reasons to discard work that is only
partially completed. Maybe we have gained some knowledge that makes
continuing to work on these particular items unnecessary, duplicative, or
otherwise wasteful. Well, obviously, in those circumstances it makes perfect
sense to abandon that work. When this happens, though, we should
challenge ourselves with the following questions: “Why did that happen?”
“Was there something that we could have done further upstream in our
process to help avoid this situation?”

But, potentially more importantly, when these exceptions occur it is
absolutely necessary to account for them properly in your data. Instead of
just removing (or deleting) an item from your board never to be tracked
again, it is probably best to mark that item as “finished” (whatever that
means in your context), mark the date it was done, and then tag it with some

attribute like “abandoned” or “discarded”. In that way, we will be able to
filter on that attribute later. You’ll remember that I have spoken many times
before about segmenting WIP based on different types. Well, one of those
types might be work that has completed normally or not.

For example, let’s say we have a board that looks like Figure 8.1. Let’s
further say that we start some work item and get it all the way to the
“Development” column before we decide we do not need this particular
functionality. In this case, the item should immediately be moved to the
“Deployed” column, the current date should be captured, and the item
should be tagged as “abandoned”—or with whatever other descriptor you
choose to use.

Annotating an item in this way gives us several options when we go to
generate our analytics later. You can imagine that we may want to generate
several different views of a CFD for our exception cases. We may want to
see all data together, we may want to only see items that have finished
normally, or we may want to just see those items that were abandoned.
Further, by accounting for these abandoned work items in this way, not only
have we not violated the principle of the CoF, but we can also guarantee that
we will be able to generate a valid CFD for all of those views.

A violation of the principle of conservation of flow should be treated as
an opportunity for learning. Hopefully, your new-found understanding of
this principle helps you to more readily recognize these learning
opportunities and is yet another tool for you in your toolbox of continuous
process improvement for predictability.

Conditioning Flow and Predictability

I just mentioned that part of the definition of commitment is that a team
should do everything in its power to assure that once started an item
completes and it completes in the timeframe that has been communicated to
the customer. “Everything in its power” means first choosing a Cycle Time
range and probability that is achievable. It also means doing what we can to
choose items that have the best chance of meeting that goal. This idea of
selecting items for success is a concept that I like to refer to as
“Conditioning Flow”.

Let me give you a few examples. Let’s say that we are operating a
process that is currently overloaded in Test. Let’s further say that the next
highest priority item that we wish to pull in off the backlog (though it has

not been pulled in yet!) has a large amount of testing effort associated with
it. But the second highest priority item has little to no testing effort
associated with it. All other things being equal, we should probably pull the
second priority in preference to the first priority. That is the concept of
conditioning flow.

There are several other examples of this. Let’s say the next highest
priority to be pulled off the backlog requires a specific resource, but we
know that that particular resource is going to be going on vacation for
several weeks starting in two days. Obviously it wouldn’t make sense to pull
that item in, work on it for two days, and then block it while our expert is on
vacation.

One last example might be that the team is in disagreement about
whether the next priority item is of the right size to come into the system
(right-sizing of work items will be discussed in Chapter 12). That
disagreement probably stems from some uncertainty around the work item
so maybe what the team decides to do is spike the story and pull that spike in
first (by “spike” I mean a work item—user story—that is used to drive out
risk and uncertainty in another work item).

Remember, we have control over a lot of these decisions. Making the
best choices in these circumstances is usually the difference between
whether our process is predictable or not. Conversations around conditioning
flow are among the most important as they speak to what items are
committed to next. Because we are talking about commitments and
predictability here, we want to make sure that we are setting ourselves up for
success from the very first pull transaction. We want to do what we can to
condition our flow.

Conclusion

Whether you realized it or not before now, every time you started a piece of
work (be it a project, a feature, or story) but then later abandoned it you
violated the principle of Conservation of Flow and thus impaired your
predictability. If work flows only part way through the system and gets
kicked out or discarded—for whatever reason—then any effort that was
expended on the eliminated item immediately becomes waste. Taken to its
logical conclusion, you can understand why a team might want to conserve
flow as much as possible. If work is constantly started but never finished, if
this partially completed work is constantly discarded in favor of starting new

work, then the Cycle Time metrics are going be skewed, and the system you
are operating becomes infinitely unpredictable.

Of course, we live in the real world and these things are going to
happen. Some might argue—and I certainly would not debate them if they
did—that it i1s even more waste to continue to work on an item once we have
gained information that the item is no longer necessary. By all means trash
that work in those instances. However, just remember to account for that
action appropriately in your data. Taking the time to do the proper
accounting will pay huge predictability dividends later.

The idea of matching the arrival rate of your system to its departure
rate, and the idea of making sure that flow is conserved for all items that
enter your system go a long way to stabilize what would otherwise be
considered an unstable system. When we have taken these steps we can now
start to have some confidence that the metrics we are collecting off of our
system are more reflective of a team’s true capability. However, doing these
two things alone still does not guarantee that our system is completely
stable. It is this underlying sense of system stability that we need in order to
reach one of our ultimate goals—a goal that I keep harping on throughout
this text: predictability.

For the final piece of our stabilization problem, we must borrow some
ideas from someone who—Iike most great thinkers—was not truly
appreciated in his time.

Key Learnings and Takeaways

e Little’s Law assumption #2 says that all work that is started will
eventually be completed and exit the process.

e The concept that no work gets lost or does not ever exit the process is
the second half of a concept known as the Conservation of Flow.

e To set ourselves up properly so as not to violate CoF we need to
implement a just-in-time prioritization and just-in-time commitment
strategy (these strategies are direct consequences of putting in place a
pull system).

e In knowledge work, commitment means two things:

o That once committed to, work will flow all the way through our
process to completion.

o That part of the commitment is a communication of an expected
Cycle Time range and probability for a given item to complete.

e To not violate the Conservation of Flow, we need to account properly
for items that have started but later get abandoned.

e Another benefit of accounting properly for abandoned items is that we
can later filter our analytics on that data and help guarantee that the
charts are built correctly.

e Conditioning flow means being smart about what items to pull in next
based on contextual information that we currently have.

Chapter 9 - Flow Debt

Hyman Minski may be the best economist that you have never heard of.
Among other things, he is known for his work on classifying debtors based
on the types of financing they used when taking on their debt. Minski’s
theory was that borrowers could be categorized into one of three groups:
hedge, speculative, and Ponzi. Hedge borrowers are those who can service
both the principal and interest on their debt. Speculative borrowers can only
pay the interest on their debt. And Ponzi borrowers have to constantly issue
new debt in order to service the old.

Why am [telling you all this? To answer that question we must return
to our old friend, the CFD. Specifically, recall CFD Property #4:

, CFD Property #4: The horizontal distance between any two lines on a CFD represents
J the Approximate Average Cycle Time for items that finished between the two workflow
steps represented by the chosen two lines.

When you first read that, I am sure that most of you were thinking (and
maybe still are) that being able to calculate only an Approximate Average
Cycle Time was absolutely worthless. After all, why would you ever waste
time measuring an Approximate Average Cycle Time from a CFD when you
can just go and directly compute an exact Average Cycle Time from the
chart’s real, underlying data?

While those are good questions, I would argue that knowing the CFD’s
Approximate Average Cycle Time is extremely valuable. To understand why,
we must revisit Little’s Law Assumption #4:

, Little’s Law Assumption #4: For the time period under consideration, the average age of
J WIP should neither be increasing nor decreasing.

The Approximate Average Cycle Time as predicted by the CFD can be
compared to the exact Average Cycle Time as calculated from the very data
used to build the CFD to begin with. The comparison of these two numbers

will tell us if we can expect our exact Average Cycle Time to grow, decline,
or stay the same over time. If our exact Average Cycle Time is either
growing or declining then we have a violation of Little’s Law assumption #4
which means that our predictability is in jeopardy.

So what are the scenarios we need to consider when comparing
Approximate Average Cycle Time to exact Average Cycle Time? It turns out
there are three. Those scenarios are:

1. The Approximate Average Cycle Time is greater than your actual
Average Cycle Time.

2. The Approximate Average Cycle Time is less than your actual Average
Cycle Time.

3. The Approximate Average Cycle Time is roughly equal to your actual
Cycle Time.

It may sound trite, but an easy way to remember which of these is best
is “scenario three is where you want to be.” But it is because both scenarios
one and two put predictability at risk that we will begin our discussion with
those.

Approximate Average Greater Than Actual Average

If the Approximate Average Cycle Time is greater than the exact Average
Cycle Time, then you can conclude that your process is incurring what I
would call “Flow Debt”.

’ Flow Debt is when Cycle Time is artificially reduced for some items of Work In
J Progress by “borrowing” Cycle Time from other items of work in progress.

To explain, a smaller exact Average Cycle Time calculation when
compared to the approximate average would tell you that you have (either
explicitly or implicitly) favored the faster completion of some work items
over the regular completion of others. You were not able to conjure that
shortened Cycle Time out of thin air (we are not like the Fed who can just
print money). This new ability to complete some items faster than they
normally would have finished must have come from somewhere. What you
did—whether you knew it or not—was to borrow Cycle Time from other

work items that were already in progress. What you did was to create Flow
Debt. This debt was used to pay for the expedited completion of the
preferential work.

One great example of a process taking on Flow Debt is when a system
has been designed with an expedite lane. A simple example of what an
expedite lane looks like on a Kanban board is shown in Figure 9.1:

Design (3) Development (5)
Ready (6)E.......................... s e Test (3) Deployed

Expedite (1)

Figure 9.1: Expedite Lane Example

When used, most expedite lanes have an extremely low WIP limit on
them (often set to one). Policies are also usually put in place such that items
in expedite lanes can violate WIP limits at each step in the workflow.
Further, most systems are designed such that when an expedite item is
introduced, it is pulled immediately for work—it is allowed to “jump the
queue” ahead of other work that is also ready to be pulled. If no resources
are available to immediately pull the expedited entity, then many teams will
block other items to free up team members to go act on the expedited work.
Given these normal policies, you can see why it is so important to be
extremely conservative when setting the WIP limit on an expedite lane

(more information about expedited items, pull policies, and their effect on
predictability, please see Chapter 13).

Looking at Figure 9.1, you will notice that the WIP Limit for the
expedite lane is indeed set to one. This means that only one work item can
be in progress in that whole lane at any given time (but that work item can
be anywhere in the lane: Ready, Design, Development, or Test). As you can
also see, the expedite WIP limit has been adhered to and that the expedite
item is in the Development column. Let’s assume for a minute that no
developers were available when this item was pulled into the Development
step. What might happen is that the team would choose to block one (or
more) of those other three items in progress in order to free up resources to
go work on the expedited ticket. The team has chosen to take the time that
was to be allocated for work that was already in progress and apply that time
to the expedited item. What has happened is that the team has chosen to
artificially age one item (or more) in order to shorten the Cycle Time of
another. This is a classic example of the creation of Flow Debt.

The problem is that this debt must be repaid (think the Mafia here and
not the U.S. Government). The payment of this debt will come in one of two
ways:

1. The work items that were “passed over” in deference to the expedited
items will eventually themselves complete (in accordance with the
principle of Conservation of Flow). When they do complete their Cycle
Times will be much longer than they normally would have been
because they were forced to artificially age. Thus, debt repayment
comes in the form of longer Cycle Times for items already in progress.
The resulting consequence is that you can have no confidence in the
“average” Cycle Time you thought you were capable of because the
metrics you had collected did not include this debt. You can have no
confidence in this average because the accumulation of debt has made it
invalid; or,

2. The work items that were “passed over” will be eventually kicked out
of the system because they are no longer considered valuable (in
violation of Conservation of Flow); i.e., the window of time to realize
their value has passed. When these items are thrown out of your
process, any effort or time that has been spent on progressing them
through the system immediately becomes waste. Thus, the payment of
Flow Debt is the wasted effort that could have been spent in realizing

the value of the discarded work item or in the form of wasted effort that
could have been spent realizing the value of something else.

Either way, Flow Debt is repaid in the form of less predictability for
your process.

I do not want you to conclude that all Flow Debt is bad. What you need
to do is simply recognize that your system is incurring debt. The challenge
for you, then, is to think about how you might categorize your borrowing
into one of Minski’s types: Hedge, Speculative, or Ponzi.

To classify what type of debtor you might be, ask yourself the
following questions:

1. Hedge: Are expedites in your process more the exception than the rule
(that is to say, does your board not have expedites significantly more
often that it does have expedites)? When you do have expedited
requests, do you truly only ever have one item (or some WIP limited
amount of expedited items) in your process at a time? Does this time
with no expedited items give you an opportunity to finish work that was
otherwise blocked for previously expedited items? When you get an
expedited item, are you allowed to finish existing work before the
expedite is picked up? If the answers to these questions is yes, then you
are probably running a properly “hedged” system.

2. Speculative: Is there always at least one item in your process and never
a time when you are not working on expedited work of some kind? Do
you routinely violate your expedited item WIP limit? If the answers to
these questions is yes, then you are probably running a speculative
system and you might want to explore some options to apply more rigor
to your expedite process.

3. Ponzi. Is all the work you do considered an expedite? Do expedited
items take up all of your available capacity such that you never get a
chance to work on more “normal” items? Are your pull criteria based
not on explicit policies but on whomever is screaming the loudest? If
the answer to these questions is yes, then what you are really running is
a process Ponzi scheme. You will never be able to repay the debt you
have accumulated and any notion of total process predictability is gone.
You are fooling yourself if you continue to start “normal” work in
addition to expedited work in this world. That normal work will almost

never complete, or it will swapped out for other work, or 1t will finish
far too late for anyone to care. In my mind, this is the antithesis of flow.

I want to make sure that you know that I am not advocating that you
spend a lot of time on this classification nor that you become an expert in
economic theory. What I do want you to ask yourself is are you able to repay
the debt that you are taking out? How much debt is reasonable in your
context? I guarantee that there are going to be some very good reasons to
take on “Hedge” Flow Debt from time to time (a great analogy to this in the
real world is when prospective homeowners take out a mortgage—assuming
they can be repaid, most mortgages are considered good debt). The question
for you becomes: are you able to service the Flow Debt that you have taken
out?

By the way, I have picked on expedite work items here, but it should be
noted that an explicit expedite lane is not the only way to incur Flow Debt.

Extending the scenario from above, let’s say that you have an item in
the “Design Done” column. And let’s say that that item just sits there and
never gets pulled into “Development Doing” because you care constantly
choosing to pull other items in preference to it. If so, then congratulations,
you have Flow Debt.

This particular scenario 1s depicted in the following diagram (Figure
9.2):

i e e l Ll |°'9'°1'¢ Ready (6) e oL Oevipment &) I Test (3) |Wo/'¢ yyyyyy Deson &) Developeasst) I Test (3) Iow.u
B s = = 09 Dore L] Dope Dong Done Doing Done
. i Shone Sl o S ol for 108t e Stil waiting....
N LT
AL LA mE . S L
o / -, - ,’i -l] =

Figure 9.2: Ignoring an Item While it is Queuing

Another example of the creation of Flow Debt might be if you have
blocked items that you ignore or do not actively work to get unblocked and
moving again as quickly as possible (Figure 9.3):

' o shenian poiimen ' R AT
) L N C i § mE .
o | = e . = - - h

O — J . |
- = = - = |

Figure 9.3: Ignoring a Blocked Item

I am sure there are other examples, but I will leave it as an exercise for
the reader to i1dentify the types of Flow Debt in your context.

By the way, the concepts in this chapter can be applied to any type of
debt that you may incur in your process (e.g., technical debt). The trick is to
recognize that you are creating debt and have a constructive conversation
about how that debt is going to be repaid.

Approximate Average is Less Than Actual Average

This scenario is a bit less interesting than the last one. If in the above
situation we were talking about accumulating Flow Debt, then the case
where the Approximate Average Cycle Time on your CFD is less than your
actual Average Cycle Time means that you are paying off Flow Debt (again,
for the time interval under consideration).

A larger actual Average Cycle Time means that those items that have—
for whatever reason—Ilanguished in progress are now finally completing.
The actual average has become inflated because as the artificially aged items
complete they make the actual average calculation come out “larger” than it
otherwise would have been under normal circumstances.

However, paying off Flow Debt also hampers predictability. Items that
finish with large amounts of Flow Debt attached to them skew Cycle Time
numbers. An increased variability in Cycle Time means that we must
communicate a larger range for the SLA of our process (see the discussion in
the previous chapter and in Chapter 12). A good analogy of why this might
be dangerous is that of a restaurant who has customers waiting to be seated.
Imagine that the true wait time for customers is fifteen minutes, but because
of variability in their seating process, the restaurant has to communicate a
two hour wait time to arriving patrons. What do you think those customers
will do? The same thing will happen in your own process. The more your

system 1s unpredictable, the more your customers will begin to look
elsewhere for service.

Remember that these conclusions can only be drawn assuming we are
running an otherwise stable system (i.e., nothing about the underlying
system design has changed materially).

Approximate Average Roughly Equal to Actual Average

This case is where you want to be most of the time. If your Approximate
Average Cycle Time is approximately equal to your actual Average Cycle
Time, then your process is probably performing in a fairly orderly,
predictable manner. You are not overloaded with expedite requests, you are
not allowing items to stay blocked indefinitely, and you are not allowing
items to queue arbitrarily. In other words, you are neither accumulating nor
repaying Flow Debt.

That 1s not to suggest that there are not any other areas of your process
that are unhealthy. And if you do find yourself in this situation, do not pat
yourself on the back too quickly. A more stable system such as the one that
you have just engineered requires constant vigilance against the multitude of
destabilizing forces that present themselves every day.

How Different is Different?

So how different do my different average calculations need to be in order for
me to take action? Like most questions in Kanban, the answer to this one is,
“it depends”. The conclusions you draw and the actions you should take are
highly context specific.

One reason this question is difficult to answer is because the
Approximate Average Cycle Time calculation is just that: an approximation.
Therefore, some difference between the approximate and the actual is to be
expected. If the difference is about 10%, then you might not get too excited.
However, if the difference is 50%, then that might be a pretty good clue to
take action. Over time you will get a very good feel for what constitutes
“different” in your world.

Conclusion
Are you running a process Ponzi scheme? Do you even know?

If your process 1s unpredictable, one of the first places to investigate is
how much Flow Debt you are carrying. Think about what process policies
you can put in place to restore some stability to your system. If you believe
your system is not “ponz-ified”, what process policies can you institute to
ensure that your process remains stable?

Lastly, I want to say that I have tried very hard to steer clear of using
the term “Class of Service” (CoS) in this chapter. Many of you will have
figured out, however, that CoS is exactly what I am talking about. I
personally am not a big fan of the way CoS is normally touted in our
Lean/Agile/Kanban community. To be clear, [am not a fan not because CoS
is inherently bad, but because most teams do not know how to implement it
properly—nor do they understand what this improper implementation is
doing to their system’s predictability, performance, and/or risk management
ability. Those three goals, ironically, are usually the exact ones promoted to
justify the use of CoS.

Unfortunately, a deeper discussion of CoS and its perils will have to
wait until Chapter 13. That is because I need to move on to the more
pressing need of introducing the next of our flow analytics: the Cycle Time
Scatterplot.

Key Learnings and Takeaways

e Flow Debt is when Cycle Time is artificially reduced for some work
items in progress by “borrowing” Cycle Time from other work items in
progress.

e Some examples of scenarios that lead to the creation of Flow Debt are:

o Classes of Service

o Blockers

o Other order of pull policies in place (whether they are explicit or
not)

e Comparing the Approximate Average Cycle Time for work items on a
CFD with the exact Average Cycle Time for those work items
(calculated from the data) can give us an idea of whether Flow Debt is
being created or not.

e When the Approximate Average Cycle Time on your CFD is greater
than your actual Average Cycle Time then your process is
accumulating Flow Debt.

When the Approximate Average Cycle Time is less than your actual
Average Cycle Time then your process is paying off Flow Debt.

When the Approximate Average Cycle Time is roughly equal to your
actual Cycle Time then your process is stable from a Flow Debt
perspective.

Flow Debt leads to process unpredictability because by Little’s Law
Assumption #2 the work items that were allowed to artificially age
eventually will need to complete and leave the system. This artificial
aging leads not only to longer overall Cycle Times, but more variability
in your Cycle Time data.

PART THREE - CYCLE TIME
SCATTERPLOTS FOR PREDICTABILITY

Chapter 10 - Introduction to Cycle Time
Scatterplots

I spent a lot of time in the last several chapters talking about how
Cumulative Flow Diagrams can give you a good idea of how long it takes
for items to flow through your process on average. However, there are going
to be times when doing analysis based solely on average is not going to be
good enough (things like forecasting a completion date come to mind, for
example). Not to worry because we can do much better than analysis based
on averages anyway. This is where Scatterplots come in.

Scatterplots are a little less complicated than Cumulative Flow
Diagrams but that in no way diminishes their usefulness. What diminishes
their usefulness is, again, the misinformation and disinformation that has
been published about them. In fact, my guess is that until now you have
probably not come across the term “Scatterplot” in reference to Cycle Time
analysis. Rather, you have probably been told that you need to look at your
Cycle Time data in something called a “Control Chart”. Not true. I will talk
about why Control Charts are really not all that useful in our domain a little
later (please note that Statistical Process Control will not be covered at all in
this book). For now do not get hung up on confusing terms like “Control
Chart”. There is a much simpler and better way.

But before I get into the explanation about how to do basic quantitative
and qualitative analysis using Scatterplots, I need to make one thing clear
about how to read this chapter. For this discussion I am going to focus only
on how to chart the flow metric Cycle Time on a Scatterplot. In reality you
can put pretty much any metric that you want to in a Scatterplot. You can put
things like Throughput, bugs per feature, work items per epic, etc. For the
purposes of this chapter, however, whenever I say the word “Scatterplot”
without any qualifier, what I really mean is “Cycle Time Scatterplot” (if you
would like a refresher on how I am choosing to define Cycle Time, then
please revisit Chapter 2).

What is a Cycle Time Scatterplot?

Just as with the CFDs, it will first be beneficial to get a basic understanding
of a Scatterplot’s anatomy before diving into what these charts can tell us.

If you have never seen a Cycle Time Scatterplot before, then one is
displayed in Figure 10.1 for your reference:

Scaierplel

Figure 10.1: A Basic Cycle Time Scatterplot

As you can see from Figure 10.1, across the bottom (the X-axis) is
some representation of the progression of time. Like CFDs, the X-axis
essentially represents a timeline for our process. The tick marks on the X-
axis represents our choice of labels for that timeline. When labeling the X-
axis, you can choose whatever frequency of labels you want. In this
particular Scatterplot, we have chosen to label every month. However you
can choose whatever label is best for your specific needs. You can choose to
label every two weeks, every month, every day, etc.

I should point out that in Figure 10.1 I have chosen to show the timeline
progression from left to right. This is not a requirement, it is only a
preference. I could have easily shown time progression from right to left. I,
personally, have never seen a Cycle Time Scatterplot that shows time
progression from right to left, but there is no reason why one could not be
constructed that way. However, for the rest of this chapter (and this book), I
will show all Scatterplot time progressions from left to right.

Up the side (the Y-axis) of your chart is going to be some representation
of Cycle Time. Again, you can choose whatever units of Cycle Time that

you want for this axis. For example, you can measure Cycle Time in days,
weeks, months, etc.

To generate a Scatterplot, any time a work item completes, you find the
date that it completed across the bottom and plot a dot on the chart area
according to its Cycle Time. For example, let’s say a work item took seven
days to complete and it finished January 1, 2013. On the Scatterplot you
would go across the bottom to find January 1, 2013 and then go up and put it
a dot at seven days. Recall that for CFDs you could choose whatever time
reporting interval you wanted to plot your data. In a Scatterplot, however,
there is really no concept of a reporting interval. A dot is always plotted on
the day a given work item finishes.

Note that you could have several items that finish on same day with the
same Cycle Time. In that case, you would simply plot the several dots on top
of one another. Hopefully whatever tool you are using to plot your
Scatterplot can handle this case, and, further, can alert you to the instances
where you have several dots on top of each other. In the ActionableAgile™
Analytics tool, we signify this situation by putting a little number on the dot
to show there is more than one work item located at that point (as also
shown in Figure 10.1).

Over time as you plot more and more work item completions, a random
set of dots will emerge on your chart. The original diagram I showed you in
Figure 10.1 is a good example of what I am talking about. So how do we get
useful information off of a chart that just looks like a bunch of random dots?

Percentile Lines

The first thing that we can do to gain a better understanding of our process’s
Cycle Time performance is to draw what [would call “standard percentile
lines” on our Scatterplot. I should stress upfront that this standard percentile
approach is only a starting point—you will have every opportunity to change
these percentiles as you get a better understanding of your context. I would
argue, however, that these standard percentiles represent a good enough
place to start for most teams.

The best way to explain how to use standard percentiles on a Scatterplot
is by example. I want to refer you again to the chart shown in Figure 10.1.
Looking at this graph the first line that we could draw would be at the 50t
percentile of Cycle Times. The 50 percentile line is going to represent the
value for a Cycle Time such that if we draw a line completely across the

chart at that Cycle Time, 50% of the dots on the chart fall below that line and
50% of the dots are above that line. This calculation is shown in Figure 10.2
below.

Bealleiplid

; e 50th Percentile:
20 days

Bap 12012 Le. B ol k] R 1 ME2
Copyrant 214 Aenonatss Aghs 1 oy Sectarate e 15

Figure 10.2: The 50" Percentile Line added to a Scatterplot

In this example the 50™ percentile line occurs at twenty days. That
means that 50% of the work items that have flowed through our process took
twenty days or less to complete. Another way of saying that is that when a
work item enters our process it has a 50% chance of finishing in twenty days
or less (more on this concept a little later).

The next line that might be of interest to us is the 85" percentile. Again
this line represents the amount of time it took for 85% of our work items to
finish. In Figure 10.3 you can see that the 85" percentile line occurs at 43
days. That means that 85% of the dots on our chart fall below that line and
15% of the dots on our chart fall above that line. This percentile line tells us
1s that when a work item enters our process it has an 85% chance of
finishing in 43 days or less. This calculation is shown in Figure 10.3 below.

e Tims (D
2

Sep 1. 2013 Oct 1, 312 Hs 1. J0EY
Caporag s dgnanging bl B0 1T Tl etk g]

Figure 10.3: The 85 Percentile Line Added to a Scatterplot
Another line we might want to draw is the 95" percentile line. As
before this line represents the amount of time at which 95% of our work
items complete. In Figure 10.4 the 951 percentile line occurs at 63 days and
tells us that our work items have a 95% chance of finishing in 63 days or
less. This calculation is shown in Figure 10.4 below.

Beatteiphal

95th percentile:
63 days

Gap 1. 2112 Ol 1, 3012 Mo 1. 2012
Coprght MM Attt Agh I (705 Sacrabaages Do

Figure 10.4: The 95t percentile Line added to a Scatterplot

The 50, 85, and 95 percentiles are probably the most popular
“standard” percentiles to draw. Other percentiles that you will see, though,

could include the 30" and 70™. Calculating those percentiles is exactly the
same as | have just demonstrated with the others. A Scatterplot with all of

these percentile lines is shown in Figure 10.5 (note the 30" percentile is 11
days and the 70™ percentile is 32 days):

B ik

Bap t, 2002 O 1. 32 Mow 1, 2612
[EEEE LT P ——

Figure 10.5: 30“‘, 50“‘, 70"‘, 85“‘, and 95™ Percentile Lines all shown on a Scatterplot

I am sure you have noticed that as we increase our level of confidence
we have to increase the amount of time it takes for work items to complete.
This is due to the variability inherent in our process. We will spend a little
bit of time talking about variability later in this chapter. What we will see in
that discussion is that no matter how hard we try to drive it out, variability
will always be present in our system. But that is okay. It turns out that we do
need a little variability in order to protect flow. However, what we are going
to want to understand is how much of that variability is self-imposed, and
how much of that variability is outside of our control. The good news is that
I will give you ways to identify each of these cases and strategies with which
to handle them.

As I mentioned earlier, drawing these standard percentile lines is a good
start, but you can see that you can easily add or subtract other percentile
lines to your chart as you see fit. Which lines to draw is mostly going to be a
function of what you want to learn from your data.

Your Data is Not Normal

Many electronic tools will draw arithmetic mean and standard deviation
lines on their Scatterplots instead of drawing the standard percentile lines as
described above. That is to say, these tools will figure out the arithmetic
mean of all of their Cycle Time data and then first draw that horizontal line
on the chart. They will then compute a standard deviation for that data and
draw horizontal lines corresponding to the mean plus one standard deviation
and the mean minus one standard deviation.

They might go further and draw the +2 standard deviation and -2
standard deviation lines as well as the +3 standard deviation and -3 standard
deviation lines. They will call the top standard deviation line the “Upper
Control Limit” (UCL) and they will call the bottom standard deviation line
the “Lower Control Limit” (LCL). They will then call the resulting graph a
“Control Chart”. If you are using an electronic tool to track your process
maybe you have seen an example of a Control Chart.

You might have further heard several claims about these charts. First
you may have heard that on a Control Chart (as described above) 68.2% of
the dots fall between the plus one standard deviation line and the minus one
standard deviation line. They might further go on to say that over 99% of the
dots fall between the +3 standard deviation in the -3 standard deviation line.
You might have further heard that the reason you want to segment your data
this way is because this type of visualization will be able to tell you if your
process is in control or not (hence the name Control Chart). Any dots that
fall above the UCL or below the LCL, it is argued, signify the points in your
process that are out of control.

What is being called a Control Chart here is supposedly inspired by the
work of Walter A. Shewhart while employed at Bell Labs in the 1920s.
Shewhart’s work was later picked up by W. Edwards Deming who became
one of the biggest proponents of the Control Chart visualization.

There is only one problem. By using the method outlined above what
they have created is most certainly not a Control Chart—at least not in the
Shewhart tradition. What Shewhart Control Charts are and how to construct
them are way beyond the scope of this book, but just know that you should
be skeptical whenever you see someone show you something that is labeled
“Control Chart”—as it most certainly is not. While I am a big fan of
Shewhart’s work, I am not convinced that canonical Shewhart Control

Charts are applicable in a knowledge work world (I am not saying they are
definitely not; [am just saying I have not yet been convinced).

As these things usually go, the problem is much worse than you might
think. That tools vendors’ charts are most assuredly not Control Charts
notwithstanding, there still remains one (at least) fatal flaw with a pseudo
Control Chart approach. These charts—especially the calculations for the
UCLs and LCLs—assume that your data is normally distributed. I can all but
guarantee you that your Cycle Time data is not and will not be normally
distributed. We will talk briefly about how your data is distributed later (in
Chapter 10a), but just know that for now the conclusions based on the
standard deviation calculations above when applied to your non-normally
distributed data will be incorrect.

The use of this normal distribution method 1s so pervasive because that
is the type of statistics that that most of us are familiar with. One very
important consequence of working in the knowledge work domain is that
you pretty much have to forget any statistics training that you may have had
up until this point (for a great book on why we need to forget the statistics
that we have been taught read “The Flaw of Averages™). We do not live in a
world of normal distributions. But as we are about to see with Scatterplots,
that is not going to be a problem at all.

As a quick aside, you may have also heard the name “Run Chart” in
association with these diagrams. Again, the Scatterplots I am talking about
here are not Run Charts. A deep discussion of Run Charts is also beyond the
scope of this book. I am not saying that Run Charts are not useful, by the
way—far from it. I am just trying to be clear that this chapter’s Cycle Time
Scatterplots are most certainly not Run Charts.

Getting back to standard percentiles, there are at least three reasons why
I like those lines better than the dubious Control Chart tactic mentioned
above. First, notice that when I described how to draw the standard
percentile lines on a Scatterplot I never made one mention of how the
underlying Cycle Time data might be distributed. And that is the beauty of it.
To draw those lines I do not need to know how your data is distributed. In
fact, I do not care (yet). These percentile line calculations work regardless of
the underlying distribution.

Second, note how simple the calculations are. You just count up all the
dots and multiply by percentages. Simple. You are not required to have an
advanced degree in statistics in order to draw these lines.

Third, percentiles are not skewed by outliers. One of the great
disadvantages of a mean and standard deviation approach (other than the
false assumption of normally distributed data) is that both of those statistics
are heavily influenced by outliers. You have probably heard the saying, “If
Bill Gates walks into a bar, then on average everyone in the bar is a
millionaire”. Obviously, in the Bill Gates example, average is no longer a
useful statistic. The same type of phenomenon happens in our world.
However, when you do get those extreme Cycle Time outliers, your
percentile lines will not budge all that much. It is this robustness in the face
of outliers that is why percentile lines are generally better statistics for the
analysis of Cycle Time.

As I mentioned at the beginning of this section, chances are if you are
using an electronic tool for metrics that it will not show you a Scatterplot
view with percentile lines overlaid. So what are you to do? You can use a
tool like excel and generate the charts yourself. Or you can use the

ActionableAgile™ Analytics tool as it takes care of everything for you.

Conclusion

Randomness exists in all processes. One of the best ways to visualize the
randomness in your process is to put your Cycle Time data into a Scatterplot.
As with CFDs, a Cycle Time Scatterplot can yield vast amounts of
quantitative information (the qualitative side of Scatterplots will be
discussed in Chapter 11).

I mentioned at the beginning of this chapter that Cycle Time
Scatterplots are a great way to visualize Cycle Time data that goes far
beyond simple analysis by average. I hope that you are convinced of that
now.

I have only scratched the surface so far with regard to the quantitative
analysis of Scatterplots, but this should be enough to get you started. It is
enough, in fact, to allow us to switch gears and look at how qualitative
analysis of these charts might work.

However, before we get into the details of how to interpret Scatterplots,
I would like to take a short detour to discuss how to view the shape of your
Cycle Time data.

Key Learnings and Takeaways

Scatterplots are one of the best analytics for visualizing Cycle Time
data.
This type of visualization communicates a lot of quantitative and
qualitative information at a glance.
The anatomy of a Scatterplot is:

o The X-axis represents the process timeline.

o The Y-axis represents the Cycle Time for an item to complete.

o The labels and reporting intervals on the chart are at the sole

discretion of the graph’s creator.

A Cycle Time Scatterplot is not a Control Chart. It is not a Run Chart,
either.
One of the best ways to put some structure around Cycle Time
Scatterplot data is to draw percentile lines. Consider starting with the
50th 70t 85t and 95 percentiles.
Percentiles have the advantages of being easy to calculate, being
agnostic of the underlying data distribution, and not being skewed by
outliers.

Chapter 10a - Cycle Time Histograms

While the analysis of Cycle Time Histograms is technically an advanced
topic, I do want to discuss them briefly in the interest of completeness. The
good news is that you need not master this analysis to be successful with the
predictability concepts presented in this book.

So why even mention Histograms at all? I mention them here for two
reasons. First, Histograms are closely related to Cycle Time Scatterplots in
that they are really just another view of the same data shown on a
Scatterplot. And, second, a brief introduction to Histograms will be helpful
for other concepts I will introduce later (e.g., Classes of Service and
Forecasting).

As I have done so many times previously, I need to insert a disclaimer
at this point. For the purposes of this chapter whenever I say the word
“Histogram” without any qualifier, what I really mean is “Cycle Time
Histogram”. Further, this chapter is not meant to represent an exhaustive
treatment of these charts. For that I invite you to explore some of the books
listed in the Bibliography at the end of this book.

What is a Histogram?

Simply stated, a Histogram is graphical display of data that uses bars of
different heights to show the frequency of different data points within an
overall dataset. A Histogram is very similar to a bar chart with one important
distinction being that a Histogram groups population elements together in
ranges. An example Histogram is shown in Figure 10a.1:

Frequency (Work tems Done)
@
8

22
Cycle Time (Days)
e, Inc. (hip factonat

Figure 10a.1: An Example Cycle Time Histogram

Figure 10a.1 shows frequency on the vertical (or Y) axis and Cycle
Times on the horizontal (or X) axis. The advantage of this chart is that it
gives you an overall idea of the shape of the distribution of your underlying
data. Knowing this shape can give you some insight to the problem areas of
your process. You might be interested to know that in knowledge work, a
Histogram that shows Cycle Time usually looks much like what is shown in
Figure 10a.1. That is to say Histograms in our world usually have a big
hump on the left and a long tail to the right. Why this type of shape occurs in
knowledge work, whether it is a log-normal or a Weibull or some other
distribution, and what the shape is telling us are questions that have answers
that are beyond the scope of this introductory book. Just know that a deep
analysis is possible (and potentially very powerful).

Constructing a Histogram

Constructing a Histogram 1is rather straightforward. As I just mentioned, the
vertical axis of this chart is frequency and the horizontal axis represents the
ranges of intervals (or bins) that you are interested in. For a given data
population, you go through each element and every time a given data point
falls within a particular range, you increment the frequency of bin. The
height of the bins, therefore, represents the number of times that data points
of your dataset occurs within that range.

To illustrate, let’s consider the example of rolling four independent (but
equal) six-sided dice. In this example we will add up the face value on the
dice after each roll and plot them on a Histogram. The bins that we will use
for the horizontal axis will therefore be all the possible values for a given
roll. That is, since the smallest value for a given roll is four (four times one),
our bins will start at four. Since the highest possible value is twenty-four
(four times six), then our bins will end at twenty-four. We will have one bin
for each possible value between four and twenty four. Figure 10a.2 shows
the Histogram after ten, one hundred, and five thousand rolls, respectively
(please note that these Histograms were not generated with the

ActionableAgileTM Analytics tool).

486
12

= 405
o 3
8 ¢ S 34
] @
2 6 S 243
| I I I I o I |
3
81 I I
II II 0 .II I l 0 -II Il-,

1 13 15 8 10 12 14 16 18 20 22 24
9 10 11 12 13 14 15 16 17 18 10 12 14 16 18 20 22 9 11 13 15 17 19 21 23
outcome outcome outcome

Aouenbe Jj
auenbey
(o]

J

Figure 10a.2: Rolling Dice Histogram (10 trials, 100 trials, and 5000 trials, respectively)
The thing to note about Figure 10a.2 is that as the number of trials
increases, the shape of the distribution sharpens. In other words, more data is

usually better than less data when it comes to visualization (but do not be
fooled into thinking you need massive amounts of data to be successful with
a statistical approach).

Just like the experiment of adding up the results of rolling four, equal,
six-sided dice produced random results that could be plotted as the
Histograms shown in Figure 10a.2, so your process will generate random
Cycle Times that can be displayed in a similar manner. Figure 10a.1 is one
such example. Again, the lesson here is that the more data you have, the
sharper the picture you get.

As I said in the introduction, a Histogram is simply another way to plot
the data contained with the Scatterplot. As such, we can place percentile
lines on them in much the same way that was explained in Chapter 10.
Figure 10a.1 shows an example of this.

Having both views with the same percentiles is useful because both
views serve different purposes. The Scatterplot is a temporal view of data
that can show trends of dots over time. A Histogram is a condensed, spatial
view based on the frequency of occurrence of Cycle Times. Looking at the

Scatterplot in Figure 10.1 it may not be obvious that the shape of the data is
that in Figure 10a.1. Likewise, looking at the Figure in 10a.1 you may not be
able to detect any patterns of Cycle Times over a given timeline.

Conclusion

Though short, my hope is that this chapter has given you some insight as to
why you might want to look at your Cycle Time data in the analytical chart
known as a Histogram. I took this detour as I wanted to make sure you had
this introduction given that I am going to leverage these charts to explain
key concepts in the following chapters.

Now that we have checked Histograms off of our list, it is time to get
back to the more pressing matter of how to interpret the data displayed in a
Scatterplot.

Key Learnings and Takeaways

e A Histogram is a graphical display of data that uses bars of different
heights to show the frequency of different data points within an overall
dataset.

e The Histogram is a condensed, spatial view that shows the shape of the
underlying Cycle Time data while the Scatterplot is a temporal view of
data that can show trends of dots over time.

e Histograms can be used for more advanced Cycle Time analysis and
forecast modeling techniques.

Chapter 11 - Interpreting Cycle Time Scatterplots

One of the great advantages of a Scatterplot is that it allows us to visually
detect trends in our process’s Cycle Time over time.

But before we get started, I want to expressly callout the maxim that I
have repeated over and over until now:

,J Your policies shape your data and your data shape your policies.

I mention this again because as you read through the explanations of
some of the Scatterplot patterns that follow, you will quickly realize that
most of these results are due to policies that are explicitly under the team’s
control. If you see some anomalies creep into your data, then the first thing
you should ask yourself is “What policy (either explicit or implicit) do we
have in place that is causing our data to look like this?”” Use that data to
suggest changes to process policies and then verify the change had the
intended effect by further collecting and re-examining future data.

The rest of this chapter will be devoted to taking a closer look at some
of the trends and patterns that may appear on your Cycle Time Scatterplot.

The Triangle

A triangle-shaped pattern as shown in Figure 11.1 will appear in any
situation where Cycle Time increases over time.

S allnipiod

Figure 11.1: A Triangle Pattern on a Scatterplot

Notice how the dots in the above Scatterplot (Figure 11.1) form a
pattern that looks something like a triangle. Explaining this phenomenon is
going to require us to review the fundamental property of Scatterplots: dots
do not actually show up until a work item has finished. The items that have
longer Cycle Times are going to need an extended period before they appear
on the chart. That means that the longer the Cycle Time (the dot’s Y-
component) the longer the amount of time we are going to have to wait (the
dot’s X-component) to see that data point.

There are two major cases to consider whenever you see this pattern
emerge on your Scatterplot. The first is when arrivals exceed departures, and
the second is the accumulation of Flow Debt.

For the first major case, let’s consider the context where a project starts
from zero WIP. Whenever you start with an empty process it is going to take
time to “prime the pump”. Obviously, in those early stages work will be
pulled in faster than it departs—even if we are limiting WIP. We are going to
need time for each workflow step to fill up to its capacity and get a
predictable flow going. Once that stable flow occurs, then the expectation is
that the triangle will eventually flatten out into a more predictable
arrangement.

Haree Carradaiwe Fics SB-aﬂBFplﬂf HEfogam Proecion Ence Daia -

120

Cyele Time (Days)
%

— .lth . .
o,
"!"3 . e

5 -
T

™

%] ..

-
&]
-

L] @
Jut 1, 2012 Aug 1, 2012 Sep 1, 2012 011, 2012
Cogreight 204 Actioeiabie Agie, Inc (i Macsonsbisagie com)

Figure 11.2: Triangle Pattern that Flattens Out

In Figure 11.2 you can see how the dots form a triangle up until about
the beginning of September, but then flatten out as the process stabilizes.

If you have the case where WIP never gets to zero, then a triangle will
form whenever you have a nontrivial period of time where the top line and
bottom line on your CFD diverge (see Figure 7.5). The pattern in Figure 11.1
could be due to the fact that for almost the whole project, this team did not
control WIP. As we said over and over in previous chapters, increased WIP
leads to increased Cycle Times. Not controlling WIP will only cause Cycle
Times to get longer and longer and longer.

The second major reason that a triangle pattern might emerge on your
Scatterplot is a process that is dominated by Flow Debt. Remember from
Chapter 9 that Flow Debt accrues any time that items are left to age
arbitrarily. Aging of items could be due to blocks, too much WIP (as in the
case above), or poor (or misunderstood) pull policies. Even if a team
explicitly controls WIP, Flow Debt can occur. Flow Debt can therefore easily
explain the emergence of a triangle. The items at the bottom of the triangle
were those items that were pulled preferentially through the process (for
whatever reason) whereas items toward the top of the triangle were left to
age unnecessarily (again, for whatever reason). If Arrival Rate and

Departure Rate are matched, then the only way you will not see a triangle on
your Scatterplot is if you control Flow Debt.

Clusters of Dots

The second type of pattern that might emerge 1s an obvious clustering of
dots on your Scatterplot. Consider, for example, the following chart in
Figure 11.3:

Se v plod

TEE

a1 00 M, TR Bl 1, e

Coppright 204 Aotonacks b Inc (V55 o damagie 20

Figure 11.3: Clusters on a Scatterplot

Note the clusters of dots at the beginning of October 2008 (around the
middle of Figure 11.3) and at the end of July 2009 (the lower right side of
Figure 11.3). As with all of these analytics, the point is to get to the point
where you can ask the right questions sooner. So, when we see clusters of
dots like in Figure 8.11, we are at the very least going to want to ask “what’s
going on here?”” That should probably quickly be followed by “is this a good
thing or a bad thing?” If it is bad, what can we do about it?

By the way, not all clusters of very low Cycle Times are good. Look at
the cluster of dots for July 2009 again in Figure 8.11. What do you think
might be causing our Cycle Times to have decreased so radically? Are you
only thinking of good reasons? What might be some bad reasons that would
cause this to happen? One sinister reason that I see all too often is mandatory
overtime. It stands to reason that if your normal data is based on 8 hour days
and 5 day work weeks that moving to 12 hour days and 7 day work weeks

et 1

A 1, 00 i

will probably make your Cycle Time look better (assuming, of course, that
you continue to limit WIP!). But is that a good thing? I know most managers
would say yes. I would say otherwise. And from a predictability perspective,
it is terrible. Not only are long periods of mandatory overtime not
sustainable but it also skews our data. Do you really want to be offering an
SLA or making a forecast with mandatory overtime as one of the upfront
assumptions that is baked in? If your answer to that question is “yes”, then
this book 1s not for you.

Gaps
Gaps in the dots on your Scatterplot means that no work items finished in
that particular time interval. These gaps will directly correlate with the same
time period that a flat section appears on the bottom line of your CFD. Flat
lines on the CFD mean nothing completed; if nothing has completed then no
dots will show up on your Scatterplot. Further, the cause of these gaps is the
same reasons that CFD Throughput flattens out: public holidays, external
blockers, batch transfer, etc.

Batch transfer bears some more exploration. It is not uncommon for a
Scrum team to generate a Scatterplot that looks like Figure 11.4:

e sl

%

a2 2002 &, 2 & 38, 23 dal T3 M0ED &l 3, 2T Ay B30T da 11 20D
Ot e ZU0 4 R B P T e AT

Figure 11.4: Batch Transfer on a Scatterplot
The stacks of dots that you see here are at the sprint boundaries when

there is a mad rush to complete work items. But look at how the data thins

out between those stacks. Is this a good thing or a bad thing? Either way,
what impact is this having on our predictability? If you think it is a bad
thing, what might you do change that?

You might be surprised that I have not talked much about variation in
this chapter. The truth is that I am not going to talk all that much about
variation here. A full treatment of variation is well beyond the scope of this
book (and has already been accomplished by much greater minds than
mine). Further, understanding variation is more of a “thinking” thing rather
than a “tool” thing. I believe that it is mostly impossible to classify variation
of your data into things like “special causes” or “common causes” simply by
looking at a Scatterplot (at least as I have described them here). Rather, my
only two immediate goals are (1) to discuss some patterns that may appear
on your Scatterplot, and (2) to get you to start asking some questions about
why those patterns may have emerged.

Internal and External Variability

I began this chapter by suggesting that a Scatterplot just looks like a random
collection of dots on a chart. The reason that Scatterplots look the way they
do 1s because of the variation that exists in your process. The first thing to
know about variation is that it will always exist. From a predictability
perspective, the point is not to always try to drive variation out; rather, the
point will be to understand the causes of that variation in an attempt to make
your process more predictable.

For example, take a look at Figure 11.5:

Figure 11.5: An Example Scatterplot

At first glance you might be inclined to dismiss those dots at the top of
the Scatterplot as outliers. You might question the value of including them
since they are clearly one-offs. You might even (if you did not like yourself
very much) do some further quantitative analysis to prove that those dots are
not statistically significant. And you know what, if you made those
assertions then I probably would not argue with you too strenuously. I would
say, though, that while those points are outliers, they obviously happened
and probably warrant some deeper investigation. I would also say that, while
potentially statistically insignificant, there might be some good contextual or
qualitative reasons to keep them in from an analysis perspective.

To illustrate this point, consider what the chart in Figure 11.5 is
communicating to us. The 50 percentile of Cycle Time is 20 days and the
85t percentile is 44 days. But you can see there is a work item on this chart
that took 181 days! Can you think of some reasons that would have caused
that particular work item to take so long? Maybe the team had a
development dependency on an external vendor or a dependency on some
other internal development team. Maybe the team did not have a test
environment immediately available to them. Maybe the customer was not
immediately available for sign-off. The shared theme for all of these reasons
1s that those work items took so long to complete due to reasons outside of
the team’s control. And that is generally what you will find as you move “up

the stack” of dots on a Scatterplot. More often than not, those outliers will be
caused by circumstances that are outside of the team’s control.

The opposite is also generally true. As you move “down the stack” the
work items that took less time to complete were generally due to reasons that
were totally under the team’s control. For example, reconsider that work
item that I just mentioned that took 181 days to complete. Do you really
think that item would have taken 181 days if it was totally under control of
the team that was working on it? Maybe, but probably not. Additionally,
look at those dots that just barely violated that 851 percentile line. Do you
think that there were things that the team could have done to ensure that the
violation did not happen? Probably (swarm or break up the item are two
ideas that come immediately to mind).

I hope that you are getting a feel for the type of variability analysis that
[am asking you to perform with these Scatterplots. Will all outliers be due to
external causes? Certainly not. Maybe the team allowed an item that ended
up being too big into the process. Maybe the team ignored an item once it
had been pulled. Likewise, will there be external issues hiding in the shorter
Cycle Times? Almost certainly. But at least I have shown you how to use a
Scatterplot with percentile lines to begin the conversations about how to
address those issues. Further, the more you adhere to the assumptions of
Little’s Law, the more confident we can be that the “up the stack™ dots are
due to outliers, and the “down the stack” dots are due to team policies.

Lastly, I have tried very hard not to use the language of the theory of
variation (e.g., “special cause” and “common cause’) as well as I have tried
very hard not to use the language of Statistical Process Control (SPC). Not
that [have anything against those approaches. Quite the opposite, in fact. I
hold in very high regard the work of Shewhart and Deming. However, for
most people and most purposes, going down an SPC path leads to academic
debates about how to distinguish common cause from special cause, such as
arguing over what specific statistical technique you should use for
determining the upper and lower control limits (as discussed previously).
These types of debates only serve to cause confusion and miss the point of
what we are trying to accomplish anyway. Use the Scatterplot as a powerful
way to visualize variation. But do not think it will magically categorize that
variation for you. You are still going to have to inspect the dots, shapes, and
patterns that emerge on your diagram. In other words, you are still going to
have to think for yourself in order to get more predictable.

Conclusion

As with CFDs, the real purpose for analyzing a Cycle Time Scatterplot is to
learn. To learn you should ask some familiar questions. “What’s going on
with our Cycle Time?” “Is what’s going on a good thing or bad thing?” “If
good, how can we keep doing it?”” “If bad, what interventions could make
things better?”” A Scatterplot not only gets you to asking the right questions
sooner, but will also suggest the right actions to take for increased
predictability.

There are many things that contribute to the random scattering of dots
present on most Scatterplots. You may have been surprised to find out that
most of the causes of randomness are things we do to ourselves (well, maybe
not so surprised had you been reading closely until now).

Now that we have a decent understanding of what Scatterplots are and
how to interpret them, it is time to move on to how we might use our
newfound knowledge to enhance our predictability via the Service Level
Agreement.

Key Learnings and Takeaways

e The policies that you have in place will greatly influence the patterns
and trends of dots that appear on your Scatterplot.

e Some qualitative things to look for on Cycle Time Scatterplots:

A triangle pattern that never flattens out

Clusters of dots (either high or low)

Long periods of gaps in the data

Extreme outliers

Dots that just cross a give percentile line

O O O O O

Chapter 12 - Service Level Agreements

In Chapter 10 I explained how to use percentile lines as an aid to analyzing
Scatterplot data. But what exactly are the percentile lines telling us?

To answer this question, we must first revisit some principles from the
previous section. Recall that in one of the chapters on the Conservation of
Flow (Chapter 8) I talked about the principle of just-in-time commitment.
Just-in-time commitment helps us to balance the demand on the system with
the system’s capacity. However, there is a direct consequence of
implementing this methodology. The other dimension of deferred
commitment that does not really get talked about all that much is the
necessity that we must—at the time of commitment—also communicate to
our customers a date range and confidence level for each and every
committed-to work item. For example, when we pull an item into our
process we might tell our customers that we expect that item to flow all the
way through to completion in fourteen days or less with 85% confidence
level.

These date ranges and confidence levels are normally published as part
of process visualization and are commonly known as “Service Level
Agreements” or SLAs. Now, I personally hate the term SLA (I think Deming
would too). SLA sounds too much like the language of formally negotiated
contracts with penalties for nonconformance. That is really not what we are
talking about here. What we are talking about is a reasonable expectation of
service that a team is committing to for a particular item. A team or an
individual should not be punished for missing these commitments (recall that
I talked earlier about the term commitment with a small “c’’). Rather, the
team should take any missed SLA as an opportunity to learn. Why did we
miss the SLA? Is there anything we can to do prevent that happening in the
future?

Better nomenclature for the concept of a SLA, in my opinion, is
“Service Level Expectation” or “Cycle Time Target”. However, as SLA is
the term most commonly used in our industry then I am going to adopt that
vocabulary myself for our purposes in this chapter.

The way we determine what date range and confidence level that we
can reasonably commit to is by looking at the percentile lines on our
Scatterplot.

To explain, I want to refer you back to Figure 10.5. You can see in this
diagram that the 50" percentile for the Cycle Times is 20 days, the 851
percentile is 43 days, and the 95 percentile is 63 days. That means that any
item that enters our process has a 50% chance of finishing in 20 days or less,
an 85% chance of finishing in 43 days or less, or a 95% chance of finishing
in 63 days or less. Armed with this information we can sit down with our
customers and ask them what kind of confidence level they would be most
comfortable with. If they are ok with us missing our commitments 50% of
the time, then the team would choose 20 days at 50% as its SLA. If,
however, they want a greater confidence in terms of the team meeting its
commitments, then the team may choose to go with an SLA of 43 days at
85%. To reiterate, the choice of a team’s SLA should be made 1n close
collaboration with their customers.

While there is no hard and fast rule on this, it is been my experience
that most teams start out at the 85 percentile as their SLA. The goal of the
team then should be to first meet that SLA at least 85% of the time (true
predictability) but then also to bring down the total number of days that the
85 percentile represents over time. Part of process improvement is going to
be to shift all the percentile lines down as much as possible (but no further!).
A wider spread in those lines means not only a higher number of days that
we must communicate for our SLA, but it also means that our process is
suffering from more variability. Both of those things decrease our overall
predictability.

Take the following example of Figure 12.1:

Sealleipid

B

Ciycta Tirrs | Dy

il

Qi 0 A Ot 11, et Ot 12 2041 G 13 HA R Cud 14, 2841 D 5, 2844 Or 18, 201 Coatf AT, 314 [RLE o
Coppght 26 donasstss bghe. It (1735 (b0 iwbeagin o)

Figure 12.1: A Wider Spread in Percentiles

In Figure 8.6 the 50 percentile for the chart is 20 days, the 70t
percentile is 25 days, the 85™ percentile is 54 days, and the 95" percentile is
75 days. Think for a second about what an interesting conversation this
would be when we present this data to our customers. At a 70% confidence,
the team would require a 25 day or less SLA. But to go to an 85%
confidence—that is just a 15% increase in confidence—the team would have
to more than double their SLA from 25 days to 54 days! This particular
example is taken from a real world client of mine and, in this instance, the
customer chose the 70% SLA to start out. Interestingly enough, though, the
team, by implementing the strategies outlined in this book, was able to shift
all of those percentile lines down over the course of the project such that by
the end, the 85% percentile was now 25 days—exactly what the 70%
percentile had been just months before. The team removed unnecessary
variability, and, by definition, became more predictable.

I have just explained how to use standard percentiles to establish an
SLA, but you might question, “How do I know if these standard percentiles
are the right ones to use for my context?” Great question. The answer is that
if you are just starting out, then those standard percentiles are most likely
good enough. How you might detect if you need to move to another
percentile more suitable for your specific situation is a more advanced topic
that will need to wait for my next book. The point is that there is no hard and

fast rule in terms of what percentile numbers to use. All I can say is begin
with these standard ones and experiment from there.

Another question you might ask is, “How many data points do I need
before I can establish an SLA?”” The answer to that is—as always—
dependent on your specific context. But I can tell you it is probably less than
you think. As few as maybe 11 or 12. Probably no more than 30. The bigger
question is in terms of quality not quantity. Instead of considering the
number of dots, one question you may ask yourself is how well is your
process obeying the assumptions of Little’s Law in the producing those
Cycle Times? The better you are at adhering to those assumptions, the fewer
data points you will need. If you consistently violate some or all of the
assumptions, then almost no amount of data is going to provide you a
confidence level that you can be comfortable with.

The last thing I want to say about SLAs is that there are generally three
mistakes [see when they are set. Those mistakes are:

1. To set an SLA independent of analyzing your Cycle Time data.

2. To allow an SLA to be set by an external manager or external
management group.

3. Set an SLA without collaborating with customers and/or other
stakeholders.

For the first point I want to say that there is nothing (necessarily) wrong
with choosing an SLA that is not supported by the data. For example, let’s
say your data communicates that 851 percentile is 45 days. It would
technically be ok to publish an SLA of 35 days at 85%. But at least make
that decision in context after having reviewed what your Scatterplot is telling
you.

The second mistake should be obvious, but it is worth reiterating. The
whole point of an SLA is not to beat a team into submission or to punish
them when they miss their commitments. Since it is the team who is making
the commitment, it should be the team that chooses what that commitment
point is. The only other party that should be involved in the decision to set
an SLA should be a customer and/or other stakeholder.

Which brings me to the last point. We are nothing without our
customers. As stated in Chapter 1, they are the whole reason for our
existence. It is our professional obligation to design a process that works for
them. Therefore, our customers should have a seat at the table when

discussing what commitment confidence level is acceptable. They may
surprise you. They may opt for a shorter Cycle Time SLA with a higher
uncertainty. They may be fine with a longer Cycle Time SLA if that means
greater certainty. Our customers and stakeholders almost certainly have
contextual information that we do not that will have some bearing on our
choice of an SLA. Listen to them.

SLAs for Different Work Item Types

In the chapter on Cumulative Flow Diagrams (Chapter 4), I talked about the
strategy of filtering on different work item types to generate different views
of your data. The same approach is available for us to use on Cycle Time
Scatterplots. Let’s say we had a dataset that included the work item types of
user stories, defects, and maintenance requests. With this data we could
generate a Scatterplot and corresponding percentile lines for the data that
included all three work items. Or we could generate a Scatterplot that
included data for just the user stories. Or one that included just the defects,
or one for just the maintenance requests, or for some combination thereof.
As with CFDs, any one of these data segmentations—and their
corresponding analysis—is perfectly valid.

But why might we want to segment our data in this way? There are at
least two answers to this question. The first might be that you have tagged
the items that did not finish “normally” (e.g., were abandoned) and want to
filter your data to show only those. Displaying only the abandoned items
would give you a good visualization as to the time wasted on those activities.
That might give rise to questions and conversations about how to minimize
those occurrences.

The second reason for segmenting is that the Cycle Time percentiles for
a Scatterplot consisting of data for only the work item type of “story” are
probably going to be much different from the Cycle Time percentiles for a
Scatterplot consisting of data for only the work item type of “defect”.
Segmenting our data this way would allow us—if we wanted—to offer
different SLAs for different work item types. For example, our SLA for user
stories might be 14 days at 85% but for defects it might be five days at 85%.

I am reluctant to discuss this SLA segmentation now, because you have
to be very careful here. Remember that all the assumptions of Little’s Law
still apply. If you are going to offer different SLAs for different work items

types, then you have to you have to ensure that all the assumptions for
Little’s Law for each and every subtype are adhered to.

Offering different SLAs for different work item types is a fairly
advanced behavior. If you are just starting out with flow principles, I would
highly recommend just setting one global SLA for all your work items types
and get predictable that way first. Ignore “conventional wisdom™ that you
have to design in things like Classes of Service up front and offer different
SLAs for those different Classes of Service immediately. To put it delicately,
I believe this type of advice is misguided (a fuller treatment of Class of
Service and its dangers is presented in Chapter 13). If you are new to these
metrics, begin by applying the principles presented in this book and then
measure and observe. Get predictable at an overall system level first. You
may find that is good enough. Only optimize for subtypes later if you really
need to.

Right-Sizing

One last thing about percentiles and SLAs. Remember that in Chapter 8 |
talked about the concept of just-in-time commitment and about how
operating a pull system allows us to defer commitment to the last responsible
moment. In that chapter I also talked about the consequence of deferring
commitment is that we need to do what we can to make sure that—once
committed to—an item has the best possible chance of flowing through the
system to completing. One of those things we need to do is to perform a
“right size” check on the item.

Before you ask, right-sizing does not mean you do a lot of upfront
estimation and planning. Remember, this book emphasizes measurement and
observation over estimation and planning. The SLA we have chosen is the
measurement we are looking for. In other words, the SLA will act as the
litmus test for whether an item is of the right size to flow through the system.
For example, let’s say we have chosen an SLA of fourteen days at 85%.
Before a team pulls an item into the process, a quick question should be
asked if the team believes that this particular item can be finished in fourteen
days or less. The length of this conversation should be measured in seconds.
Seriously, seconds. Remember, at this point we do not care if we think this
item is going to take exactly five days or nine days or 8.247 days. We are not
interested in that type of precision as it is impossible to attain that upfront.
We also do not care what this particular relative complexity is compared to

the other items. The only thing we do care about is we think we can get it
done in 14 days or less. If the answer to that question is yes, then the
conversation is over and the item is pulled. If the answer is no, then maybe
the team goes off and thinks about how to break it up, or change the fidelity,
or spike it to get more information.

Some of you out there may be arguing that right-sizing is a form of
estimation. I would say that you are probably right. I never said that all
estimation goes away. All I said was that the amount and frequency with
which you do estimation will change. Think about all the time you have
wasted in your life doing estimation. Think about all the time wasting in
“pointless” debates of whether a story is two points or three points. Using
these percentiles is a means to get rid of all of that. Measuring to get an SLA
allows us to adopt a much lighter approach to estimation and planning. To
me, this 1s one of the biggest reasons to gather the data in the first place.

Percentiles as Intervention Triggers

There is still another reason to look at our Cycle Time data percentiles as
they pertain to SLAs. And to understand this other reason, we need to first
talk about life expectancy.

According to a life expectancy calculator at WorldLifeExpectancy.com
(at the time of this writing), a female born in the United States has a life
expectancy of 85.8 years at the time of her birth. If she lives to be 5 years
old, her life expectancy goes up to 86.1 years. If she lives to be 50, her life
expectancy becomes 87.3 years. And if she lives to be 85 (her life
expectancy at the time of her birth), her new life expectancy jumps to 93!
This data is summarized in the following table:

fgia Life Expec.tancy at that
Age (in Years)
Birth 85.8
5 86.1
50 87.3
85 93

Figure 12.2: Life Expectancies at Different Ages
It is a little known fact that the older you get, the longer your life
expectancy is. That is due to the fact that the older you get the more things
you have survived that should have killed you.

The exact same phenomenon happens with Cycle Time. Generally
speaking, the older a work item gets, the greater chance it has of aging still
more. That is bad. Remember, delay is the enemy of flow!

This 1s why it 1s so important to study the aging of work items in
progress. As items age (as items remain in process without completing), we
gain information about them. We need to use this information to our
advantage because, as I have said many times before, the true definition of
Agile is the ability to respond quickly to new information. To paraphrase
Don Reinertsen, this new information should cause our tactics to change.
The percentiles on our Scatterplot work as perfect checkpoints to examine
our newfound information. We will use these checkpoints to be as proactive
as possible to insure that work gets completed in a timely and predictable
manner.

How does this work? Let’s talk about the S0 percentile first. And let’s
assume for this discussion that our team is using an 85" percentile SLA.
Once an item remains in progress to a point such that its age is the same as
the Cycle Time of the 50 percentile line, we can say a couple of things.
First, we can say that, by definition, this item is now larger than half the
work items we have seen before. That might give us reason to pause. What
have we found out about this item that might require us to take action on it?
Do we need to swarm on it? Do we need to break it up? Do we need to
escalate the removal of a blocker? The urgency of these questions is due to
the second thing we can say when an item’s age reaches the 50 percentile.
When we first pulled the work item into our process it had a 15% chance of
violating its SLA (that is the very definition of using the 85™ percentile as an
SLA). Now that the item has hit the 50 percentile, the chance of it violating
its SLA has doubled from 15% to 30%. Remember, the older an item gets
the larger the probably that it will get older. Even if that does not cause
concern, it should at least cause conversation. This is what actionable
predictability is all about.

When an item has aged to the 70 percentile line, we know it is bigger
than more than two-thirds of the other items we have seen before. And now
its chance of missing its SLA has jumped to 50%. Flip a coin. The
conversations we were having earlier (i.e., when the item hit the 50
percentile line) should now become all the more urgent.

And they should continue to be urgent as that work item’s age gets
closer and closer to the 85™ percentile. The last thing we want is for that

item to violate its SLA—even though we know it is going to happen 15% of
the time. We want to make sure that we have done everything we can to
prevent a violation occurring. The reason for this is just because an item has
breached its SLA does not mean that we all of a sudden take our foot off the
gas. We still need to finish that work. Some customer somewhere is waiting
for their value to be delivered.

However, once we breach our SLA we are squarely in unpredictable
land because now we cannot communicate to our customers when this

particular item will complete. For example, take a look at the figure below
(Figure 12.3):

B sl phd

Figure 12.3: The Danger of Breaching an SLA
You can see in this chart that the 85 percentile is 43 days. But there is
an item in late October that took 181 days to finish (do you see that isolated
dot right at the top of the chart?). That no man’s land between 43 days and
181 days (and potentially beyond) is a scary place to be in. We want to do

whatever we can not to have items fall in there.

Conclusion

SLAs are one of the most important and yet least talked about topics in all of
Lean-Agile. SLAs not only allow teams to make commitments at the
individual work item level, but they also give us extremely useful
information about when teams need to intervene to ensure the timely

completion of those items. Further, if a team follows all of the principles
presented in this book, then the SLA can be used as a substitute for many
upfront planning and estimation activities.

I began Chapter 11 by discussing how most of the reasons why we are
not predictable is due to things under our control that we do to ourselves.
One of the most common things we do to ourselves that hinders our
predictability 1s not pay attention to the order in which items are pulled
through our process. This problem is so common that I will devote the
entirety of the next chapter to discussing its perils.

Key Learnings and Takeaways

e Use your Scatterplot’s percentiles to collaborate with your customers in
choosing a Service Level Agreement for your process (other terms for
Service Level Agreement could be Service Level Expectation or Cycle
Time Target).

e As with CFDs, it is possible to segment your data by type. You might
choose to do this to offer different SLAs for different work item types
n your process.

e SLAs allow for commitment (and estimation) at the work item level.

e SLAs provide a sense of urgency to items that have been committed to.

e You can also use Cycle Time data percentiles as a guide for “right-
sizing” items that come into your process. Use this right-sizing as a
shortcut for estimation.

e Comparing an item’s age to its SLA can provide useful information
about when to make an intervention to ensure timely completion.

PART FOUR - PUTTING IT ALL TOGETHER
FOR PREDICTABILITY

Chapter 13 - Pull Policies

Most airports around the world allow access to the flight departure area if a
person can prove that he is a passenger who is indeed flying that day. This
proof usually takes the form of a valid boarding pass and a valid
government-issued ID.

The United States is no exception to this rule. In the U.S., the
Transportation Security Administration (TSA) is responsible performing
passenger checks. TSA agents are stationed right before security and
passengers wishing to get to the departures area must first check-in with
these agents.

Many small airports in the U.S. staff only one TSA agent to perform
traveler validation. At those small airports during busy periods, quite a long
queue will form in front of the sole agent. Little’s Law tells us that as more
and more people join the queue, those people can expect to wait for longer
and longer amounts of time to get through the checkpoint (on average). In
this scenario, if you are a regular passenger, do you see the problem with
predictability?

It gets worse.

In an attempt to streamline the process for what are considered low-risk
passengers, the TSA has introduced something called “TSA Pre-check”
(TSA Pre). Passengers who are certified as TSA Pre do not have to go
through the whole security rigmarole of taking off shoes, taking off belts,
taking off jackets, and removing laptops. That is great if you are TSA Pre.
The problem is that you still have to go through the upfront TSA passenger
validation outlined previously. However, the TSA has attempted to solve this
problem by establishing a different lane for TSA Pre passengers to queue in
to get their credentials checked. So now there are two lanes for two different
types of passenger: a first lane called TSA Pre (as I have just mentioned) and
a second lane that I am going to call “punter”. In the small airports,
unfortunately, there is still usually only one upfront, credential-checking
agent to serve both of these lines. The TSA’s policy is that whenever there is
a person standing in the TSA Pre line, that the agent should stop pulling

from the punter queue and pull from the TSA Pre queue. See a problem with
overall predictability yet?

It gets worse.

In addition to a separate TSA Pre lane there is usually a separate
“priority lane” for passengers who have qualified for elite status on an
airline. These passengers still have to go through the same security checks as
the other punters, but they do not have to wait in a long line to get the
upfront ID check. To be clear, this is technically not a TSA thing, it is
usually an airport/airline thing. However, at those small airports, it is the
single TSA agent’s usual policy to look at the TSA Pre line first. If there is
no one there, she will look at the priority lane next and pull people from
there. Only if there is no one in the TSA Pre or priority queue will the agent
start to pull again from the punter line. See a problem yet?

It gets worse.

As I just mentioned, everyone who wants to get air side at an airport
must go through this upfront ID check. Everyone. This includes any and all
airline staff: pilots, flight attendants, etc. Crew members can usually choose
whatever line they want to get their credentials checked (TSA Pre, Priority,
or punter). Further, once they are in those lines, the crew are allowed to go
straight to the front of their chosen queue regardless of how many people are
ahead of them. At those small airports, the sole TSA agent first looks to see
if there are any airline crew in line. If none, then they look to see if there are
any TSA Pre passengers. If none, then they look to see if there are any
priority passengers. If none, then they finally pull from the punter line. See a
problem yet?

If you are in the punter line, guess what you are doing while that lone
TSA agent pulls passengers from those higher priority queues? You got it:
waiting. What do you think this is doing to the predictability of the punter
queue? In other words, how many assumptions of Little’s Law have been
violated in this airport scenario? Is Little’s Law even applicable here?

Class of Service

This airport screening example is a classic implementation of a concept
known as Class of Service (CoS):

’ A Class of Service is a policy or set of policies around the order in which work items
J are pulled through a given process once those items are committed to (i.e., once those
items are counted as Work In Progress).

That 1s to say, when a resource in a process frees up, CoS are the
policies around how that resource determines what in-progress item to work
on next. There are three subtleties to this definition that need to be addressed
up front.

First, a Class of Service is different than a work item type (I spoke
about how to segment WIP into different types in Chapter 2). This point can
be very confusing because many a Kanban “expert” uses these two terms
interchangeably. They are not. At least, not necessarily. We can choose to
segment our work items into any number of types and there is no
prescription as to what categories we use for those types. Some previous
examples I have given for work item types are user stories, defects, small
enhancements, and the like. You could also segment work items into types
using the source or destination of the work. For example, we could call a
unit of work a finance work item type, or we could say it is an external
website work item type. Or we could call a unit of work a regulatory work
item type or a technical debt work item type. The possibilities are endless.
And, yes, one of the ways you could choose to segment types is by Class of
Service—but you do not have to. I have always thought a better way to
apply CoS is to make it a dimension of an existing type. For example, a
work item of type user story has an expedited CoS, a work item of type
regulatory requirement has a fixed date CoS. But that is just personal
preference. Just know that work item types and CoS are different. Do not let
the existing literature out there on this stuff confuse you.

To be clear, you can have any number of types of Class of Service as
well. The most talked about ones happen to be Expedite, Fixed Date,
Standard, and Intangible. But those are only four examples of limitless kinds
of Class of Service. Any time that you put a policy in place (explicit or not!)
around the order in which you pull something through a process, then you
have introduced a Class of Service.

The second subtlety of the above definition is that CoS does not attach
until a work item has been pulled into the process. I cannot stress this point
enough. There is absolutely no point in having a discussion about whether
work item A is an Expedite (for example) and whether work item B 1s a

Fixed Date while both items A and B are still in the backlog. The reason for
this is, as [have mentioned so many times before, is that while those items
are still in the backlog there is no confidence that either will ever be worked
on. Additionally, it is entirely possible that once committed to, our SLA
would predict that we need not give any preferential pull order to that item.
For example, let’s assume that it is February 1 when we pull a new item into
our process. Let’s further say that this new item has a due date of February
28, and that the SLA for our process is 11 days. In this case, our SLA would
predict that this item will complete well before its due date so there would be
no point in giving it any preferential treatment. Given both of these
scenarios, why waste time determining the order of pull before an item is in
the system? That is why the decision of what CoS to use happens only at the
time of an item’s first pull transaction.

Which brings me to the last subtlety about CoS. The order in which
items are pulled once committed to is very different from the decision
criteria around what item to work on next at input queue replenishment time.
Again, this is a very subtle but very important distinction. The criteria for
what items we pull next off the backlog are very different from the criteria
around the order in which we pull those items once in progress. If this
concept is still ambiguous to you, then hopefully I will have cleared it up by
the end of this discussion.

The Impact of Class of Service on Predictability

In the last chapter, I mentioned that most teams do not understand how the
improper implementation of pull policy—whether explicit or not—
negatively impacts their system’s predictability. They do not understand
these negative impacts because CoS has either never been properly or fully
explained to them. I would like to quantify these negative impacts by
examining a pull policy scenario that I have set up for you.

In this particular example, we are going to be operating a process that
looks like Figure 13.1:

KanbanSim and ScrumSim v1.5.1 - Focused Objective

mews«mwmm
R

;Erd7 : (N @i Hente Co s 20 Esent) +
Board

— Monte Carlo Measure 95th Percentile +
rd | Charts Source Refresh Cloud Forecast Sensitivty Staff ~Statistics
Simulate Auto Refresh on Model Change +

View Execute Simulation Commands Options

Currently showing interval 0 (elapsed time: 0 days) - Phase: default. Value Delivered: $0.00

Figure 13.1: The WIP Limited Process in our Simulation

You will notice on this board that the Specifying column has a Work In
Progress limit of two, the Development column has a Work In Progress limit
of two, and the Test column has a Work In Progress limit of one. Let’s
further suppose that for this process we will be working through a backlog of
50 items. In this experiment, we are going to size all of our items such that
each one takes exactly 10 days to go through each column. That is, every
item 1in the backlog that flows through this board will take exactly 10 days in
Specifying, 10 days in Development and 10 days in Test. We are also going
to introduce two Classes of Service: Standard and Expedite. [will explain
the pull order rules for each of these as we go through the simulation. Lastly,
you should know that in this experiment there will be no blocking events or
added scope. We will start the simulation with 50 items in the backlog and
we will finish the simulation with 50 items in Done. All items will be
allowed to flow through unmolested.

Or will they?

You will notice from the design of the board in Figure 13.1 that, at the
end of the 20th day, two items will have completed in the Dev column but
there will only be space to pull one of those items into the Test column. As
you are about to see, the simple decision around which of those two to pull
will have a dramatic effect on the predictability of your system.

For the first run we are going to assign only a Standard CoS for work
items on the board. Further, we are going to define a strict “First-In, First-
Out” (FIFO) pull order policy for those Standard class items. That is, the
decision around what item should be pulled next will be based solely on
which item entered the board first.

Before I show you the results, I would like you to try to guess what the
expected Cycle Time for our items will be. (Note: for these simulations I am
going to consider the “expected value” for the Cycle Times to be the 851
percentile.) If you are ready with your guess then read on.

Kanbowtm and crwtim w151 - Fooed Dbt =18 ¥
e T
L E -
| “ L9] # | - L Mete o O 250 (Rt
E o] | | & &
e . - Hamle Lol Maamare: 350 Ferrenble =
Bead Ol Torse Bebph Frmint Geatwd; ¥ Dpebo

Bty Rk g Model Chamge =

W | Comdo Fow o s |y et S) |

L o PR - j | e Gl of Semice

-
P =
P Sl S o wih "Sandord chaid of sevece mpendl o e Karkae bowrd @ iy BRe Paisared bor e momeet

Paty £iat Bt St cobame ol Sy move b B compleled work et

Sample Comnt: 5 M 30 Mg 41 Medimr 50 Mar: 51 SbdDev M“”m“m:HMKSS% 50 daVS

& Wt I I Carmalatve 3

i
EFPAEITI

Figure 13.2: Strict FIFO Pull Order with No Expedites
Figure 13.2 shows a Histogram of the Cycle Time results. You can see

that after running this simulation, the 85™ percentile for our Cycle Times is

50 days. In other words, 85% of our items finished in 50 days or less. Also,
as you look at the distribution of Cycle Times in the Histogram above, you
will see that we have a fairly predictable system—there is not much
variability going on here. But let’s see what happens when we begin to
tweak some things.

In this next round, we are going to replace our strict FIFO pull order
policy with a policy that says that we will choose which item to pull next
completely at random. One way it may help you to think about this is when
two items are finished in the Development column, we are essentially going
to flip a coin to see which one we should pull next into the Test column.

Any guess now as to what this new policy is going to do to our
expected Cycle Time? To variability? To predictability?

Khawm gl crmwom L% 1 - Foeund (hpectiee =18 ¥

] o Delefode Tnmbosin Peewm e
* ' -
o el # " , b Maeie Ol Cyles | 250 (Exsent) -
- il d & A
e . Maomie Ciis Mamure §50 Fesremble =
Bowd Dol Sorr Rebed Forecxt Seetet; Tt Subea

Raks ek on Model O =

Chgt i mbasrenl | e of e Cycie Tomet Vil #| | randed Qo of Sevcce

P bl tame sk wibh “Landrd s of nereice ipend or e Kanban bowrd sy i, Meimmered bom e moment
Sy sl B ik colar el Sy e b e comnpledd el

Somple Coomll:) Mim: 3 Bwgr A2 Medier &) Mam 12 SDew 1RGM S N e 05 W e B

& Wt W Cumdative §

85% 60 days

B
ki @A RPN T

- £ -1
LF

Figure 13.3: Random Pull Order with no Expedites
In this case (Figure 13.3), the simple switch from FIFO queuing to
random queuing has increased our 85" percentile Cycle Time from 50 days
to 60 days—that is an increase of 20%! Did you expect that such a minor
policy change would have such a big Cycle Time impact? You can also see

Va

that the corresponding distribution (shown in Figure 13.3) is much more
spread out reflecting the increased variability of our random decision
making.

Things get interesting when we start to add in some expedites. Let’s
look at that next.

We are now going to go back to the pull policy where our Standard
class items are going to be pulled through in a strict FIFO queuing order.
The twist we are going introduce, though, is that we are now going to
include an Expedite Class of Service for some of the items on our board. In
this round we are going to choose exactly one item on the board at a time to
have an Expedite Class of Service. When one expedited item finishes,
another one will be immediately introduced. These Expedites will be
allowed to violate WIP limits in every column. Further, whenever both an
Expedite and Standard class item finish simultaneously, then the Expedite
item will always be given preference over the Standard item when it comes
to deciding which one to pull next.

Standard questions apply before proceeding: any thoughts on Cycle
Time impact? Variability? Predictability?

| nbm i iy i
IOY o odetew teates tmem

7 H LR j | e -
- = s B s
[e Semad Leutely B ek E

Samwnn | ot S gt bl | I g b

LT S —— [rdet C +
Tt v e el o S’ St o s v S B St e S et
P i P el e i o e e B o] et

N (st 8 P [ey LT Mo B Man L WD 1IN W W DR W PR O] W T

85% 65 days

Figure 13.4: FIFO Pull Order with Always One Expedite on the Board

Any surprises here (Figure 13.4)? Compared to the previous case (the
random pulling case), Expected Cycle Time has increased five days from 60
days to 65 days. You can see the Histogram (Figure 13.4) has become much
more compact, but there is still a wider spread than when compared to our
baseline case (the strict FIFO/no expedites case), and, as I just mentioned,
overall Cycle Times are longer. Did you expect this to be the worst case yet
from a Cycle Time perspective? You can see that this is only marginally
worse than the random queuing round—but it is still worse. That is an
interesting point that bears a little more emphasis. In this context,
introducing an Expedite CoS is worse for predictability than simply pulling
items at random. Hopefully you are getting a feel for just how disruptive
expedites can be (if you were not convinced already).

But we are not done yet. There is still one permutation left to consider.

In this final experiment, we are going to change our pull policies for
Standard class items back to random from FIFO. We are going to keep the
rule of always having one Expedite item on the board. The pull policies for

the Expedites remain the same: they can violate WIP limits and will always
get pulled in preference to Standard class items.
Now what do you think will happen?

anhamtim aisd St 151 - focned bede

Weme Kk fegle SoumBaepls REseme e
] u L83 # B & b ety Ol Ol 359 (Emintal) »
- y ¥ j£1] &]
e ‘ Mot Dol Meamrt. 355 Proemdile =
ford Ol Jowrie Rebeh Foreait Semaltnity Tu¥ oty

Rty Fbresk o Medel Dmge =

St | Comabewe Fow gl i) | B el gl us) |

(temwe i meraremet |:.c'. of Spric Dol Trmegs |t d Tredard Class of Sevven

The latal teme cards wih Tindund] s of pve speted o Ong Kaeiae Deiard i amy e, Measoond dem Do mamenr
By =1 Do T oolume il By move B the comglebed wark st

Somple Conut: 1] Him: & Aep 7044 Meduec B Mec 19 SdDen JLAT St ® Ba: B i BORSMSc D6

7

W Count ™ W Comulatwe %

-

i] 2
Walues

=8

85% 100 days.

Figure 13.5: Random Pull Order with Always One Expedite on the Board
Expected Cycle Time in this scenario (Figure 13.5) has jumped to a
simulation-worst 100 days! The spread of our data shown by the Histogram
(Figure 13.5) is also worrying: Cycle Times range anywhere from 40 days to
170 days. If that is not variability, then I do not know what is. Remember, in
the ideal system of the first case, the range of Cycle Times were 30 to 50

days.

Let’s look at all these results side by side (Figure 13.6):

- Strict FIFO (no expedites)

— I Strict FIFO always one expedite
|

= et
o :

-Random Queuing (no expedites)

Random Queuing always
IIIIIIII-- ' one expedite

Figure 13.6: CoS Results Side by Side

[would like you to reflect on this result for a minute. Minor tweaks to
process policies had a dramatic impact on simulation outcomes. Again, note
that these policies were all things that were completely under our control!
All of the variability in these scenarios was of our own doing. Worse still,
my guess is that you have probably never even given any thought to some of
these policies. Do you pay attention to how you decide what order to pull
items through your process? Do you try to control or limit the number of
Expedites on your board? Do you have any clue what a lack of these
considerations is doing to your process predictability?

Obviously in the previous example I have controlled for story size. That
is generally not possible (nor even required nor suggested) in the real world.
Differences in story size are additional variability that is going to affect the
predictability of the process and make these Histograms look even worse.
That being the case, why would we not try to mimic FIFO as closely as
possible? Why would we not try to control pull policies that we can control?

The short answer is that we should. The longer answer is that in many
contexts FIFO queuing may be impractical (leaving the business value
dimension of pull decisions aside for a minute).

There are a couple of reasons for the impracticality of FIFO queuing.
Think about a restaurant, for example. Patrons of restaurants do not flow
through in a strict FIFO ordering. To illustrate, let’s say a group is seated
first at Table A. Then a different group is seated second at Table B. The
group at Table B does not have to wait until the first group at Table A has
finished before the second group is allowed to leave. That would just be
silly. The groups are, however, usually seated in a First In First Served
(FIFS) order. A (mostly) FIFS scheme is much more practical in the
knowledge work context as well and usually is the best strategy from a
predictability perspective.

Extending the restaurant example, let’s say that a group of four people
arrives to an establishment that is currently full and they need to wait for a
table to open up in order to be seated. Let’s further say that a group of two
people arrives after the group of four and this second group needs to wait as
well. If the first table to open up seats only two people, then it is reasonable
that the group of two—who arrived second—would be seated first. This
scenario happens all the time in knowledge work. Maybe a resource frees up
and 1s ready to pull an item. But he does not have the expertise to work on
the item that has been waiting the longest (which should be his first choice).
From a practical perspective, it would be reasonable for him to pull the item
that has been waiting the second longest (assuming, again, that he has the
right skills to work on that second one). But remember, even though this
may be the best practical decision, it may not be the best predictable
decision. In this scenario, what are some longer term improvements you
could make for better predictability?

The point to all of this is that the further you stray from FIFO queuing,
the less predictable you are. That is not to say that there are not practical
reasons why you should forfeit FIFO. And by the way, arbitrary business
value reasons and fictional Cost of Delay calculations do not fall into this
practical category. But more on that a little later.

The most common objection I get when I explain why teams should
adopt FIFO (or FIFS, or mostly FIFS) and dump expedites is that,
“Expedites happen all the time in our context and we can’t not work on
them”. They might go on to say that these expedites are unpredictable in size
and number. Not only am I sympathetic to this argument, I acknowledge that
this is the case for most teams at most companies.

Slack

So what is a team to do? Why, look at FedEx, of course.

Federal Express (FedEx) is an American shipping company that allows
clients to send packages all over the world. For this example, though, let’s
limit the scope of our discussion to just the continental United States. Suffice
it to say that FedEx knows a thing or two about flow and predictability, and
the company is worth studying.

When a prospective customer wishes to ship a package via FedEx that
customer has several service options to choose from. She can choose to it
send overnight, 2" day air, and standard ground—to just name a few. All of
these service options are going to result in different CoS that FedEx uses in
order to make sure that packages get to their destinations within the agreed
SLA. Think about this for a second. In the U.S. there are thousands of
locations that FedEx will need to pick up packages from. On any given day,
it is impossible for FedEx to proactively and deterministically know the
exact number of packages, their respective requested CoS, their full
dimensions, weight, etc. that will show up at any one of their locations. They
could have one shop that is swamped with overnight requests while another
location remains relatively quiet. The magnitude of this problem is almost
beyond comprehension.

The incredible thing is, while I have not used FedEx a lot, I can tell you
that every time I have needed to send a package overnight it has arrived at its
location on time. How does FedEx do it?

There are a lot of strategies that FedEx employs, but the one that is
probably most important is that at any given time FedEx has empty planes in
the air. Yes, I said empty planes. That way, if a location gets overwhelmed,
or if packages get left behind because a regularly scheduled plane was full
then an empty plane is redirected (just-in-time it should be said) to the
problem spot. At any given time FedEx has “spares in the air”!

A lot of people will tell you that Lean is all about waste elimination.
But imagine if the FedEx CFO was hyper-focused on waste elimination for
process improvement. Would that CFO ever allow empty planes to be in the
air at any given time for any reason? Of course not. Flying empty planes
means paying pilots’ salaries, it means burning jet fuel, it means additional
maintenance and upkeep. Luckily for FedEx, they understand that Lean is
not just about waste elimination, it is about the effective, efficient, and
predictable delivery of customer value. FedEx understands all too well the

variability introduced by offering different CoS. They know that, in the face
of that variability, if they want to deliver on their SLAs they must have
spares in the air. They have to build slack into the system. Pretty much the
only way to predictably deliver in the face of variability introduced by
different CoS is to build slack into the system. There is just no way around
it.

So let’s get back to the “we have expedites that we cannot predict and
that we have to work on” argument. Armed with this information about
variability and slack, what do you think would happen if you went to your
management and said, “if we want to predictably deliver on all of the
expedites in our process (to say nothing of all of our other work), we need to
have some team members that sit around, do nothing, and wait for the
expedites to occur.” You better have your resume updated because after you
get laughed out of the room you will be looking for a new job.

“Ok, so you cannot have idle developers,” so-called CoS experts will
tell you, “then what you need to do is put a strict limit on the number of
expedites that can be in your process at any given time.” They will further
advise you that the limit on expedites needs to be as small as possible—
potentially as low as a WIP limit of one. Problem solved.

Not at all.

This advice ignores two further fundamental problems of CoS. For the
first I will need another example. In my regular Kanban trainings I am a big
fan of using Russell Healy’s getKanban board game. I like the game not
because it shows people how to do Kanban properly, but because it does a
great job of highlighting many of the errors in the advice given by so many
Kanban experts. One of those errors is the advised use of an expedite lane on
a Kanban Board (or CoS in general). Now in this game, there is a lane
dedicated for expedited items, and, further, there is an explicit WIP limit of
one for that lane. This is the exact implementation of the strategy that I just
explained. So what is the problem? At the end of the game, I take the teams
through an analysis of the data that they generated while they played the
simulation (using all the techniques that have been outlined in the previous
chapters). The data usually shows them that their standard items flow
through the system in about ten or eleven days at the 85™ percentile. And the
spread in the Cycle Time data of standard items is usually between three and
15 days. The data for the expedited items’ Cycle Time show that those items
always take three days or less. You can see that the policies those teams used

to attack the expedites made them eminently predictable. You will also note
that those policies also contributed to the variability in the standard items,
but that is not what is important here. What is important here i1s what
happens when we project this to the real world. Imagine now that you are a
product owner and you see that your requested item is given a standard CoS.
That means that the team will request eleven days to complete it. But if your
requested item is given an expedited CoS, then that item gets done in three
days. What do you think is going to happen in the real world? That is right:
everything becomes an expedite! Good luck trying to keep to the WIP of the
expedited lane limited to one.

But that is not the only problem. Let’s say that you work at an
enlightened company and that they do agree that there will only be one
expedited item in progress at any given time. It turns out even that is not
enough! In the simulation example above, we limited our expedited items to
one but that still caused a sharp increase in Cycle Time variability. Why?
Because there was always one expedited item in progress. If you are going to
have an expedited lane, and you limit that lane’s WIP to one, but there is
always one item in it, then, I am sorry to say, you do not have an expedited
process. You have a standard process that you are calling an expedited
process, and you have a substandard process which is everything else.

’ For all practical purposes, introducing CoS is one of the worst things you can do to
J predictability.

But, you might argue, the real reason to introduce CoS is to maximize
business value (for the purposes of this conversation, I am going to lump
cost of delay and managing risk in with optimizing for business value). I
might be persuaded by this argument if [believed that it was possible to
accurately predetermine business value. If you could do that, then you really
do not need to be reading this book because your life is easy. Obviously, if
you have a priori knowledge of business value then you would just pull
items in a way that maximizes that value. However, most companies [work
with have no clue about upfront business value. And it is not due to
inexperience, incompetence, or lack of trying. The reason most companies
do not know about an item’s business value upfront is because that value—in
most cases—is impossible to predict. As value is only determined by our
customers, an item’s true value can only be known once put in the hands of

the customer. Sure, most companies will require a business case before a
project is started and this business case acts a proxy for business value. But,
as you know, most business cases are anywhere from pure works of fiction
to out and out lies. Basing pull decisions on disingenuous arguments is
suspect at best.

Let’s put it another way. As I just mentioned, true business value can be
determined only after delivery to the customer. Choices about what to work
on and when, then, are really just you placing bets on what you think the
customer will find valuable. By introducing CoS and by giving preference to
some items in the process over other items means that you are gambling that
the customer will find those preferred items more valuable. The problem is
that when you lose that bet—and I guarantee you almost always will—you
will have not only lost the bet on the expedited item, but you will have also
lost the bet for every other item in progress that you skipped over.

Honestly, I am only mostly that cynical. I do believe that the business
value of an item should be considered, but I believe it should only be
considered at input queue replenishment time. After an item is placed in
process then I believe the best long term strategy is to pull that item—and all
other items—through the process as predictably as possible. After all, part of
the business value equation is how long it will take to get an item done. If
you cannot answer the question “how long?”’ then how much confidence can
you really have in your business value calculation?

What about obvious high value expedites? Things like production being
down that require all hands on deck? Or a new regulatory requirement that
could result in massive fines for noncompliance? Obviously, those things
will—and should—take precedence. But, just like the FedEx example, you
should study the rate of occurrence for those items and adjust your process
design accordingly. That will potentially mean lowering overall process
WIP. That will probably mean making sure free resources look to help out
with other items in process before pulling in new items. And so on.

To come full circle on our discussion about Little’s Law that was started
in Chapter 3, I hope it is obvious for you to see how CoS represents a clear
violation of the fourth assumption of Little’s Law (and potentially the first
and the third as well). The central thesis of this book is that every violation
of a Little’s Law assumption represents a reduction in overall process
predictability. CoS represents an institutionalized violation of those

assumptions. How could you ever expect to be predictable when using CoS
as your standard process policy?

Conclusion

It is obvious that to solve the problem outlined at the beginning of this
chapter, the TSA could simply hire more agents. At the very least you would
want to have a minimum of one agent per queue. This intervention would
potentially solve the problem—or it would go a long way to alleviating it.
Note that in this case, however, CoS would be eliminated. If each queue had
its own server, then there would be no need for CoS. Wouldn’t it be great if
all our problems could be solved by just adding more people? The reality is
that most companies do not have the money to keep hiring. That being the
case, we want to make sure that we are using the resources we do have as
efficiently as possible. That means choosing pull policies that maximize our
resources’ effectiveness and eliminating policies that make it harder for
those resources to do their jobs predictably.

Although it probably sounds like it, I am not saying that CoS is
inherently evil or that all CoS implementations are incorrect. I am, however,
coming at this from the perspective of predictability. With that consideration,
what [am saying is that you need to consider all aspects of CoS before
implementing those policies. By definition, CoS will introduce variability
and unpredictability into your process. The unpredictability manifests itself
—among other things—as Flow Debt (Chapter 9). The truth is that the only
part of your process that is more predictable with CoS is the highest priority
class. Overall, CoS will cause your process to actually take a predictability
hit (see Figures 13.4 and 13.5). Are you really that confident that the upfront
value decisions that you are making with CoS are worth more than all the
negative implications?

The arguments swirling around out there about why to use CoS are very
seductive. The people making those arguments are very persuasive. [am
hoping I have at least given you something to think about before assuming
you should start with CoS as a default.

For me, the better strategy is to consider an item’s forecasted value at
queue replenishment time. Then, once in process, pull that item through
while paying attention to all the concepts outlined in this and the previous
chapters.

You have to know what you are doing before you do it. Build your
process. Operate it using the policies for predictability that I have outlined
thus far. Measure it. And then make a determination if CoS can help.
Chances are you will never need CoS.

,J Chances are you will never need Class of Service once you have a predictable process.

But what else do we need to consider ourselves predictable? I implied
earlier that there are essentially to dimensions to being predictable:

1. Making sure your process behaves in a way it is expected to; and,
2. Making accurate predictions about the future.

Up until now we have mostly talked about point #1. It is time that we
turn our attention to point #2.

Key Learnings and Takeaways

» (lass of Service is the policy or set of policies around the order in
which work items are pulled through a given process once those items
are committed to (i.e., counted as Work In Progress).

e (lass of Service only attaches at the point of commitment.

e (lass of Service is different from queue replenishment.

e Assigning a work item a Class of Service is different from assigning a
work item a type.

e (lass of Service represents an institutionalized violation of some
assumptions of Little’s Law. This violation takes the form of Flow Debt
which ultimately makes your process less predictable.

e The only way to predictably deliver using Class of Service is to build
slack into the system.

 Instead of designing Class of Service into your process up front,
consider other things you can do to eliminate or mitigate the need for
them.

e Only introduce CoS after you have operated your process for a while
and are confident that CoS is necessary. Still consider policies for CoS
that mitigate their inevitable negative impact on flow.

Chapter 14 - Introduction to Forecasting

One of the definitions of predictability is the ability to make a quantitative
forecast about a process’s future state. Since forecasting is a part of
predictability, I thought I would least say a few words about it.

A forecast is just a calculation about the occurrence of some future
event. Yes, an estimate can be thought of as a forecast. But the forecasts that
we are going to talk about in this chapter are going to be much more
scientific than just some poor guy’s best guess.

For the most part, we are going to be asked to make forecasts about the
completion times for a given task, feature, project, etc., so for the purposes
of this discussion let’s limit ourselves to time forecasts. That means that
from now on whenever I use the word “forecast” on its own, I am really
referring to a “time forecast”. Although, it should be said, that I believe the
principles I am going to talk about here are applicable to any type of
forecast.

Before we get any further, I would like to discuss is the necessary
components of a forecast. You should never—and [mean never—
communicate a forecast that does not include at least two things: a date
range and a probability for that date range occurring.

, A forecast is a calculation about the future completion of an item or items that includes
J both a date range and a probability.

The future 1s full of uncertainty, and whenever uncertainty is involved
then a probabilistic approach is necessitated (think quantum physics, the
weather, etc.). A forecast without an associated probability is deterministic,
and, as you know, the future is anything but deterministic.

With that said, let’s get to some methods that you can—and, more
importantly, cannot—use to develop a forecast. As this is an introduction,
the methods outlined here are not meant to be all inclusive nor do I flatter
myself to think that the treatment of the ones that I have chosen is

exhaustive. For a richer discussion of these methods, please consult the
references listed at the end of the book.

Little’s Law

As I stated Chapter 3, using Little’s Law to calculate a quantitative forecast
is an incorrect application of the law. Little’s Law is about examining what
has happened in the past. It is not about making deterministic forecasts
about the future. One of the reasons you cannot make deterministic
forecasts with Little’s Law is because it is impossible to predict which of
the Law’s assumptions will be violated in the future and how many times
they will be violated. Remember, each violation of an assumption
invalidates the exactness of the law.

Even if you could use Little’s Law for projections, you would not want
to. The reason is because it is a relationship of averages (arithmetic means).
You never want to make a forecast based on an average. Average is a
meaningless statistic unless you know something about the underlying
distribution of the data from which the average was calculated. Specifically,
when we are ignorant of the distribution, then we do not know what
percentile we are talking about when we say the word “average”. For
example, depending on the shape of the distribution, the mean could be
significantly less than 50%, exactly 50%, or significantly more than 50%.

But you will recall that with Little’s Law we do not care about the
probability distributions of the underlying stochastic processes. If we do not
know the distribution, then we cannot give a probability of where the
average falls. If we do not know a probability, then we cannot make a
forecast. It is that simple.

Alternatively, using Little’s Law for a gut check validation of a
forecast for a qualitative determination is perfectly acceptable. But of
course you would not want to make any staffing, cost, or project
commitments based on these back-of-the-envelope calculation type
calculations.

But what if we do know something about the underlying distribution?
That knowledge could be extremely valuable. Further, I would argue it is
worth investing in acquiring that knowledge. Any time we have distribution
information we are going to run away from Little’s Law for forecasting and
toward some of the better techniques that follow.

Forecasts for a Single Item

What if you are asked to make a forecast about the completion of a specific
work item, or epic or project? The answer to this question is actually very
straightforward. In fact, [have already told you how to do it. In order to
make a projection for a single work item, you will have to first collect the
Cycle Time data for the all same types of work items a la the method I
described in the Scatterplots chapter (Chapter 12). Once you have that data,
it is a very simple exercise to answer the above question. You will just
choose the percentile that you want to attach to your forecast and use the
corresponding range. For example, look at the following Scatterplot for a
team’s user stories (Figure 14.1):

Sl v

Figure 14.1: A Sample Scatterplot
A simple forecast that you could give using this data is that a typical
work item completes in 43 days or less 85% of the time. And that is it. If
the work items we are interested in were epics or projects, for example, then
we would need to capture the Cycle Time data for epics or projects and then
the approach to come up with a forecast for those work item types is exactly

the same.

Straight Line Projections

I hate to belabor this point, but any CFD with a projection on it is not a
CFD. It 1s a Burn Up chart or Projection Chart or something else, but it is
most definitely not a CFD. To review, there are two reasons why a
projections on CFDs are incorrect. The first reason is because to do a
projection the chart must have some type of backlog displayed. But CFDs
should not have backlogs on them. That is mistake number one. The second
reason is that CFDs are for looking backward, they are not for making
projections about the future. That is mistake number two. The fact that it is
not a CFD is not a bad thing because this projection view can potentially be
very useful (used incorrectly it can also be very bad). I should point out
here that because I cannot call them CFDs, the term I am going to use for
these types of charts is going to be either Burn Up Charts or Projection
Charts.

Many teams are tempted to just perform a straight line projection off of
the Throughput line on a Burn Up chart. The calculation—it is reasoned—is
fairly simple. If a backlog has 100 items in it and the team is averaging 10
items per week, then it is easy to draw a trend line off the Throughput line
and see where it intersects the backlog line as above. If you drop a line
down to the X-axis at the point where the two lines intersect, then, voila,
you have your release date.

There are so many problems with this approach that I am not sure
where to begin. The first, and potentially most obvious since we just talked
about it, is that once again this forecast is being based on an average. I have
already discussed several reasons why you should not do that so I will not
go into them here.

Secondly, over time, there is going to be variability in both the
Backlog and Average Throughput. Depending on the time horizon under
consideration, both the Backlog and Throughput can vary wildly (see the S-
curve section below). Looking at this rather one-dimensional view of the
world could cause managers to either panic or be overly confident
depending on which way the variability pendulum swings on any given day.

Thirdly, there is no date range. That is one of our requirements for a
proper forecast. No problem say the advocates. Let’s draw an optimistic line
for the backlog and a pessimistic line for the backlog. Likewise, let’s draw
an optimistic and pessimistic line for the Throughput trend line. Now we
have several points of intersection for consideration that we can use for our
completion date range. While I would agree that this is a much better view

of the world, it still raises several questions. How were the optimistic and
pessimistic backlog lines determined? The same should be asked of the
Throughput lines. But most importantly, what is the probability of hitting
this range?

A further complication of a straight line projection is that your
completion rate over the long term is potentially not a straight line. As |
mentioned before, any time you start a project with zero WIP and end with
zero WIP, the resulting pattern of the Throughput line on the CFD mimics
an “S-curve”. Using a straight line to approximate an S-curve is
problematic at best and dangerous at worst. There are overly complicated
methods to approximate S-curves out there (again with no range and
probabilities attached), and I am not going to get into them here, but I will
say that the effort put into generating those forecasts would be better spent
using more modern forecasting methods.

Just as with Little’s Law, it is probably ok to perform a straight line
projection for the purposes of a quick gut check on project status. But any
insight you may gain is certainly not actionable. In fact, any action
motivated by this strategy would probably be akin to tampering.

The thing is, however, if you put in place all the predictability
measures that I have talked about in this book up until now, then straight
line projections do not necessarily give results that are that bad. If you truly
can keep continuous WIP, minimally violate the assumptions of Little’s
Law, not introduce CoS, then this type of approach might be good enough.
If it 1s and it works for you, then, great, keep doing it. I am not going to tell
you otherwise. But even so, we might be able to tweak things a little bit to
give you more insight.

If you insist on using a Burn Up to do your projections, then might I
suggest you augment your charts with the percentiles off of your
Scatterplot? The way it would work is as follows. Start with your arrival
and departure data for a CFD. Choose a completion date for your project (or
release or whatever) and extend the timescale of the X-axis out to that
completion date. Draw a vertical line up from the X-axis at that specific
date. From your Scatterplot locate the Cycle Time for your 85" percentile
(or whatever percentile you feel comfortable with). Take that 85™ percentile
Cycle Time and subtract it from your completion date. You can draw

another line at this data and mark it “85™ Percentile or something.

There are several advantages to this view. First, as with other
projections of this nature, you know that any items that make up the
Throughput line before the completion date are going to be in the release.
Second, you know that any item that is started before that 85 percentile
line has a greater than 85% chance of making the release. Any item started
after that line has a less than 85% chance of making the release (you could
draw subsequent percentile lines to communicate the diminished chance of
late-started items of making the release).

Obviously, this chart will not tell you the exact number of items that
will be in any given release (a better question to ask, by the way, is what is
the likelihood of getting at least X number of work items finished by a
particular date). But I would argue no chart out there will tell you that. Not
deterministically anyway. As you approach the release date, you have a
better and better understanding of the probability of items making it or not.
Product owners (or customers) can then use that information to help guide
them in the selection of what items should be started next. And that is
probably about as good as you are going to get with a straight line
projection approach.

Conclusion

In my experience, making a forecast for a single item’s completion is very
straightforward. Simply use the SLA method mentioned in Chapter 12.

Further, I do not recommend using Little’s Law or a straight-line
projection to make a forecast for a completion date. That is because both
approaches are based on averages and neither give a probability of success.

If you really want to get good at probabilistic forecasting, then you are
going to have to use a tool like the one we are going to talk about next:
Monte Carlo Simulation.

Key Learnings and Takeaways

» A proper date forecast includes both a range and a probability.

» To forecast the completion of a single item use SLAs the method for
calculating them outlined in Chapter 12.

e Do not use Little’s Law for forecasting.

e Do not use averages for forecasting.

e Straight line projections are problematic because they are based on
averages and because they do not communicate a probability of
success.

Chapter 15 - Monte Carlo Method Introduction

In 1873, a Yorkshire cotton industry engineer named Joseph Jagger walked
into a casino in Monte Carlo. Several days later he walked out of the casino
with what amounted to close to over three million dollars (in today’s money)
having “broke the bank”. In all truthfulness, though, during Jagger’s run the
casino itself never actually ran out of money (although the croupier’s bank at
the table did). But the story’s place in popular culture had been cemented.

About seventy years later, a group of physicists working on nuclear
fission problems at Los Alamos Laboratory in New Mexico named a method
of using a statistical approach to solving complicated equations after a
casino in Monte Carlo. Coincidence? Well, not really.

What did the two events have in common other than the name Monte
Carlo? It was the recognition that a statistics could be used to solve highly
complex problems.

At its simplest, the Monte Carlo Method (or Monte Carlo simulation)
can be thought of as experiments with random numbers. The method is
normally applied to highly uncertain problems where direct computation is
difficult, impractical, or impossible. It has proved a useful tool in all kinds of
fields like nuclear physics (which we just saw) oil and gas exploration,
finance, insurance, etc. Given the uncertainty in knowledge work it seems
strange that our industry has been rather late to the Monte Carlo game. One
might argue that it has taken the emergence of modern agile methods to get
us to the point where would could even model the work that we do for
simulation. Regardless, I firmly believe that the Monte Carlo Method is the
future of forecasting in knowledge work. Teams and companies that get this
idea will survive. The others will not.

To offer a glimpse of how to perform a Monte Carlo Simulation, I offer this snippet from
Wikipedia:

Monte Carlo methods vary, but tend to follow a particular pattern:
1. Define a domain of possible inputs.

2. Generate inputs randomly from a probability distribution over the domain.
3. Perform a deterministic computation on the inputs.

4. Aggregate the results. <newline />

The intricacies and practices about how to model and simulate
knowledge work using the Monte Carlo Method are well beyond the scope
of this book. Anyone truly interested in applying this method to knowledge
work should review Troy Magennis’ work on Lean Forecasting. [am not
going to reproduce all of that information here. Rather, my goal is to discuss
why flow principles and flow metrics are necessary to make a Monte Carlo
approach more actionable. Operating your process in the manner that [have
explained up until now is going to make it much easier for you to build more
accurate models. More accurate models will lead to more accurate forecasts.
And that is, after all, what we are all looking for.

As always, for the purpose of clarity, there are a couple of things I need
to mention first. From this point forward I am going to use the terms “Monte
Carlo Simulation” and “The Monte Carlo Method” interchangeably (my
apologies to the purists out there). Further, I am going to categorize Monte
Carlo Simulations into two cases: the case when you have data and the case
when you do not. For the latter situation (when you do not have data), you
are forced to choose a probability distribution for the value or values that
you are trying to simulate. This choice quickly gets into a philosophical
debate around what is the best type of probability distribution to use. As you
may have guessed, [have never been one to shy away from a good debate;
however, I believe this one is fairly academic. That is why, for the rest of this
chapter, I am going to focus on the case when you do have data with which
to simulate.

What Data to Use

This brings me to my first advice when doing Monte Carlo Simulation: if
you have the data, use the data. If you do not have the data, then get the data
(mine it or measure it), and use the data. Even if you are forced to pick a
distribution when performing your first simulation because you have no
data, you should quickly do what you can to gather real data to replace the
original artificial distribution in your model.

I want to emphasize that by “gather real data” what I mean is to
measure the basic metrics of flow from a process that utilizes all of the
techniques outlined in this book. If you have an intrinsically unstable

process, then that process might not be a great candidate for Monte Carlo
Simulation. For example, one indication that your process data might not be
suitable for Monte Carlo simulation is if you have a CFD that looks like
Figure 7.5 (where arrivals far outpace your departures). In Chapter 7 I
showed that Figure 7.5 demonstrates a scenario where Cycle Times are
constantly increasing. Ever increasing Cycle Times mean that any selection
of data from a past timeframe is a poor indication of what might happen in a
future timeframe. This problem is mostly eliminated if you operate a process
that looks like Figure 7.8 (where arrivals match departures).

However, getting to a process that produces a CFD like Figure 7.8 is
not necessarily good enough. Another “smell” that our data might not be
suitable for Monte Carlo Simulation is if we have a triangle-shaped
Scatterplot as shown in Figure 11.1. A triangle pattern on a Scatterplot is
also the result of an inherently unstable process. Recall that even if you have
a CFD that looks like Figure 7.8, you still can have a Scatterplot that looks
like Figure 11.1. The culprit in that scenario is Flow Debt. Large
accumulations of Flow Debt destabilize a process and make it imminently
unpredictable. Could you throw the Cycle Time data from Figure 11.1 into a
Monte Carlo Simulation? Yes. Would the resulting forecast be reasonable?
Probably not.

Your Model’s Assumptions

The second thing you need to you need to know about Monte Carlo
Simulations is that you need to be keenly aware of assumptions. I am not
just talking about the assumptions built into your model, but [am also
talking about the assumptions built into how whatever tool that you use (I
am assuming you are using a tool for Monte Carlo Simulations) implements
those assumptions. The accuracy of your model—and I cannot emphasize
this enough—is going to depend on how well you match your process
policies (that is, the day-to-day rules around how you operate your process)
to all assumptions in the model and simulation tool.

, Your model’s ability to produce an accurate forecast is going to depend on how well
J you match your process policies to your model’s assumptions.

For example, let’s revisit the scenario that I outlined in the Class of
Service chapter (Chapter 13). In that simulation, we had a Kanban board that
looked like Figure 15.1:

KanbanSim and ScrumSim v1.5.1 - Focused Objective
F Home Kanban Examples Scrum Examples Resources Help

il 2 b H o4k e

S -~ o e Monte Carlo Measure 95th Percentile +
Source Rdﬂ Jous Fﬂmsﬂm Statistics
Simulate Auto Refresh on Model Change +

View Execute Simulation Commands Options

Currently showing interval 0 (elapsed time: 0 days) - Phase: default. Value Delivered: $0.00

Figure 15.1: A Kanban Board Used as a Model for Monte Carlo Simulation

Now let’s say that you have modeled the case where you have Standard
items and Expedite items and that you can only have on Expedite item on the
board at a time. Further, let’s say that Expedite items can violate WIP limits
and can block other Standard items to complete. Let’s assume you have
modeled all of that correctly. But let’s say that you did not model any
policies around the order of pull between Standard items that finish at the
same time.

Additionally, let’s say that the tool you are using defaults to a strict
FIFO pull order in the absence of any other policy being modeled. Finally,
let’s say that your actual day-to-day process uses (without explicitly stating
it) a purely random pull order for Standard items. To be clear, in this
scenario, we have a mismatch between the tool which assumes strict FIFO
and your implicit process policy that assumes a random pull order.

Do you remember what is going to happen here? Your simulation—
because it assumed FIFO for Standard items—is going to spit out a
forecasted Cycle Time for your Standard items of 65 days at the 85
percentile. However, your real-world process—because you are using
random queuing—is actually going to result in Cycle Times of 100 days at
the 85™ percentile. Due to that one missed assumption, you have over-
optimistically forecast by up 35 days per item! Think about how this
problem gets multiplied if you have hundreds of items in your backlog.
What do you think your customers are going to say if you forecast a 65-day
85t percentile, but actually operated your process at a 100-day 85t
percentile?

Another classic example of a missed assumption is when there is an
open WIP spot but an item was not pulled immediately. Consider a scenario

where you are operating a process that produces the following Kanban
board:

5 4 4 3

To Do Analysis Development Test Done

Active Done Active Done

Figure 15.2: An Example Kanban Board

In Figure 15.2, you can see that the Test column has a WIP limit of
three, but there is only one item in it. Further, you can see there are three
items in the Development Done column that are waiting to be pulled. Let’s
also say that the board has been in this state for several days. However, the
tool that you used to model this process never allows this condition to
happen. That is to say that the Monte Carlo Simulation tool automatically
and immediately pulls an item from Dev Done to Test whenever Test has
space under its WIP Limit. Can you see that in your real world process that
your items are aging longer than they were simulated to have done? That is a
problem.

The moral of the story is that you have to use the assumptions in your
model (both explicit or implicit) as actionable interventions to take while
you are actually operating your process, or you have to take action to change
the assumptions in the model to match the real world as it unfolds. When
you get this right, then a Monte Carlo strategy is the going to be one of the
most powerful predictive tools in your arsenal.

The thing to know about Monte Carlo simulation is that there is no one
predicted outcome. Sampling a probability distribution will lead to
thousands of possible outcomes that the, in turn, need to be analyzed in
terms of the probability that they will indeed occur. Once you have obtained
a forecast using Monte Carlo, your job is not done. It is not just set it and
forget it. You need to actively manage to the assumptions in the model or
change the model assumptions based on new information.

Conclusion

To be successful in forecasting, you have to first know what constitutes the
proper form of a forecast and then you have to understand what methods are
your friends in terms of developing reliable forecasts.

Even the best forecasting methods, however, are going to be only as
good as the data they are based on. The first step in building a reliable
forecast is to put in place a predictable process such that you can have
confidence in the data that you are collecting. A forecast put together using
bad data (from an unstable system, for example) produces something that
either no one will like or no one will believe (this is the GIGO principle:
Garbage In, Garbage Out). No forecasting method is going to be a suitable
substitute for either (a) common sense thinking or (b) active management
interventions as suggested by new information.

A forecast based on sound data that has been produced by a process that
incorporates all the policies of predictability mentioned earlier is going to be
defensible in the face of any challenge or criticism. At that point you have
done your best. Let the chips fall where they may.

Key Learnings and Takeaways

e Monte Carlo Simulation is one of the best methods for coming up with
a reasonable forecast.

e [fyou have data, then use that data to build your simulation models. If
you do not have the data, then collect it and update your model(s)!
e Things to remember about Monte Carlo Simulation:
o You must understand the assumptions of the model.
o You must understand how your chosen simulation tool is
implementing those assumptions.
o Most importantly, you have to manage to those assumptions!

Chapter 16 - Getting Started

Hopefully I have convinced you by now that if you want your process to be
predictable then you need to adopt the flow metrics and analytics that have
been presented in this book. But how do you get started? I would not be
doing my job if I did not give you at least some pointers on how to begin.

Defining Your Process

It may seem obvious or trivial to you, but the very first thing you need to do
to get started is define the boundaries of your process. As [mentioned in
Chapter 2, you must first decide on a point at which you consider work to
have entered (or arrived to) your process. You must then decide the point at
which you consider work to have exited (departed from) your process.
Starting with a definition of your process boundaries is essential as any
work items between these two boundaries can be considered WIP.

Remember that these boundaries are independent of any sprint or
iteration definition. That 1s to say, if you use sprints or iterations to manage
your process then it is possible for work to arrive at any time during the
sprint and it is possible for work to depart at any time during the sprint.
This concept may seem anathema to Scrum purists, yet the possibility
remains. That means that any time work comes into your process—
regardless of whether it is the beginning of a sprint or not—you need to
count that work as arrived. Likewise, if any work exits your process—
regardless of whether it is the end of a sprint or not—you need to count that
work as departed.

The next thing you need to decide is which items that fall between
those two boundaries will count as WIP. As I also mentioned in Chapter 2,
the choice of items to call WIP is up to you, but make that choice and start
tracking. As with anything, you can always tweak that decision later as you
learn more.

Lastly, consider which of your existing policies are in direct violation
of the assumptions of Little’s Law. Do you not explicitly control arrivals by
matching them to departures? Do you make sure that everything that starts

eventually completes (or at least tag and track items that do not complete
properly)? Do you let items arbitrarily age due to poor pull decisions (Class
of Service, blockages, queuing, etc.)? If you currently operate your process
in blatant violation of Little’s Law, then you may want to think about
changes to implement to get your process more aligned with that law.
Remember that each violation of one of Little’s Law’s assumptions hampers
your ability to be predictable.

Capturing Data

Once you have decided on your process policies, now all you have to do is
capture the data. This is both easier and harder than it sounds. To answer

why, we must consider two cases.

The first case we need to consider is if you are tracking data manually
(i.e., independent of any other Agile tooling). In this case, you need to
physically record the date that each work item enters each step of your
workflow. For example, let’s say your workflow is Analysis Active,
Analysis Done, Development Active, Development Done, Test, Done. In
this process, you would need to document the day that each item entered
each state. An excerpt of what that data might look like is shown in Figure

16.1:
Stary_|D |Analysis Active |Analysis Done Development Active|Development Done|Testing Done
1 06/25/2012 06/25/2012 06/26/2012 06/28/2012| 06/29/2012| 06/29/2012
2 06/25/2012 06,/ 25/2012 D6/27/2012 D6/29/2012| 06/29/2012| 06/29/2012
3 D6/21,/2012 06/21/2012 0B/21/2012 06/27/2012| 08/27/2012| 07/02/2012
4 06/21/2012 06/21/2012 06/21/2012 06/27/2012| 06/27/2012|07/02/2012
3 06/21/2012 06/21/2012 06/21/2012 06/28/2012| 07/02/2012| 07/02/2012
6 06/21/2012 06/ 22/2012 06/ 22/2012 06,28/2012| 06/28/2012| 07/02,/2012
7 06/25/2012 06/25/2012 06/ 25/2012 06/26/2012) 06/29/2012|07/02/2012
g8 0&/25/2012 06,/25/2012 06/25/2012 06/26/2012| 06/29/2012| 07/02/2012
g 06/21/2012 06/22/2012 06/22/2012 06/28/2012| 08/28/2012| 07/03,/2012
10 06/25/2012 07/02/2012 07/02/2012 07/05/2012| 07/06/2012| 07/06/2012

Figure 16.1: Example Collected Data
You will remember that this approach was outlined in Chapter 4
(including how to handle the case when items move backward in your
process), and I will refer you to that Chapter for a more detailed
explanation.
You may want to further augment your data with certain item
attributes. That is to say, you may want to capture which team worked on an
item, what type it was (for example, user story, defect, etc.), if it finished

normally—to name just a few examples. The attributes you choose to
decorate your data are completely up to you. The reason you will want to do
this, however, is those attributes will serve as filter points later. For
example, maybe we only want to see data from Team A. Maybe we only
want to see data for defects. Maybe we want to see all the items that got
cancelled while in progress. Tagging data with appropriate attributes is a
powerful practice that will enhance your understanding of overall process
performance.

The second case you may need to consider is when you are using an
electronic Agile tool to manage your work (e.g., VersionOne®, Jira, or the
like). In this case we need to mine the data out of that tool so that it looks
something like Figure 16.1. That is easier said than done. The problem is
that most Agile tools do not track data in this way. That is not necessarily
the fault of the tool—they were not designed with a flow metrics approach
in mind. However, it does mean that it will require some work on your part
to get your data in the format as shown in Figure 16.1. Luckily for us, most
electronic tools offer an API (or direct access via SQL) to get to the data.
The algorithm needed is going to be tool-specific and is beyond the scope
of this book, so I will not going into any detail here. Keep in mind, though,
that you are still going to have to handle the special cases of work flowing
backward, work skipping steps, work being cancelled versus closed, etc.
Also remember that you will want to mine the same item metadata that I
just mentioned (type, team, etc.) to allow us to filter the data later.

Another word of caution that [need to mention about both cases is that
your data is only as good as your use of your Agile tracking tool—whether
that tool be an electronic system or a physical board.

Q Your data is only as good as your use of your Agile tracking tool.

What I mean by that is no data extraction scheme will make up for
abusing either your electronic or physical board. If work items are not
updated in a timely manner, or blockers not captured properly, or items are
moved back and forth randomly, then that lack of attention to process
policies will be reflected in your data. You will then be forced to make the
awkward decision to either try to fix the data or discard it altogether. It is a

much better strategy to make sure all team members use your Agile
tracking tool in an agreed upon matter so that you can have confidence in
any subsequently collected data.

How Much Data?

“How much data do I need?” is one of the most common questions I get
when introducing these methods to my clients. Most people assume you
need copious amounts of data in order to glean any useful information. That
is not necessarily correct. While more data is generally better, the truth is
that less (often much less) data can be good enough.

For example, Douglas Hubbard (whose book “How to Measure
Anything” 1s listed in the Bibliography) advises his clients on his “Rule of
Five”:

, Rule of Five — There is a 93.75% chance that the median of a population is between
J the smallest and largest values in any random sample of five from that population.

Recall from Chapter 10 that the median is the 50! percentile line on
our Scatterplot. The Rule of Five seems remarkable but it is true (please see
Hubbard’s book for a detailed proof as to why this rule works). If you think
of your process as a random Cycle Time number generator, then you will
have a very good idea of where the median of your Cycle Time data is after
only five items complete.

While powerful, the Rule of Five only gets us to the median of our
population—which is actually not a bad place to start. But how much more
data do we need to have confidence in the overall bounds of our process’s
Cycle Time? To answer that, let’s consider a dataset that is uniformly
distributed. A uniform distribution assumes that all samples from its
population are equally probable. The textbook example of a uniform
distribution is rolling a fair, six-sided die. All numbers on the die have an
equal chance of coming up on each throw. If you were to plot the results of
several rolls, what would emerge over time is a histogram with equal-height
bars for each number on the die. Uniform distributions are interesting to
study as they have several useful properties. For example, let’s say we have
eleven samples from a uniformly distributed population. The fact that we
know we have a uniform distribution means that there is a 90% probability

that the next sample (i.e., the 12" sample) will be between the min and the
max of the previous eleven samples. That means that we have a fairly good
understanding of the range of our uniform distribution after having
collected only eleven data points. Our Cycle Times for our processes are
not going to be uniformly distributed (please see Chapter 10a for more
info), so we are going to need more than eleven samples to gain insight to
our world, but not much more.

I mention the Rule of Five and Uniform Distributions to give you a
feel for the greatly increased knowledge that can be gained after observing
only a few data points. Do not think you need to collect hundreds or
thousands of samples over several months to have any confidence in what
your data is telling you. Probability is on your side here. Trust that you are
getting very valuable feedback with even a very small data set.

Some Pitfalls to Consider

Once you have enough data in the correct format then it is just a matter of
creating the associated flow analytics. Creating CFDs, Scatterplots,
Histograms, etc. is fairly straightforward using a tool like Microsoft’s
Excel. All you need to do is turn the above dates into WIP counts for the
CFD, and subtract the first date in the workflow from the last date in the
workflow to calculate Cycle Time for the Scatterplot and Histogram. Again,
I would strongly caution against using guidance found on many popular
websites to do this because (a) those websites do not assume you have your
data in the proper format, and (b) the instructions they give can lead to
improperly constructed analytics.

While Excel may be a great tool to use when just starting out, you will
no doubt quickly run into some limitations with that particular software
package. First and foremost, Excel offers only a static view of your data. It
does not allow you to readily interact with your analytics such as
dynamically zooming in on a particular part of the graph, easily filtering out
different types of work items, doing on the fly metrics calculations, and so
forth. Secondly, Excel can become a bit unwieldy if managing thousands or
tens of thousands of rows of data spread across multiple teams or
departments. Still, Excel is not a bad option when starting out to make some
quick progress.

You should also know that most major Agile tools vendors include
some basic form of the analytics presented in this book. You might be

asking yourself why you cannot just use the analytics included with your
favorite tool. There are several answers to this question. And each answer
must be considered carefully.

The first thing to consider is that while it is true that most tools ship
with something called a “Cumulative Flow Diagram” I have yet to see an
electronic tool that generates a CFD correctly (barring the one that I will
discuss shortly). The telltale sign that a CFD has not been constructed
properly is if it has lines on it that go down. I explained why this is the case
and introduced it as CFD Property #2 in Chapter 4, but it is worth
reiterating here:

’ CFD Property #2: Due to its cumulative nature, no line on a CFD can ever decrease
J (go down).

Any time you see a CFD that has one or more lines go down, then you
can immediately tell that whoever constructed that CFD did not account for
arrivals and/or departures correctly. Not accounting for arrivals and
departures properly invalidates any resultant analysis of your chart.

To illustrate the point a little better, if you are currently using an
electronic tool for reporting, have it generate its CFD for you. If you do not
see any lines on the chart that go down, that is a good sign. However, as a
test, try to “turn off” some of the latter workflow steps (if you can) starting
from the bottom up. Do you see any of the remaining lines go down now? If
so, it is a safe bet that the overall CFD has not been built according to all of
the required CFD principles.

The second telltale sign that a CFD is suspect is if it contains a state
called “Backlog”. Strictly speaking, there is nothing wrong with displaying
a backlog on a CFD, but the question remains how is the tool calculating
the overall process approximate average Cycle Time (does it even call this
calculation an approximate average Cycle Time or does it lead you to
believe it is an exact Cycle Time)? Again, I refer you to CFD Property #1
from Chapter 4:

’ CFD Property #1: The top line of a Cumulative Flow Diagram always represents the
J cumulative arrivals to a process. The bottom line on a CFD always represents the
cumulative departures from a process.

This property demands that overall process approximate average Cycle
Time always be calculated from the top line of a CFD through to the bottom
line of a CFD. If your chart includes a backlog and your tool’s computed
Cycle Time does not include the time spent in the backlog, then, again, you
should be skeptical about whether the tool is calculating flow metrics
properly.

Another pitfall to watch out for is how your Scatterplot is generated—
assuming your tool even generates a Scatterplot. Your tool may call its
Scatterplot a “Control Chart”—which it most certainly is not. As |
mentioned in Chapter 10, why Control Charts (at least Control Charts in the
Shewhart and Deming tradition) are probably not applicable to knowledge
work is beyond the scope of this book. The thing you need to watch out for,
though, is that if your tool takes a “Control Chart” approach, it is almost
certainly assuming that your data is normally distributed. When looking at
your Agile tool’s Control Chart, look to see if displays lines that say
something like “mean plus one standard deviation” or “p + ¢”. It might also
give you an associated percentage akin to the standard percentages that I
demonstrated in Chapter 10. In this case, that percentage is going to be
based on an assumption that your data is normally distributed—which I can
guarantee it is not. How do I know it is not? Look at your Histogram. You
may remember from your statistics training that the shape of a normal
distribution is a bell curve. When you look at your Histogram you will see
that your data does not follow a bell curve pattern.

Using the mean plus a standard deviation (or the mean plus any
number of standard deviations) approach and then associating the result
with percentiles is dangerous given that your data is not normally
distributed. You will get calculation errors that are not insignificant and you
will potentially make poor decisions based on bad data.

The moral of this story is that when you are starting out with this type
of analysis, do not necessarily trust the data or charts that your Agile tool
displays for you. Do not trust its associated calculations. It may seem
tedious, but I would encourage you to initially track some sample data
yourself and then compare it to what your electronic tool generates for you.
You may be surprised at how different those results can be. And when those
results are different, which method will you trust more?

I hope you will forgive the shameless plug, but your other option is to
use the ActionableAgile™ Analytics tool (available at

https://actionableagile.com). That tool has been designed from the ground
up with flow metrics and flow analytics in mind. You can be sure that if you
get your data in the correct format (Figure 16.1) then putting that data into
the ActionableAgile™ Analytics tool will result in flow analytics that are
generated correctly. But, again, do not take our word for it. Collect the data
yourself and validate any results independently.

Conclusion

I am going to wrap up this book (the next chapter) by taking a look at one
of the largest and most successful implementations of using Actionable
Agile Metrics for Predictability. The examples from the next chapter
combined with an understanding of how to avoid the common pitfalls
outlined here should have you well on your way to a predictable process.

But before you read the case study, let’s take a minute to review what
we have learned so far.

The steps to predictability are simple:

1. Set process policies based on the assumptions of Little’s Law—
including policies around how you define the boundaries of your
process.

a. Do not start new work at a faster rate than you finish old work.

b. Do not allow items to age arbitrarily due to blockages, too much
WIP or poor pull policies (Class of Service).

c. Minimize the amount of work that is started but never finishes.

2. As you operate your process, collect data on the basic metrics of flow.

a. Work In Progress
b. Cycle Time
c. Throughput
3. Visualize your flow metrics in flow analytics.
a. Cumulative Flow Diagrams
b. Cycle Time Scatterplots and Histograms
4. Use the analytics to take action.
a. Intervene when your process goes awry
b. Identify improvements to policies to improve performance
c. Make forecasts

If you do these things, I promise that you will be predictable. You will
be able to answer the question “When will it be done?”

Just as delay is the enemy of flow, any delay in implementing these
principles severely hampers your ability to be predictable. Remember, the
actions we take today have the biggest impact on our predictability
tomorrow.

Good luck!

PART FIVE - A CASE STUDY FOR
PREDICTABILITY

Chapter 17 - Actionable Agile Metrics at Siemens
HS

In the interest of full disclosure, this case study has been previously
published on two different occasions. One version appeared on the InfoQ
website and the other on the Agile Alliance website. Bennet Vallet and |
have also presented these results at conferences all over the world. I have
included another slightly modified version here partly for your convenience,
but mostly because it remains, at the time of this writing, the largest and
most successful application of using actionable metrics for predictability. If
you want some ideas on how to use the concepts of this book for your
particular situation, this case study is a great place start.

Before you get started reading, however, you should know that this case
study assumes that you are familiar with the concepts of the metrics of flow
(Chapter 2) and their relationship via Little’s Law (Chapter 3). Further, this
case study assumes that you are familiar with how these metrics are
visualized via Cumulative Flow Diagrams (Chapter 5) and Cycle
Scatterplots (Chapter 10). Some familiarity with Kanban and its practices is
also useful but not required.

This case study is written from the perspective of Bennet Vallet who
partnered with me to write up his experience with Actionable Agile Metrics.

Introduction

Siemens Health Services (HS) provides sophisticated software for the
Healthcare industry. HS had been using traditional Agile metrics (e.g., story
points, velocity) for several years, but never realized the transparency and
predictability that those metrics promised. By moving to the simpler, more
actionable metrics of flow we were able to achieve a 42% reduction in Cycle
Time and a very significant improvement in operational efficiency.
Furthermore, adopting flow has led to real improvements in quality and
collaboration, all of which have been sustained across multiple releases. This
case study describes how moving to a continuous flow model augmented
Siemens’ agility and explains how predictability is a systemic behavior that

one has to manage by understanding and acting in accordance with the
assumptions of Little’s law and the impacts of resource utilization.

History

Siemens Health Services, the health IT business unit of Siemens Healthcare,
is a global provider of enterprise healthcare information technology
solutions. Our customers are hospitals and large physician group practices.
We also provide related services such as software installation, hosting,
integration, and business process outsourcing.

The development organization for Siemens HS is known as Product
Lifecycle Management (PLM) and consists of approximately 50 teams based
primarily in Malvern, Pennsylvania, with sizable development resources
located in India and Europe. In 2003 the company undertook a highly
ambitious initiative to develop Soarian®, a brand new suite of healthcare
enterprise solutions.

The healthcare domain is extremely complex, undergoing constant
change, restructuring, and regulation. It should be of no surprise that given
our domain, the quality of our products is of the highest priority; in fact, one
might say that quality is mission critical. Furthermore, the solutions we build
have to scale from small and medium sized community hospitals to the
largest multi-facility healthcare systems in the world. We need to provide
world class performance and adhere to FDA, ISO, Sarbanes—Oxley, patient
safety, auditability, and reporting regulations.

Our key business challenge is to rapidly develop functionality to
compete against mature systems already in the market. Our systems provide
new capabilities based on new technology that helps us to leapfrog the
competition. In this vein, we adopted an Agile development methodology,
and more specifically Scrum/XP practices as the key vehicles to achieve this
goal

Our development teams transitioned to Agile in 2005. Engaging many
of the most well-known experts and coaches in the community, we
undertook an accelerated approach to absorbing and incorporating new
practices. We saw significant improvement over our previous waterfall
methods almost immediately and our enthusiasm for Agile continued to
grow. By September 2011 we had a mature Agile development program,
having adopted most Scrum and XP practices. Our Scrum teams included all
roles (product owners, Scrum masters, business analysts, developers and

testers). We had a mature product backlog and ran 30-day sprints with
formal sprint planning, reviews, and retrospectives. We were releasing large
batches of new features and enhancements once a year (mostly because that
is the frequency at which we’ve always released). Practices such as CI,
TDD, story-driven development, continuous customer interaction, pair
programming, planning poker, and relative point-based estimation were for
the most part well integrated into our teams and process. Our experience
showed that Scrum and Agile practices vastly improved collaboration across
roles, improved customer functionality, improved code quality and speed.

Our Scrum process includes all analysis, development and testing of
features. A feature is declared “done” only once it has passed validation
testing 1n a fully integrated environment performed by a Test Engineer
within each Scrum Team. Once all release features are complete, Siemens
performs another round of regression testing, followed by customer beta
testing before declaring general availability and shipping to all our
customers.

Despite many improvements and real benefits realized by our Agile
adoption, our overall success was limited. We were continually challenged to
estimate and deliver on committed release dates. Meeting regulatory
requirements and customer expectations requires a high degree of certainty
and predictability. Our internal decision checkpoints and quality gates
required firm commitments. Our commitment to customers, internal
stakeholder expectations and revenue forecasts required accurate release
scope and delivery forecasts that carry a very high premium for delay.

At the program and team levels, sprint and release deadlines were
characterized by schedule pressure often requiring overtime and the metrics
we collected were not providing the transparency needed to clearly gauge
completion dates or provide actionable insight into the state of our teams.

In the trenches, our teams were also challenged to plan and complete
stories in time-boxed sprint increments. The last week of each sprint was
always a mad rush by teams to claim as many points as possible, resulting in
hasty and over-burdened story testing. While velocity rates at sprint reviews
often seemed good, reality pointed to a large number of stories blocked or
incomplete and multiple features in progress with few, if any, features
completing until end of the release. This incongruity between velocity
(number of points completed in a sprint) and reality was primarily caused by
teams starting too many features and/or stories. It had been common practice

to start multiple features at one time to mitigate possible risks. In addition,
whenever a story or feature was blocked (for a variety of reasons such as
waiting for a dependency from another team, waiting for customer
validation, inability to test because of environmental or build break issues,
etc.), teams would simply start the next story or feature so that we could
claim the points which we had committed to achieve. So, while velocity
burn-ups could look in line with expectations, multiple features were not
being completed on any regular cadence, leading to bottle-necks especially
at the end of the release as the teams strove to complete and test features.
During this period we operated under the assumption that if we mastered
Agile practices, planned better, and worked harder we would be successful.
Heroic efforts were expected.

In November of 2011 executive management chartered a small team of
director level managers to coordinate and drive process improvement across
the PLM organization, with the key goal of finally realizing the
predictability, operational efficiency, and quality gains originally promised
by our Agile approach. After some research, the team concluded that any
changes had to be systemic. Other previous process improvements had
focused on specific functional areas such as coding or testing, and had not
led to real improvements across the whole system or value stream. By value
stream in this context we mean all development activities performed within
the Scrum Teams from “specifying to done”. By reviewing the value stream
with a “Lean” perspective we realized that our problems were indeed
systemic, caused by our predilection for large batch sizes such as large
feature releases. Reading Goldratt (Goldratt, 2004), and Reinertsen
(Reinertsen, 2009) we also came to understand the impacts of large,
systemic queues. Coming to the understanding that the overtime, for which
programmers were sacrificing their weekends, may actually have been
elongating the release completion date was an epiphany.

This path inevitably led us to learn about Kanban. We saw in Kanban a
means of enforcing Lean and continuous improvement across the system
while still maintaining our core Agile development practices. Kanban would
manage Work In Progress, Cycle Time, and Throughput by providing a pull
system and thus reduce the negative impacts of large batches and high
capacity utilization. Furthermore, we saw in Kanban the potential for metrics
that were both tangible (and could be well understood by all corporate stake-

holders) and provide individual teams and program management with data
that 1s highly transparent and actionable.

We chose our revenue-cycle application as our pilot, consisting of 15
Scrum teams located in Malvern, PA., Brooklyn, N.Y., and Kolkata, India.
Although each Scrum team focuses on specific business domains, the
application itself requires integrating all these domains into a single unitary
customer solution. At this scale of systemic complexity, dependency
management, and continuous integration, a very high degree of consistency
and cohesion across the whole program is required. With this in mind, we
designed a “big-bang” approach with a high degree of policy, work-unit,
workflow, doneness, and metric standardization across all teams. We also
concluded that we needed electronic boards: large monitors displayed in
each team room that would be accessible in real time to all our local and
offshore developers. An electronic board would also provide an enterprise
management view across the program and a mechanism for real-time metrics
collection. Our initial product release using Kanban began in April 2012 and
was completed that December. Results from our first experience using
Kanban were far better than any of our previous releases. Our Cycle Time
looked predictable and defects were down significantly.

Our second release began in March 2013 and finished in September of
that same year. We continue to use Kanban for our product development
today. As we had hoped, learnings and experience from the first release led
to even better results in the releases that followed.

Actionable Metrics

Now that we had decided to do Kanban at Siemens HS, we had to change the
metrics we used so that we could more readily align with our newfound
emphasis on flow. The metrics of flow are very different than traditional
Scrum-style metrics. As mentioned earlier, instead of focusing on things like
story points and velocity, our teams now paid attention to Work In Progress
(WIP), Cycle Time, and Throughput. The reason these flow metrics are
preferable to traditional Agile metrics is because they are much more
actionable and transparent. By transparent we mean that the metrics provide
a high degree of visibility into the teams’ (and programs’) progress. By
actionable, we mean that the metrics themselves will suggest the specific
team interventions needed to improve the overall performance of the
process.

To understand how flow metrics might suggest improvement

interventions we must first explore some definitions. For Siemens HS, we

defined WIP to be any work item (e.g., user story, defect, etc.) that was

between the “Specifying Active” step and the “Done” step in our workflow

(Figure 17.1).

Speatyrg & Duveloping 10

| e | | et | speteqmond | oeeipegpesm) | Ovebpegeon | Tems o | Do |

g1 @ b i

B - Compuer Mloaking
a1

=l-B0 TR ¥

ool Linicrg - Irviwrim &
Enc. banaed - Prof aed
Tech chacges

SOt 9

Catcy dndure meth oh
517

eI 8 =| Spans e - Ve M

Charmm 1EE0TE - CTRA i - Miprrey P Sens o 21 -“J ors TR0

Whyp hancie cathing i rr————_ . - =H

[tmtrpct Meadeimg LS R AN £ 20 [P Link - change

purareict ke OP LT RHTY) -

Bt s | soine e - i S

i oo = S Chumrs 1581480 - DEE

Donre TP | O 16008 - FIX Ve M xan ||| SC00 e Hemry BEER 4 A
008 BOOT CArd] | By Aeromodation Job o
Guapahsh and =1 FILE s e e

Figure 17.1: Example Kanban Board

Cycle Time was defined to be the amount of total elapsed time needed
for a work item to get from “Specifying Active” to “Done”. Throughput was
defined as the number of work items that entered the “Done” step per unit of
time (e.g., user stories per week).

We have stressed throughout this paper that predictability is of
paramount importance to Siemens HS. So how was the organization doing
before Kanban?

Figure 17.2 is a Scatterplot of Cycle Times for finished stories in the
Financials organization for the whole release before Kanban was introduced.

Scatterplat

118 . S h . '. £ 50% of stories |**
I finished in 21
PR days or less

(il & . i L .. T a pps e aals 8 XY [L]
Ot 1. ' Dac 1, 2011 Jan 1, 7012 Fab 1. 2012 Baer 1, 2012
Coprmgt 014 Actnabile Agle, e, (MO0 Yactonabieagie fom)

Figure 17.2: Cycle Times in the Release before Kanban

What this Scatterplot tells us is that in this release, 50% of all stories
finished in 21 days or less. But remember we told you earlier that Siemens
HS was running 30 day sprints? That means that any story that started at the
beginning of a sprint had little better than 50% chance of finishing within the
sprint. Furthermore, 85% of stories were finishing in 71 days or less—that is
2.5 sprints! What’s worse is that Figure 17.3 shows us that over the course of
the release the general trend of story Cycle Times was getting longer and
longer and longer.

Scatterplat

Cyclo Time [Dayz)

il & " = T L W
Ot 12001 ' Daec 1. 2001 Fab 1.
Copryrgd 014 Actonabils Agle, Inc . (Mg Sactonabisagie oom)

Figure 17.3: General Upward Trend of Cycle Times before the Introduction of Kanban

Figure 17.3 is not a picture of a very predictable process.

So what was going on here? A simplified interpretation of Little’s Law
tells us that if Cycle Times are too long, then we essentially have two
options: decrease WIP or increase Throughput. Most managers inexplicably
usually opt for the latter. They make teams work longer hours (stay late)
each day. They make teams work mandatory weekends. They try and steal
resources from other projects. Some companies may even go so far as to hire
temporary or permanent staff. The problem with trying to impact
Throughput in these ways is that most organizations actually end up
increasing WIP faster than they increase Throughput. If we refer back to
Little’s Law, we know that if WIP increases faster than Throughput, then
Cycle Times will only increase. Increasing WIP faster than increasing
Throughput only exacerbates the problem of long Cycle Times.

Our choice (eventually) was the much more sensible and economical
one: reduce Cycle Times by limiting WIP through the use of Kanban. What
most people fail to realize is that limiting WIP can be as simple as making
sure that work is not started at a faster rate than work is completed (please
see Figure 5.5 as an example of how mismatched arrival and departure rates
increases WIP in the process). Matching arrival rates to departure rates is the
necessary first step to stabilizing a system. Only by operating a stable system
could we hope to achieve our goal of predictability.

Unfortunately for us, however, the first release that we implemented
Kanban, we chose not to limit WIP right away (the argument could be made
that we were not actually doing “Kanban” at that point). Why? Because
early on in our Kanban adoption the teams and management resisted the
imposition of WIP limits. This was not unexpected, as mandating limits on
work went against the grain of the then current beliefs. We therefore decided
to delay until the third month of the release. This allowed the teams and
management to gain a better familiarity of the method and become more
amenable.

The delay in implementing WIP limits cost us and in retrospect we
should have pushed harder to impose WIP limits from the outset. As you
might expect, because of the lack of WIP limits, the very same problems that
we saw in the previous release (pre-Kanban) started to appear: Cycle Times
were too long and the general trend was that they were getting longer.

Taking a look at the CFD (Figure 17.4) in the first release with Kanban
clearly shows how our teams were starting to work on items at a faster rate
than we were finishing them:

Cumulative Flow

Mﬁ.?ﬂ'ﬁ Jun 2%, 2012 Jul 2, 20N2 Jul 9, 2012 Jul 16, 2012 Jul 23, 2012 Jul 30, 2012 Aug 6. 2012 Aug 13, 3092 Aug 20, 2012
Coprrgd 10114 Actonakls Agle, inc . [Beplactonabisagie oom)

Figure 17.4: CFD Early on in the first release with Kanban
This disregard for when new work should be started resulted in an
inevitable increase in WIP which, in turn, manifested itself in longer Cycle
Times (as shown in Figure 17.5).

Scatterplat - P T :

Cytle Time [Daryz)

L W

.
Jul 1, 2012 Aug 1. 2012

Sep 1. 2002 Oct 1, 3012 Mo 1, 2012
Cofrgt 015 Actonabie Agle, e (MG 2 actonabisagie Com)

Figure 17.5: Scatterplot early on in the first release with Kanban
Upon seeing these patterns emerge, we instituted a policy of limiting
WIP across all teams. Limiting WIP had the almost immediate effect of
stabilizing the system such that Cycle Times no longer continued to grow (as
shown in Figure 17.6).

Scatterplat

Cyele Tims (Daryz)

Jul 1, 2012 Aug 1. 2002 Sep 1.2012 Ocl 1, 2012
Coprimg 2014 Ausonatie Agle, e (e scton sbie s £om)

Figure 17.6: Stabilized Cycle Times after introducing WIP Limits
Over the course of our first release with Kanban, the 85™ percentile of
story Cycle Time had dropped from 71 days to 43 days. And, as you can see

from comparing Figure 17.4 to Figure 17.7 (the release before Kanban, and
the first release using Kanban, respectively) the teams were suffering from
much less variability. Less variability resulted in more predictability. In other
words, once we limited WIP in early September 2012 the process Cycle
Times did not increase indefinitely as they did the release before. They
reached a stable state at about 41 days almost immediately, and stayed at that
stable state for the rest of the release.

This stabilization effect of limiting WIP is also powerfully
demonstrated in the CFD (Figure 17.7):

Cumulative Flow

DJ.H.EHE Aug 1, 2012 Sep 1, M2 Od 1, Mz Moy 1, 2012
Copringd 2014 Actonakls Agle, Ind, (B Mactonablsagie om)

Figure 17.7: CFD in the First Release with Kanban after WIP limits were introduced

The second release after the introduction of Kanban saw much the same
result (with regard to predictability). 85 percent of stories were finishing
within 41 days and variability was still better controlled. Looking at the two
Scatterplots side by side bears this out (Figure 17.8):

Projection Source Dsta «

Scatterplot Histogram

200

150

Cycle Time (Days)

63 95%
50

43 il 85% |

29 LRy o 70%

450% |

] 30%

s L] L 3 Py - & - E: 3 S 3 a at
Aug 1, 2012 Sep 1, 2012 Oct 1, 2012 5 Dec 1, 2012
Copyright 2014 Actionable Agile, Inc. (hitp:/factionableagile com)

Home Cumulative Flow Scatterplot Histogram Projection

Cycle Time (Days)

Kanban (below)
Hopefully it is obvious to the reader that by taking action on the metrics
that had been provided, we had achieved our goal of predictability. As
shown in Figure 17.8, our first release using Kanban yielded Cycle Times of
43 days or less, and our second release using Kanban yielded Cycle Times of
40 days or less. This result is the very definition of predictability.

By attaining predictable and stable Cycle Times we would now be able
to use these metrics as input to future projections. How we did projections
will be discussed in more detail in the next section of this chapter.

These shorter Cycle Times and decreased variability also led to a
tremendous increase in quality (Figure 17.9):

900 B

o Kanban Quality Impact
3
:gl JO0
a GO0
(]
..E 500 mm osi-Kanban open
E 400 s Proyst-Kanban closed
-E 300 f m re-Kanban open
= 200 s Pre-Kanban closed
=

100

1]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Weeks

Figure 17.9: Quality Compared between Releases

Figure 17.9 shows how Kanban both reduced the number of defects
created during release development well as minimizing the gap between
defects created and defects resolved during the release. By managing queues,
limiting work-in progress and batch sizes and building a cadence through a
pull system (limited WIP) versus push system (non-limited WIP) we were
able to expose more defects and execute more timely resolutions. On the
other hand “pushing” a large batch of requirements and/or starting too many
requirements will delay discovery of defects and other issues; as defects are
hidden in incomplete requirements and code.

By understanding Little’s Law, and by looking at how the flow appears
in charts like CFDs and Scatterplots, Siemens HS could see what
interventions were necessary to get control of their system. Namely, the
organization was suffering from too much WIP which was, in turn, affecting
Cycle Time and quality. In taking the action to limit WIP, Siemens saw an
immediate decrease in Cycle Time and an immediate increase in quality.

These metrics also highlighted problems within the Siemens HS
product development process, and the following section of this chapter will
discuss what next steps the organization is going to implement in order to
continue to improve its system.

How Metrics Changed Everything

Apart from the improvements in predictability and quality, we also saw
significant improvements in operational efficiency. We had “real-time”
insight into systemic blocks, variability and bottlenecks and could take
appropriate actions quickly. In one case by analyzing Throughput (story run
rate) and Cycle Time for each column (specifying, testing and developing),
we were able to clearly see where we were experiencing capacity problems.
We were also able to gauge our “flow efficiency” by calculating the
percentage of time stories were being worked on or “touched” versus
“waiting” or “blocked”. Wait time is the time a story sits in an inactive or
done queue because moving to the next active state is prevented by WIP
limits. Blocked time is the time work on a story is impeded, including
impediments such as build-breaks, defects, waiting for customer validation
etc. The calculation is made by capturing time spent in the “specifying done
and developing done” column plus any additional blocked time which we
call “wait time”. (Blocked or impediment data is provided directly by the
tool we are using). Subtracting “wait time” from total Cycle Time gives us
“touched time”. Calculating flow efficiency is simply calculating the
percentage of total touch time over total Cycle Time. Flow efficiency
percentage can act as a powerful Key Performance Indicator (KPI) or
benchmark in terms of measuring overall system efficiency.

This level of transparency, broadly across the program and more deeply
within each team enabled us to make very timely adjustments. Cumulative
flow diagrams provided a full picture at the individual team and program
levels where our capacity weaknesses lay and revealed where we needed to
make adjustments to improve Throughput and efficiency. For example, at the
enterprise level using the Cumulative Flow Diagram the management team
was able to see higher Throughput in “developing” versus “testing” across
all teams and thus make a decision to invest in increasing test automation
exponentially to re-balance capacity. This was actually easy to spot as the
“developing done” state on the CFD consistently had stories queued up
waiting for the “testing” column WIP limits to allow them to move into
“testing”’. At the team level the metrics would be used to manage WIP by
adjusting WIP limits when needed to ensure flow and prevent the build-up of
bottlenecks and used extensively in retrospectives to look at variability. By
using the Scatterplot, teams could clearly see stories whose Cycle Time
exceeded normal ranges, perform root cause analysis and take steps and

actions to prevent recurrence. The CFD also allowed us to track our average
Throughput or departure-rate (the number of stories we were completing per
day/week etc.) and calculate an end date based on the number of stories
remaining in the backlog — (similar to the way one uses points and velocity,
but more tangible). Furthermore by controlling WIP and managing flow we
saw continued clean builds in our continuous integration process, leading to
stable testing environments, and the clearing of previously persistent testing
bottlenecks.

The results from the first release using Kanban were better than
expected. The release completed on schedule and below budget by over
10%. The second release was even better: along with sustained
improvements in Cycle Time, we also became much faster. By reducing
Cycle Time we were increasing Throughput, enabling us to complete 33%
more stories than we had in the previous release, with even better quality in
terms of number of defects and first pass yield — meaning the percentage of
formal integration and regression tests passing the first time they are
executed. In the release prior to Kanban our first pass yield percentage was
at 75%, whereas in the first Kanban release the pass percentage rose to 86%
and reached 95% in our second release using Kanban.

The metrics also gave us a new direction in terms of release forecasting.
By using historical Cycle Times we could perform Monte-Carlo simulation
modelling to provide likely completion date forecasts. If these forecasts
proved reliable, we would no longer need to estimate. In our second Kanban
release we adopted this practice along with our current points and velocity
estimation planning methods and compared the results. Apart from the
obvious difference in the use of metrics versus estimated points, the
simulation provides a distribution of likely completion timeframes instead of
an average velocity linear based forecast — such as a burn up chart. Likewise
Cycle Time metrics are not based on an average (such as average number of
points) but on distributions of actual Cycle Times. The Histogram in Figure
17.10 is an example of actual historical Cycle Time distributions that
Siemens uses as input to the modelling tool. In this example 30% of stories
accounting for 410 actual stories had Cycle Times of 9 days or less, the next
20% accounting for 225 stories had Cycle Times of 10 to 16 days and so
forth.

'SOth Percentile (410)

70th Percentile (264)

Frequency

50th Percentile (225)

85th Percentile (174)

95th Percentile (120)

100th Percentile (61)

0to 9 days 10 to 16 days 17 to 28 days 29 to 40 days 41 to 60 days 61 to 227 days

Figure 17.10: Cycle Time Distributions

What we learned was that velocity forecasts attempt to apply a
deterministic methodology to an inherently uncertain problem. That type of
approach never works. By using the range or distributions of historical Cycle
Times from the best to worst cases and simulating the project hundreds of
times, the modelling simulation provides a range of probabilistic completion
dates at different percentiles. For example see Figure 17.11 below showing
likely completion date forecasts used in release planning. Our practice is to
commit to the date which is closest to the 851 percent likelihood as is
highlighted in the chart. As the chart shows we are also able to use the model
to calculate likely costs at each percentile.

Al Forecast Date and Likelihood - oI IEH

Results | Permutations | Tracking (beta)

‘ Likelihood Date Workdays Cost Cost of Delay Days of Delay L=

| 100.00 % [01-Nov-2013|200 $1,200,000.00 $0.00 0 0

| 99.20 % [29-Oct-2013 |197 $1,182,000.00 $0.00 0 a

| 9520% |25-Oct-2013 |193 $1,158,000.00{ $0.00 0 0

90.40 % |21-Oct-2013 (189 $1,134,000.00{$0.00 0 0
86.80 % [17-Oct-2013 [185 $1,110,000.00 | $0.00 0 0

| 7920% |13-Oct-2013 [181 $1,086,000.00 | $0.00 0 0

75.60 % [10-Oct-2013 | 178 $1,068,000.00{$0.00 0 0

| 7200 % |06-Oct-2013 |174 $1,044,000.00{ $0.00 0 0

| 69.60 % |02-Oct-2013 |170 $1,020,000.00 [$0.00 0 g

| 62.80 % |28-Sep-2013 |166 $996,000.00 [$0.00 0 C

| 52.00% |24-Sep-2013 |162 $972,000.00 |$0.00 0 g
48.00 % |21-Sep-2013 159 $954,000.00 [$0.00 0 0

4160 % |17-Sep-2013 [155 $930,000.00 |$0.00 0 0

} 32.80 % | 13-Sep-2013 | 151 $906,000.00 [$0.00 0 dv
As HTML... Close

Figure 17.11: Result of Monte-Carlo simulation showing probability forecast at different
percentages

Over the course of the release the model proved extremely predictive;
moreover, it also provided to Siemens the ability to perform ongoing risk
analysis and “what-if” scenarios with highly instructive and reliable results.
For example, in one case, to meet an unexpected large scope increase on one
of the teams, the Program Management Team was planning to add two new
Programmers. The modelling tool pointed to adding a Tester to the team
rather than adding programming. The tool proved very accurate in terms of
recommending the right staffing capacity to successfully address this scope
increase.

At the end of the day, it was an easy decision to discard story point
velocity based estimation and move to release completion date forecasts.
The collection of historical Cycle Time metrics that were stable and
predictable enabled Siemens to perform Monte-Carlo simulations, which
provided far more accurate and realistic release delivery forecasts. This was

a huge gap in our Agile adoption closed. In analyzing the metrics, Siemens
also discovered that there was no correlation between story point estimates
and actual Cycle Time.

Siemens also gained the ability to more accurately track costs; as we
discovered that we could in fact correlate Cycle Time to actual budgetary
allocations. Siemens could now definitively calculate the unit costs of a
story, feature and/or a release. By using the modelling tool we could now
forecast likely costs along with dates. Moreover, we could put an accurate
dollar value on reductions or increases in Cycle Times.

The metrics also improved communication with key non PLM stake-
holders. It had always been difficult translating relative story points to
corporate stakeholders who were always looking for time based answers and
who found our responses based on relative story points confusing. Metrics
such as Cycle Time and Throughput are very tangible and especially familiar
in a company such as Siemens with a large manufacturing sector.

Implementing Kanban also had a positive impact on employee morale.
Within the first month, Scrum-masters reported more meaningful stand-ups.
This sentiment was especially expressed and emphasized by our offshore
colleagues, who now felt a much higher sense of inclusion during the stand-
up. Having the same board and visualization in front of everyone made a
huge difference on those long distant conference calls between colleagues in
diametrically opposed time zones. While there was some skepticism as
expected, overall comments from the teams were positive; people liked it.
This was confirmed in an anonymous survey we did four months into the
first release that we used Kanban: the results and comments from employees
were overwhelmingly positive. Furthermore, as we now understood the
impact of WIP and systemic variability, there was less blame on
performance and skills of the team. The root of our problem lay not in our
people or skills, but in the amount of Work In Progress.

Conclusion

Kanban augmented and strengthened our key Agile practices such as cross-
functional Scrum teams, story driven development, continuous integration
testing, TDD, and most others. It has also opened the way to even greater
agility through our current plan to transition to continuous delivery.
Traditional Agile metrics had failed Siemens HS in that we did not
provide the level of transparency required to manage software product

development at this scale. Looking at a burn-down chart showing average
velocity does not scale to this level of complexity and risk. This had been a
huge gap in our Agile adoption which was now solved.

Understanding flow—and more importantly understanding the metrics
of flow—allowed Siemens to take specific action in order improve overall
predictability and process performance. On this note, the biggest learning
was understanding that predictability was a systemic behavior that one has to
manage by understanding and acting in accordance with the assumptions of
Little’s law and the impacts of resource utilization.

Achieving a stable and predictable system can be extremely powerful.
Once you reach a highly predictable state by aligning capacity and demand;
you are able to see the levers to address systemic bottle-necks and other
unintended variability. Continuous improvement in a system that is unstable
always runs the risk of improvement initiatives that result in sub-
optimizations.

The extent of the improvement we achieved in terms of overall defect
rates was better than expected. Along with the gains we achieved through
managing WIP; we had placed significant focus on reinforcing and
improving our CI and quality management practices. Each column had its
own doneness criteria and by incorporating “doneness procedures” into our
explicit policies we were able to ensure that all quality steps were followed
before moving a story to the next column — for example moving a story from
“Specifying” to “Developing”. Most of these practices had predated Kanban;
however the Kanban method provided more visibility and rigor.

The metrics also magnified the need for further improvement steps: The
current Kanban implementation incorporates activities owned within the
Scrum Teams; but does not extend to the “backend process” — regression
testing, beta testing, hosting, and customer implementation. Like many large
companies Siemens continues to maintain a large batch release regression
and beta testing process. Thus begging the question; what if we extended
Kanban across the whole value stream from inception to implementation at
the customer? Through the metrics, visualization, managing WIP and
continuous delivery we could deliver value to our customers faster and with
high quality. We could take advantage of Kanban to manage flow, drive
predictable customer outcomes, identify bottle-necks and drive Lean
continuous improvement through the testing, operations and implementation

areas as well. In late 2013 we began our current and very ambitious journey
to extend the Kanban method across the whole value stream.

Finally it is important to say that the use of metrics instead of
estimation for forecasting has eliminated the emotion and recrimination
associated with estimation. Anyone wishing to go back to estimating sprints
would be few and far between, including even those who had previously
been the most skeptical.

Key Learnings and Takeaways

e Traditional Agile metrics were not working for Siemens HS as those
metrics did not provide the transparency and predictability required by
Siemens HS’ customers and management.

e Siemens HS decided to dump Story Points and Velocity in favor of
WIP, Cycle Time, and Throughput.

o After that shift, Siemens HS quickly discovered the root of their
problem was not people or skillsets but too much WIP.

e By controlling WIP, Siemens HS was able to reduce Cycle Time from
71 days at the 85™ percentile to 43 days at the 85™ percentile.

e Controlling WIP also increased the quality of the HS releases
dramatically.

e The second release after limiting WIP produced story Cycle Times of
40 days at the 85™ percentile.

e Having predictable Cycle Times allowed Siemens to mostly abandon
their old estimation practices.

e The use of metrics instead of estimation for forecasting has eliminated
the emotion and recrimination associated with estimation.

e Predictable Cycle Times have also allowed Siemens HS to begin to
utilize more advanced forecasting techniques like the Monte Carlo
Method.

Acknowledgements

As any author will tell you, there may be one name on the front cover, but a
book is only possible due to the hard work of numerous people. If I may, I’d
like to call your particular attention to the efforts of the few of those listed
here.

First, I have to say there is no one in the software industry who
understands the principles of flow and how to apply those principles to
teams better than Frank Vega. If you want to know anything about flow
metrics and analytics, Frank is the guy to ask—which I did on way too
many occasions, I’'m sure. When reviewing this book, his comments were
insightful, thought-provoking, and pragmatic. He is one of the few people
whose opinion I implicitly trust on this stuff.

I’m not sure there is anyone in the Agile community who asks tougher
questions than Nannette Brown. She constantly challenged me to come up
with better answers and was (is) never satisfied until I did.

To Mike Longin and Prateek Singh I have to say thanks for your
willingness to learn and provide valuable feedback on how to introduce
these concepts to teams. We’ve got much more work to do!

Arin Sime is one of the few truly great minds in in all of Agile.
Thanks for giving me the opportunity to share my ideas.

Troy Tuttle has built one of the greatest Lean communities from
scratch and, more importantly, has allowed me to contribute when I can.
The whole Lean-Agile movement would be a much better place with more
people like Troy.

Steve Reid refuses to allow his organization to stagnate. In his mind
there is always room for improvement and to his great credit he allows his
team members the room to experiment and innovate. Thanks, Steve, for
letting me be a part of that ride.

Dennis Kirlin is one of those guys who you can sit down with and
solve world hunger over a cup of coffee—or a whisky as the case may be.
There is a reason his Agile teams are the envy of his whole city.

For those of you who don’t know, Darren Davis is the true “Father of
Kanban”. It was his matter-of-fact approach to solving real-world problems

that got the movement off of the ground. I was fortunate enough to learn
from him as he guided me through the process of shedding the shackles of
sprints. Because of him I’ve never looked back.

A special thanks to Troy Magennis for two reasons. First, for daring
the community to get out of its comfort zone and think about the world
more probabilistically; and, second, for his gracious permission to let me
use his Monte Carlo Simulation tool to run my crazy experiments. [’ve
mentioned this before, but I’ll say it again: if you don’t know about Troy’s
work then you need to look him up.

Bennet Vallet is one of those rare individuals who constantly—and I
mean constantly—pushes himself to learn and get better. Combine that with
his willingness to do whatever is needed to get the correct result and you
get a formidable force. He has been and continues to be a great mentor to
me. Without his prodding this book may never have seen the light of day.
True to form, he is already asking for the next version that covers the more
advanced topics.

Vanessa Vacanti is the James Brown of knowledge work. She
constantly reminded me to keep this material in the realm of the practical.
Thanks for all of your help, LEHjr!

To my twin sister, Dina Vacanti. You don’t get to choose your
siblings, but if I could, I would choose you every time.

Al and Pat Vacanti are the whole reason I was able to write this book.
How do you ever say thanks enough for that?

As always, Todd Conley remains my wizard behind the curtain. Todd
never wavered in his belief when I first pitched the idea of a flow analytics
tool to him two years ago, and he has been tireless in his pursuit of
perfection in developing that product ever since. Todd has a no-nonsense
approach to building software and is without a doubt the best developer I
have ever known. He is a trusted advisor, invaluable colleague, and great
friend.

Last, but absolutely not least, I’d like to thank my wife, Ann. For her
role in all of this, she deserves top billing and the “and”. She deserves the
EGOT. For putting up with me, she deserves both the Nobel Prize and
sainthood. No matter how preoccupied, absent-minded, or just plain stupid
I’ve been she has always supported me. In the whole time that I’ve known
her, whenever I’ve wanted to take risks both professionally and personally,
she has never said no. I can’t imagine a better partner. Nor would I want to.

All of the people listed above have been great collaborators for me. If
this book falls short then I can’t fault any of them. That blame lies solely
with me.

And, lastly, to you, the reader. Thanks for reading!

Daniel S. Vacanti

March 2015

Bibliography

Bertsimas, D., D. Nakazato. The distributional Little s Law and its
applications. Operations Research. 43(2) 298-310, 1995.

Brumelle, S. On the relation between customer and time averages in
queues. J. Appl. Probab. 8 508-520, 1971.

Deming, W. Edwards. The New Economics. 2"4 Ed. The MIT Press,
1994

Deming, W. Edwards. Out of the Crisis. The MIT Press, 2000.

Glynn, P. W., W. Whitt. Extensions of the queueing relations L = A W
and H = 1 G. Operations Research. 37(4) 634-644, 1989.

Goldratt, Eliyahu M., and Jeff Cox. The Goal. 2" Rev. Ed. North
River Press, 1992.

Heyman, D. P., S. Stidham Jr. The relation between customer and time
averages in queues. Oper. Res. 28(4) 983-994, 1980.

Hopp, Wallace J., and Mark L. Spearman. Factory Physics.
Irwin/McGraw-Hill, 2007.

Hubbard, Douglas W. How to Measure Anything: Finding the Value of
Intangibles In Business. John Wiley & Sons, Inc., 2009.

Little, J. D. C. 4 proof for the queuing formula: L = A W. Operations
Research. 9(3) 383-387, 1961.

Little, J. D. C., and S. C. Graves. “Little’s Law.” D. Chhajed, T. J.
Lowe, eds. Building Intuition: Insights from Basic Operations Management
Models and Principles. Springer Science + Business Media LLC, New
York, 2008.

Magennis, Troy. Forecasting and Simulating Software Development
Projects. Self-published, 2011.

Reinertsen, Donald G. Managing the Design Factory. Free Press,
1997.

Reinertsen, Donald G. The Principles of Product Development Flow.
Celeritas Publishing, 2009.

Ries, Eric. The Lean Startup. Crown Business, 2011.

Roubini, Nouriel, and Stephen Mihm. Crisis Economics. Penguin
Books, 2010.

Savage, Sam L. The Flaw of Averages. John Wiley & Sons, Inc., 2009.

Shewhart, W. A. Economic Control of Quality of Manufactured
Product, 1931.

Shewhart, W. A. Statistical Method from the Viewpoint of Quality
Control, 1939.

Stidham, S., Jr. L = A W: A discounted analogue and a new proof.
Operations Research. 20(6) 1115-1126, 1972.

Stidham, S., Jr. 4 last word on L= A W. Operations Research. 22(2)
417421, 1974.

Vacanti, Daniel S. and Bennet Vallet. “Actionable Metrics at Siemens
Health Services”. AgileAlliance.com. I Aug 2014.

Vallet, Bennet. “Kanban at Scale: A Siemens Success Story.”
Infog.com. 28 Feb 2014.

Vega, Frank. “Are You Just an Average CFD User?” Vissinc.com. 21
Feb 2014.

Vega, Frank. “The Basics of Reading Cumulative Flow Diagrams”.
Vissinc.com. 29 Sep 2011.

Wheelan, Charles. Naked Statistics. W. W. Norton & Company, 2013.

Wheeler, Donald J., and David S. Chambers. Understanding Statistical
Process Control. 2" Ed. SPC Press, 1992.

Wikipedia “Monte Carlo method.” Wikipedia.com. 01 Aug 2014.

Wikipedia “Uniform Distribution.” Wikipedia.com. 01 Aug 2014.

Wikipedia “Uniform Distribution (discrete).” Wikipedia.com. 01 Aug
2014.

About the Author

Daniel Vacanti is a 20-year software industry veteran who got his start as a
Java Developer/Architect and who has spent most of the last 15 years
focusing on Lean and Agile practices. In 2007, he helped to develop the
Kanban Method for knowledge work. He managed the world’s first project
implementation of Kanban that year, and has been conducting Kanban
training, coaching, and consulting ever since. In 2011 he founded Corporate
Kanban, Inc., which provides world-class Lean training and consulting to
clients all over the globe—including several Fortune 100 companies. In 2013
he co-founded ActionableAgile™ which provides industry leading
predictive analytics tools and services to any Lean-Agile process. Daniel
holds a Masters in Business Administration and regularly teaches a class on
lean principles for software management at the University of California
Berkeley.

	Table of Contents
	Preface
	PART ONE - FLOW FOR PREDICTABILITY
	Chapter 1 - Flow, Flow Metrics, and Predictability
	Chapter 2 - The Basic Metrics of Flow
	Chapter 3 - Introduction to Little’s Law
	PART TWO - CUMULATIVE FLOW DIAGRAMS FOR PREDICTABILITY
	Chapter 4 - Introduction to CFDs
	Chapter 5 - Flow Metrics and CFDs
	Chapter 6 - Interpreting CFDs
	Chapter 7 - Conservation of Flow Part I
	Chapter 8 - Conservation of Flow Part II
	Chapter 9 - Flow Debt
	PART THREE - CYCLE TIME SCATTERPLOTS FOR PREDICTABILITY
	Chapter 10 - Introduction to Cycle Time Scatterplots
	Chapter 10a - Cycle Time Histograms
	Chapter 11 - Interpreting Cycle Time Scatterplots
	Chapter 12 - Service Level Agreements
	PART FOUR - PUTTING IT ALL TOGETHER FOR PREDICTABILITY
	Chapter 13 - Pull Policies
	Chapter 14 - Introduction to Forecasting
	Chapter 15 - Monte Carlo Method Introduction
	Chapter 16 - Getting Started
	PART FIVE - A CASE STUDY FOR PREDICTABILITY
	Chapter 17 - Actionable Agile Metrics at Siemens HS
	Acknowledgements
	Bibliography
	About the Author

